Lustre at the OLCF: Experiences and Path Forward

A Demanding Computational Environment

Jaguar XT5	18,688 Nodes	224,256 Cores	300+ TB memory	2.3 PFlops
Jaguar XT4	7,832 Nodes	31,328 Cores	63 TB memory	263 TFlops
Frost (SGI Ice)	128 Node institutional cluster			
Smoky	80 Node software development cluster			
Lens	30 Node visualization and analysis cluster			

Spider

Fastest Lustre file system in the world

Demonstrated bandwidth of 240 GB/s on the center-wide file system

Largest scale Lustre file system in the world

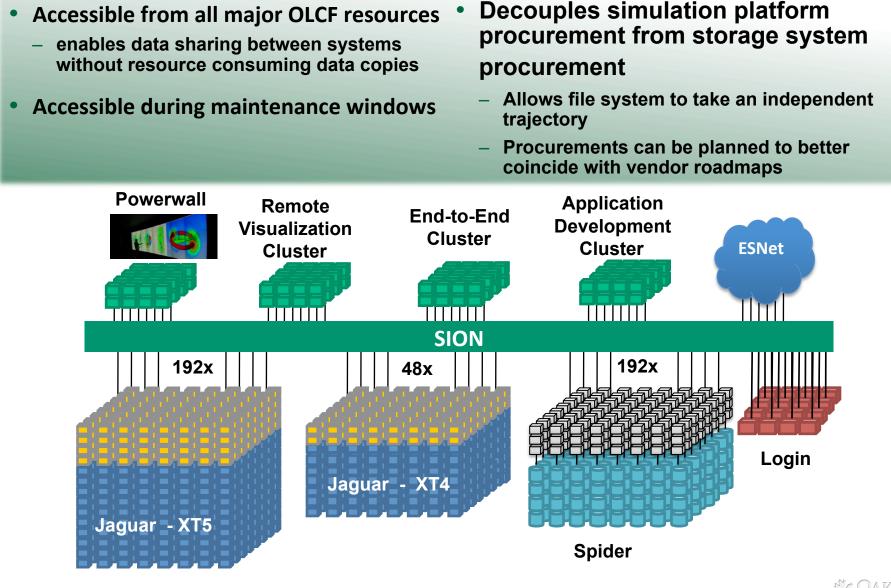
Demonstrated stability and concurrent mounts on all major OLCF systems

- Jaguar XT5
- Jaguar XT4
- Opteron Dev Cluster (Spider)
- Visualization Cluster (Lens)

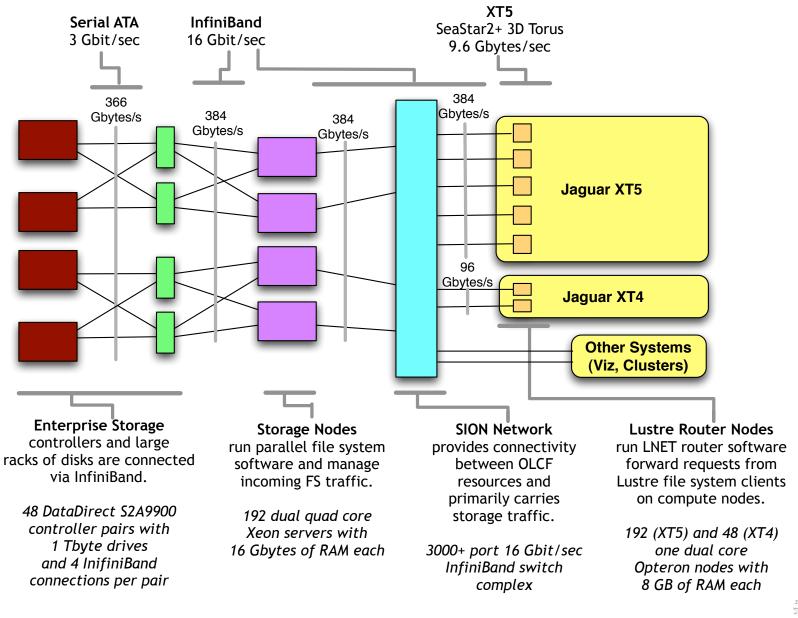
Over 26,000 clients mounting the file system in production

