
High Level Design of LAID52006-02-231 RequirementsIn this work we enhance LOV layer to implement data layout pattern:LAID5.It is required to do the following:
• implement a stripe cache manager in LOV layer to cache the old stripe dataand reduce the latency for updating the parity, especially the notoriouspariry update via READ_MODIFY_WRITE, needing two reads and twowrites in a synchronous way.
• Locking for the parity.
• IO in degraded mode.
• Inconsistent recovery.2 De�nitionFirst, we will introduce some terms in LAID5 (Supposed that a �le is strippingover N = 3 objects via stripe pattern LAID5, as showed in the above graph) :
• stripe: Min. data unit for stripping �le data, the size of a stripe is usually1M in Lustre.
• stripe group: each stripe group contain N corresponding stripes, and oneof them is parity stripe.
• stripe unit: each stripe divides up into small piece based on page-sizegranularity, each piece is a stripe unit.
• stripe row: stripe row is used to stand for N corresponding stripe units ina stripe group. (N - 1 data stripe units, and one parity stripe unit)

1

4 USE CASES3 Functional speci�cation3.1 Stripe cache managerIn order to achieve the goal: calculation of parity and reconstruct data block indegraded mode, we should design a cache manager to cache the old data stripeunit and parity stripe unit on client to reduce the lantency of updating theparity. In the stripe cache manager, we need to implement the function such asadd/remove/lookup operation for the stripe caches.3.2 File LockingTo grant extent lock for IO request especially for write request, we have twochoice: �rst, perform the extent locking operation as original , that is to say, thelock extent is same as write extent; second, all lock acquirement and cancellationare based on stripe-group-size granularity.In the �rst schema, we must solve the problem of con�ict for updating paritywhen there are multipe writers for the �le which write extents are in the samestripe group. This locking strategy will be introduced in the Section 7.1.In the second schema, we extend the lock extent to stripe-group-size granu-larity, that is to say, acquire a big lock covered all data strpes and correspondingparity stripe in the same stripe group. It eliminates the con�ict of updating par-ity but reduce the concurrency.e.g. the stripping information of a �le is as follow: stripe_size: 1M, stripe_count:4, pattern: RAID5. The stripe-group-size is stripe_size * stripe_count = 1M* 4 = 4M. If grant a extent lock [3M, 6M] in the second strategy, the extandedextent with stripe-group-size granularity is [0, 8M-1].Two di�erent Locking strategies result in two di�erent strategies of updatingparity which we will describe in the latter section. And in the section 7.2, wewill also introduce a extended algorithm of locking stripes with stripe-group-sizegranularity.3.3 IO in degraded modeWhen detect just one of OSTs the objects store on is invalided, It can gracethe write errors and automatically reconstruct the unaccessible block for readrequest.4 Use cases4.1 Con�gure the default stripe patternWe can con�gure the default stripe pattern for the whole �le system. Oncecon�gure the default stripe pattern of lov on MDS, MDS will use this defaultstripe pattern to create objects for new �le.2

4.2 Set the stripe pattern via lstripe 5 LOGIC SPECIFICATIONS#defein LOV_PATTERN_RAID5 0x04lmc -m--stripepattern 4 ...4.2 Set the stripe pattern via lstripeWe can also create a new �le with a speci�c stripping pattern via lstripe.usage: setstripe [-p <sttripe pattern>] <filename|dirname> <stripe size> <stripe start> <stripe count>4.3 File IO process
• Grant extent lock with stripe-group-size granulaity.
• In the case of writeback cache:
• a. In normal case for write request, we don't update the parity immedi-ately when dirty a �le cache page correspond to a stripe row, just markingcorresponding stripe unit as SU_DIRTY, and delay the parity updatinguntil pd�ush does batched sync, and at that time we do batched parityupdating; For read request, if the read data is cached in stripe cache, wejust need to copy the data unit to �le cache page. And if It has alreadycached (N - 1) stripe units in stripe cache, we can also reconstruct thedata stripe unit on client, and needn't read from OST.
• b. In the degraded case for write case, we grace the error if just one OSToccures failure, just do as noraml case (marking SU_DIRTY and delayparity updating) and issue the IO to good objects; For read request, wemust �rst read all other stripe units uncached in stripe cache form OSTsin advance and then reconstruct the read data via XORing compluation.
• In the case of Direct_IO:
• a. In the normal case for write request, we must �rst update the parityand then wirte the data and the parity synchronously.
• b. In the degrad case, the process is similar with writeback cache.
• After that, cancel the extent lock.5 Logic Speci�cations5.1 Stripe cache managerEach cached stripe unit expresses as the following tuple:

3

5.1 Stripe cache manager 5 LOGIC SPECIFICATIONSstruct stripe_unit {struct page *su_page;struct page *su_cache;obd_flags su_flags;__u64 su_epoch;...};where the su_page is a pointer to the corresponding �le cache page, su_cacheis old data in cache which is usually consistent with disk data.We use stripe_head to stand for a stripe row which manage the stripe uintsit included:struct strie_head {struct list_head sh_item;struct lov_stripe_md *sh_lsm;struct lov_async_page sh_pslap;struct page *sh_parity;unsigned long sh_index;atomic_t sh_count;obd_flag sh_flags;struct stripe_unit sh_unit[1];};
• sh_lsm: pointer to the lov_stripe_md which contains the information of�le stripping.
• sh_pslap: the lov_async_page for parity stripe unit;
• sh_parity: the parity page, It is the redundant data, not a part of �ledata. the su_page and su_cache all point to it.
• sh_index: o�set in the object , modulo PAGE_SIZE;
• sh_count: reference count;
• sh_unit: stripe units in the stripe row.Similar with address_space managing the �le cache page in linux-2.6, we canborrow radix_tree to manage the cached stripe_head of a �le to implement theoperation such as add/remove/lookup for the stripe_head.We use data structure ld_private_data to manage all stripe caches of the�le. The prototype is showed as follow:struct ld_private_data {struct lov_stripe_md *ld_lsm;struct obd_export *ld_exp;struct radix_tree_root ld_stripe_tree;spinlock_t ld_lock;4

5.2 Lifecycle of a stripe_head 5 LOGIC SPECIFICATIONSunsigned long ld_nrstripes;};
• ld_lsm: pointer to �le striping metadata information.
• ld_exp: pointer to lov layer obd export.
• ld_stripe_tree: raidix tree of all stripe caches.
• ld_lock: spinlock to protect the radix tree. All add/remove/lookup oper-ation for stripe_head is under the protection of this spinlock.
• ld_nrstripes: stripe count in the cache.5.2 Lifecycle of a stripe_head
• Every time create a new �le cache page and prepare _async_page for thedata stripe unit, It will initialize the corresponding stripe_unit, and addthe reference count of corresponding stripe_head. If the stripe_head isnot in cache yet, we still need to create it, initilize the parity unit andprepare the _async_page for the parity.
• When teardown the _async_page, decrease the reference count of thecorresponding stripe_head.
• Every time queue the parity _async_page to the update list, add thereference of corresponding stripe_head ; In the completion handler of theparity _async_page, decrease the reference count.
• When the reference count become zero, teardown the _async_page of theparity ,and remove the stripe_head from the Radix_tree, release it andstripe units it included.5.3 parity updating MethodThere are two methods to update parity : READ_MODIFY_WRITE, RE-CONSTRUCT_WRITE.Supposed that at the updating time one stripe row contains 4 stripe units:{s1, s2, s3, s4}, where s4 is the parity stripe unit, and s1, s3 are marked asSU_DIRTY, needing to update to the parity. si(old) stands for the old value ofstripe unit i which is usually consistent with the disk data; si(new) stands fornew dirtied value of stripe unit i.5.3.1 READ_MODIFY_WRITEThe basic idea of READ_MODIFY_WRITE algorithm is as following: Whenthe parity updating is caused by the write to one stripe unit, we �rst factor outthe old value of the strip unit, and then calculate the new parity by XORingwith the new value of the stripe unit. The following shows the processing ofupdating parity via method READ_MODIRY_WRITE.5

