
LRU Resize HLD (bug 2262)Yury Umanets, Vitaly Fertman15th March 2007Contents1 Introduction 22 Requirements 23 Functional speci�cation 24 Use cases 34.1 Use cases . 34.1.1 Enqueue . 34.1.2 Blocking AST . 34.2 Test cases . 44.2.1 Average time spent for getattr of 1M �les 44.2.2 Getattr 1M �les after recovery (failed MDT) 45 Logical speci�cation 55.1 Overall algorithm . 55.2 Glossary . 55.3 Implementation details . 65.3.1 Server pool details . 65.3.2 Server side . 75.3.3 Client side . 75.3.4 Overall picture . 86 State management 86.1 Scalability & Performance . 86.2 Recovery changes . 86.2.1 Failed MDT . 96.2.2 Failed client . 96.3 Wire format changes . 96.4 Protocol changes . 96.5 API changes . 91

3 FUNCTIONAL SPECIFICATION1 IntroductionThere is the issue, that clients greedy with metadata, which are usually desktoprelated activities like a compilation, at some point always have their client sidelocks LRU exhausted, what causes the number of unpleasant e�ects. They arethe following:
• Each new lock sent by server to client causes cancel RPC to be sent whenclient's LRU list is exhausted. This doubles number of RPCs what loadsnetwork and eats server's and client's CPU needlessly. This is going to be�xed by ELC works soon, but now it is not yet case and all installationsrequire LRU size tuning;
• LRU size requires tinning according to working load, clients behavior, etc.,what we would like to get rid of.This HLD is aiming to do the following:
• To �x described issues by introducing a number of solutions for controllingclient's LRU size or rather number of cached locks according to chosenpolicy;
• To control average number of locks in cluster given to clients by serversand have automatic lock LRU size adjustments.2 RequirementsImplement such a mechanism which allows the following:
• Control average number of locks in cluster;
• Automatically adjust number of locks on all clients and thus, in clusteritself;
• Eliminate needless cancels due to limited LRU size as described in section1. That is implement dynamic LRU on clients;
• Allow greedy clients work according to their working pattern, that is, donot force them use minimal number of locks if that does not contradictmain invariant - number of locks is in cluster is limited according to chosenpolicy.3 Functional speci�cationTo meet requirements the following should be done:1. Implement locks �pool� on server, its size should be based on servers RAMamount with generous limits; 2

4 USE CASES2. Each lock in pool is �lock resource� which is exhausting each time as serversends locks to client and gets back to �pool� each time as lock is canceledby client or server itself;3. Introduce an algorithm, that triggers a lock prune when �lock resource� getscarce. Remember that servers can export multiple targets. Lock pruneshould take into account, that there are �old� locks on some clients whichwe probably want to prune �rstly;4. On client, use the mechanisms introduced by Vitaly (bug 10589) to cancelmore than one lock to send batch cancels from the clients to the servers;5. On client, avoid situation when LRU size is exhausted and thus, makesclient send cancel RPCs for old locks;6. On client, make sure that �old� locks are canceled on memory pressureevent.4 Use casesThe following use cases are interested to check. To understand them betterplease read section 5.4.1 Use cases4.1.1 Enqueue1. LDLM on client prepares to send an ENQUEUE RPC to the server, itchecks LRU if some locks are redundant according to the current controlinfo and cancel them. Canceled locks are bundled into ENQUEUE, RPCis sent;2. LDLM on server updates its control info according to the came RPC;3. LDLM on server prepares a reply and pack there the lock LRU controlinfo too;4. LDLM on client checks LRU according to new control info obtained andcancels redundant locks from LRU - bundled CANCEL RPC is sent toserver.4.1.2 Blocking AST1. LDLM on server sends a blocking AST to the client with the packed poolcontrol info;2. LDLM on client handles LRU as in the above example.3