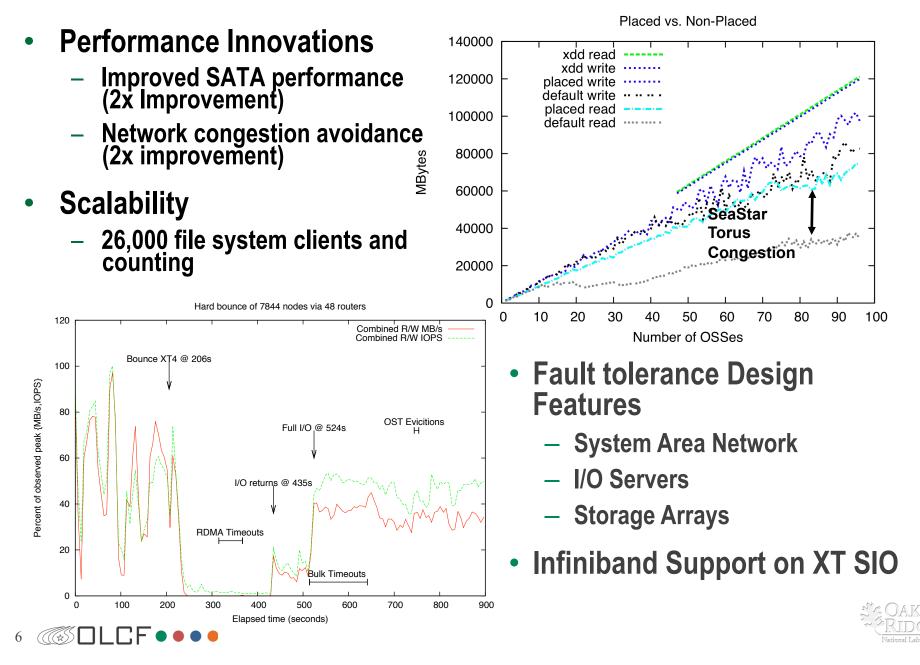
Over 282,000,000 files Multiple petabytes of data stored

