Rollback HLD

Peter Braam, Mike Pershin

February 9, 2008

1 Engineering Requirements

Rollback is a recovery mechanism for a cluster of metadateese CMD). If the system
crashes due to a power failure or due to multiple MDS failuttes problem that we face is
that the state of the cluster may not represent a valid fileesysThe reason it may not is
that transactions on different nodes may be related to desopgeration at the file system
level. Some of these transactions may be lost in the crasbromay have committed to
disk.

In order to address this problem, the nodes will engage instiildited algorithm that
restores the disk state to a snapshot which we will calh@age snapsho{2.1.3). Nodes
will rollback to the snapshot, based onamdo log (2.1.2).

The requirements for this component are:

1. Define the image snapshots

2. When a cluster failure takes place, calculate operatmnado on each node, so that
a consistent snapshot is reached.

3. During normal operation, discard of the portion of the atagberation log that is not
needed for undo in case of recovery.

2 Functional Specification

The required functionality can be achieved by introducing thajor component undo
log andimage snhapshot

2.1 Definitions

2.1.1 Types of operations

fsop - an operation on the initiating MDS which received clieméguest.

depop - The initiating metadata server may involve another metasierver in the process:
this other metadata server executes a dependent operdtiom we calla depop.

crossop - filesystem operation that consist of several small opgmaton different MD
servers.

2.1 Definitions 2 FUNCTIONAL SPECIFICATION

2.1.2 Undo log

Each MDS node creates and constantly updates log of all tipesdor eactisopor depop.
The key requirements to such log are:

1. Log contains enough information to replay back loggedaiien returning node to
the some recent state;

2. new record should be written to the log befésep/depopwill affect the system or
at least be in the same transaction;

3. log should be able to add new records, delete unneededtenatei over logged
records forward and backward.

4. log should contains information about latest commitigolod.

Actually llog functionality is well suitable for these requirement, sdolaein document
we will usellog terminology while describing the undo log. Nevertheless different
approach may be used also, but the choosing such functipmalout of scope of this
document.

2.1.3 Image snapshots

The request on MD server can invoke the additional requestrather server. In two
cases (rename and directory split) more nodes or repeatesairtions can be involved,
and we build a stack of initiating and dependent calls: eacterstarts at most ordepop
(depended transaction even) on another node.

Each metadata server executes local memory transactiosh ¥atlow a start/stop pat-
tern. The memory transactions are collected into a dislstretion which seespen/commit
operations. The disk transactions on each node are stdafigred. If transaction A is
started before B, then A will belong to a disk transactionaaqur earlier than B. Each
memory transaction has a Lustre transaction number andrespondingundo record in
an log, which is transactionally maintained.

File system operation$sop9 have dependencies, e.g. afile in a directory that doesistt ex
yet cannot be created. The dependencies are determinee bbgati and write set of the
memory transactions associated with the transactionsolttansactions have an overlap
in this read-write set, they are called dependent. On aesimgtle, the start and stop events
of dependent transactions are serialized by the file sydgmsing locks and because start
order is preserved in disk transactions the disk imagesesjistems on single nodes are
consistent wrt thésop dependencies.

Definition: A image snapshobf a clustered metadata file system is a disk image that has
the following properties:

1. For all file system operations P depending on Q: if the efféd is in the
image, so is that of Q.

2. For allfsopswhich involve dependencies among the metadata servematans
tions: If the initiating transaction of a file system opewatis in the image, so
are all its dependencies.

2 FUNCTIONAL SPECIFICATION 2.2 Rollback algorithm

2.1.4 Epoch

A transaction on a node belonging to a snapshot and not tovdopsesnapshot on that
node is said to lie in thepochof that snapshot. Clearly an image snapshot is a file system
that is reachable by file system operations and all trarmactind their dependency stack
are completely incorporated. Epoch is a part of record inodnd. So we can control the
committed epoch and find the needed records in undo log.

2.2 Rollback algorithm

After definitions ofundo logandimage snapshotve can describe thellback algorithm.
After failure a cluster can rollback to the last committedsshot using the followed algo-
rithm:

1. scanstheando logbackward on each MD server and find the latest committed epoch

2. choose the minimum latest committed epoch among all sgrve

3. rollback to the snapshot with chosen epoch by doing un@oadion in accordance

with undo log;

Now server is in consistent state and recovery may starts.

