
Rollback HLD

Peter Braam, Mike Pershin

February 9, 2008

1 Engineering Requirements

Rollback is a recovery mechanism for a cluster of metadata servers (CMD ). If the system
crashes due to a power failure or due to multiple MDS failures, the problem that we face is
that the state of the cluster may not represent a valid file system. The reason it may not is
that transactions on different nodes may be related to a single operation at the file system
level. Some of these transactions may be lost in the crash, others may have committed to
disk.

In order to address this problem, the nodes will engage in a distributed algorithm that
restores the disk state to a snapshot which we will call animage snapshot(2.1.3). Nodes
will rollback to the snapshot, based on anundo log (2.1.2).

The requirements for this component are:

1. Define the image snapshots

2. When a cluster failure takes place, calculate operationsto undo on each node, so that
a consistent snapshot is reached.

3. During normal operation, discard of the portion of the undo-operation log that is not
needed for undo in case of recovery.

2 Functional Specification

The required functionality can be achieved by introducing two major component -undo
log andimage snapshot.

2.1 Definitions

2.1.1 Types of operations

fsop - an operation on the initiating MDS which received client’srequest.

depop - The initiating metadata server may involve another metadata server in the process:
this other metadata server executes a dependent operation which we calla depop.

crossop - filesystem operation that consist of several small operations on different MD
servers.

1



2.1 Definitions 2 FUNCTIONAL SPECIFICATION

2.1.2 Undo log

Each MDS node creates and constantly updates log of all operations for eachfsopordepop.
The key requirements to such log are:

1. Log contains enough information to replay back logged operation returning node to
the some recent state;

2. new record should be written to the log beforefsop/depopwill affect the system or
at least be in the same transaction;

3. log should be able to add new records, delete unneeded and iterate over logged
records forward and backward.

4. log should contains information about latest committed epoch.

Actually llog functionality is well suitable for these requirement, so below in document
we will use llog terminology while describing the undo log. Nevertheless the different
approach may be used also, but the choosing such functionality is out of scope of this
document.

2.1.3 Image snapshots

The request on MD server can invoke the additional request onanother server. In two
cases (rename and directory split) more nodes or repeated transactions can be involved,
and we build a stack of initiating and dependent calls: each node starts at most onedepop
(depended transaction even) on another node.

Each metadata server executes local memory transactions which follow a start/stop pat-
tern. The memory transactions are collected into a disk transaction which seesopen/commit
operations. The disk transactions on each node are strictlyordered. If transaction A is
started before B, then A will belong to a disk transaction equal or earlier than B. Each
memory transaction has a Lustre transaction number and a correspondingundo record in
an log, which is transactionally maintained.

File system operations (fsops) have dependencies, e.g. a file in a directory that doesn’t exist
yet cannot be created. The dependencies are determined by the read and write set of the
memory transactions associated with the transactions. If two transactions have an overlap
in this read-write set, they are called dependent. On a single node, the start and stop events
of dependent transactions are serialized by the file system.By using locks and because start
order is preserved in disk transactions the disk images of file systems on single nodes are
consistent wrt thefsopdependencies.

Definition: A image snapshotof a clustered metadata file system is a disk image that has
the following properties:

1. For all file system operations P depending on Q: if the effect of P is in the
image, so is that of Q.

2. For all fsopswhich involve dependencies among the metadata server transac-
tions: If the initiating transaction of a file system operation is in the image, so
are all its dependencies.

2



2 FUNCTIONAL SPECIFICATION 2.2 Rollback algorithm

2.1.4 Epoch

A transaction on a node belonging to a snapshot and not to a previous snapshot on that
node is said to lie in theepochof that snapshot. Clearly an image snapshot is a file system
that is reachable by file system operations and all transactions and their dependency stack
are completely incorporated. Epoch is a part of record in undo log. So we can control the
committed epoch and find the needed records in undo log.

2.2 Rollback algorithm

After definitions ofundo logandimage snapshotwe can describe therollback algorithm.
After failure a cluster can rollback to the last committed snapshot using the followed algo-
rithm:

1. scans theundo logbackward on each MD server and find the latest committed epoch;

2. choose the minimum latest committed epoch among all servers;

3. rollback to the snapshot with chosen epoch by doing undo operation in accordance
with undo log;

Now server is in consistent state and recovery may starts.

