
CMD3 Security Layering

Nikita Danilov <nikita@clusterfs.com>

2006.09.29

1 Introduction

This document describes how security infrastructure (capabilities, remote users, and
remote acls) are integrated into new md server layering. Understanding of security
code and new md stack is assumed.

2 Requirements

Capabilities, remote users and remote acls have to be integrated into new md stack.
Specifically:

• The OST / OSD shall export a capability based authorization mechanism. When
the OSD is used by the MDS such a scheme will not introduce any overhead.

• Future support for NFSv4 ACL’s will be possible

• If any VFS context or similar context is used by a server, the server will se-
tuid/setgid/segroups to the user context for which it is executing and chroot to
the root of a file set in which it is operating for maximum reslience in case of
un-resolved security problems. (So - don’t run as root and chroot before you do
anything.)

• Upcalls will not be made from a layer below any layer that can initiate transac-
tions.

• All storage management software that is planned for use withan OSD, such as
replay/replication logs, punching inodes, hot migrationsetc will equally well
work if that OSD is used by an MDS.

• Storage management software (backup, migration etc) designed for MDS use
will only use OSD interfaces. Note that in particular this means that things like
fid -> path reconstruction need to be considered carefully before they are used,
because they may violate this.

1



3 FUNCTIONAL SPECIFICATION

• If an OSD is normally used by an MDS its state is not made inconsistent if it
is temporarily used as an OST. I.e. OST functionality will avoid trashing MDD
maintained state.

• The device method tables will be small.

• Security will be concentrated to be easily auditable.

3 Functional specification

Access control is implemented in two layers:

• fid-capability based mechanism at the level of osd, and

• uid/gid/acl based mechanism at the level of mdd.

Capability is a cryptographically protected datum that authorizes particular operation
(or a set of operations) against given object. Servers generate capabilities according to
their security policies and send them to other nodes (clients). Clients store capabilities,
and can send them back to the originating server or other servers to perform oper-
ation authorized by capability. Lustre capabilities are “repeatable” that is, the same
capability may be used multiple times (this is in contrast with some other security
models where capability is automatically invalidated after corresponding operation is
performed). Capability has expiration, after it expires itis no longer valid (will be
refused by server).

Object, capability authorizes an operation against, is usually identified by fid. Alterna-
tively object may be whole device (for operation of object creation and for administra-
tive actions) identified by some other means.

Overall, fid-capability access control is based on [0], including mechanisms of capa-
bility and key expiration, key exchange, and capability verification.

uid/gid/acl access control machanism implements traditional POSIX style DAC. Fol-
lowing issues have to be considered:

• remote uid mapping. Clients and servers may assign different numerical iden-
tifiers to user and group principals. This implies that server has to be able to
detect such situation (on a per-client basis), and to perform run-time uid con-
version. This conversion is handled through user level upcall (i.e., performed
by some user daemon of unspecified nature), and results of this conversion are
cached on the server (see remote_uid_HLD.lyx, for details.)

• interoperability with fid-capabilitiy based control. Under certain conditions mdd
has to perform an operation on object for which client provided no capability. For
example, to handle an unlink, server (given only a capability for parent directory)

2



4 USE CASES

has to lookup child object and to decrease its hard link count. To implement this,
mdd is granted special “bypass” capability which authorizes unlimited access to
all objects. To achieve “least privilege” goal, finer grained “read-bypass”, “read-
write-bypass”, etc., might be introduced.

4 Use cases

4.1 getattr

Client sends to mds a fid of target object together with META_READ capability. Af-
ter performing POSIX DAC (which requires usage of bypass-capability), mdd calls
->do_attr_get() method of osd, pasing capability as an argument. osd performs capa-
bility verification.

4.2 getattr_name

Client sends to mds a fid of parent object, together with INDEX_LOOKUP capabil-
ity and a name of target object. mdd uses INDEX_LOOKUP capability to lookup a
name within parent. After POSIX DAC is performed on found target object, bypass
capability is used to obtain its attributes.

4.3 setattr

Set same as getattr, except that META_WRITE capability is used.

4.4 link

Client passes fid of (new) parent directory together with INDEX_INSERT and META_WRITE
capabilities, new name and fid of child object together with META_WRITE capabil-
ity. mdd uses INDEX_INSERT capability to insert new name, and META_WRITE to
adjust target hard link count.