5.4 Locking callback 5 LOGIC SPECIFICATIONS
• Read s1(old) and s3(old), s4 from OSTs in synchronous way if they arenot in cache.
• Calculate the new parity: ('+' is short for XORing operator)for an updated parity s4,s4 = s1(old) + s2(old) + s3(old);during updating, first factor the old value of s1:s4 = s4 + s1(old);calculate the new parity:s4 = s4 + s1(old) + s1(new)= s1(old) + s2(old) + s3(old) + s1(old) + s1(new)= s1(new) + s2(old) + s3(old);s1(update) = s1(new) + s1(old);s3(update) = s3(new) + s3(old);s(update) = s1(update) + s3(update) ;s4 = s4 + s(update) =s4 + s1(update) + s3(update)=s4 + s1(old) + s3(old) + s1(new) + s3(new);
• After the calculating the parity, update the stripe cache:s1(old) = s1(new);s3(old) = s3(new);The RECONSTRUCT_WRITE algorithm is:
• Read s2(old) from OST if it is not in cache;
• Update the stripe cache:s1(old) = s1(new);s2(old) = s2(new);
• Calculate new parity:s4 = s1(old) + s2(old) + s3(old);Usually we choose the updating method needing the least read operation ofold data and computation of updating parity. And we borrow the modulelinux/md/xor.o to implement the functionality of parity calculation.5.4 Locking callbackWhen �ush page cache for the extent as it canceled, we also �ush the parity,wait the IO �nish and release the cached stripe_heads in the canceled extent.6

5.5 Hole between objects 6 STATE MANAGEMENT5.5 Hole between objectsIn the last stripe group of the �le, It may be exist hole as the �le size is notstripe-group-size aligned. Because recent seen size (loi->loi_rss) is usually thesize of object on OBD and we get this size when grant the extent lock, Sowe can mark coresponding stripe_unit as SU_BLANK if sh->sh_index >>PAGE_SHIFT > loi->loi_rss. And during updating parity, we can skip thestripe unit marked as SU_BLANK.5.6 Truncat handlingTruncate system call is used to truncate a �le to a speci�c length. It needs specialprocess for shrinking truncate in case of LAID5 (It needn't process extandingtruncate as 0 + x = x) . We need to remove stripe_head from cache andteardown corresponding _async_page in the truncate range. If the �le sizeafter truncate is not stripe-group-size aligned, we also need to reconstruct theparity of stripe_head involved truncate and update to object on OST.6 State management6.1 Parity updating algorithmIn this section we mainly discribe the parity updating algorithm in case ofwriteback cache based on the extent lock with stripe-group-size granularity.READ_MODIFY_WRITE needs two reads (read old data and parity) be-fore updating parity, so it will badly hurt performance while RECONSTRUCT_WRITEis very good for big write as it needn't read old data from OSTs. And our LAIDimplement at �le level which is more complex than implementing at block devicelevel.The algorithm of parity updating is described as follow:1. As mentioned above in section 4.3, when dirty the �le cache page and queueasynchronous pages in function o_queue_async_io / o_queue_group_io,we just marked corresponding stripe unit with SU_DIRTY under theprotection of the stripe lock(it can be the page lock of parity page sh->sh_parity). This �ag can guide we how to update the parity when syncthe �le cache page. We don't queue ashnchrounous pages of parity here.2. When add a asynchronous page of data stripe unit to the rpc list duringbatched syncing, we �rst lock the corresponding �le cache page by upcallto llite layer via function .ap_make_ready, then we add this asynchronouspage to the preread list of laid update group by upcall to LOV layer viafunction .ap_handle_stripe.3. In the .ap_handle_stripe:
• we �rst lock the stripe row (via lock_page(sh->sh_parity)) correspondedto this asynchronous page. 7

