High Level Design of LAIDS

2006-02-23

1 Requirements

In this work we enhance LOV layer to implement data layout pattern:LAIDS5.
It is required to do the following:

implement a stripe cache manager in LOV layer to cache the old stripe data
and reduce the latency for updating the parity, especially the notorious
pariry update via READ MODIFY WRITE, needing two reads and two
writes in a synchronous way.

Locking for the parity.
10 in degraded mode.

Inconsistent recovery.

2 Definition

First, we will introduce some terms in LAID5 (Supposed that a file is stripping
over N = 3 objects via stripe pattern LAID5, as showed in the above graph) :

e stripe: Min. data unit for stripping file data, the size of a stripe is usually

1M in Lustre.

stripe group: each stripe group contain N corresponding stripes, and one
of them is parity stripe.

stripe unit: each stripe divides up into small piece based on page-size
granularity, each piece is a stripe unit.

stripe row: stripe row is used to stand for N corresponding stripe units in
a stripe group. (N - 1 data stripe units, and one parity stripe unit)

4 USE CASES

3 Functional specification

3.1 Stripe cache manager

In order to achieve the goal: calculation of parity and reconstruct data block in
degraded mode, we should design a cache manager to cache the old data stripe
unit and parity stripe unit on client to reduce the lantency of updating the
parity. In the stripe cache manager, we need to implement the function such as
add/remove/lookup operation for the stripe caches.

3.2 File Locking

To grant extent lock for IO request especially for write request, we have two
choice: first, perform the extent locking operation as original , that is to say, the
lock extent is same as write extent; second, all lock acquirement and cancellation
are based on stripe-group-size granularity.

In the first schema, we must solve the problem of conflict for updating parity
when there are multipe writers for the file which write extents are in the same
stripe group. This locking strategy will be introduced in the Section 7.1.

In the second schema, we extend the lock extent to stripe-group-size granu-
larity, that is to say, acquire a big lock covered all data strpes and corresponding
parity stripe in the same stripe group. It eliminates the conflict of updating par-
ity but reduce the concurrency.

e.g. the stripping information of a file is as follow: stripe size: 1M, stripe count:
4, pattern: RAID5. The stripe-group-size is stripe size * stripe count = 1M
* 4 — 4M. If grant a extent lock [3M, 6M] in the second strategy, the extanded
extent with stripe-group-size granularity is [0, 8M-1].

Two different Locking strategies result in two different strategies of updating
parity which we will describe in the latter section. And in the section 7.2, we
will also introduce a extended algorithm of locking stripes with stripe-group-size
granularity.

3.3 10O in degraded mode

When detect just one of OSTs the objects store on is invalided, It can grace
the write errors and automatically reconstruct the unaccessible block for read
request.

4 Use cases

4.1 Configure the default stripe pattern

We can configure the default stripe pattern for the whole file system. Once
configure the default stripe pattern of lov on MDS, MDS will use this default
stripe pattern to create objects for new file.

4.2 Set the stripe pattern via Istripe 5 LOGIC SPECIFICATIONS

#defein LOV_PATTERN_RAID5 0x04
Imc -m--stripepattern 4 ...

4.2 Set the stripe pattern via lstripe

We can also create a new file with a specific stripping pattern via lstripe.

usage: setstripe [-p <sttripe pattern>] <filename|dirname> <stripe size> <stripe start

4.3 File 10 process

e Grant extent lock with stripe-group-size granulaity.
e In the case of writeback cache:

e a. In normal case for write request, we don’t update the parity immedi-
ately when dirty a file cache page correspond to a stripe row, just marking
corresponding stripe unit as SU_DIRTY, and delay the parity updating
until pdfiush does batched sync, and at that time we do batched parity
updating; For read request, if the read data is cached in stripe cache, we
just need to copy the data unit to file cache page. And if It has already
cached (N - 1) stripe units in stripe cache, we can also reconstruct the
data stripe unit on client, and needn’t read from OST.

e b. In the degraded case for write case, we grace the error if just one OST
occures failure, just do as noraml case (marking SU_ DIRTY and delay
parity updating) and issue the IO to good objects; For read request, we
must first read all other stripe units uncached in stripe cache form OSTs
in advance and then reconstruct the read data via XORing compluation.

e In the case of Direct I0O:

e a. In the normal case for write request, we must first update the parity
and then wirte the data and the parity synchronously.

e b. In the degrad case, the process is similar with writeback cache.

e After that, cancel the extent lock.

