
LNet Channel Bonding Design

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 1 of 19

Author Date Description of Document Change Client Approval
By

Client Approval
Date

Isaac Huang 05/06/09 Initial draft

06/03/09 Edits by John Dawson

06/15/09 JKD- Copyright notice

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 2 of 19

1. Requirements

To aggregate bandwidth and/or improve overall network availability, LNet should
be able to make use of multiple NIs, in a generic way, independent of LND types,
as a single logical NI in various modes, which should include standby and load
balancing (with various balancing policies like round robin and dynamic
congestion avoidance).

The slave NIs of a bonding NI could be of different types (e.g. a TCP NI and an
IB NI), or could be of a same type but belongs to a same or different networks
(e.g. 10.0.0.1@o2ib0 and 192.168.0.1@o2ib1, or 10.0.0.1@o2ib0 and
10.0.0.2@o2ib0). Note that currently only the TCP LND and the OFA IB LND
supports multiple instances, and Portals LND support is already on the way.
However, there are two restrictions on slave NIs:

1. Bonding is not recursive, so a bonding NI can't act as a slave NI.

2. Obviously the loopback NI (@lo) can not act as a slave NI.

A bonding NI should know the status of all its slave NIs and stop using a failed
NI, and the status of this slave NI should be available to peers so that they could
avoid the failed remote slave NIs as well.

Each slave NI should still work independently while serving as a slave, for
example, 10.0.0.1@o2ib0 should work properly on itself while acting as a slave
NI of a bond NI. This would be important for support rolling upgrades.

A bonding NI may have only one slave NI. For instance, if clients have one NI in
@o2ib0 and routers have two NIs in @o2ib0, allowing clients to create a
bonding NI over its only o2ib0 slave NI would enable them to reside in the same
bonding network as the bonding NIs of routers and balance load among the two
o2iblnd NIs of each router.

In a bonding network, there is no requirement that all bonding NIs have identical
sets of slave NIs, e.g. some may have two IB slave NIs and some may only have
one. However, it is required that all bonding NIs should share at least one slave
NI network – i.e. all of them should have direct connectivity, which is a
fundamental attribute of a LNet network.

Users may opt to bond different kinds of NIs together, e.g. a o2iblnd NI and a

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 3 of 19

mailto:10.0.0.1@o2ib0
mailto:10.0.0.1@o2ib0
mailto:10.0.0.2@o2ib0
mailto:10.0.0.1@o2ib0
mailto:192.168.0.1@o2ib1

socklnd NI, in whatever mode they like. Users shall be aware of the
consequences (e.g. potentially high CPU usage when balancing load over IB and
TCP links).

The channel bonding mechanism should be transparent to upper layers (i.e.
PTLRPC and Lustre services) – no code change would be needed for upper
layers.

Finally, channel bonding is not supported in user space lnet.

2. Design Overview
2.1 Terminology

Bonding NI: an instance of the bond LND, which abstracts several physical NIs
into a single logical NI. Also known as master NI or parent NI.

Bonding network: an LNet network consisted of bonding NIs.

Slave NI: a physical NI that works under a bond NI.

Bonding Data Server: abbrev. BDS, a node in a bonding network that resolves
bonding NIDs into NIDs of their slave NIs. It also provides information like the
bonding mode of a bonding NID.

2.2 Overview

2.2.1 The Need For A New LND Driver

An NID is required for a set of slave NIs bound together, for transparency to the
upper layer protocols. Consider the two cases below, without a bonding NID:

1. For each outgoing RPC to a server, a client posts its reply and bulk buffers in
such a way that only the server could access them. But now there's no way to
know in advance which slave NI and thus source NID the reply and the bulk
messages of the server would come from. It's possible to alter the LNet API so
that the upper layer could grant access to a set of NIDs instead of only a
single NID, but it defeats our goal of transparency in two ways: first, it needs
an API change and thus upper layer code changes; second, the knowledge of
slave NI membership has to be propagated to the upper layers. Other
alternatives either break transparency or come with a high performance
impact.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 4 of 19

2. There's no way for the upper layer to precisely specify which interface to use
for an outgoing message. LNet determines outgoing interface based on
destination NID and source NID of a message. Since there's no NID for either
the source bonding NI or the destination bonding NI, it's impossible for LNet to
figure out whether an outgoing message should be handled by the bonding
driver or slave NI driver. For backward compatibility and support of rolling
upgrades, it's important for a server to be able to communicate with old clients
via a slave NI directly or via a bonding NI with new clients.