4.2 Test cases 4 USE CASES4.2 Test cases4.2.1 Average time spent for getattr of 1M �lesThis is main working pattern this HLD is aiming to �x. It means, that LRU onclient should be quickly exhausted when we create big set of unique �les andget their attributes. This test should show improvement in compare to formersolution.1. Mount lustre with disabled LRU sizing;2. Create directory �1a� and �1b� in root;3. Create 1M regular �les (using mknod) in directory �1a� and measure timespent;4. Get attributes of �les in �1a�;5. Remount client with enabled LRU sizing;6. Create 1M regular �les (using mknod) in directory �1b� and measure timespent;7. Get attributes of �les in �1b�;8. Compare time spent in both cases, test fails if time spent to getattr �les indirectory �1b� is greater or equal to time spent for getattr �les in directory�1a�.4.2.2 Getattr 1M �les after recovery (failed MDT)In recovery, all in-memory structures are lost and reconstructed later in time oflocks resending. This test should check correctness of state reconstruction. Formore details see section 6.2.1.1. Mount lustre with enabled LRU sizing;2. Create directory �2a� in root;3. Create 1M regular �les (using mknod) in directory �2a�;4. Get attributes of all �les in �2a�;5. Save number locks in pool using proc;6. Fail MDT, wait for recovery �nish;7. Check number of locks in pool. If it is di�erent value than before recovery- test fails.
4

5 LOGICAL SPECIFICATION5 Logical speci�cation5.1 Overall algorithmTo achieve requirements we propose the following algorithm:1. Server has locks limit L which is the maximal number of locks which maybe issued by this server to clients;2. For each period of time T, server calculates its current lock rate SLR.Lock rate depends on L, granted locks number G, grant speed GS, etc.;3. For each T, server sends its SLR to clients as the indication of currentsituation;4. Clients, for each lock in LRU, calculate client lock rateCLR to compare itwith last received SLR. If current lock CLR is greater than SLR, clientcancels this lock;5. For all cases when L is getting close to be exhausted or GS is increasingmore than prede�ned limit GSL (say 5% of pool) we want to react ac-cording to situating and signal clients that they should cancel more locks,because server is close to be in trouble. For implementing it, we have Kwhich is adjusted on each step T. In the case of emergency we can adjustK such a way that SLR is getting much �stronger�, what would causeclients to cancel more locks. See glossary for details of emergency case K.Alternatively others actions may be taken;6. Server uses ping, enqueue and may be other RPCs for delivering SLR toclients.5.2 GlossaryBefore we start, we need some glossary to understand all clearly.L - allowed amount of locks to be granted on one server. This is calculatedon server abilities, RAM, may be something else. Proposed number is tohave 10 ldlm locks per megabyte, later this value may be adjusted;G - number of locks granted to clients, we want to keep G == L;T - period of time (in milliseconds) that we use for tracking any changes innumber of locks granted by server or canceled by clients;K - correction factor for SLR (see below). Initial value of K = 1. Later, foreach step K = K * (1 - (G - GP) / L). In the case of emergency asdescribed above, K may be calculated this way: K = K * (1 - (GP -G) / L) ^ 2; 5

5.3 Implementation details 5 LOGICAL SPECIFICATIONGP - planned number of granted locks after next step. GP = G + (L - G)/ 10;GS - grant speed, that is, number of locks granted for period T;CS - cancel speed, that is, number of locks canceled for period T;LA - on client, for each lock in LRU - lock age (in milliseconds);GSL - grant speed limit. If this is exceeded - emergency actions should takeplace as described;SLR - server lock rate, the indication of current locking situation on server.Server sends SLR to clients and clients use it to make decision whethersome locks should be canceled. Initial SLR value is chosen to be bigenough and not to cause lock cancels on client and in same time not to besuch a big to cause exhausting pool in �rst moments. It probably shouldbe based on L. For all next steps (one step is T), SLR = SLR * K.There should be limit for SLR to not allow it be so bug that may causeissues;LRU - current client LRU size;CLR - client lock rate, the value calculated for each lock in client's LRU andcompared with SLR from server. CLR = LRU * LA;5.3 Implementation details5.3.1 Server pool details1. Server implements locks pool. Only this amount of locks (which is poolsize) may be sent to clients and cached there. Pool contains locks fromdi�erent name-spaces. Pool is kind of abstraction here, it does not containlocks their selves, it provides accounting for locks consumption, trackingall changes in SLR, K, G, etc. and policies for adjusting these numbers;2. Pool does not implement any kind of list, because this requires addi-tional amount of work for server about locking and adding/removing lockto/from list. Additionally, pool which is based on list would be bottleneck what we want to avoid;3. Pool size L is based on server abilities such as RAM amount (see 5.2 forexample of L de�nition). Lock in pool is valuable resource and its usingwe want to track;4. Each time as server sends a lock to client - it consumes �lock resource�from pool, each time as client or server itself cancels a lock - �lock resource�is returned to pool. These changes are re�ected to pool accounting;6