5 Logic Specifications

5.1 Stripe cache manager

Each cached stripe unit expresses as the following tuple:

5.1

Stripe cache manager 5 LOGIC SPECIFICATIONS

struct stripe_unit {
struct page *su_page;
struct page *su_cache;
obd_flags su_flags;
__u64 su_epoch;

};

where the su_page is a pointer to the corresponding file cache page, su_ cache
is old data in cache which is usually consistent with disk data.

We use stripe_head to stand for a stripe row which manage the stripe uints
it included:

struct strie_head {
struct list_head sh_item;
struct lov_stripe_md *sh_lsm;
struct lov_async_page sh_pslap;

struct page *sh_parity;
unsigned long sh_index;
atomic_t sh_count;
obd_flag sh_flags;
struct stripe_unit sh_unit[1];

};

sh_Ism: pointer to the lov_stripe _md which contains the information of
file stripping.

sh pslap: the lov_async_ page for parity stripe unit;

sh _parity: the parity page, It is the redundant data, not a part of file
data. the su_page and su_ cache all point to it.

sh_index: offset in the object , modulo PAGE SIZE;
sh_count: reference count;

sh unit: stripe units in the stripe row.

Similar with address_space managing the file cache page in linux-2.6, we can
borrow radiz_tree to manage the cached stripe head of a file to implement the
operation such as add/remove/lookup for the stripe head.

We use data structure ld_private data to manage all stripe caches of the
file. The prototype is showed as follow:

struct 1d_private_data {
struct lov_stripe_md *1d_lsm;

struct obd_export *1d_exp;
struct radix_tree_root ld_stripe_tree;
spinlock_t 1d_lock;

5.2 Lifecycle of a stripe__head 5 LOGIC SPECIFICATIONS

unsigned long ld_nrstripes;

s
e Id Ism: pointer to file striping metadata information.
e 1d exp: pointer to lov layer obd export.
e Id stripe tree: raidix tree of all stripe caches.

e 1d_lock: spinlock to protect the radix tree. All add/remove/lookup oper-
ation for stripe head is under the protection of this spinlock.

e Id nrstripes: stripe count in the cache.

5.2 Lifecycle of a stripe_ head

e Every time create a new file cache page and prepare _async_ page for the
data stripe unit, It will initialize the corresponding stripe_unit, and add
the reference count of corresponding stripe head. If the stripe_head is
not in cache yet, we still need to create it, initilize the parity unit and
prepare the async_page for the parity.

e When teardown the _async page, decrease the reference count of the
corresponding stripe_ head.

e Every time queue the parity _async_page to the update list, add the
reference of corresponding stripe_ head; In the completion handler of the
parity _async_page, decrease the reference count.

e When the reference count become zero, teardown the _async_ page of the
parity ,and remove the stripe head from the Radix_tree, release it and
stripe units it included.

5.3 parity updating Method

There are two methods to update parity : READ MODIFY WRITE, RE-
CONSTRUCT _WRITE.

Supposed that at the updating time one stripe row contains 4 stripe units:
{s1, 82, s3, s4}, where s4 is the parity stripe unit, and s1, s3 are marked as
SU_DIRTY, needing to update to the parity. si(old) stands for the old value of
stripe unit i which is usually consistent with the disk data; si(new) stands for
new dirtied value of stripe unit i.

5.3.1 READ MODIFY WRITE

The basic idea of READ MODIFY WRITE algorithm is as following: When
the parity updating is caused by the write to one stripe unit, we first factor out
the old value of the strip unit, and then calculate the new parity by XORing
with the new value of the stripe unit. The following shows the processing of
updating parity via method READ MODIRY WRITE.