2.3 Snapshot functionality

2.3.1 General approach

The proposed fault-tolerance functionality is based on snapshot. We need to write snap-
shot frequently to nullify the long restoring after failure. There is the coordinating node,
called the coordinator which takes care about snapshot state and should be able to do the
following:

• initiates the epoch increase (start new snapshot) and sendsRPC to other nodes;

• receives nodes states (last committed epoch, current epoch, etc.) and calculate col-
lective state;

• initiate the purging of undo log for committed snapshot (endof the snapshot).

Each node in a cluster is the coordinator for corresponding snapshots, e.g. snapshot P is
controlled by node N = P % K, where K is total number of MDS.

Lemma 1. The difference between epoch on cluster nodes cannot be more than 1.

Proof: As snapshot coordination is doing via network, there is a gapbetween epoch in-
crease on different nodes. Suppose that the old epoch wasN. So two cases are
possible:

1. Node already get message and its epoch isN +;

2. node didn’t receives the control message and its epoch is still N

Considering that there is no concurrent epoch increase the epoch difference between
node cannot be bigger than 1.

3



2.3 Snapshot functionality 2 FUNCTIONAL SPECIFICATION

2.3.2 Epoch control

The control increase is done periodically by control node. The control increase starts the
new snapshot with new epoch.

Each server does the following:

1. takes new epoch from RPC

2. if the local epoch should be increased then

(a) update the local epoch

(b) all new crossop or depop should wait until the epoch increase will be done.

3. reply to the control node

4. After the epoch increase all new operations will use new epoch;

2.3.3 Transaction control

Each MDS should identify the local last committed epoch and the cluster-wide last com-
mitted epoch - the biggest epoch which is committed on all nodes.

Local last committed epoch should be used to determine the cluster-wide value by choos-
ing the minimum value.

Cluster last committed epoch should be reported to the clients so they can drop all pend-
ing operations for that epoch. The MDS uses this value to cancel records in undo
log.

So transaction control functionality should care about twotasks:

1. Negotiation between MDS about cluster-wide last_committed_epoch;

2. Determine the local last_committed_epoch value.

With the response to a control message, received possibly asynchronously by the coordina-
tor, the last completed and committed epoch on each node can be reported. The coordinator
will send a second message requesting purging of unneeded undo records immediately after
its knows the collective answer from all nodes, but the coordinator only does this if it has
moved since the last purge. This message also indicates to other nodes that the snapshot
has completed and the next MDS node can become the leader for the next snapshot.

In case of recovery the last committed and completed epoch are again collected and all
nodes again roll back to the end of the last epoch committed onall nodes.

2.3.4 Cross-ref operations

The multi-node operations should be at the same epoch - it is definition of a snapshot. But
we can encounter the situation when part of such operations can be in different epochs due
to Lemma 1. This situation need to be handled correctly and all depops should be in the
same epoch with fsop.

The situation with different epoch number on depended servers can occur during epoch
increasing procedure when some servers did already epoch increase and other - not yet.
Due to theLemma 1 here is two possible situations:

4



3 USE CASES 2.4 Affected functionality and API

1. Initial epoch on first server is already increased, but epoch on remote server is old. In
this case remote server should update epoch and continue with the current operation.

2. Initial epoch is less than one on the remote server. In thiscase the remote server
complete operation in new epoch and reply with new epoch, originated MDS gets
answer and update the epoch before continue with local operation.

The MDS initiating the depended request does local operation only after all depended re-
mote calls therefore epoch will be negotiated before starting of local operation. There
shouldn’t be concurrent epoch increase while multi-node operation is in progress so some
protection is needed for this.

2.4 Affected functionality and API

2.4.1 API changes

Rollback needs several new methods and structures in MDT andCMM to provide the
epoch control. For writing the epoch record into log the existent llog API can be used in
CMM/MDD/OSD.

All rollback functionality is implemented in CMM layer withhelp from MDT/MDC for
epoch control and from MDD/OSD for undo logging.

2.4.2 Recovery

Client should use the epoch for all pending operations instead of transaction number. MDS
will provides the information about last committed epoch tothe clients. This should be the
epoch that is already committed on all MD servers. After thatthe client will drop pending
requests with that epoch.