6.1 Parity updating algorithm 6 STATE MANAGEMENT
• Scan all the data stripe units, determin how to update parity accordingto the �ags in all stripe units.
• If the syncing data stripe unit is marked as SU_UPDATE which meansthe old data of the stripe unit is in cache, we add the stripe_head tothe update list of laid update group and will update parity via methodREAD_MODIFY_WRITE.
• If all units are marked as SU_DIRTY, it means we can update the parityvia method RECONSTRUCT_WRITE. But we can not do parity updat-ing here until all dirty �le cache pages in this stripe row have synced. wejust copy the data of �le cache page (su->su_page) to the stripe cache ofthis data stripe unit (su->su_cache), clear the �ag SU_DIRTY and setSU_UPDATE for the data stripe unit. And then unlock the stripe row.When syncing of last �le cache page, we add the corresponding stripe_headto the update list of laid update group.
• Or we must preread some necessary old data and cache in the stripe man-ager. Mark the stripe unit needing to preread as SU_PREREAD, andadd the stripe_head to the preread list of laid update group.4. After �nish to batch the rpc list, we do batched preread and parity updatingvia upcall to LOV layer via function .ap_trigger_update. In this function,we will do following operations:
• First do batched preread operation in the preread list of laid updategroup. After that, the cache of stripe unit (su->su_cache) is consistentwith the disk, clear the �ag SU_PREREAD and mark the stripe unit asSU_UPDATE.
• After preread, we shift the stripe_heads in preread list to update list. Andthen do parity updating.
• After parity updating, queue the asynchourous page of parity stripe unitin the update list, then unlock the stripe row.5. After �nish handle of parity, build rpc request for the rpc list and do thesync.We may need to create a sepcial daemon thread to sync the parity asynchronouspage to make sure the parity can sync to OST ASAP.To reduce bad e�ort on performance, we'd better to updating parity viaRECONSTRUCT_WRITE method. Because the smaller the stripe size is, themore IO data strips over full stripe group, so the stripe size of LAID5 shouldbe smaller than LAID0. The best stripe size should be page size 4k; but it willadd the latency for small write. 8

6.2 Recovery 6 STATE MANAGEMENT6.2 RecoveryDuring inconsistent recovery, failed OST need to communicate with other OSTs,so it needs to add lov/osc mouldes on OST. we can build a special recoveryobd stacked on the top of lov/osc, which function is similar with llite. Allprocess of inconsistent recovery of objects is done through this recovery obd.Because our LAID is based on object not whole OBD, so we just block the IOon the recovering object, needn't to block IO of the whole OST. In object-basedrecovery, we just consider two primary failure recovery: OST failure and clientcrash, and the algorithm is described as follow:6.2.1 OST failure recovery1. Similar with MDS size management in whitebook (10.9.8 MDS size man-agement), when �rst write to the object on OST, write a inconsistentlog record on OST contained following information: stripe pattern, �d,location information of all objects the �le stripping over.2. When last close the �le in normal case, MDS cancel the inconsistent logrecord above.3. If one of OSTs �le stripping over occured failure (powero�), reboot andrejoin to the cluster, It �rst scans the inconsistent log record, execute openoperation on the suspicious objects existed inconsistent problem and marktheir inodes as the �ag OBD_INCONSIST. And then process the genericrecovery with MDS and client such as replaying uncommited request andlock server etc.4. After the normal recovery, recovery obd begin to connect to all other OSTsand start inconsistent recovery .5. During recovery, All IO requsts on objects marked as OBD_INCONSISTreturn failure immediately, read retry on client can grace the error. Andall operations on other objects are as normal.6. When do recovery for an inconsistent object, recovery obd �rst grantsextent lock PR[0, -1] on all other corresponding objects the inconsistent�le stripping over. Then read data from these objects and reconstruct thedata of the inconsistent object.7. If one of OSTs other objects store on occurs failure (such as power o�,diconnect with the recoverying OST or connection failed when recoveryobd setups) during recovery (we call it double failure), stop recovery forthe inconsistent object immediately. After the double failed OST rejointo cluster, do the inconsistent recovery for the object again.8. After inconsistent recovery, cancel the extent lock and clear the �ag OBD_INCONSISTfor the object . If the �le is not in write context, delete the inconsistentlog record. 9