The requirement for a new kind of NIDs necessitates the need for a new LND
driver. Moreover, it's a natural implementation choice to develop LNet channel
bonding as a new LND driver, since channel bonding creates a new kind of
interface. Other benefits of a new LND driver include total freedom to define the
LND-level protocol, independent from the protocols of slave NIs and the LNet
layer, and simplification of routing configurations.

However, like the loopback LND driver, the bonding driver is special and tightly
coupled with the LNet layer and shall be built as part of the lnet kernel module -
LNet needs to directly call bonding driver routines that are not part of the LND
API; moreover, because the bonding LND runs over different kinds of physical
wire protocols of slave NIs, it has to make use of LNet external APIs to
implement its own protocol. For example, it may use LNetPut to exchange
protocol data with peers or bonding data servers. The implementation is not
strictly at the LND level and the code shall reside in the core lnet directory.

2.2.2 Bonding Modes

Two bonding modes are being considered.

Standby mode: only one slave NI is active at a time. Communications should
failover to a backup NI when the default NI fails, and failover to the next backup
NI if the current active NI fails again. When the default NI comes back to life,
switch back to default NI again or stay with the current active NI but would prefer
the default NI when a next failover is necessary (depending on standby mode
options). The switch-back behavior is useful when a slow link is used as backup
only when the default fast link isn't working.

Load balancing mode: communication is distributed over all slave NIs. The traffic
distribution pattern is determined by load balancing policy. LNet doesn't
guarantee ordered delivery, so we don't have to worry about messages being
reordered by different paths. Load balancing policies should include round-robin,
static weight round robin, and dynamic weight round robin (weight adjusted at run

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 5 of 19

time, probably based on perceived bandwidth).

2.2.3 Configuration Syntax

The bonding NI is configured as other conventional NIs, i.e. via lnet module
option 'ip2nets' or 'networks'. For example:

options lnet networks="tcp0(eth0), tcp1(eth1), bond0(*@tcp0, *@tcp1,
mode=loadbalance)"

Or:

options lnet ip2nets="tcp0(eth0) 192.168.0.*; tcp1(eth1) 10.1.1.*; bond0(@tcp0,
@tcp1) 192.168.0.*"

The 'mode' option shown above is a per-NI option that only applies to NI 'bond0'.
In fact, most LND options should really apply to a single NI (e.g. credits, timeout):

options networks="tcp0(eth0, credits=256, peer_credits=16), tcp1(eth1,
credits=128)"

Global parameters of the bonding LND driver itself are specified via the driver
module's options, e.g. options kbondlnd foo=1. Such parameters affects all
bonding NIs.

LNet currently does not support per-NI options, so a new syntax needs to be
added: options given inside the brackets of a NI's interface specification should
apply to that NI only. Options of the LND driver are global and apply to all
instances of the LND. Without per-NI option support, it would be impossible to
create multiple bonding NIs that run with different options like bonding modes.

Ip2nets-like wildcard matching is necessary to create cluster wide configurations,
which makes administration much easier. For example:

options lnet networks="tcp0(eth0), tcp1(eth1), bond0(*@tcp0, *@tcp1)"

The matching facility is also useful where slave NI NIDs might not be completely
static (e.g. in a TCP network where client IPs are assigned dynamically by
DHCP).

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 6 of 19

mailto:*@tcp1

The NID of a bonding NI is: ADDR + @bond[0-9], where ADDR is
LNET_NIDADDR(NID of 1st slave NI). For instance, 192.168.0.11@bond0 is the
NID of a bonding NI whose first slave NI is 192.168.0.11@tcp0, or 11@bond0 for
a bond NI whose first slave NI is 11@ptl0.

Since the ADDR part of a bonding NI NID depends dynamically on slave NI NID
format, special handling must be added for bonding NIDs in 'libcfs_nid2str' for
proper string conversion.