5.4 Locking callback 5 LOGIC SPECIFICATIONS

e Read sl(old) and s3(old), s4 from OSTs in synchronous way if they are
not in cache.

e Calculate the new parity: ("+’ is short for XORing operator)

for an updated parity s4,

s4 = s1(old) + s2(old) + s3(old);

during updating, first factor the old value of sli:
s4 = s4 + s1(old);

calculate the new parity:

s4 = s4 + s1(old) + sl(new)

s1(old) + s2(old) + s3(old) + sil(old) + sl(new)
sl(new) + s2(old) + s3(0ld);

sl(update) = sl(new) + si1(old);

s3(update) = s3(new) + s3(old);

s(update) = sl1(update) + s3(update) ;

s4 = s4 + s(update) =

s4 + sl(update) + s3(update)=

s4 + s1(old) + s3(old) + sil(new) + s3(new);

e After the calculating the parity, update the stripe cache:

s1(old)
s3(old)

s1l(new);
s3(new) ;

The RECONSTRUCT WRITE algorithm is:
e Read s2(old) from OST if it is not in cache;
e Update the stripe cache:

s1(old) = sl(new);
s2(old) s2(new) ;

e Calculate new parity:
s4 = s1(old) + s2(o0ld) + s3(o0ld);

Usually we choose the updating method needing the least read operation of
old data and computation of updating parity. And we borrow the module
linux/md/xor.o to implement the functionality of parity calculation.

5.4 Locking callback

When flush page cache for the extent as it canceled, we also flush the parity,
wait the 10 finish and release the cached stripe heads in the canceled extent.

5.5 Hole between objects 6 STATE MANAGEMENT

5.5 Hole between objects

In the last stripe group of the file, It may be exist hole as the file size is not
stripe-group-size aligned. Because recent seen size (loi->loi rss) is usually the
size of object on OBD and we get this size when grant the extent lock, So
we can mark coresponding stripe unit as SU BLANK if sh->sh index > >
PAGE_SHIFT > loi->loi_rss. And during updating parity, we can skip the
stripe unit marked as SU_BLANK.

5.6 Truncat handling

Truncate system call is used to truncate a file to a specific length. It needs special
process for shrinking truncate in case of LAID5 (It needn’t process extanding
truncate as 0 + ¢ = z) . We need to remove stripe_head from cache and
teardown corresponding async_page in the truncate range. If the file size
after truncate is not stripe-group-size aligned, we also need to reconstruct the
parity of stripe_head involved truncate and update to object on OST.

6 State management

6.1 Parity updating algorithm

In this section we mainly discribe the parity updating algorithm in case of
writeback cache based on the extent lock with stripe-group-size granularity.

READ MODIFY WRITE needs two reads (read old data and parity) be-
fore updating parity, so it will badly hurt performance while RECONSTRUCT _WRITE
is very good for big write as it needn’t read old data from OSTs. And our LAID
implement at file level which is more complex than implementing at block device
level.

The algorithm of parity updating is described as follow:

1. As mentioned above in section 4.3, when dirty the file cache page and queue
asynchronous pages in function o_queue_async_io/o_queue_ group io,
we just marked corresponding stripe unit with SU_ DIRTY under the
protection of the stripe lock(it can be the page lock of parity page sh-
>sh_parity). This flag can guide we how to update the parity when sync
the file cache page. We don’t queue ashnchrounous pages of parity here.

2. When add a asynchronous page of data stripe unit to the rpc list during
batched syncing, we first lock the corresponding file cache page by upcall
to llite layer via function .ap_make ready, then we add this asynchronous
page to the preread list of laid update group by upcall to LOV layer via
function .ap _handle _stripe.

3. In the .ap handle stripe:

e we first lock the stripe row (via lock_page(sh->sh_parity)) corresponded
to this asynchronous page.

6.1 Parity updating algorithm 6 STATE MANAGEMENT

e Scan all the data stripe units, determin how to update parity according
to the flags in all stripe units.

o If the syncing data stripe unit is marked as SU _UPDATE which means
the old data of the stripe unit is in cache, we add the stripe head to
the update list of laid update group and will update parity via method
READ MODIFY WRITE.

o If all units are marked as SU_DIRTY, it means we can update the parity
via method RECONSTRUCT _WRITE. But we can not do parity updat-
ing here until all dirty file cache pages in this stripe row have synced. we
just copy the data of file cache page (su->su_ page) to the stripe cache of
this data stripe unit (su->su_ cache), clear the flag SU DIRTY and set
SU_UPDATE for the data stripe unit. And then unlock the stripe row.
When syncing of last file cache page, we add the corresponding stripe head
to the update list of laid update group.

e Or we must preread some necessary old data and cache in the stripe man-
ager. Mark the stripe unit needing to preread as SU PREREAD, and
add the stripe_head to the preread list of laid update group.

