The cascading timeouts problem and the solution

Peter Braam, Alex Tomas

February 9, 2008

1 Introduction

Creation of OST objects from MDS and clustered metadataduired new problem
- cascading timeouts. The core of the problem is nestingestgu As in the current
model we use timeouts to maintain connection’s state wariisg to have a problem:
dependencies between requests arise dependencies betweeations.

The situation we see very often:

e client Clis givenlock L1

e client C1 sends mkdir request to MDS1

e MDS1 sends object creation request to MDS2

e MDS2 fails

e client C1 gets timeout on the mkdir request and makes theringiisconnected
e client C2 asks for lock L1

e MDS1 finds the lock is given to client C1 and sends BL callbac&lient C1

e client C1 can’'t answer because of disconnectivity and MD&dtghim

2 Functional Specification

We don't know real dependencies between requests (we canhdiiwould makes
code much more complex, so we don’t consider a fine-grainkdico for a while).
Therefore, we have to treat all connections are dependehtteaother. Failure of
request to node N can cause failure of any other request irmogiel. To prevent
related requests (and their connections) from get failedhave to know failed node
before any dependent timeout. This is job for pinger. Thersuspend all regular
timeouts on all imports until we're sure all nodes are readgantinue.

4 LOGIC SPECIFICATION

That could make all recovery activity serialized: node bg@and not >1 node being
recovered at a time. This doesn’t look acceptable from bddlapoint of view. To
work this limitation around, pinger should check state bsaspended connection and
starts recovery if the node being pinged hasn't respondmoe.ti

There is special case when timeout comes without requestclancel timeout. Server
gets them if a client doesn’t cancel lock on time. A client eeait for recovery of
another MDS holding a lock from first one. To handle this caseyer node should
use the same logic as clients do: ping all servers and suspeeduts (including lock
cancel timeout) until all servers are recovered.

3 Use Cases

3.1 Single MDS failure

The pinger sends ping requests to all server nodes. Onceduada’t reply on time,
ptirpc raises global flag, disconnects failed one and stectsvery on it. Every ordinary
timeouts recharge while the global flag isn’t zero. As failagort is recovered, ptirpc
drops the global flag.

3.2 Single MDS failure with dependent requests

The pingers just observed one MDS node doesn't respond, ritaval the imports
“suspended” and starts recovery for failed import. An rexjuleat depends on failed
MDS indirectly gets timeout, finds own import marked “susged’ and waits until
recovery of failed node is completed. As failed import goe$-ULL state, ptlrpc
drops suspend counter and wakes that request up.

4 Logic Specification

All the changes should stay at ptirpc layer. Imports get sndpcounter that's used
to force import to ignore timeouts. The code uses two priregito wait for a re-
ply: ptlrpc_queue_wait() andptlrpc_set_wait(). Their expiration callbacks check
whether the global flag is greater than 0. If it is then wait edidated waitqueue until
all the nodes are ready again. After that the callbacks shadharge timeout and
repeat awaiting. The suspend counter must not be taken déctwuat in all the code,
but expiration callbacks aftlrpc_queue_wait () andptlrpc_set_wait(). This way
all the recovery paths keep working.

The routinewaiting_locks_callback() also checks whether timeouts are suspended
and doesn't force lock cancel and doesn't evict clients.

If the pinger observes suspended import didn’t get a repbn it disconnects the im-
port and starts recovery for it.

7 FOCUS FOR INSPECTION

5 State Management

As first failure happens, a node moves to recovery state #rabe characterized by
the following:

¢ all imports suspend regular timeouts

e global suspend flag is incremented

e apinger is used to maintain import’s state
Any subsequent failure (can be discovered by pinger onkgfiected by incrementing
suspend counters. A node leaves this state as soon as sedpenshters get back to

zero. This means all the failed imports are recovered nowegualar timeout mecha-
nism can be used to maintain import’s state.

6 Alternatives

The proposal focuses on a client side (including clientdecon MDS), but we also
can give MDS an active role. For example, server node could sgermediate “wait
more” reply on per-request basis. This way we could have §ir@ned mechanism to
detect dependencies. This alternative solution looks mamgplex, though.

7 Focus for inspection

e is there any race between few imports getting failed at theesime?
e how to differ imports belong to different filesystems?
e can the pinger observe the server has changed? shouldifalt in the case?

o if we lose ping request or reply, then we make a decision tipeitris failed and
will try to reconnect. we’ll be refused because the servstilsprocessing our
request. I'd allow server to accept connections with no estgito be replayed.