The first slave NIs of all bonding NIs in a bond network must belong to a same
slave network – otherwise the NID of a bonding NI could not be guaranteed to be
unique within a bonding network; moreover, a degraded bonding network (when
bonding data servers are not working properly) would make use first slave NIs to
resolve bonding NIDs. For example, it's incorrect to have 'bond0(*@o2ib0,
@o2ib1)' on one node, and 'bond0(@o2ib1, *@o2ib0)' on another. However,
LNet can't detect such errors; it's the user's responsibility to set up bonding
options properly.

2.2.3.1 Dynamic Interface Configuration

There is a serious limit in the LNet configuration mechanism of having everything
inside a string module option – the Linux kernel has a hard limit on the length of
string module options, which is by default 1024 bytes. Furthermore, as
configurations become more complicated, users would like to add more
comments, which makes it easier to hit the kernel hard limit even on a small
cluster.

Dynamic interface configuration based on user space utilities (e.g. like what
'ifconfig' does to inet interfaces) would be very desirable.

2.2.4 Bonding Data Server

A BDS resolves bonding NIDs into slave NIDs and the bonding mode, e.g.
192.168.0.11@bond0 into (192.168.0.11@tcp0, 10.1.1.11@tcp1,
mode=loadbalance). All bonding NIs register their bonding configuration at the
bonding data servers of the bonding network at initialization time. Bonding data
servers are specified via per-NI options:

options lnet networks="bond0(@o2ib0, @o2ib1,
bds=192.168.1.1@o2ib0,10.1.1.1@o2ib1)"

Before any communication to a bonding NID can happen, it must be resolved into

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 7 of 19

mailto:bds%3D192.168.1.1@o2ib0
mailto:10.1.1.11@tcp1
mailto:192.168.0.11@tcp0
mailto:192.168.0.11@bond0
mailto:11@ptl0

its slave NIDs.

Number of slave NIs under a bonding NI is theoretically only limited by the
LNET_MTU, the maximum number of bytes a bonding protocol message could
carry. Of course in practice you can't put that many interfaces in a single host.

Note that BDS only resolves bonding NIDs and does not provide health status of
slave NIs, therefore the load on a BDS should be rather low.

3. Monitor Slave NI Status

In Linux ethernet bonding, the bonding driver monitors local slave interface status
by querying link-level interface status or pinging reference nodes. In case of
status changes, update switch states (e.g. forwarding table) via LACP or
gratuitous ARP.

In LNet channel bonding, slave LNDs are at a rather high level in the protocol
stack, so it is hard to figure out the status of a low-level interface (e.g. ethernet
NIC or IB HCA) by querying its link-level state. We could resort to the local slave
NI's last_send and last_recv timestamps or pinging reference nodes (e.g. the
bonding data servers).

Assuming that local slave NI status could be reliably detected, there's the much
more difficult problem of propagating local slave status changes to peers in a
scalable manner. In ethernet bonding, the switches are the natural places for
such data since all packets flow through switches, and it could be transferred
efficiently by multicast. Unfortunately, there is no such place in LNet. Local NI
status changes have to go through bonding data servers and broadcasted or
multicasted across the network.

Instead of monitoring local slave NI status, it's also possible to monitor remote
slave NI status of bonding peers. In fact, work in the shared routing project has
already laid down infrastructure for NIs to detect peer health and report it to LNet.
I'm leaning towards making use of peer health detection, instead of monitoring
local NI status. Advantages are:

1. Apparently no broadcasting or multicasting is needed, and thus load on
the BDS is rather low.

2. Naturally I only monitor peers I intend to communicate with.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 8 of 19

3. It's much simpler and reuses existing code.

The bonding driver should adopt a mixed approach that includes both local NI
status monitoring and remote NI status detection:

1. It could infer local slave NI status by watching the timestamps of last
successful send or receive operation, and stop using it when it appears
dead. However, this local health information would not be propagated to
the driver's node's peers, because it's very expensive and peers have a
better way of detecting the health of the interface and the path to their
peers. Peers would send keepalive messages or ping messages to my
interfaces to find out their status, so the timestamp of a local interface
which I've stopped using would still grow, which serves as an indication of
its reviving, despite the fact that I've stopped using it for outgoing traffic.