2.5 Logging operations

Good place should be chosen for intercepting operations andtransferring them to the undo
log. There are several possible ways to do that:

• OSD level can do the log all local fs operations

• Interception in CMM level which can log all operations

3 Use Cases

3.1 Directory distribution

There is special type of file or directory in CMD - cross-ref object. Directory entry for that
object is placed on one MDS but object itself - on another MDS.Therefore any operation
with such object via its name will go through MDS where its name is stored to the MDS
with object itself.

fsop - operations with name

depop- operations with object that is placed on remote MDS

5



3.2 Link 4 LOGIC SPECIFICATION

3.2 Link

Link operation can use file on another MDS while creating a link on the local on.

fsop - creating the new entry in directory

depop- increasing link counter in object on another MDS

3.3 Rename

As rename operation can change name and even parent, there are several cases which will
producedepops.

3.4 Directory split

This case is the most hardest one. Directory split can produce a lot ofdepopsand can
be very long in time. Moreover design of split functionalityis not finished yet. In this
document we will suppose that splitting produces reasonable number ofdepops.

4 Logic Specification

4.1 Details of epoch control

Each snapshot is a structure which contains the epoch numberand ref-counter. While
starting in that epoch the operation will take the referenceto it. The reference is dropped
when related transaction will be closed in memory.

4.1.1 Control increase of the epoch

The control node set new epoch locally and send RPC (possiblyasynchronously) to the
other nodes.

The other nodes receives the increase request and do the following:

1. check if local node is already in new epoch (this can be if some depop was received
before the control message)

2. update local epoch if needed

3. do reply

4.1.2 Determining the global last committed transaction

Let’s suppose that all nodes know their local last_committed epoch. To determine the
global value the coordinator node do the following:

1. request the last committed epoch from all nodes;

2. calculate the collective state. If this value is not changed then exit;

6



4 LOGIC SPECIFICATION 4.1 Details of epoch control

3. send the result to all nodes. Nodes can purge the undo log and update last_committed_epoch
value for clients.

4. coordinator node send control message to the next coordinator and it will start new
epoch.

It is possible that determining the last committed epoch canbe partially done while control
increase negotiation, e.g. nodes can report local last_committed_epoch during reply to the
epoch increase message.

4.1.3 Cross-ref operations logic

The multi-node operations should be at the same epoch - it is definition of a snapshot. But
we can encounter the situation when part of such operations can be in different epochs due
to Lemma 1.

This case can be handled by following way:

1. get the reference on the epoch

2. send depop RPC to other MDS and get reply with epoch value inRPC

3. check the epoch returned in reply:

(a) If it is bigger than current one then set new epoch locally;

(b) drop reference to the old epoch;

(c) take reference to the new one;

4. do local operations with in the referenced epoch as parameter;

5. put the reference.

The remote server:

1. receives the request for depop, check the epoch

2. if local epoch bigger than one in RPC then update the epoch in RPC;

3. if local epoch lesser than one in RPC then

(a) set new local epoch;

(b) drop reference to the old epoch;

(c) take reference to the new one;

4. do another remote request if needed with the updated epoch;

5. get reply and update local epoch if needed;

6. do local operation with the negotiated epoch;

7. put the reference;

8. reply to the initial server also with the same epoch;

7



4.2 Transactions and undo records 4 LOGIC SPECIFICATION

This algorithm will place fsop and all depops in one epoch. Possibly there is a lock is
needed when epoch is updated.

When a server starts new operation it takes a reference on thecurrent epoch. Taking this
reference is atomic with respect to increasing the epoch, and takes into account that a mes-
sage received from a remote node to start a dependent transaction may have just increased
the epoch.

While the transaction and dependencies are being negotiated with other servers, the epoch
may move to a later snapshot. The reference is dropped when the transaction is closed in
memory.

4.2 Transactions and undo records

4.2.1 Finishing the epoch

Hence references can only be taken on epoch equal or higher than the current one, older
epochs will not get new references, and we merely have to let the commits drain to discover
that the epoch has committed. But note that epochs may commitout of order, and an epoch
as a whole has only committed if all previous epochs have committed and the transactions
in the epoch have committed.

