

performance, capacity and innovation

Storage Architecture and Roadmap Lustre User's Group April, 2007

Dave Fellinger, CTO dfellinger@datadirectnet.com

performance, capacity and innovation

1	DOE/NNSA/LLNL	eServer Blue Gene Solution
2	NNSA/Sandia National	Sandia/ Cray Red Storm, Opteron 2.4
	Laboratories	GHz dual core
3	IBM Thomas J. Watson	eServer Blue Gene Solution
	Research Center	
4	DOE/NNSA/LLNL	eServer pSeries p5 575 1.9 GHz
5	Barcelona Supercomputing	BladeCenter JS21 Cluster, PPC 970,
	Center	2.3 GHz, Myrinet
6	NNSA/Sandia National	PowerEdge 1850, 3.6 GHz, Infiniband
	Laboratories	
7	Commissariat a l'Energie	NovaScale 5160, Itanium2 1.6 GHz,
	Atomique (CEA)	Quadrics
8	NASA/Ames Research	SGI Altix 1.5 GHz, Voltaire Infiniband
	Center/NAS	
9	GSIC Center, Tokyo Institute of	Sun Fire x4600 Cluster, Opteron
	Technology	2.4/2.6 GHz and ClearSpeed
		Accelerator, Infiniband
10	Oak Ridge National Laboratory	Cray XT3, 2.6 GHz dual Core

	DOE /3 13 10 A // 1 A //	
1	DOE/NNSA/LLNL	eServer Blue Gene Solution
2	NNSA/Sandia National	Sandia/ Cray Red Storm, Opteron 2.4
	Laboratories	GHz dual core
3	IBM Thomas J. Watson	eServer Blue Gene Solution
	Research Center	
4	DOE/NNSA/LLNL	eServer pSeries p5 575 1.9 GHz
5	Barcelona Supercomputing	BladeCenter JS21 Cluster, PPC 970,
	Center	2.3 GHz, Myrinet
6	NNSA/Sandia National	PowerEdge 1850, 3.6 GHz, Infiniband
	Laboratories	
7	Commissariat a l'Energie	NovaScale 5160, Itanium2 1.6 GHz,
	Atomique (CEA)	Quadrics
8	NASA/Ames Research	SGI Altix 1.5 GHz, Voltaire Infiniband
	Center/NAS	
9	GSIC Center, Tokyo Institute of	Sun Fire x4600 Cluster, Opteron
	Technology	2.4/2.6 GHz and ClearSpeed
		Accelerator, Infiniband
10	Oak Ridge National Laboratory	Cray XT3, 2.6 GHz dual Core

Lustre + DDN

- ▶ Blue Gene L @ LLNL: 360TF
 - 130GB/s sustained data transfer rate
- ▶ Red Storm @ Sandia National Labs: 101.4TF
 - 110GB/s sustained data transfer rate
- Tera 10 @ CEA: 60TF
 - 100GB/s sustained data transfer rate
- Jaguar @ ORNL: 119TF
 - 45GB/s sustained data transfer rate
- ▶ Big Ben @ PSC: 10TF
 - 5GB/s sustained data transfer rate

- Drive Roadmap
- S2A 9900
 - Overview; 9500 vs. 9900 Comparison
 - Performance Highlights
 - Reliability, Serviceability & Availability
- Dragon Disk Enclosure

Drive Roadmap

performance, capacity and innovation

- Drive Roadmap
- ► S2A 9900
 - Overview; 9500 vs. 9900 Comparison
 - Performance Highlights
 - Reliability, Serviceability & Availability
- Dragon Disk Enclosure
- Janus Storage System

S2A Storage Technology Difference

performance, capacity and innovation

- **▶** High Performance Scalability
 - 5+ GB per Second per Couplet
 - Active/Active Controllers
 - Parallel Shared Data Access Architecture
 - 8 IB-4X DDR and/or 8 FC-8 Host Ports to 20 SAS Disk Loops
 - Host Parallelism and PowerLUNs
 - No Performance Loss in Degraded Mode
 - RDMA Enabled Low Latency Application Access
- Large Capacity, High Density Scalability
 - 600TB in one Rack: Scale Up to 1.2PB in Two Racks!!!
 - SAS or SATA Storage
 - RAID 6 (8+2) and Read & Write Parity Checking
- Best \$ per Performance
- Best \$ per Capacity per Sq.Ft.

S2A 9900 Hardware Specifications

Specification	S2A9900 Couplet	S2A9550 Couplet
Supported Disk Technology	SAS & SATA	FibreChannel & SATA
RAID Parity Protection	RAID6 8+2 Only	RAID3 (8+1+1), RAID6 8+2
Sustained Throughput	5.6GB/s - 6.0GB/s	2.4 GB/s – 2.8GB/s
Maximum Cache	5.0 GB ECC Protected	2.5GB RAID Protected
Minimum Cache	2.5 GB ECC Protected	2.5GB RAID Protected
Disk Side Ports	20 x SAS 4 Lane	20 x FC-2
Host Side FC Ports	8 x IB 4x DDR or 8 x FC-8	8 x FC-4 or 8 x IB 4x
Dimensions	7 x 19 x 28 in. (4U)	7 x 19 x 25 in. (4U)
Certifications	UL,CE,CUL,C-Tick,FCC	UL,CE,CUL,C-Tick,FCC
Release Date	1Q/2008	September 2005