2. It relies on LND peer health detection to find out remote slave NI health, or
more precisely, the health of the path to a peer's slave NI. The LND peer
health detection relies on send/recv timestamps and out-of-band keep-
alive messages, so it detects both end-point failures and path problems.
The most important benefit of using LND peer health detection is its
avoidance of a mechanism to propagate timely local NI status to the
bonding peers.

3.1 Response Time

It looks attractive to be able to detect remote slave status changes as soon as
possible, but:

1. It would increase overhead, and add much more keep alive traffic.

2. It increases false negatives, in the event of congested network.

Moreover, it makes no sense to only find out peer slave NI failure after the local
Lustre client has already started using a failover server, and it's very bad not to
be able to detect remote NI status before Lustre starts to retransmit a message.
So we must find a sweet spot where it plays nicely with Lustre services in a
manner that is not too aggressive.

3.2 Multiple Slave In a Same Network

One tricky thing with having multiple slaves in the same network is that a peer

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 9 of 19

slave NI might appear dead to one slave but not to another, if it's not a remote
end-point failure. For example, peer slave 192.168.1.21@o2ib0 may appear
dead to local slave 192.168.1.3@o2ib0, but is indeed alive via another local
slave NI 192.168.1.4@o2ib0, because there's either a cable failure with my
slave 192.168.1.3@o2ib0 or a failure in the path:

Therefore:

1. The local bonding driver must query peer slave status via all the local
slave NIs that could reach the peer slave.

2. Local LNDs must keep per-NI peer state, not per LND. For instance, in the
example above, local slave NIs must keep two separate peer health states
for the same physical peer.

4. Multiple Instances Per LND

Now, three LNDs support multiple instances (i.e. multiple NIs of its LND type):
socklnd, o2iblnd, and ptllnd. But it's not enough to support channel bonding.
Currently these LNDs keep global peer states, which could be problematic when
there are more than one NI in a same network, e.g. two NIs in the @o2ib0
network because of the following:

1. Only one copy of peer health state. So if there's local NI failure, we would
still believe that peers could be reached via that NI, when in fact they are
only reachable via the other local NI.

2. Only one connection to each peer. To aggregate bandwidth, there must be
multiple connections to a single peer, via multiple local NIs. For example,
there must be two connections to 192.168.1.11@o2ib0 via my two NIs
o2ib0(ib0) and o2ib0(ib1).

The solution is to create per-NI peer structures.

The o2iblnd logic to validate incoming connection requests should also be
updated, because it assumes that all its NIs live are in separate LNet networks.
There's no such problem with the socklnd.

5. Bonding Data Server

A bonding network must have at least one bonding data server that resides on all

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 10 of 19

mailto:192.168.1.11@o2ib0
mailto:192.168.1.3@o2ib0
mailto:192.168.1.4@o2ib0
mailto:192.168.1.3@o2ib0
mailto:192.168.1.21@o2ib0

slave networks, and it's involved in the following:

1. When each bonding NI initializes itself, it registers its bonding
configuration with the bonding server.

2. When local bonding configuration has been changed (e.g. bonding mode
changed by administrator), notify bonding server with updated
configuration data.

3. When a bonding driver needs to talk to a bonding peer, it resolves the
peer's bonding NID into slave NIDs by querying bonding server.

5.1 Degraded Mode

When no bonding data server is alive, it's still possible to resolve bonding NID's
by querying a bonding peer directly; when this happens, we say the network is
running in degraded mode.

When a bonding NI wants to query a peer, it knows nothing about the peer's
bonding configuration other than its bonding NI NID, so there must be a way to
find out the destination NID and source slave NI to use. The trick is in the
bonding NI NID. The ADDR part of the NID comes from its first slave NI NID, and
it's required that the first slave NIs of all bonding NIs in a same bond network are
the same. So destination NID is LNET_NIDADDR(peer_bond_NI) +
LNET_NIDNET(my_1st_slave_NID), i.e. NID of peer bonding NI's first slave NI,
and should be sent over my first slave NI.

For example, my bonding NI is 'bond0(10.0.0.11@o2ib0, 10.0.0.12@o2ib0)', the
initial HELLO to 10.0.0.22@bond0 shall be sent to
LNET_NIDADDR(10.0.0.22@bond0) + LNET_NIDNET(10.0.0.11@o2ib0) =
10.0.0.22@o2ib0, via my first slave NI 10.0.0.11@o2ib0.

