LRU Resize HLD (bug 2262)

Yury Umanets, Vitaly Fertman
15th March 2007

Contents

1 Introduction

2 Requirements

3 Functional specification

4 Use cases

4.1

4.2

Usecases
4.1.1 Enqueueo
4.1.2 Blocking AST
Test cases
4.2.1 Average time spent for getattr of 1M files . .
4.2.2 Getattr 1M files after recovery (failed MDT)

5 Logical specification

5.1 Overall algorithm
5.2 Glossaryo
5.3 Implementation details
5.3.1 Server pool details
53.2 Serverside
53.3 Clientside.
5.3.4 Overall picture
6 State management
6.1 Scalability & Performance
6.2 Recovery changes
6.2.1 FailedMDT
6.2.2 Failedclient
6.3 Wire format changes
6.4 Protocol changes
6.5 APIchanges.

3 FUNCTIONAL SPECIFICATION

1 Introduction

There is the issue, that clients greedy with metadata, which are usually desktop
related activities like a compilation, at some point always have their client side
locks LRU exhausted, what causes the number of unpleasant effects. They are
the following:

e Each new lock sent by server to client causes cancel RPC to be sent when
client’s LRU list is exhausted. This doubles number of RPCs what loads
network and eats server’s and client’s CPU needlessly. This is going to be
fixed by ELC works soon, but now it is not yet case and all installations
require LRU size tuning;

e LRU size requires tinning according to working load, clients behavior, etc.,
what we would like to get rid of.

This HLD is aiming to do the following:

e To fix described issues by introducing a number of solutions for controlling
client’s LRU size or rather number of cached locks according to chosen
policy;

e To control average number of locks in cluster given to clients by servers
and have automatic lock LRU size adjustments.

2 Requirements
Implement such a mechanism which allows the following:

e Control average number of locks in cluster;

e Automatically adjust number of locks on all clients and thus, in cluster
itself;

e Eliminate needless cancels due to limited LRU size as described in section
1. That is implement dynamic LRU on clients;

e Allow greedy clients work according to their working pattern, that is, do
not force them use minimal number of locks if that does not contradict
main invariant - number of locks is in cluster is limited according to chosen
policy.

3 Functional specification

To meet requirements the following should be done:

1. Implement locks “pool” on server, its size should be based on servers RAM
amount with generous limits;

4 USE CASES

4

. Each lock in pool is “lock resource” which is exhausting each time as server

sends locks to client and gets back to “pool” each time as lock is canceled
by client or server itself;

. Introduce an algorithm, that triggers a lock prune when “lock resource” get

scarce. Remember that servers can export multiple targets. Lock prune
should take into account, that there are “old” locks on some clients which
we probably want to prune firstly;

. On client, use the mechanisms introduced by Vitaly (bug 10589) to cancel

more than one lock to send batch cancels from the clients to the servers;

. On client, avoid situation when LRU size is exhausted and thus, makes

client send cancel RPCs for old locks;

. On client, make sure that “old” locks are canceled on memory pressure

event.

Use cases

The following use cases are interested to check. To understand them better
please read section 5.

4.1 Use cases

4.1.1 Enqueue

1. LDLM on client prepares to send an ENQUEUE RPC to the server, it

checks LRU if some locks are redundant according to the current control
info and cancel them. Canceled locks are bundled into ENQUEUE, RPC
is sent;

. LDLM on server updates its control info according to the came RPC;

. LDLM on server prepares a reply and pack there the lock LRU control

info too;

. LDLM on client checks LRU according to new control info obtained and

cancels redundant locks from LRU - bundled CANCEL RPC is sent to

server.

4.1.2 Blocking AST

1. LDLM on server sends a blocking AST to the client with the packed pool

control info;

2. LDLM on client handles LRU as in the above example.

4.2 Test cases 4 USE CASES

4.2 Test cases
4.2.1 Average time spent for getattr of 1M files

This is main working pattern this HLD is aiming to fix. It means, that LRU on
client should be quickly exhausted when we create big set of unique files and
get their attributes. This test should show improvement in compare to former
solution.

1. Mount lustre with disabled LRU sizing;
2. Create directory “la” and “1b” in root;

3. Create 1M regular files (using mknod) in directory “la” and measure time
spent;

4. Get attributes of files in “la”;
5. Remount client with enabled LRU sizing;

6. Create 1M regular files (using mknod) in directory “1b” and measure time
spent;

7. Get attributes of files in “1b”;

8. Compare time spent in both cases, test fails if time spent to getattr files in
directory “1b” is greater or equal to time spent for getattr files in directory
((]-a??'