7 ALTERNATIVE9. If multiple OSTs occured failure nearly sychronously, there may be mul-tiple objects of the �le marked as OBD_INCONSIST. At this time, theobjects of the �le marked as OBD_INCONSIST will involve in a electionprocess. we always choose object with earlier modi�ed time to do the datareconstruction for inconsistent recovery.6.2.2 Client crash recoveryThe crash of the client may cause inconsistent write, too. In this case, we cando inconsistent recovery according to the extent lock in OST's lock namespace.When detect the client crash, It will cancel all extent lock grant by the crashclient in the eviction handler on OST. If stripe pattern of the �le granted theextent lock is redundant pattern such as LAID1, LAID01 and LAID5, we will dothe inconsistent recovery by the recovery obd or the dedicated recovery client.The recovery of OST failure can be also based on the log record of the extentlock.7 Alternative7.1 Update parity on OSTIn the above LAID5 design, the extent lock is stripe-group-size granularity. Wemust always grant lock form lock servers of all OSTs the �le stripping over. Ifone of OSTs goes down, the lock acquirement will block and may result in theeviction of clinet. So extent lock with stripe_group-size granularity may be nota good idea; but It elimates the con�ict for updating parity, and is good for IOin the degraded mode as we must grant lock with stripe-group-size granulairtyor covered the stripe row at least to reconstruct unaccessable stripe unit data.We propose an another strategy: updating parity on OST.It's based on the following idea: A + B + C = A + C + B, that is to sayexecuting XOR operation out of order can get the same result.The algorithm is as follow:
• Client acquires lock with extent same as write extent, don't acquire anylock for parity.
• On client when do batched parity updating, If the data units in thestripe row are all in cache (we have already grant extent lock coveredthe stripe row), update the parity via RECONSTRUCT_WRITE, andmark the parity as PARITY_OVERWRITE; If the stripe units are notall in cache, we calculate the D(update) = D(old) + D(new), mark it asPARITY_UPDATE, and send the D(update) to OST, and leave the leftupdating work to OST.
• On OST If the received parity data is marked as PARITY_OVERWRITE, just write it to OBD; If the parity data is marked as PARITY_UPDATE10

7.2 Master Locking for the �le 7 ALTERNATIVE(P(update)), we should read the old pairy (P(old)) and calculate the newparity P(new) = P(old) + P(update), and then write it to OBD.
• For read in degraded mode, to reconstruct the data on failed OST we stillneed to grant extent lock covered the stripe row or with stripe-group-size.To reduce the OST's workload and lantency of updating parity , we would betterto cache the parity pages on OST.7.2 Master Locking for the �leIn the previous design of mirror LAID, client acquires the lock from lock serversof OSSs the mirrors store on; In the above design of LAID5, we must acquirelock with stripe-group-size granularity from lock servers of OSSs all objects storeon. Now we introduce a new strategy : Choose an OSS one of objects stores onas a master lock server.For LAID1, we just need to acquire the extent lock from the master lockserver; For LAID5, we just need to acquire the lock with stripe-group-size gran-ularity on master lock server, then we think we have acquire the lock with sameextent from all other servers the stripping objects store on. Via this way, Itcan reduce the lantency of lock acquirement but involve the remastering of lockserver when it occurs failure.The remastering algorithm in case of LAID1/LAID5 is described as follow:
• When the client opens a �le for r/w, the MDS will return the index ofmaster object (usually the �rst object). After that the client just takesthe extent lock from the server the master object stores on with stripe-group-size granularity.
• When one request of lock acquisition for a �le IO occurs time-out anddetect the master lock server occurs failure, the client will �rst �ush the�le cache, cancel the extent lock took from master lock server and startthe remastering process.
• The client send message REMASTER_LOCK_SRV to notify the MDSto coordinate the remastering process of the �le.
• The MDS �rst choose another object as a master object, and send mes-sage COORDINATE_MASTER_START with the choosen master objectindex to clients opened this �le. (At this place we may borrow the waythat add OST dynamically via the callback locking to notify the clientsopen this �le to remaster the master object).
• when client receive the message COORDINATE_MASTER_START, it�rst �ush the �le cache, cancel the extent lock grant from the failedmaster lock server, replace the master object with the one the messagepasses in, block every lock request for the �le. After that, send messageCLI_REMASTER_FINI to MDS.11

8 FOCUS FOR INSPECTIONS
• when MDS receive all reply messages from the clients, send messageMDS_REMASTER_FINI to all client involved the remaster process.
• When client receives the message MDS_REMASTER_FINI, it cancelsthe blocking. After that, all operation is as normal.8 Focus for inspections
• Is the design reansonable ?
• Is there any leak? especially on support to mmap write via new algrothimof parity updating.
• Which strategy is better, taking lock with stripe-group-size or udatingparity involved OST? Is there any other better way to implement LAID5?

12