4. After finish to batch the rpc list, we do batched preread and parity updating
via upcall to LOV layer via function .ap _trigger update. In this function,
we will do following operations:

e First do batched preread operation in the preread list of laid update
group. After that, the cache of stripe unit (su->su_ cache) is consistent
with the disk, clear the flag SU PREREAD and mark the stripe unit as
SU_UPDATE.

o After preread, we shift the stripe heads in preread list to update list. And
then do parity updating.

e After parity updating, queue the asynchourous page of parity stripe unit
in the update list, then unlock the stripe row.

5. After finish handle of parity, build rpc request for the rpc list and do the
Sy1cC.

We may need to create a sepcial daemon thread to sync the parity asynchronous
page to make sure the parity can sync to OST ASAP.

To reduce bad effort on performance, we’d better to updating parity via
RECONSTRUCT _WRITE method. Because the smaller the stripe size is, the
more [0 data strips over full stripe group, so the stripe size of LAID5 should
be smaller than LAID0. The best stripe size should be page size 4k; but it will
add the latency for small write.

6.2 Recovery 6 STATE MANAGEMENT

6.2 Recovery

During inconsistent recovery, failed OST need to communicate with other OSTs,
so it needs to add lov/osc mouldes on OST. we can build a special recovery
obd stacked on the top of lov/osc, which function is similar with llite. All
process of inconsistent recovery of objects is done through this recovery obd.
Because our LAID is based on object not whole OBD, so we just block the 10
on the recovering object, needn’t to block IO of the whole OST. In object-based
recovery, we just consider two primary failure recovery: OST failure and client
crash, and the algorithm is described as follow:

6.2.1 OST failure recovery

1. Similar with MDS size management in whitebook (10.9.8 MDS size man-
agement), when first write to the object on OST, write a inconsistent
log record on OST contained following information: stripe pattern, fid,
location information of all objects the file stripping over.

2. When last close the file in normal case, MDS cancel the inconsistent log
record above.

3. If one of OSTs file stripping over occured failure (poweroff), reboot and
rejoin to the cluster, It first scans the inconsistent log record, execute open
operation on the suspicious objects existed inconsistent problem and mark
their inodes as the flag OBD INCONSIST. And then process the generic
recovery with MDS and client such as replaying uncommited request and
lock server etc.

4. After the normal recovery, recovery obd begin to connect to all other OSTs
and start inconsistent recovery .

5. During recovery, All IO requsts on objects marked as OBD INCONSIST
return failure immediately, read retry on client can grace the error. And
all operations on other objects are as normal.

6. When do recovery for an inconsistent object, recovery obd first grants
extent lock PR|0, -1] on all other corresponding objects the inconsistent
file stripping over. Then read data from these objects and reconstruct the
data of the inconsistent object.

7. If one of OSTs other objects store on occurs failure (such as power off,
diconnect with the recoverying OST or connection failed when recovery
obd setups) during recovery (we call it double failure), stop recovery for
the inconsistent object immediately. After the double failed OST rejoin
to cluster, do the inconsistent recovery for the object again.

8. After inconsistent recovery, cancel the extent lock and clear the flag OBD INCONSIST
for the object . If the file is not in write context, delete the inconsistent
log record.

7 ALTERNATIVE

9. If multiple OSTs occured failure nearly sychronously, there may be mul-
tiple objects of the file marked as OBD INCONSIST. At this time, the
objects of the file marked as OBD INCONSIST will involve in a election
process. we always choose object with earlier modified time to do the data
reconstruction for inconsistent recovery.

6.2.2 Client crash recovery

The crash of the client may cause inconsistent write, too. In this case, we can
do inconsistent recovery according to the extent lock in OST’s lock namespace.
When detect the client crash, It will cancel all extent lock grant by the crash
client in the eviction handler on OST. If stripe pattern of the file granted the
extent lock is redundant pattern such as LAID1, LAIDO1 and LAID5, we will do
the inconsistent recovery by the recovery obd or the dedicated recovery client.

