
GNS HLDPeter Braam & Yury Umanets20th January 20051 Requirements from the Engineering RequirementsSpeci�cation (formerly Architecture).In this work we are introducing GNS (Global NameSpace) in llite. It is requiredto do the following:
• store and manage mount objects in lustre. Mount objects should storemount related information, which is used for automatically mounting any�lesystem on the mount object directory in the Lustre �lesystem tree.Thus, make lustre operating as a namespace which contains automati-cally mounting directories. This can unify the namespaces of many Lustreservers and other �le systems (e.g. a local disk /tmp can be mountedautomatically inside Lustre).
• Architectural decisions were made that:1. mount objects would be setuid directories.2. these directories would become mount points of completely ordinary�le systems
• Automatic mounting proceeds only when truly entering a directory, ie.when doing readdir or lookups inside it, not when doing a getattr on themount object directory. The latter return a �fake� approximately correctanswer.
• Automatically umount �lesystems when they are not used for some time.Also automatically unmount all namespace mountpoints on umount.
• To accomodate �exibly mounting ANY �le system it was decided to calla wrapper around /bin/mount to mount new �le systems on the mountobjects.The architecture was based on a detailed study of existing mechanisms in AFS,Windows, autofs4, eliminating all known disadvantages.1



3 USE CASES.2 Functional speci�cation.In order to achieve requirements llite is expected to perform the following:Mount objects (data, not a method!) Directories marked by suid bit as apotential mount points. Such directories are mount objects if they containa special �le .mntinfo.Changes to lustre lookup path: Llite should recognize and parsemount ob-jects, when entering them. It initiates a mount and wait for completionor timeout when it �nds a mount object. Stat calls on the mount objectsdo not cause mounts. Upcalls to mount should be security concious inusing the arguments in the .mntinfo �le: only completely trusted answersshould be used. Perhaps the mount program should run as a pathnametraversing user, to avoid root compromises. Failed mounts or ones thatdo not complete should be handled gracefully.Monitor mount objects: A thread monitors all mounted mount objects withparticular timeout if they are still in use. If they are not used for some timeit umounts them. Also unmount all mounted �lesystems at llite moduleunload time.Mount completion indication: The user space wrapper indicates comple-tion with an error code of a mount operation performed.No changes to APIs and protocol are needed.3 Use cases.The following use cases can form the basis of the build-and-integration testcases.1. Mount objects are created as follows:(a) create a directory(b) write a �le .mntinfo in the directory(c) chmod the directory u+S2. Modify a mount object(a) chmod u-S on the directory(b) edit the �le(c) chmod u+S3. Let ../mo be a directory that is a mount object. Path name traversaltriggers mounts in the following cases:2



5 STATE MANAGEMENT.(a) open/readdir/getdents on mo(b) operating on any pathname �mo/foo...� (lookup, open, creation in-side)4. As in 3, a mount is NOT triggered by:(a) stat mo5. Unmounts are triggered in reverse order of mounting when:(a) directories are un-used.(b) umount of the Lustre �le system containing the mount points is called(c) note that (b) may have to be function recursively.4 Logic speci�cation.The following components make up the implementation and should see a detaileddesign:Lookup code path Should see modi�cations to detect and interpret mountobjects. Llite stores mount objects as regular �les with special names. Itshould �chdir� to the mount directory and calls user space helper with themount arguments (in a structured format) contained in the content of themount-object/.mntinfo �le. User space helper is expected to mount the�lesystem on �.�. The GNS code should wait for mount completion andregister new mount in GNS thread structures to make it available for GNSthread control.Monitoring daemon: The timer with speci�ed timeout should be started.Timer callback function should inform GNS thread that it is time to check allmounts and perform umount if needed.Mount upcall and completion A wrapper around /bin/mount and a com-pletion ioctl on the �le system root can be used.Adding GNS does not change performance or scalability of lustre. No sidebene�ts are recognized.5 State management.There are several resources involved in relation to the mount objects:active, i.e. mounted mount objects mounts performed by GNS should beumounted on timeout (if not used) or in llite module unload time. Theyshould not be leaked by GNS, as system itself will not umount them andthey should not lead to failed Lustre unmounts. The controlling threadshould be started in llite module load time and stopped in llite moduleunload time. 3



6 ARCHITECTURAL ALTERNATIVES (DO NOT REALLY BELONG INHLD)in progress mounts Should be handled with a waitqueue and a cookie towake up the right waiting thread.strings The mnt �le contains a string, which should be highly structured, suchas XML in order to enable eas and secure construction of a mount com-mand from this string.threads performing mounts A concurrency study should be made when mul-tiple threads attempt to traverse a mount point simultaneously.mount points Generally, mounted directories in a Lustre �le system are Unixmount points. They are subject to constraints, such as non-removal byother nodes (where they may not be mounted for one reason or another).For this there is a pinning design and code available which has not been�nished. This will be required in a productized version of GNS but canbe ignored for cmd2 acceptance tests.There are no changes to disk format. All the changes are dome in one module- llite.As to recovery should be decied what to do with mounts on client eviction.There are two possibilities:
• umount all mount points.
• do not umount mount points.The reason is why we may want to umount them is on eviction all locks aregetting canceled and dentries are marked invalid (dentry for mount point too).6 Architectural alternatives (do not really belongin HLD)There are three things, which may be implemented another way. They are thefollowing:
• Current implementation makes GNS mount function read mount objectcontent and passes it as string to user space helper program . This makesGNS code slightly more complicated than it could be due to needs tomanage page of data read from mount object �le, etc. It would be moresane to pass mount object �le name to user space helper and make it thisway to take care what to do with it. This will make GNS mount stu�slightly simpler. File access in user space is much simpler than in kernel.This is rejected, because accessing this �le causes traversal ofthe mountpoint and changing its mode bits causes RPC's thata�ect the mount point on other nodes.4



7 FOCUS IN INSPECTION.
• Current implementation of GNS mount function involves state sharingbetween kernel and user space. Sharing state is not good thing in principle,as it adds complexity and assumes bug prone implementations, but sharingstate between kernel and user space is totally wrong. Kernel cannot berelying onto user space, kernel does not believe to user space. In thisparticular case, user space helper program is expected to call special mountcompletion ioctl() after �lesystem is mounted, to let GNS code processfurther and register successful mount in GNS thread accessible structuresto let thread to control it. Here lustre is vulnerable by possible hostile userspace helper program, which will not call mount completion ioctl() andwill cause lustre hanging. One of alternatives of current implementationcould be do not wait for user space signal and check if mount is �nished ina loop with sleeping and waiting for mount completion (YES, please dothis). Another alternative would be to wait for user space helper process�nish, what may mean that mount is performed and we can check theresult. There are also another possibilities to avoid this not really neededstate sharing. The remainder of in kernel constructions is rejectedbecause the complexity of the mount program is far too large tosimulate in the kernel - mount programs can detect disk layout,make RPC's and perform numerous other complicated tasks.
• GNS code contains few things which are currently hard-coded and maybe replaced by /proc tun-ables. They are the following: mount timeout,GNS timer tick value, user space helper program path and mount objects�le name. Good idea, but ONLY use standard proc interfaces.7 Focus in inspection.An inspector should be focused on the following possible issues:
• possible leaks of mounts performed by GNS code.
• GNS thread should always easily be stopped and does not make a kind ofhanging in umount time.
• GNS mount should not be performed for directories not marked by suidbit.
• Attempts to concurrently mount a mount object should be analyzed.

5


