
1 MDS AND OSS CAPABILITIES1 MDS and OSS Capabilities1.1 IntroductionCapabilities are pieces of data generated by one service, the master service,passed to a client and presented by the client to another service, the slaveservice, to authorize an action.1.2 Speci�cation1.2.1 Feature controlFor each of the MDS and OST the feature of capability checking and generationcan be turned on or o� with an lconf parameter and a /proc/sys variable.The duration of validity can be tuned through /proc (important for accep-tance tests).1.2.2 Special userThe security context for a user, both on the MDS and OSS may indicate thatthe user has special priviliges for the target and can access �ds and/or objectsin the target without capabilities. If the MDS detects this, a 0 capability isgenerated.1.2.3 MDS capabilities (not required for cmd2 - skip initially)There are a few MDS capabilities:1. A �d capability: this proves that a client obtained access to a �d2. Replay capability for an operation associated with a �d.(a) At present only open for a �d (together with the opening mode) areimportant(b) Chdir and mount may be additional capabilities3. Each request to the MDS will include the capability or capabilities asso-ciated with the �d(s) in that request.4. Each reply to a lookup request or open request from the MDS contains acapability.1.2.4 OSS capabilities1. When objects for a �le are created the MDS id and storage id of the �leinode is stored in an EA in the object.2. When a �le is opened successfully a capability is sent to the client allowingcreate, read/write or read access to the objects.3. The capability is veri�ed by the OSS.1



1.2 Speci�cation 1 MDS AND OSS CAPABILITIES1.2.5 Capability Renewal1. the client keeps capabilities in a list. When they are close (like 90%)to expiring they are renewed with the MDS. Notice that renewal of acapability is based on the original open, not on current permissions of a�le.1.2.6 Capability cryptographyHMAC-SHA1 function A MAC is used to prove that a capability was notmodi�ed since it was generated by a master. The size of the MAC is 128 bits.We need a kernel level implementation of this function to compute hashesof capabilities, to protect their integrity. It seems that HMAC-MD5 or HMAC-SHA1 would be acceptable for this purpose.capability cache Signing the capabilities is probably time consuming. Acache of �xed size (maybe some 1000's) of signed capabilities should be retained.To increase cache hits, timeouts in capabilities should be rounded to the nearest1000 seconds.Encryption Capabilities need to be encrypted on the wire so that they cannotbe snooped. There are two mechanisms for encrypting capabilities:1. Use the GSS infrastructure - this is the simplest solution, good for cmd2.2. Build a special purpose encryption mechanism for capabilities.When OSS capabilities are enabled both client - MDS and client - OSS connec-tions need to use privacy on the GSS connection.1.2.7 Managing and setting shared keys with slavesThe master and the slave need to share a key to verify the authenticity ofcapabilities, this key is called the base key and the base key must be identi�edso that it can be found by the slave. Slaves may have base keys from di�erentmasters. The capability will identify what key was used, but not contain thekey.The master will be an MDS, the slave will be an MDS (possibly the sameserver as the master) or an OSS.1. The master will connect using GSS to the slave using a special principalallowing administrative actions.2. At any time a slave will have one or two keys available for any master,labeled as red and black. Keys expire after a hard coded amount of hours,after which a new key will be generated by the master. To avoid a storm ofnew requests, the key that expired remains valid for another time intervaland is then discarded. Hence, when a new key arrives on the slave:2



1.3 Logic 1 MDS AND OSS CAPABILITIES(a) the black key is discarded, with all its associated cache information(b) the red key becomes black(c) the new key is given the red label3. The keys will be identi�ed by the a master server number and an increasingkey sequence number.4. Each time a key expires, a new key is generated by the master the sequencenumber is increased in the MDS disk data.5. The keys generated by the master service and sent, encrypted using GSSto the slave service.6. This network command is an obd-ioctl or set info command that tells theOSS:(a) the new key(b) the identi�er of the key(c) the duration for which the key will be used7. When capabilities are veri�ed both the red and the black key can be used.8. When keys need to be found, they are stored in a hash table, based onthe key identi�er.9. The keys should be stored in an on disk directory to avoid having to renewkeys at recovery.1.3 LogicThe design falls into natural parts1. Capabilities without encryption for the OSS(a) capabilities are somehow shared between the mdc's and osc'si. mdc is responsible for renewal of the capabilityii. osc is responsible to include capability in further request(s). Thecapability can be used many times.(b) the logical location of capability code is probably in the class driver:they might / should be used all over the place. Let's consider verycarefully in the DLD how a capability is found, referenced and re-leased, in conjunction with the cache of signed capabilities on theserver nodes.(c) structure of the capabilitystruct lustre_capa { 3



1.4 Future work 1 MDS AND OSS CAPABILITIESu64 lcapa_objid[3]; // object/inode on what serveru32 lcapa_operation; // operation allowedu32 lcapa_expiry; // expiry time: servers have clocksu32 lcapa_keyid; // key used for the capabilityu32 lcapa_secflags // security features for capa}1. Capabilities without encryption for the MDS2. Renewing nearly expired capabilities(a) maintain a list for each user of capabilities(b) manage capabilities in the MDC / OSC, not3. Signing capabilities and a cache of signed capabilities4. Shared key management between master and slave capability nodes1.4 Future workPossibly the use of GSS connections is associated with serious overhead. Thisneeds to be pro�led.

4