Cutting edge resiliency at scale


Demonstrated resiliency features on Jaguar XT5

- DM Multipath
- Lustre Router failover


Spider – Helping Users and Staff

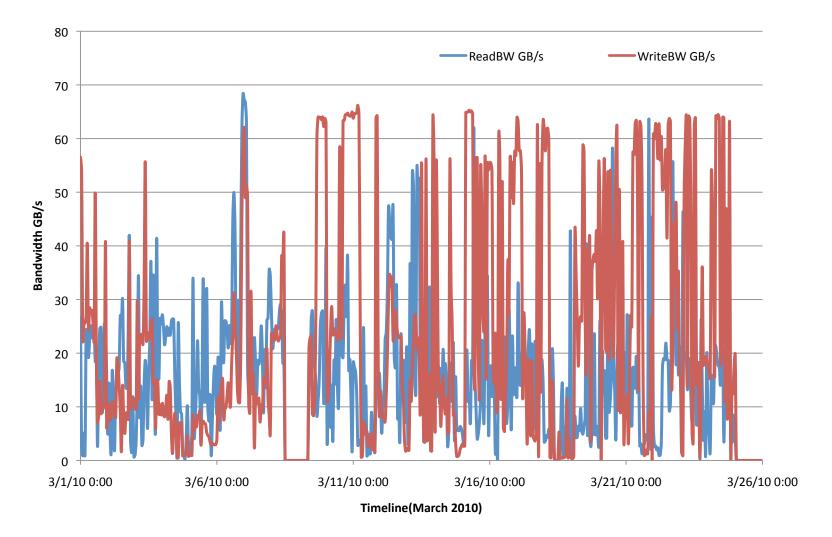


Spider - Speeds and Feeds

Snapshot of Technical Challenges Solved

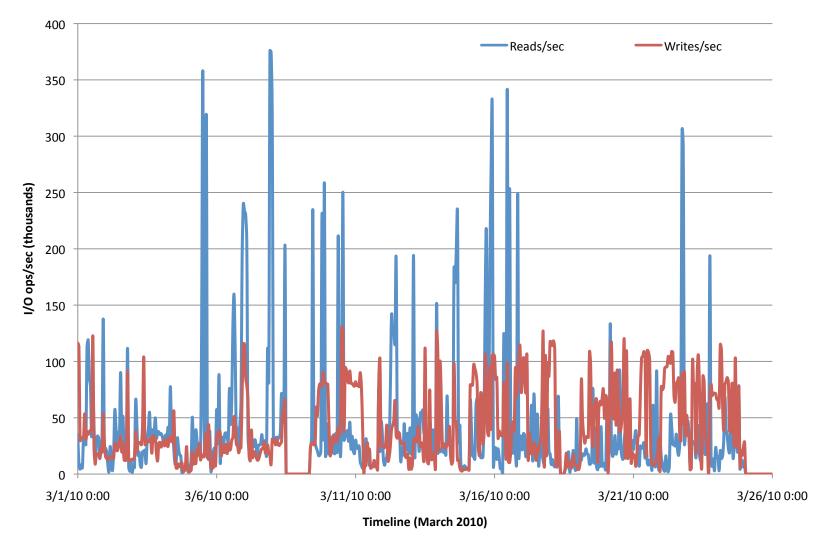
Operational Experiences

- Mixed workloads can achieve ~75% of peak read performance and ~60% of peak write performance
 - Write back caching disabled limits aggregate performance
 - Network (IB and SeaStar) congestion limits aggregate performance
- Single scratch and project directories across all platforms have been well received
 - Project areas are heavily used
 - Very few users are using Jaguar XT4 direct attached storage
- System resiliency has been a win
 - Engineering for failure pays untold dividends
 - Over 25 saves by DM-multipath alone


Operational Challenges

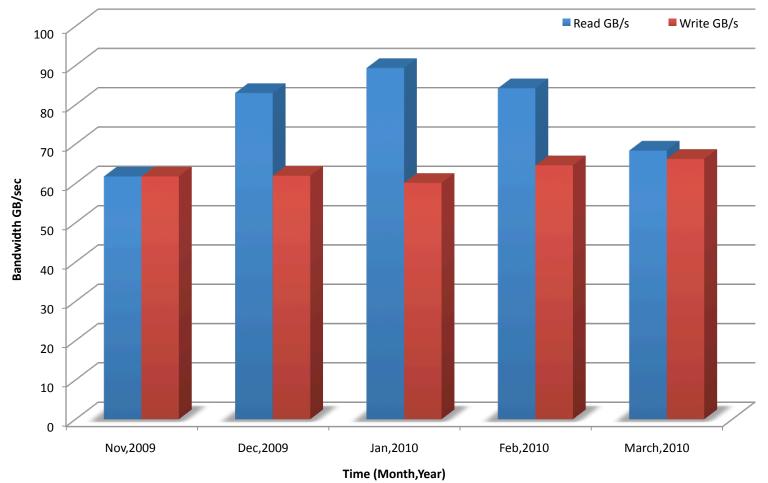
- Management of a system of this scale can be daunting
 - $-\frac{1}{4}$ billion+ files make this challenging
 - Many custom tools developed, more on their way
- Scalable management tools are lacking
 - Diagnosis and recovery utilities to respond to failures
 - System log analysis
 - Log parsing from over 200 servers
 - Log correlation to compute node and application
 - InfiniBand fabric monitoring
- Single MDS performance
 - Single application collectively creating 220K files
 - Unscalable I/O can impact the entire user population

Designed to Support Peak Performance



Max data rates (hourly) on $\frac{1}{2}$ of the storage controllers

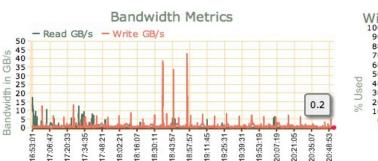
Many Workloads are IOPs Intensive



Max IOPs (hourly) on $\frac{1}{2}$ of the storage controllers

Peak Bandwidths - Past 5 Months

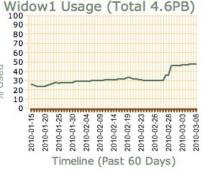
Max data rates (monthly) on 1/2 of the storage controllers