2.3 Snapshot functionality
2.3.1 General approach

The proposed fault-tolerance functionality is based orpshat. We need to write snap-
shot frequently to nullify the long restoring after failur€here is the coordinating node,
called the coordinator which takes care about snapshet atet should be able to do the
following:

e initiates the epoch increase (start new snapshot) and &#@dgo other nodes;

e receives nodes states (last committed epoch, current eptaich and calculate col-
lective state;

e initiate the purging of undo log for committed snapshot (ehthe snapshot).
Each node in a cluster is the coordinator for correspondiagshots, e.g. snapshot P is
controlled by node N = P % K, where K is total number of MDS.

Lemma 1. The difference between epoch on cluster nodes cannot be more than 1.

Proof: As snapshot coordination is doing via network, there is alytpreen epoch in-
crease on different nodes. Suppose that the old epochHNwaSo two cases are
possible:

1. Node already get message and its epodh-st;
2. node didn't receives the control message and its epodhi isls

Considering that there is no concurrent epoch increasepihehedifference between
node cannot be bigger than 1.

2.3 Snapshot functionality 2 FUNCTIONAL SPECIFICATION

2.3.2 Epoch control
The control increase is done periodically by control nodbe €ontrol increase starts the
new snapshot with new epoch.

Each server does the following:

1. takes new epoch from RPC

2. if the local epoch should be increased then

(a) update the local epoch
(b) all new crossop or depop should wait until the epoch iaseewill be done.

3. reply to the control node

4. After the epoch increase all new operations will use nesckp

2.3.3 Transaction control

Each MDS should identify the local last committed epoch deddluster-wide last com-
mitted epoch - the biggest epoch which is committed on alksod

Local last committed epoch should be used to determine the cluster-wide value by choos-
ing the minimum value.

Cluster last committed epoch should be reported to the clients so they can drop all pend-
ing operations for that epoch. The MDS uses this value toalaecords in undo

log.
So transaction control functionality should care about tagks:

1. Negotiation between MDS about cluster-wide last_consaitepoch;

2. Determine the local last_committed_epoch value.

With the response to a control message, received possiahglonously by the coordina-
tor, the last completed and committed epoch on each nodescaapbrted. The coordinator
will send a second message requesting purging of unneededecords immediately after
its knows the collective answer from all nodes, but the catbr only does this if it has
moved since the last purge. This message also indicateti¢o mbdes that the snapshot
has completed and the next MDS node can become the leadbefoekt snapshot.

In case of recovery the last committed and completed epcelagain collected and all
nodes again roll back to the end of the last epoch committeadlarodes.

2.3.4 Cross-ref operations

The multi-node operations should be at the same epoch - éfisition of a snapshot. But
we can encounter the situation when part of such operatamse in different epochs due
to Lemma 1. This situation need to be handled correctly and all depopaldtbe in the
same epoch with fsop.

The situation with different epoch number on depended serv@n occur during epoch
increasing procedure when some servers did already epootase and other - not yet.
Due to theLemma 1 here is two possible situations:

3 USE CASES 2.4 Affected functionality and API

1. Initial epoch on first server is already increased, butbpm remote server is old. In
this case remote server should update epoch and continughsiturrent operation.

2. Initial epoch is less than one on the remote server. Indase the remote server
complete operation in new epoch and reply with new epoclgirated MDS gets
answer and update the epoch before continue with local tpera

The MDS initiating the depended request does local operaindy after all depended re-

mote calls therefore epoch will be negotiated before stgrtif local operation. There

shouldn’t be concurrent epoch increase while multi-noderafion is in progress so some
protection is needed for this.

2.4 Affected functionality and API
2.4.1 APIchanges

Rollback needs several new methods and structures in MDTCMM to provide the
epoch control. For writing the epoch record into log the &xisllog APl can be used in
CMM/MDD/OSD.

All rollback functionality is implemented in CMM layer withelp from MDT/MDC for
epoch control and from MDD/OSD for undo logging.

2.4.2 Recovery

Client should use the epoch for all pending operations aktd transaction number. MDS
will provides the information about last committed epocltie clients. This should be the
epoch that is already committed on all MD servers. After thatclient will drop pending
requests with that epoch.