5.3 Implementation details 5 LOGICAL SPECIFICATION5.3.2 Server side1. Server communicates with clients and informs them of current lock rateusing ping, enqueue (and may be others) RPCs. That is, for each T,server sends current SLR to all clients. Clients are to adjust their LRUlists according to current SLR as described in 5.1;2. Server grants new lock in all cases, no matter if L is exhausted or not.However, there is hard limit HL which is intended to not allow to grantlock if server has HL exhausted. In this case, server wait until situationis changed and after that lock may be granted;3. Server does not do anything about pool in the case of memory pressure,because pool consumes a little of memory;4. Server exposes some of its pool tunable via proc and allows to adjustthem. This may be L, SLR, etc., what is very handy in testing and poolactivities control.5.3.3 Client side1. We do not want to limit client's LRU size. Client may have such a manylocks from server as server allows it to have. As lock on client mostlymeans cached structure (for example, inode), this means that client willnot ask such an amount of locks which are bigger than it may comfortablyhandle later, because its caches will not grow so much. As clients donot have LRU size limit - they do not do needless cancels when LRU isexhausted;2. As a client cancels locks according to last SLR and calculates own CLRusing LA, it may have more locks than other clients if these locks are�fresh� so that, their LA will not allow to cancel them because CLRcalculated for them is smaller than last SLR;3. Theoretically, one client (if it is only one in cluster) may consume wholeserver pool. In the case new clients connect in this time and start massivemetadata operations, they will share server's pool and after some timethey will consume roughly same amount of locks as others if they usesame working pattern;4. As already said, server allows some clients to have more locks if they wantto. Client may need them because it does compilation or whatever elseand we want to make all clients happy. If we have a lot of clients and theyall consume such a many locks that server only does that takes emergencyactions (like making SLR stronger) - this means, that one server of thisparticular con�guration is not enough for such an amount of clients andtheir activities. We may track this situation and print warning to systemlog or console, kind of: "Lustre: Cluster does not work optimally, upgradeMDS!". Same way we can even try to suggest amount of RAM;7

6 STATE MANAGEMENT5. Clients do not have anything like timeouts for locks or so. Instead, wecancel client's locks in the following cases:(a) CLR for particular lock is greater than last received SLR,(b) Memory pressure. This would simplify client part a lot (no timeoutsfor locks) and also would be in the main line for Linux behavior - inOOM cases all caches are asked to be shrink-ed and clients LRU listis going to be shrink-ed as any other FS caches.6. Client exposes some of its LRU tunable via proc and allows to adjust them.This may be last CLR, LRU size, etc., what is very handy in testing andlocking activities control.5.3.4 Overall pictureOverall picture looks like this:1. Number of locks is cluster depends on servers abilities and adjusted auto-matically;2. Number of locks on clients depends on server abilities, number of clients,client's RAM and client's behavior and adjusted upon memory pressureand/or server request. If there is no memory pressure, good, the morecached locks on clients the better if it does not contradict to server's poolsize policies;3. Server limits number of locks in cluster which were issued by it. If we have2 or 3 servers (for instance MDS ones), they will have own pools whichare also calculated from their RAM amount. All clients would share totalamount of locks which may be issued by all servers and probably wouldbe happy. This would allow to work in same cluster servers with di�erentamount of RAM and all they would still do it comfortable. The mainpoint about this algorithm is that, servers do not issue more locks thenthey may serve later;6 State management6.1 Scalability & PerformanceScalability and performance should be better after introducing this change, asit minimizes number of RPCs and CPU using both on client and server. Readsection 1 for more details.6.2 Recovery changesThe following recovery aspects to be covered:8

6.3 Wire format changes 6 STATE MANAGEMENT6.2.1 Failed MDTIn the case MDT is failed, all pool counters and in-memory structs are lostand after rebooting will come to default state until all locks from all clients arereplied. In reply time, server should reconstruct the state of pool and proceedcorrectly after that.6.2.2 Failed clientAt the time when client fails, all in-memory structures are lost. Server cancelsall locks of failed clients, that is, server states are preserved.6.3 Wire format changesAs we are going to send SLR to clients with ping, enqueue and others, theirformat is going to change a bit. One more �eld will be added - SLR.6.4 Protocol changesNo protocol changes are expected as there is no new RPCs or negotiation rules.6.5 API changesNo API changes are expected. New API related to ldlm pool will be added. Itis intended to be used by ldlm to notify pool of locks activities: grant, cancel,touch, etc. Will be described in DLD.

9