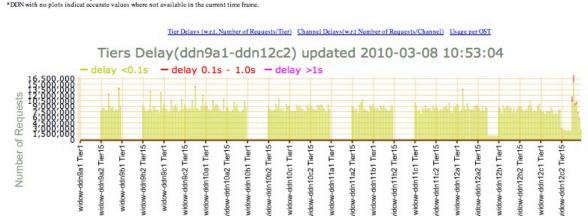

Managing Our Environment: System Analytics

File System Metrics

.=

Bandwidth


- System Metrics
 - Centralized Collection of System Performance, Faults and other Metrics
 - Historical Analysis
 - Snapshots
 - Web Interface
 - **C**Tier Delay Information Future Integration with D he measurements are for the past 24 hrs.
- Event Log Analysis (under development)
 - **Determine Fault Patterns**
 - Cluster-based Approach
 - Correlation of Events
 - Log Visualization


Time (past 4 hours)

Read/Write Bandwidth GB/s Read/Write IOP5

Avg. Bandwidth(GB/s) by Month: JAN 2010 \$

Widowl Usage

LustreDU (Beta)

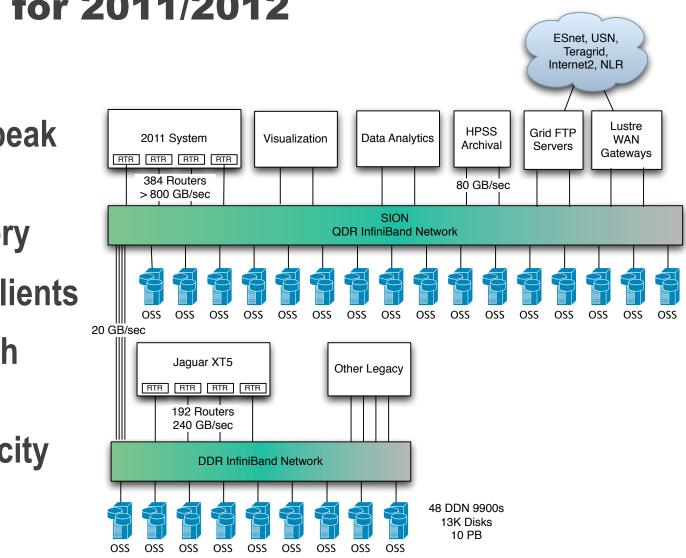
- Provide functionality similar to the Unix 'du' command.
 - Regular du command could take hours (or days) to run because of the size of the filesystem.
- LustreDU makes use of the output of ne2scan
 - ne2scan is already run regularly as part of the file purge cycle
 - LustreDU 'piggybacks' on the ne2scan run and thus doesn't require a separate scan of the entire file system
- One main executable plus daemons running on each OSS
 - Output from ne2scan (which runs on the MDS) contains all needed metadata except for object size
 - Must query an OST for each object's size
- Two kinds of output: text file or MySQL database

13 () LCF••••

Parallel Data Utilities

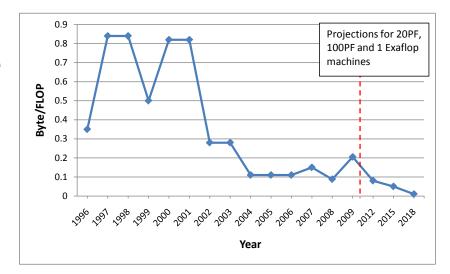
- SPDCP (Released!)
 - A parallel Lustre aware copy tool
 - Uses multiple compute nodes for data movement
 - Provides near cp semantics
 - Preserves Lustre striping
 - Demonstrated speedups of 93x over cp
- PLTAR (Beta)
 - A parallel Lustre aware tar tool
 - Uses multiple compute nodes for data movement
 - Preserved Lustre striping
 - POSIX compliant tar archive
 - Demonstrated speedups of 49x over tar