If the ref-count of the epoch is 0 and the current epoch is bigger, the server put the
special record (EPOCH_END) into the undo log so last committed transaction can be
easily found by scanning the undo log backward for such record. Commit callback for
this transaction will means that all transactions from thatepoch are committed and local
last_committed_epoch can be updated.

4.2.2 Purging the undo log

While control node decides that epoch N should be purged the undo log is scanned forward
and all records with epoch N are cancelled until the special records EPOCH_END will be
encountered.

4.2.3 Writing the undo log

Undo log is handled by CMM. The CMM adds new record into log before the local oper-
ation itself. In that case there is no need to export transaction API to the CMM. The undo
record and operation itself can be in different transactions, so there is possible situation
when we will have a record in undo log, but no on-disk changes related to the operation.
In that case attempt to do revert changes will fail and shouldbe ignored. It is allowed only
for last record in the undo log actually

Records in undo log are added/cancelled/scanned and undo log is initialized/closed with
help of OBD llog API.

4.3 Rollback

4.3.1 Client Recovery and Image Snapshots

Traditionally clients replay un-committed transactions,these are communicated to clients
by metadata servers through last committed numbers. Clientrecovery interacts with snap-
shots by starting replay after the rollback has completed. Now the epoch number should be
used instead of transaction.

8



4 LOGIC SPECIFICATION 4.4 Recovery

The MDS nodes collectively determine the last committed snapshot. Clients retain all
transactions with epoch numbers that are beyond the last committed one, and free those
before.

During replay on the server, the server scans the bitmaps in the undo log to determine if a
transaction offered for replay by the client requires replay.

4.3.2 Finding the latest committed epoch

Each MDS have to determine last committed epoch for recoverypurposes. To do so it
scans undo log backward for first EPOCH_END record. The epochstored in it is a last
committed epoch on current MDS.

4.3.3 Avoiding unnecessary undo records

As we explained in the introduction, local file systems roll back conveniently to a consistent
state. With good choices of metadata placement, there will be many transactions that are
local to a particular MDS. The question is under what circumstances we can avoid writing
undo records for such transactions.

For example we can skip undo logging if there were no crossopsor depops in current
epoch. Maybe some dependency tracking mechanism is possible also, so this should be
investigated during DLD phase more closely.

4.3.4 Encouraging early commit

If usage indicates that fsops that involve dependent operations are quite rare then it may be
beneficial to immediately:

1. begin a new snapshot

2. nodes involved in the distributed transaction begin to commit the previous epoch

3. nodes can stop recording undo information for certain transactions (see above) when
the global commit of this epoch is confirmed.

4.4 Recovery

When a cluster goes into recovery the metadata server with index i = 1 is responsible to
gather the current and last committed snapshot from all nodes.

The process begins similarly to the 3 steps discussed in the previous message.

1. Node i = 1 connects to all other metadata servers and enquires about existing exports
for the targets. If no target suffered transaction rollbackdue to a restart, no undo is
necessary. Resending will undo the damage.

2. If merely one target failed and the clients and other servers stayed up, no rollback is
necessary, replay will fix the problems.

3. During this enquiry node i = 1 requests status from all nodes and computes the glob-
ally last committed snapshot.

9



6 ISSUES FOR INSPECTION

4. It sends a message to indicate to what point servers shouldrollback.

5. When this completes replies are sent to the node i = 1.

6. When all messages have arrived the coordinator sends a message to all nodes indi-
cating the rollback is complete.

7. Nodes proceed to accept replay and resent messages.

5 State management

5.1 State invariants

• epoch change is atomic

• crossops belongs to the one epoch

• cluster-wide last_committed_epoch is used for handling pending commands on clients

5.2 Scalability & performance

• For scalability purposes the epoch increase and last_committed_epoch negotiations
can be done in parallel where it is possible

• During rollback the optimisation is possible to avoid unneeded extra work

5.3 Recovery changes

• client changes to dropping the pending request is needed;

• server may decide that some replays are not needed;

• rollback should be done before starting the recovery process

• while replay the crossops will call the depended operationsalso with REPLAY flag

6 Issues for inspection

1. It may be advantageous to record the snapshot right at the end of the disk transaction.
It would be worth puzzling about the generic rollback behavior.

10