2.5 Logging operations

Good place should be chosen for intercepting operationsransferring them to the undo
log. There are several possible ways to do that:

e OSD level can do the log all local fs operations

e Interceptionin CMM level which can log all operations

3 Use Cases

3.1 Directory distribution

There is special type of file or directory in CMD - cross-refaatt. Directory entry for that
object is placed on one MDS but object itself - on another MDigerefore any operation
with such object via its name will go through MDS where its maisi stored to the MDS
with object itself.

fsop - operations with name

depop- operations with object that is placed on remote MDS

3.2 Link 4 LOGIC SPECIFICATION

3.2 Link

Link operation can use file on another MDS while creating & ¢in the local on.
fsop- creating the new entry in directory

depop- increasing link counter in object on another MDS

3.3 Rename

As rename operation can change name and even parent, teesevaral cases which will
producedepops.

3.4 Directory split

This case is the most hardest one. Directory split can p®adulot ofdepopsand can
be very long in time. Moreover design of split functionalisynot finished yet. In this
document we will suppose that splitting produces reasenalninber oflepops

4 Logic Specification

4.1 Details of epoch control

Each snapshot is a structure which contains the epoch nuamgkref-counter. While
starting in that epoch the operation will take the refereindé The reference is dropped
when related transaction will be closed in memory.

4.1.1 Control increase of the epoch

The control node set new epoch locally and send RPC (posagiylgchronously) to the
other nodes.

The other nodes receives the increase request and do thwifait

1. checkif local node is already in new epoch (this can beriiesdepop was received
before the control message)

2. update local epoch if needed

3. doreply

4.1.2 Determining the global last committed transaction

Let's suppose that all nodes know their local last_commitgpoch. To determine the
global value the coordinator node do the following:

1. request the last committed epoch from all nodes;

2. calculate the collective state. If this value is not chethtipen exit;

4 LOGIC SPECIFICATION 4.1 Details of epoch control

3. sendtheresultto all nodes. Nodes can purge the undo thgyatate last_committed_epoch
value for clients.

4. coordinator node send control message to the next catadiand it will start new

epoch.

Itis possible that determining the last committed epochiEapartially done while control
increase negotiation, e.g. nodes can report local lastmitted_epoch during reply to the
epoch increase message.

4.1.3 Cross-ref operations logic

The multi-node operations should be at the same epoch - éfisition of a snapshot. But
we can encounter the situation when part of such operatamge in different epochs due
toLemma 1.

This case can be handled by following way:

1. getthe reference on the epoch
2. send depop RPC to other MDS and get reply with epoch valRPia

3. check the epoch returned in reply:

(a) Ifitis bigger than current one then set new epoch locally
(b) drop reference to the old epoch;
(c) take reference to the new one;

4. do local operations with in the referenced epoch as pasame

5. putthe reference.
The remote server:

1. receives the request for depop, check the epoch
2. if local epoch bigger than one in RPC then update the epoR#PC;

3. if local epoch lesser than one in RPC then

(a) set new local epoch;
(b) drop reference to the old epoch;
(c) take reference to the new one;

do another remote request if needed with the updated epoch
get reply and update local epoch if needed;
do local operation with the negotiated epoch;

put the reference;

© N o 0 k&

reply to the initial server also with the same epoch;

4.2 Transactions and undo records 4 LOGIC SPECIFICATION

This algorithm will place fsop and all depops in one epochsdfay there is a lock is
needed when epoch is updated.

When a server starts new operation it takes a reference aruthent epoch. Taking this
reference is atomic with respect to increasing the epochtakes into account that a mes-
sage received from a remote node to start a dependent ttimmsan@y have just increased
the epoch.

While the transaction and dependencies are being negbtidtie other servers, the epoch
may move to a later snapshot. The reference is dropped whenathsaction is closed in
memory.

4.2 Transactions and undo records
4.2.1 Finishing the epoch

Hence references can only be taken on epoch equal or higlaethie current one, older
epochs will not get new references, and we merely have théatdmmits drain to discover
that the epoch has committed. But note that epochs may comutraff order, and an epoch
as a whole has only committed if all previous epochs have cittenrand the transactions
in the epoch have committed.