4.2.2 Getattr 1M files after recovery (failed MDT)

In recovery, all in-memory structures are lost and reconstructed later in time of
locks resending. This test should check correctness of state reconstruction. For
more details see section 6.2.1.

1. Mount lustre with enabled LRU sizing;

2. Create directory “2a” in root;

Create 1M regular files (using mknod) in directory “2a”;
Get attributes of all files in “2a”

Save number locks in pool using proc;

Fail MDT, wait for recovery finish;

N ook @

Check number of locks in pool. If it is different value than before recovery
- test fails.

5 LOGICAL SPECIFICATION

5 Logical specification

5.1

Overall algorithm

To achieve requirements we propose the following algorithm:

1.

5.2

Server has locks limit L which is the maximal number of locks which may
be issued by this server to clients;

. For each period of time T, server calculates its current lock rate SLR.

Lock rate depends on L, granted locks number G, grant speed GS, etc.;

For each T, server sends its SLR to clients as the indication of current
situation;

Clients, for each lock in LRU, calculate client lock rate CLR to compare it
with last received SLR. If current lock CLR is greater than SLR, client
cancels this lock;

For all cases when L is getting close to be exhausted or GS is increasing
more than predefined limit GSL (say 5% of pool) we want to react ac-
cording to situating and signal clients that they should cancel more locks,
because server is close to be in trouble. For implementing it, we have K
which is adjusted on each step T. In the case of emergency we can adjust
K such a way that SLR is getting much “stronger”, what would cause
clients to cancel more locks. See glossary for details of emergency case K.
Alternatively others actions may be taken;

Server uses ping, enqueue and may be other RPCs for delivering SLR. to
clients.

Glossary

Before we start, we need some glossary to understand all clearly.

L - allowed amount of locks to be granted on one server. This is calculated

on server abilities, RAM, may be something else. Proposed number is to
have 10 1dlm locks per megabyte, later this value may be adjusted;

G - number of locks granted to clients, we want to keep G == L;

T - period of time (in milliseconds) that we use for tracking any changes in

number of locks granted by server or canceled by clients;

K - correction factor for SLR (see below). Initial value of K = 1. Later, for

each step K = K * (1 - (G - GP) / L). In the case of emergency as
described above, K may be calculated this way: K = K * (1 - (GP -
G) /L)~ 2

5.3 Implementation details 5 LOGICAL SPECIFICATION

GP - planned number of granted locks after next step. GP = G + (L - G)
/ 10;

GS - grant speed, that is, number of locks granted for period T;
CS - cancel speed, that is, number of locks canceled for period T;
LA - on client, for each lock in LRU - lock age (in milliseconds);

GSL - grant speed limit. If this is exceeded - emergency actions should take
place as described,;

SLR - server lock rate, the indication of current locking situation on server.
Server sends SLR to clients and clients use it to make decision whether
some locks should be canceled. Initial SLR value is chosen to be big
enough and not to cause lock cancels on client and in same time not to be
such a big to cause exhausting pool in first moments. It probably should
be based on L. For all next steps (one step is T), SLR = SLR * K.
There should be limit for SLR to not allow it be so bug that may cause
issues;

LRU - current client LRU size;

CLR - client lock rate, the value calculated for each lock in client’s LRU and
compared with SLR from server. CLR = LRU * LA;

5.3 Implementation details
5.3.1 Server pool details

1. Server implements locks pool. Ouly this amount of locks (which is pool
size) may be sent to clients and cached there. Pool contains locks from
different name-spaces. Pool is kind of abstraction here, it does not contain
locks their selves, it provides accounting for locks consumption, tracking
all changes in SLR, K, G, etc. and policies for adjusting these numbers;

2. Pool does not implement any kind of list, because this requires addi-
tional amount of work for server about locking and adding/removing lock
to/from list. Additionally, pool which is based on list would be bottle
neck what we want to avoid;

3. Pool size L is based on server abilities such as RAM amount (see 5.2 for
example of L definition). Lock in pool is valuable resource and its using
we want to track;

4. Each time as server sends a lock to client - it consumes “lock resource”
from pool, each time as client or server itself cancels a lock - “lock resource”
is returned to pool. These changes are reflected to pool accounting;

5.3 Implementation details 5 LOGICAL SPECIFICATION

5.3.2 Server side

1. Server communicates with clients and informs them of current lock rate
using ping, enqueue (and may be others) RPCs. That is, for each T,
server sends current SLR to all clients. Clients are to adjust their LRU
lists according to current SLR as described in 5.1;

2. Server grants new lock in all cases, no matter if L is exhausted or not.
However, there is hard limit HL which is intended to not allow to grant
lock if server has HL exhausted. In this case, server wait until situation
is changed and after that lock may be granted;

3. Server does not do anything about pool in the case of memory pressure,
because pool consumes a little of memory;

4. Server exposes some of its pool tunable via proc and allows to adjust
them. This may be L, SLR, etc., what is very handy in testing and pool
activities control.