But there is an important limitation, which is why we'd bother with creating
bonding data servers. When a peer's 1st slave NI has already failed or there's a
local slave NI failure which prevents me from reaching the peer's 1st slave NI, it's
impossible to query a peer directly since I only know their 1st slave NI NID. This is
why we call it degraded mode.

In degraded mode, all peers essentially act as bonding data servers that only
serve their own bonding configuration data. Therefore the query and the answer
are still carried over the BDS protocol, and no new code needed.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 11 of 19

mailto:10.0.0.11@o2ib0
mailto:10.0.0.22@bond0

5.1 Initial Handshaking Protocol

Before any query or registration could be sent out to a bonding server, a
handshaking process must complete in order to negotiate protocol version (for
future protocol changes and backward compatibility).

An initial HELLO message contains the following fields:

1. A static predefined magic number, used to determine byte sex (u32)
(0x0eeb1958)

2. Source bonding NI (i.e. mine) incarnation stamp (u32).

3. Target bonding NI (i.e. peer)

4. Protocol version data: detailed later

5. My bonding NI configuration data: slave NIs and their status, bond mode
(policy if load balancing, default active slave NI if standby backup)

All message fields go on wire in host native endianness; the target peer flips
multi-byte fields properly by finding out source peer byte sex via the magic
number.

HELLO messages are send to the LNet reserved Portal. HELLO buffers are
posted at startup. There's no need to post more at runtime, because we always
handle HELLO eagerly and repost the buffer immediately and the reserved portal
is marked as a lazy portal

5.1.1 Initial Handshake

The initial handshaking process is started when: LNet asks a bonding NI to send
a message to an unknown peer, or bonding NI receives an incoming HELLO from
an unknown peer.

Version data starts right after the u32 incarnation stamp. Protocol version data
includes a version number (u32) and capability masks (u64 for each). The
version number equals the number of capability masks. Each bit in a mask
stands for a minor feature supported by the version, so a mask could serve as a
minor version number. When all the bits of the current version capability mask

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 12 of 19

are used up, a new version is created by increasing version number by one.
However, the interpretion of the u64 mask is solely determined by the version.
For instance, a version may opt to interpret its capability mask as two u32
integers, in order to negotiate integer data (e.g. number of credits).

Total length of version data is therefore: one u32 + 'version' u64s

Normal data can flow only after two nodes have exchanged HELLO messages,
at which point the version of the connection is set to the lower version of the two
ends (so that peers of newer protocols can speak with old peers).

At the time a new peer structure is created, bonding NI sends a HELLO message
over. When peer gets my HELLO, he creates a new peer structure for me and
responds with his HELLO. My new peer goes into connected state when his
HELLO is received; my peer's peer structure goes into connected mode
immediately after he has replied me with a HELLO.

Source incarnation stamp in the initial HELLO is set to the current bonding NI
incarnation stamp.

Target incarnation stamp is set to zero if I'm initiating the handshaking process
and don't yet know the peer's incarnation, or set to peer's last known incarnation
if I'm replying a HELLO message.

5.1.2 Status Updates

Whenever my local bonding configuration changes, e.g. a slave NI has gone
down, the bonding NI needs to notify its peers about this change.

The bonding LND maintains a local incarnation stamp for each bonding NI. The
incarnation is initialized to a random number in lnd_startup, and increased by 1
every time there's a state change in the NI's bonding configuration.

When a new peer structure is created, record my current NI incarnation stamp in
it. Whenever there's a new message from a peer, check its local incarnation
stamp, and send it a HELLO update (with my latest bonding configuration inside)
if its local incarnation is outdated (i.e. smaller than the current NI incarnation).
Lazy notification works for load balancing mode, where peers could still reach me
after a local slave NI failure. In standby mode, we'd consider eagerly notify all the
peers who still have outdated bonding data.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 13 of 19

My local incarnation stamp is also included in each HELLO message sent (no
matter whether it's the initial HELLO or not).

Peer's last known incarnation is included in the HELLO's target stamp field.

Whenever I received a HELLO whose target stamp is not zero and doesn't equal
my bonding NI's current incarnation stamp, this peer has stale information (I
haven't got around to giving him an update, or I have rebooted recently) so I
send him a HELLO too.

