QUALITY INITIATIVE

Robert Read

Quality Initiative

* What is it?
* Where do we go from here?

QFE Successes

* LBATS - build automation on 4 architectures and OSs
* YALA - test automation

* Stage 2 testing automation

* Feature testing

* Found many bugs in our product

Overview

* Feedback

* Coverage

¥ Automation & Infrastructure

- N
—— = -

g
e

)

Existing coverage analysis

* Li Wei is just starting analysis
* sanity.sh on single node achieves 50% coverage overall
* excluding liblustre, libsysio, socklnd, Inet selftest, etc

* 60-70% coverage of core Lustre modules

s|in/aasn|

elonb/aisn|

odujpd/ansni

1s0/0418N|

0s0/0.418N|

J8}3pqo/eaisn|

XNui|/SSB|opgo/a4sn|

SSB|opgo/a4sn|

sBw/aasn|

obwi/ansn|

spuwi/alisn|

opw/ansn|

SJA|/oASN|

AO|/243SN|

SY|l/easN|

alisn|/epnjoul/aiisn|

XNnuij/epnjoul/aisnj

apnjoul/ensn|

18U|/30U|

xnuii/sjoqiiAeu

S1oql|/A8u|

m
Q
>
S
%
>
2
-
S
P,

19U|/9pNjoul/3eU|

Xnui|/syoqi/epnjoulAau|

S§oqll/epnidul/iaul

XNull/SSIPI/SSIPI

SPISIPI/SHISIPI

=
G
»
O
S
7
>
:
G
Q
»
S

s|n/aansn|

ejonby/ainsn|

odippd/ansn|

1s0/0418N|

0s0/04)SN|

Jo}ypqo/easn|

XNui|/SSB|opgo/a4sn|

SSB|opgo/aiisn|

sBuw/aisn|

obw/aiisn|

spuwi/aiisn|

opuwy/aasn|

SJA|/oNSN|

— SLOW=yes

AO|/oASN|

SUIIVEEES

alisn|/epnjoul/aiisn|

XNuij/apnjoul/asn|

apnjoul/ansn|

PulAsY|

— SLOW=no

xnuil/syoqiiAeu

S§oqllAsu|

1au|/epnioulAaU|

Xnui|/sjoqi|/epnjoulAau|

sjoqij/epnjoul/iau]

XNull/SSIPI/SSIPI

SPSIPI/SHISIPI

acceptance-small

‘ SLOW=no ‘ 61.5% \

SLOW =yes

¥ We need to be smarter about our tests

* https://wikis.clusterfs.com/intra/index.php/Test_Coverage

https://wikis.clusterfs.com/intra/index.php/Test_Coverage
https://wikis.clusterfs.com/intra/index.php/Test_Coverage

Customer reported 1ssues

* As part of QI we have been talking to customers and
partners

* Understand how they hit bugs that we missed

* Share our test plans, which we are doing now with Cray

Cray

¥ Enable -Werror (Girish did this)

* Concurrent application mix
* Pools should not affect roll-back to pre-1.8 releases

* Interaction of OST Pools and ACLs/quotas

* Testing with failover/recovery

* Run racer with at least 4 clients

* They noticed 1.6.6 MDS hangs easily with 4 clients

* More failover/recovery testing

* Took >6 months to stabilize 1.6.6

* Several attempts to pass on 450 node test

* They have over 50 patches on top of 1.6.6

LLNL Requests

% Large scale stress testing (1000+ clients)
* Router testing

* Multiple Lustre fs

* OSS nodes fail daily; sometimes a single OSS failure
downs whole fs

* Dogfood - /home on lustre

¥ Stack overflow

LLNL Requests (cont.)

* Concerns about MD performance regressions
* Is -1 and df pert while running jobs too slow

* 2 NICs and one NID clients don't use both of servers
nic

* Memory regressions

* General reliability concerns

- N
—— = -

g
e

)

(yoals

* Smarter testing
* test more in less time with less resources
* More comprehensive and realistic tests
* More stress testing
* Go deeper in our feature testing

* recovery, routers, new features

Our Test Hierarchy

* Unit Tests
* Engineers write new test cases
* Feature Tests
* Automated feature tests (e.g. sanity-quota.sh)
* Feature tests developed and performed by QE
* Integration lest

* acceptance-small runs the automated feature tests

Feature lests

* Recovery

* Most tests - still not production ready
* Adaptive timeouts
* Small handful of unit tests

* Learned much more by scale testing at LLNL

Realistic 'Testing

* Realistic work loads
* Real applications if possible
* New MPI tests
* Ensure Lustre can do used “normally”

* Emphasize scale testing

Redefine lesting Levels

* Improve on SLOW=yes
* Well defined testing levels

* Same tests always run for a given level

* All should be runnable by developers in local

environment

* And by customers

Testing Levels

* Level I - basic integration
* Level II - thorough integration, real failovers
* Level I11 - larger scale tests (>4 nodes), long running

¥ ... more as needed?

AUTOMATION

&
INFRASTRUCTURE

(yoals

* Provide better tools for developers

* Manage information

* Better resource utilization

* Automated post check-in build and test

* (for every commit or batch of commits)

test-flramework.sh

* Original testing environment
* Fragile bash code
* Limited ability to create abstractions

* Very difhicult to manage complex configurations

Lustre configuration

* Customers have difficulty running acc-sm

* Standardize how configuration is stored and used by
tests

* lustre_config is current "supported" lustre
configuration tool

What We Need

* MPI support
* Integrate with llapi

* Perhaps adding more functionality
* Support diverse environments

* Provide abstractions useful for testing

Test Environment

* New environment being proposed
* Initially focused on MPI support
* New configuration support
* Python or Ruby
* Explore existing test frameworks

* Run alongside existing tests

Test results & metrics

* Detailed test tracking
* individual tests
* pass/tail/skip
* duration/error message
* other metrics would be nice

* History of individual tests (.e.g "sanity test_5o1g")

Autovetting

* Detect test failures when they happen
* Search bugzilla for potentially related failures
* Optionally update existing bug or create new one

* Web interface to interactively review failures and create
new tickets

More data collection

* llcov (test coverage)
* rpc traces

* profiling data

Post-run Analysis

* Save detailed test info searchable format (database)
* Compare test runs

* find new failures

* perf regressions
* Chop search to find regressions

* Update bugzilla from autovetted data

YALA Improvements

* Need more reporting and analysis
* Perf-Pit has some of these features already

* An intern on Perf-pit team will be working on
improving YALA for us

lTesting on Xen

* much more efficient than VMware, esp. for kernel code

* update guest kernel from outside guest (although not
the modules)

* guests boot quickly (-6s on my machine)

* supports shared virtual block devices, real failover
testing 1s easy

Xen Usage

* Fine for Level I testing
* Developers can run Level 11

* Initial feature testing by developers

- N
—— = -

g
e

)

Areas of Improvement

* Coverage
* Understand our existing tests
* Focus on real-world scenarios
* Automation
* Manage test result data
* Easier to write and use

* Improve Reporting

Quality

Inittative

Robert Read

rread@sun.com

mailto:rread@sun.com
mailto:rread@sun.com

