HLD

Mikhail Pershin

February 6, 2008

1 Requirements

Implement object management like precreation, createsoie- and destroy in new
uOSS obdfilter code.

2 Functional specification

2.1 General approach

Full FID implementation requires new client with FID alldizen on it and FID se-

guence management on both client and uOSS code. Thoughrtketdesign is based
on FID usage there is need for temporary approach to supfth&sed functionality

with old object identification through group/id.

Full mode: the client generates FID for OST objects, they are storeddN EA at
MDS and these FIDs are used in OSS as object identificatazcbhje created
in FID/ directory. CROW (create_on_write) can be used taebjects instead
of precreate.

Compatible mode: the MDS takes object id as usual from pool of the precreatad ID
OSS pack object id into IDIF to use it instead of FID in new O$8& CROW
is used to creat objects but last_id is supported too for MB&is.

Current design document is about tteenpatible mode only.

2.2 IDIF

For compatibility with FID-based API and future use the ID$Rdefined. IDIF is a
FID used to identify pre-fid object on an OST (for the purpofa tuture fid-on-the-
ost implementation).

2.3 Precreation of object IDs 3 USE CASES

IDIF: 0:32bits, 1:1bit, ost-index:15bits, obj-index:48bits, 0:32bits

48 bits for obj-index are enough to sustain 10K/sec creafions years, so we shouldn’t
have problems upgrading any OST.

Object ID is packed to IDIF in OST during request unpackingd stored inoti struc-
ture

2.3 Precreation of object IDs

MDS uses precreated pool of object IDs to get new one and O3 segular requests
for new IDs. We keep this intact but OSS doesn’t create objectually. It maintain
the last_id value instead and creates objects on write. dllos/s to use old MDS
behaviour and introduce CROW functionality that will be ded in near future.

2.4 Create on write

CROW is object creation mechanism in OSS now. Obsoletedgaton code and or-

phan handling code is not needed. CROW code creates objaatg €irst write/setattr/punch/truncate
and also it should hanlde read/getattr to don’t return erboit simulate empty object

instead.

2.5 Object destroy

Object destroy is implemented in general but should be cetaglfully by comparision
with HEAD code.

2.6 Compatiblity with future approaches

Currentimplementation is temporary until FID for OSS olgegill be really generated
on client and used. There will be no API changed needed arel madlifications, but
OSD will need code to distinguish the IDIF from real FID andeat index will be
needed to find object by its FID. Both functionality don’t té attention in current
design and can be designed separately later.

3 Use cases

3.1 Precreate cases

o filter_create() -> filter_precreate() -> filter_set_lastl()
Filter set new last_id value during both precreate and eteref objects

3.2 Create on write cases 4 LOGIC SPECIFICATION

3.2 Create on write cases

o filter_setattr()/filter_preprw_write()/filter_truncaggfilter_punch()-> filter_object_find_or_create()
The new object should be created during first write operation

o filter_preprw_read()/filter_getattr()
These methods can found that object is not yet created, lutictsimulate

empty object.
3.3 Destroy

o filter_destroy()
Destroy the object

3.4 Orphans handling

o filter_create([flags OBD_FL_DELORPHAN]) -> filter_destrgyrecreated()
MDS require orphans to be destroyed.

4 Logic specification

4.1 Last_id management

OSS implementation requires support for last_id and clpaimuprecreation code.

Last_id:

e is written transactionally during precreate/recreatéfoain MDS
e used to store last precreated(reserved) value
e used to check the object id is valid (not greater than la¥t_id

Precreation code is quite simple and needs no more reaneedide. Only last_id
handling is needed.

4.2 CROW 5 STATE MANAGEMENT

4.2 CROW

Create-on-write is used in filter_preprw_write(), filtegtattr() and filter_punch/truncate()
to create new object if it doesn’t exist yet and set propeitaites.

CROW functionality should care about correct handling aidigetattr for objects
which are not yet created. To do that it simulate 'empty’ objwith zero size and
time.

Client should handle zero time properly too.

Note: current CROW implementation should be considered as CRQé{ype. The
full CROW design is out of scope this document and will be dbyd ustre
Protocol Team later.

5 State management

5.1 State invariants

Object on OSS lifecycle:

1. notyet created but valid
2. created and valid

3. destroyed and invalid

5.2 Scalability & performance

Using CROW technique will improve performance

5.3 Recovery changes

Recovery of OSS: the last_id is taken from disk and correftted MDS last_id value
during object recreate. Orphan destroy call from MDS is pssed as previously - all
objects with IDs greater than last_id from MDS should be mgstd.

Recovery of MDS is not changed