5.1.3 Send and Recv HELLO messages

The HELLO message is sent to a peer's LNet reserved portal by LNetPut, using
static pre-defined matchbits. Each peer posts some HELLO buffers to it's
reserved portal that matches the static matchbits from any node during bonding
driver initialization. There must not be any match with any buffers posted to this
reserved portal.

Bonding driver is notified on incoming HELLOs by a callback function associated
with the HELLO buffers. Note that it can't use any LNet API in the callback,
otherwise deadlock would happen.

6. Outgoing Messages
6.1 lnet_send()

All LNet messages are sent by function 'lnet_send'; 'lnet_send' should skip
'lnet_post_send_locked' if source NI is a bonding NI, both in local send and
routed send (since, unlike the loopback NI, a bonding peer can serve as router).
All tx credit accounting is handled by slave NI's credit system when messages
are passed to slave NIs.

However, we can't skip lnet_post_routed_recv_locked.

6.2 lnd_send(ni, priv, lnet_msg)

There are no LND-level credits in bonding NIs; they rely on their slave NIs to
implement proper flow control mechanisms.

The 'lnd_send' API of bond LND looks up its peer table and:

1. If a resolved peer is found, send the message by bond_send_msg(peer,

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 14 of 19

lnet_msg)

2. If an unresolved peer is found, queue the message to the peer.

3. If no peer is found, create one, start the bonding NID resolving process
(querying bonding server), and queue the message to the new peer structure.

RDMA and optimized GET are completely determined by slave NIs – the bonding
NI just passes the baton to a slave NI (see flowing sections for details).

6.4 bond_send_msg(peer, lnet_msg)

The 'bond_send_msg' function choose a destination slave NID and a local slave
NI to send the message, and hand the message over to the slave NI:

1. Choose a destination NI, i.e. peer's slave NI. Look at the peer's bonding
configuration: for load balance mode, choose the next (based on load balance
policy) slave NI which is up and reachable from me directly (i.e. no router needed
in between). If no such target slave NI exists, fail immediately. For standby mode,
choose the current active slave NI. Fail immediately if the chosen NI can't be
reached directly via any of my own slave NIs. Replace msg_target.nid of the
lnet_msg with NID of destination slave NI. Set msg_txpeer of the 'lnet_msg' to
peer structure of the destination NI.

2. Choose source NI, i.e. my slave NI. If the bonding NI has only one slave that can
reach destination NI directly, choose it. Otherwise, choose the next one for load
balancing mode, and favor the active slave NI for standby mode.

3. Hand the message to the chosen slave NI. Call 'lnet_post_send_locked' to send
the message. Since the message will be handed over to msg_txpeer.lp_ni of the
lnet_msg, 'lnet_post_send_locked' can't be skipped now because slave NI needs
to perform tx credit handling.

4. Message completion. Once an lnet_msg has been handed to a slave NI, the
bonding NI forgets about it completely and keeps no reference to it. The
lnet_msg itself also has no reference to the bonding NI, its msg_tx_peer
belonging to the slave NI. When slave NI finalizes the message, all tx credits will
be returned properly to slave NI, and all router buffer credits will be returned
properly to the peer slave NI (msg_rx_peer always belongs to slave NI network).

7. Incoming Messages

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 15 of 19

Slave NIs call 'lnet_parse' directly, so master NI won't have a chance to look at
the messages. 'lnet_parse' should call a bonding driver function to notify bonding
NI about incoming messages.

Slave NIs are responsible for receiving incoming messages, so the lnd_recv
function of bonding LND shall never be called.

7.1 HELLO Messages

The bonding driver uses a dedicated EQ when posting HELLO buffers to the
reserved portal, LNet invokes the EQ callback on each incoming HELLO
message. The callback function schedules the HELLO to be processed, since it
can't call lnet APIs from inside EQ callbacks.

Sanity checks are performed first: correct magic, source incarnation stamp not
zero, version number not zero. Then flip bytes depending on peer byte sex.