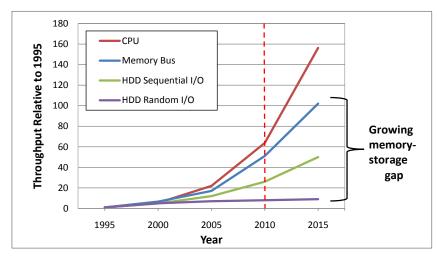
14 (LCF • • • •



Path Forward for Spider

- Complete at scale testing of fine-grained routing
 - Target deployment during our 1.8.x deployment
- Large EA support still outstanding
 - Shared file limit of 160 OSTs
 - How do we deploy this with 1.8.x?
- Continue to explore MDS performance enhancements
 - Reduce locking overhead
 - Consider multiple center wide file systems as risk mitigation strategy
 - May target 3 shared file systems in final configuration rather than 2.
 - Provides flexibility to isolate by project or workload
- Build and improve existing diagnostic and administrative tools
 - Improved tools to locate candidate files following failure
 - Improved performance monitoring and diagnostic tools
 - Mechanisms to correlate system failures / interrupts with aberrant performance


- ~20 Petaflop peak
- > 1 Petabyte system memory
- ~20K Lustre clients
- 3.4x bandwidth Increase
- Up to 7x capacity increase



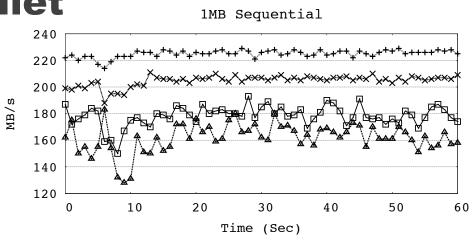
The Memory-Storage Gap Problem

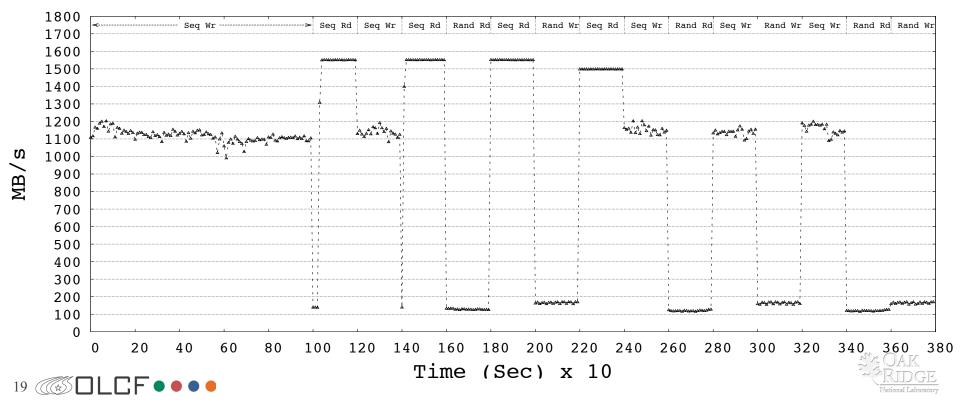
- Memory constraints may place more burdens on the file system (productive I/O)
- Storage system latency unlikely to improve (HDD)
- Sequential bandwidth will continue to improve but at a fraction of the rate of densities

Courtesy Brad Settlemyer & Sudharshan Vazhkudai (ORNL)

What About Flash?

- Lifetime constraints
- Performance variability
- Integration
 - Standalone FLASH file system
 - Hierarchical with bleed down strategies
- Packaging
 - SSD RAID
 - PCIE


- Reliability
- Proper evaluation of Flash requires detailed workload characteristics
 - Duty cycles
 - Aggregate I/O characterization
 - Individual application I/O characterization



Flash – Not a Silver Bullet

- Extreme Performance Variability
- Workload dependent

Storage Media

- Expect marginal improvements in disk drive performance (bandwidth)
 - Latency has flat-lined
- Mixed media environment may be required to meet capacity and bandwidth requirements
 - separate file systems but globally accessible
- Integration of Flash needs further evaluation

Media Type	Total Drives	
Near-line SAS	20,000	
Enterprise SAS	10,000	
MLC Flash	4,000	

Estimated number of drives required to meet performance of ~800 GB/sec

OLCF-3 File System

- Lustre is our plan of record for the 2011/2012 system
 - Proven scalability and performance on Jaguar XT5
 - Leverages our skills and experience in Lustre
- An evolution of our current parallel file system infrastructure
 - Lower risk, high confidence
 - Component counts (Disks, I/O nodes, etc.) do not increase significantly over our current system (order 2x)
- New features in Lustre will be needed to improve scalability and reliability
 - Improved metadata performance
 - Improved recovery performance
 - Improved manageability