The recovery of OST failure can be also based on the log record of the extent
lock.

7 Alternative

7.1 Update parity on OST

In the above LAIDS5 design, the extent lock is stripe-group-size granularity. We
must always grant lock form lock servers of all OSTs the file stripping over. If
one of OSTs goes down, the lock acquirement will block and may result in the
eviction of clinet. So extent lock with stripe group-size granularity may be not
a good idea; but It elimates the conflict for updating parity, and is good for 10
in the degraded mode as we must grant lock with stripe-group-size granulairty
or covered the stripe row at least to reconstruct unaccessable stripe unit data.

We propose an another strategy: updating parity on OST.

It’s based on the following idea: A + B + C = A + C + B, that is to say
executing XOR operation out of order can get the same result.

The algorithm is as follow:

e Client acquires lock with extent same as write extent, don’t acquire any
lock for parity.

e On client when do batched parity updating, If the data units in the
stripe row are all in cache (we have already grant extent lock covered
the stripe row), update the parity via RECONSTRUCT WRITE, and
mark the parity as PARITY OVERWRITE; If the stripe units are not
all in cache, we calculate the D(update) = D(old) + D(new), mark it as
PARITY UPDATE, and send the D(update) to OST, and leave the left
updating work to OST.

e On OST If the received parity data is marked as PARITY OVERWRITE
, just write it to OBD; If the parity data is marked as PARITY UPDATE

10

7.2 Master Locking for the file 7 ALTERNATIVE

(P(update)), we should read the old pairy (P(old)) and calculate the new
parity P(new) = P(old) + P(update), and then write it to OBD.

e For read in degraded mode, to reconstruct the data on failed OST we still
need to grant extent lock covered the stripe row or with stripe-group-size.

To reduce the OST’s workload and lantency of updating parity , we would better
to cache the parity pages on OST.

7.2 Master Locking for the file

In the previous design of mirror LAID, client acquires the lock from lock servers
of OSSs the mirrors store on; In the above design of LAID5, we must acquire
lock with stripe-group-size granularity from lock servers of OSSs all objects store
on. Now we introduce a new strategy : Choose an OSS one of objects stores on
as a master lock server.

For LAID1, we just need to acquire the extent lock from the master lock
server; For LAID5, we just need to acquire the lock with stripe-group-size gran-
ularity on master lock server, then we think we have acquire the lock with same
extent from all other servers the stripping objects store on. Via this way, It
can reduce the lantency of lock acquirement but involve the remastering of lock
server when it occurs failure.

The remastering algorithm in case of LAID1/LAIDS5 is described as follow:

e When the client opens a file for r/w, the MDS will return the index of
master object (usually the first object). After that the client just takes
the extent lock from the server the master object stores on with stripe-
group-size granularity.

e When one request of lock acquisition for a file IO occurs time-out and
detect the master lock server occurs failure, the client will first flush the
file cache, cancel the extent lock took from master lock server and start
the remastering process.

e The client send message REMASTER LOCK SRV to notify the MDS
to coordinate the remastering process of the file.

e The MDS first choose another object as a master object, and send mes-
sage COORDINATE MASTER_START with the choosen master object
index to clients opened this file. (At this place we may borrow the way
that add OST dynamically via the callback locking to notify the clients
open this file to remaster the master object).

e when client receive the message COORDINATE MASTER START, it
first flush the file cache, cancel the extent lock grant from the failed
master lock server, replace the master object with the one the message

passes in, block every lock request for the file. After that, send message
CLI_REMASTER_FINI to MDS.

11

8 FOCUS FOR INSPECTIONS

e when MDS receive all reply messages from the clients, send message
MDS REMASTER _FINI to all client involved the remaster process.

e When client receives the message MDS REMASTER _FINI, it cancels
the blocking. After that, all operation is as normal.

8 Focus for inspections

e Is the design reansonable 7

e Is there any leak? especially on support to mmap write via new algrothim
of parity updating.

e Which strategy is better, taking lock with stripe-group-size or udating
parity involved OST? Is there any other better way to implement LAID5?

12