If the HELLO is from an unknown peer, create a new peer structure, save its
bonding configuration, reply with a HELLO, and move peer state into connected.
However, it may or may not be the initial handshaking HELLO, depending on its
target incarnation stamp:

1. Zero: initial handshake HELLO.

2. Nonzero: I may have rebooted recently, peer still has old my state.

In both cases, my reply HELLO will refresh or initialize peer's copy of my bonding
state.

If it's from a known peer in unconnected state (i.e. HELLO sent), and its target
incarnation stamp:

1. Equals my bonding NI's incarnation: it's a reply for my HELLO, save peer
bonding configuration and move peer state into connected.

2. Equals zero: it's a connection race – the peer had sent his HELLO before my
HELLO arrived at his door. Save peer bonding configuration and move peer
state into connected.

3. Otherwise: I may have rebooted recently, and the peer still has old connection

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 16 of 19

and sends me a status update. Just save its bonding configuration and move
peer state into connected. My HELLO will bring peer's data up to date.

Whenever peer state goes into "connected": set peer's protocol version number
to the smaller one of version number in peer's HELLO message and my own
version number. If the peer's version is higher, just ignore all capability masks of
higher versions since the peer won't make use of any new protocol features
when talking with me.

If it's from a known peer in connected state, and its target incarnation stamp:

1. Equals zero: it's an initial HELLO message - peer must have rebooted, save
peer bonding data, and reply with a HELLO.

2. Equals my bonding NI's incarnation: it's a status change notification, just save
peer bonding data.

3. Otherwise: the peer has stale bonding data of mine, save the peer's bond
data and send him a HELLO to update his copy of my bonding data.

7.2 Normal Messages

Slave NIs receive new messages and call 'lnet_parse' to process them. The
parent NI is not involved with handling incoming messages at all.

LNet may or may not know whether a message is destined to a slave NI or its
parent bond NI:

1. If I'm the final destination of the message, lnet_parse can figure out whether
it's to a slave NI or the parent by simply looking at the message's dest_nid
field.

2. Otherwise, I'm routing the message to its final destination, and there's really
no way to find out whether the last hop sent this message via a bonding NI or
a non-bonding NI.

Whenever LNet knows for sure a message to a bonding NI has arrived, it should
notify the bonding NI (bonding NI may need to do some sanity checks, e.g. has a
peer sent me a HELLO already?).

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 17 of 19

The 'from_nid' argument of 'lnet_parse' is always set by a slave NI or a non-bond
NI, so it's always a slave NI of my peer if it's over a bond network. As a
consequence, msg_rx_peer of incoming messages are always peer's slave NI.
So router buffer accounting is done according to slave NI credits and peers, and
parent NI is not involved at all.

8. Startup and Shutdown

LNet should initialize all its slave NIs before initializing a bonding NI.

LNet should treat bonding NI like the loopback NI when sending messages and
disregard peer TX credits and NI TX credits. Moreover, router buffer credits
accounting is done via slave NI peers (4.2 Normal Messages). Therefore,
'lnd_startup' could leave bond NI's ni->ni_peertxcredits and ni->ni_txcredits
uninitialized – LNet is never going to make use of them.

Initialize the NI incarnation stamp with a random number.

On shutdown, LNet must tear down bonding NI before closing any of its slave
NIs.

8.1 base_startup

Called by lnd_startup for one-time global initializations: create EQ, post HELLO
buffers, create peer hash table, mark the lnet reserved portal as lazy, and so on.

8.2 base_shutdown

Called by lnd_shutdown when the last bond NI is being closed. In short, undo
base_startup.

9. Backward Compatibility and Rolling Upgrade

Version number and capability masks in handshaking HELLOs could solve the
backward compatibility between initial version of the bonding protocol with future
versions.

The problem of rolling upgrade a cluster from without bonding driver to bonding
enabled configuration could be solved as:

1. Rolling upgrade of everyone's code to include bonding driver.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 18 of 19

2. Upgrade everyone's configurations to include bonding NIs.

3. Change server NIDs to bonding NIDs in MGS configuration.

4. Clients restart or remount filesystem.

10. Miscellaneous

Run time state should be made available via /proc entries, or the new parameter
tree mechanism.

User space utilities should be able to: turn on/off slave NI, failover to a backup
NI, and other functions perhaps.

06/15/09 Copyright 2009 Sun Microsystems - Sun and Cray Confidential Page 19 of 19