If the ref-count of the epoch is 0 and the current epoch is drigthe server put the
special record (EPOCH_END) into the undo log so last conemittansaction can be
easily found by scanning the undo log backward for such ec@ommit callback for
this transaction will means that all transactions from #yadch are committed and local
last_committed_epoch can be updated.

4.2.2 Purging the undo log

While control node decides that epoch N should be purgedrtte log is scanned forward
and all records with epoch N are cancelled until the spee@dnds EPOCH_END will be
encountered.

4.2.3 Writing the undo log

Undo log is handled by CMM. The CMM adds new record into logobbefthe local oper-
ation itself. In that case there is no need to export traimaétP| to the CMM. The undo
record and operation itself can be in different transasti@o there is possible situation
when we will have a record in undo log, but no on-disk changésed to the operation.
In that case attempt to do revert changes will fail and shbal@ynored. It is allowed only
for last record in the undo log actually

Records in undo log are added/cancelled/scanned and ugds initialized/closed with
help of OBD llog API.

4.3 Rollback
4.3.1 Client Recovery and Image Snapshots

Traditionally clients replay un-committed transactiotiese are communicated to clients
by metadata servers through last committed numbers. Gkeotery interacts with snap-

shots by starting replay after the rollback has completexv e epoch number should be
used instead of transaction.

4 LOGIC SPECIFICATION 4.4 Recovery

The MDS nodes collectively determine the last committedpshat. Clients retain all
transactions with epoch numbers that are beyond the lasinéted one, and free those
before.

During replay on the server, the server scans the bitmapeinndo log to determine if a
transaction offered for replay by the client requires rgpla

4.3.2 Finding the latest committed epoch

Each MDS have to determine last committed epoch for recoparposes. To do so it
scans undo log backward for first EPOCH_END record. The egtmied in it is a last
committed epoch on current MDS.

4.3.3 Avoiding unnecessary undo records

As we explained in the introduction, local file systems raltk conveniently to a consistent
state. With good choices of metadata placement, there withbny transactions that are
local to a particular MDS. The question is under what circiamses we can avoid writing
undo records for such transactions.

For example we can skip undo logging if there were no crossomepops in current
epoch. Maybe some dependency tracking mechanism is pesdd, so this should be
investigated during DLD phase more closely.

4.3.4 Encouraging early commit

If usage indicates that fsops that involve dependent ojpesasire quite rare then it may be
beneficial to immediately:

1. begin a new snapshot

2. nodes involved in the distributed transaction begin tamat the previous epoch

3. nodes can stop recording undo information for certaimsiaations (see above) when
the global commit of this epoch is confirmed.

4.4 Recovery
When a cluster goes into recovery the metadata server wdgxin= 1 is responsible to
gather the current and last committed snapshot from all;ode

The process begins similarly to the 3 steps discussed inrvigus message.

1. Node i =1 connects to all other metadata servers and esspliout existing exports
for the targets. If no target suffered transaction rollbdak to a restart, no undo is
necessary. Resending will undo the damage.

2. If merely one target failed and the clients and other sers&yed up, no rollback is
necessary, replay will fix the problems.

3. During this enquiry node i = 1 requests status from all sate computes the glob-
ally last committed snapshot.

6 ISSUES FOR INSPECTION

It sends a message to indicate to what point servers shaliddck.
When this completes replies are sent to the node i = 1.

When all messages have arrived the coordinator sendssage® all nodes indi-
cating the rollback is complete.

. Nodes proceed to accept replay and resent messages.

5 State management

5.1

5.3

6

1.

State invariants

epoch change is atomic
crossops belongs to the one epoch

cluster-wide last_committed_epoch s used for handlinglpey commands on clients

Scalability & performance

For scalability purposes the epoch increase and last_ctietmepoch negotiations
can be done in parallel where it is possible

During rollback the optimisation is possible to avoid unthedextra work

Recovery changes

client changes to dropping the pending request is needed;
server may decide that some replays are not needed;
rollback should be done before starting the recovery poces

while replay the crossops will call the depended operatadss with REPLAY flag

Issues for inspection

It may be advantageous to record the snapshot right ahthefehe disk transaction.
It would be worth puzzling about the generic rollback bebavi

10