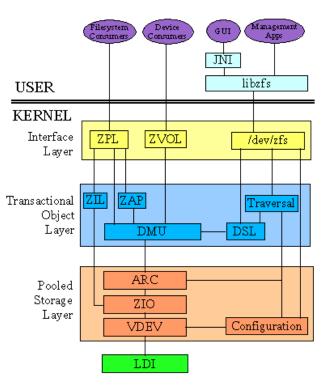
Why Lustre?

- Meets our requirements today
 - Performance, Scalability, Reliability
 - No other file system meets our current requirements
- Planned features meet our projected requirements
- Deep skills in the Lustre parallel file system
 - Development, Deployment, and Operations
 - Active contributor in the Lustre community
- The only open source parallel file system
 - Provides risk mitigation strategies that closed source does not
 - Broadening community of developers

Lustre Features Needed for OLCF-3

• Improved Metadata Server (MDS) Performance

- SMP scaling improvements (Single MDS Server)
- Clustered Metadata Servers (schedule risk)
 - Ordered operations
 - Epochs
- Improved data integrity protection/detection
 - Integrated checksums
 - Network packet protection LNET
 - End-to-end desirable
- Support for larger LUNS
 - Currently limited to 8 TB
 - ORACLE/ORNL work has increased this to 16 TB (Lustre 1.8.2)
 - May need 32 TB support or beyond
 - ZFS preferred path, ext4 enhancements as fallback
- Predictable performance
 - Network Request Scheduling
 - Quality of Service Mechanisms



Lustre and ZFS

- Lustre currently uses an enhanced ext4 file system for object and metadata storage
- Lustre moving to add support for the ZFS file system for object and metadata storage
- ZFS features
 - Capacity
 - large volume support (512 TB)
 - trillions of files
 - Reliability and Integrity
 - Copy on write
 - Integrated checksums
 - Online integrity checking and reconstruction
 - Snapshots
- Performance concerns
- LLNL porting ZFS kDMU to Linux
 - Appears to be unsupported at the moment
- Licensing
 - Linux is released under the GPL, ZFS is CDDL
 - Redistribution of Linux + ZFS may have licensing issues

24 () LCF • • • •

Implications of License Incompatibilities

- Vendors such as DDN and LSI may not be able to sell integrated solutions based on Lustre + ZFS + Linux
- End users can integrate and be in compliance
 - ORNL, LLNL, etc
 - What about support?
- Lustre + enhanced ext4 + Linux will remain an option for vendors
 - Other backend file systems could also be supported (BTRFS)
- Is Lustre + Open Solaris an option for vendors?

Mitigation Strategies for OLCF-3

- Actively engaging Oracle on Lustre
- Continuing our partnerships with key Lustre users
 - ORNL led weekly Lustre community meetings are ongoing
 - Oracle file system engineers attending
- Evaluation of a number of Lustre configurations
 - Lustre 1.8 with enhancements
 - Lustre 2.0 (Linux, Open Solaris)
 - Idiskfs and ZFS testing
- Evaluating alternative file systems (risk mitigation)
 - GPFS
 - Panasas

Preparing for OLCF-3 - Testbeds

- Deployment of next generation file system testbed in 2010
- Representative of OLCF-3 storage system
 - Multiple integrated storage controller technologies
 - Mixed SAS/SATA environment
 - InfiniBand
 - Exploring flash integration
- Capable of testing a variety of file systems and technologies
- Additional build out of testbeds in 2011

Final Thought: Listening to Your Users

- Need for an open forum to discuss
 - User experiences
 - User requirements
 - Next-generation features
- Allows aggregation and concentration of requirements
- Lustre User Group could do this
 - Allow users to run LUG!
 - Run by a LUG board of directors from major Lustre sites
 - Cray User Group and IBM SPXXL are excellent examples

Questions?

- Contact info:
 - Galen Shipman Group Leader, Technology Integration 865-576-2672 gshipman@ornl.gov