5.3.3 Client side

1. We do not want to limit client’s LRU size. Client may have such a many
locks from server as server allows it to have. As lock on client mostly
means cached structure (for example, inode), this means that client will
not ask such an amount of locks which are bigger than it may comfortably
handle later, because its caches will not grow so much. As clients do
not have LRU size limit - they do not do needless cancels when LRU is
exhausted;

2. As a client cancels locks according to last SLR and calculates own CLR
using LA, it may have more locks than other clients if these locks are
“fresh” so that, their LA will not allow to cancel them because CLR
calculated for them is smaller than last SLR;

3. Theoretically, one client (if it is only one in cluster) may consume whole
server pool. In the case new clients connect in this time and start massive
metadata operations, they will share server’s pool and after some time
they will consume roughly same amount of locks as others if they use
same working pattern;

4. As already said, server allows some clients to have more locks if they want
to. Client may need them because it does compilation or whatever else
and we want to make all clients happy. If we have a lot of clients and they
all consume such a many locks that server only does that takes emergency
actions (like making SLR stronger) - this means, that one server of this
particular configuration is not enough for such an amount of clients and
their activities. We may track this situation and print warning to system
log or console, kind of: "Lustre: Cluster does not work optimally, upgrade
MDS!". Same way we can even try to suggest amount of RAM;

6 STATE MANAGEMENT

5.

6.

Clients do not have anything like timeouts for locks or so. Instead, we
cancel client’s locks in the following cases:

(a) CLR for particular lock is greater than last received SLR,

(b) Memory pressure. This would simplify client part a lot (no timeouts
for locks) and also would be in the main line for Linux behavior - in
OOM cases all caches are asked to be shrink-ed and clients LRU list
is going to be shrink-ed as any other F'S caches.

Client exposes some of its LRU tunable via proc and allows to adjust them.
This may be last CLR, LRU size, etc., what is very handy in testing and
locking activities control.

5.3.4 Overall picture

Overall picture looks like this:

1.

6

6.1

Number of locks is cluster depends on servers abilities and adjusted auto-
matically;

. Number of locks on clients depends on server abilities, number of clients,

client’s RAM and client’s behavior and adjusted upon memory pressure
and/or server request. If there is no memory pressure, good, the more
cached locks on clients the better if it does not contradict to server’s pool
size policies;

. Server limits number of locks in cluster which were issued by it. If we have

2 or 3 servers (for instance MDS ones), they will have own pools which
are also calculated from their RAM amount. All clients would share total
amount of locks which may be issued by all servers and probably would
be happy. This would allow to work in same cluster servers with different
amount of RAM and all they would still do it comfortable. The main
point about this algorithm is that, servers do not issue more locks then
they may serve later;

State management

Scalability & Performance

Scalability and performance should be better after introducing this change, as
it minimizes number of RPCs and CPU using both on client and server. Read
section 1 for more details.

6.2

Recovery changes

The following recovery aspects to be covered:

6.3 Wire format changes 6 STATE MANAGEMENT

6.2.1 Failed MDT

In the case MDT is failed, all pool counters and in-memory structs are lost
and after rebooting will come to default state until all locks from all clients are
replied. In reply time, server should reconstruct the state of pool and proceed
correctly after that.

6.2.2 Failed client

At the time when client fails, all in-memory structures are lost. Server cancels
all locks of failed clients, that is, server states are preserved.

6.3 Wire format changes

As we are going to send SLR to clients with ping, enqueue and others, their
format is going to change a bit. One more field will be added - SLR.

6.4 Protocol changes

No protocol changes are expected as there is no new RPCs or negotiation rules.

6.5 API changes

No API changes are expected. New API related to 1dlm pool will be added. It
is intended to be used by ldlm to notify pool of locks activities: grant, cancel,
touch, etc. Will be described in DLD.