4.5 intent and open

When handling intent, server gets INDEX_LOOKUP capabilityfor the parent direc-
tory. After finding target object, server used bypass capability to obtain object at-
tributes, and requests new capability from osd. This capability is returned to the client.
mdd requests capability for operations determied by combination of user, on whose
behalf intent is executed, and POSIX permission bits (and acl) of the target object. I.e.,
if POSIX would allows read access to the target, BODY_READ orINDEX_ITERATE

3



4.6 object creation 5 LOGIC SPECIFICATION

operation is requested (depending on whether object is directory or not), similarly for
write. META_READ and META_WRITE capabilities are returnedall the time (be-
cause under POSIX semantics permission bits do not protect from modification of in-
ode attributes).

Similarly, capability authorizing appropriate operations is returned by open.

4.6 object creation

mdd creates new object as part of open, create, mknod, and mkdir. Parent directory
with INDEX_INSERT and INDEX_LOOKUP capabilities is received from client. Ad-
ditionally, in mkdir case, META_WRITE capability on parentis required. Also, client
passes device-wide OBJECT_ALLOC capability (alternatively this capability can be
acquired by mdd at startup). mdd uses OBJECT_ALLOC capability to authorize object
(inode) creation, INDEX_INSERT capability to insert new name into parent directory,
and META_WRITE on parent to update hard link count in case of mkdir. Bypass capa-
bility is used to initialize new object (insert dot and dotdot in directory, initialize name
in symlink, etc.)

4.7 unlink

Client sends parent directory together with INDEX_LOOKUP and META_WRITE
capabilities, and a name to unlink. Server uses INDEX_LOOKUP to obtain target
object. If target object is a directory, META_WRITE is used to decrease parent hard
link count. Bypass capability is used to update target hard link count, and to destroy its
body on last unlink.

4.8 recovery

During recovery, server recreates capabilities as necessary and sends them back to the
client.

5 Logic specification

5.1 capability operations

Fid-capabilities:

• BODY_READ

• BODY_WRITE

4



5.2 changes to the interfaces 6 STATE MANAGEMENT

• BODY_TRUNCATE

• META_READ

• META_WRITE

• INDEX_LOOKUP

• INDEX_INSERT

• INDEX_DELETE

Device-capabilities:

• OBJECT_ALLOC

• SYNC

5.2 changes to the interfaces

Data types for capability and an enumeration of operations are introduced.

dt_device_operations and dt_object_operations are modified to take capability.

New method ->do_capability_make() is added that creates new capability for a given
object, and given set of operations (this method uses current working key for the current
server).

6 State management

6.1 State invariants

Capability caches on server.

6.2 Scalability & performance

Remote-local uid mapping introduces some overhead. Clusters and clients that do not
need this featuer do not pay for it.

6.3 Recovery changes

See Use Cases.

5



6.4 Locking changes 7 ALTERNATIVES

6.4 Locking changes

State transition in capability and key state machine shouldbe serialized. This implies
that key expiration, and capability verification have to protected by the same lock.

6.5 Disk format changes

If AV counter (see Alternatives section) is used, it has to bestored persistently for
every object. AV counter can be added dynamically, and assumed to be 0 if absent,
thus assuring seamless upgrade and downgrade.

6.6 Wire format changes

Capabilities are passed in client requests and server replies. Format changes.

6.7 Protocol changes

See previous section.

6.8 API changes

See Functional Specification section.

6.9 RPCs order changes

Not envisaged at this point.

7 Alternatives

• fid-capability based access control may be implemented as a separate level just
above osd.

• POSIX DAC access control may be implemented as a separate level just above
mdd.

• [0] mentions AV counter that can be used to forcible invalidate all capabilities
for a given object.

6



9 REFERENCES

8 Focus for inspections

• should OBJECT_ALLOC capability be passed from client?

• what operations should be allowed by capability returned byintent processing?
This list should be carefully minimized.

• in particular, always granting META_WRITE assumes that _all_ inode attrubutes
are mutable by client. Which is subtle for inode flags (APPEND, IMMUTABLE,
etc.).

• do we want capability checking on oss nodes? This implies that our mds and oss
capability formats should be compatible.

• how server failures interact with key expiration?

9 References

[0] Security for Network Attached Storage Devices Howard Gobioff, Garth Gibson,
Doug Tygar (http://www.pdl.cmu.edu/PDL-FTP/NASD/CMU-CS-97-185.pdf)

7