Performance & Capacity Scalability

performance, capacity and innovation

Performance, GB/sec

Raw Capacity, TBs

S2A Architecture, 8+2

DataDirect

performance, capacity and innovation

RAID "3/5" 8+2 Byte Stripe

- **Singlet Failover Maintains** Realtime Disk Access During Singlet Loss
- PowerLUNs can span arbitrary number of Tiers

directRAID

- Equivalent READ & WRITE performance
- No performance degradation in crippled mode
- Tremendous back-end performance for detection, very low-impact rebuild, disk scrubbing, etc.
- RAIDed Cache
- **Parity Computed Writes**
- Read Parity Checking for Each I/O **Corrects Silent Data Corruption**
- **Double Disk Failure Protection** Implemented in Hardware State **Machine**
- Multi-Tier Storage Support, SAS or SATA Disks
- Up to 1200 disks total

S2A 9900 Capacity

DataDirect N E T W O R K S

performance, capacity and innovation

- Five 60-Slot JBODs
- •Two Dual Loop per JBOD: 300 Disks
- 300TB SATA using 1TB Drives
- 135TB SAS using 450GB Drives

- Ten 60-Slot JBODs
- **Two Dual Loop per JBOD: 600** Disks
- **▶** 600TB SATA using 1TB Drives
- ≥ 270TB SAS using 450GB Drives
- **₽Twenty 60-Slot JBODs**
- Two Dual Loop per JBOD: 1200 Disks
- **▶** 1.2PB SATA using 1TB Drives
- **▶** 540TB SAS using 450GB Drives

Improvements

- Faster Intel Main CPU
- Faster Interface
 - SDR IB -> DDR IB
 - FC4 -> FC8
- PCI Express Bus Architecture
- Faster Intel Host Processors
- Doubled Cache Size & Cache Rate
- Faster Backend
 - FC2 -> SAS
- Optimized Drive Health Management
- Increased Component Reliability
 - Cooling
 - Connection

Additional Enhancements

- Expanded log capability
- Rebuild write journaling
- Power Down Archiving of writeback data (coupled with UPS)
- Power Consumption Reduction
 - Sleep Mode Drives (SATA)
 - DC Power

- Drive Roadmap
- ► S2A 9900
 - Overview; 9500 vs. 9900 Comparison
 - Performance Highlights
 - Reliability, Serviceability & Availability
- Dragon Disk Enclosure
- Janus Storage System

Backend Throughput

- ▶ 12GB/s potential backend bandwidth
- 10 x 4-lane SAS Channels per Singlet
- Disk Channel Controller
 - Provides Cache to SAS Connectivity
 - Provides 2.5GB/5GB Cache Memory Segment via DCC FPGA
 - Cache Controller Interface
 - Interfaces to Main CPU via Dual Port SRAM

Front-end Throughput

- Maximum 4GB/s Singlet Front-end Bandwidth
- Host Interface
 - Dual Protocol
 - Fibre Channel (FC8 when available)
 - Infiniband (DDR x4 IB SRP target (iSER tbd))
 - DMA Capable
 - Enables Zero-Copy Interfacing

Increased IOPS

- - Robust Processors:
 - Intel Chevelon Host CPU
 - Intel Sunrise Lake Main CPU
 - Faster Cache Controller/Stage Buffer FPGA
 - Faster processor DRAM: 512Mb DDR2
 - 3.2GBytes/sec processor to memory bandwidth & reduced latencies

- Drive Roadmap
- ► S2A 9900
 - Overview; 9500 vs. 9900 Comparison
 - Performance Highlights
 - Reliability, Serviceability & Availability
- Dragon Disk Enclosure
- Janus Storage System

- SATA technology has enabled great cost economies but can significantly jeopardize data integrity without proper controls
 - DDN has the experience (<u>a recognized leader in SATA</u>)
 - DDN has the understanding (multi-faceted SATA protections)
- The Challenge: to maintain QOS regardless of drive retry, reset, and internal recovery issues.
- The Solution: All devices will be constantly monitored through HW and SW for excessive errors or defect growth and system software can begin rebuilds to spares before a failure occurs.

Increased Data Availability

The Hardware Solution

- Check parity for every read and correct it in real time.
- Use RAID 6 to identify individual drives that have read corrupt data through Reed-Solomon data recovery algorithms.
- Exercise total control over the array including the ability to power cycle each drive.

The Software Solution

- Take a questionable drive offline immediately.
- Begin a journal of all writes that have been made to the array since the moment that a specific element was taken offline.
- Utilize a series of recovery techniques including command retries, drive resets, and finally power cycling to confirm the status of the specific device.
- If the device cannot be revived it can be replaced.
- If the device can be revived it can be rebuilt from the journal in a short time.

- PCI-E Serial Bus Structure Enable Significant Connection Reduction
 - 10x-100x Reduction in Component Connections
 - Less Controller Failures/Errors
 - All while increasing performance by 2x!
 - By-Products:
 - Flip-Chip BGAs for all High I/O FPGAs
 - PCI Express has less connector pins and BGA pins
 - DDR2 DRAM eliminates termination requirements

Simplified Design

- Improved Power Management
 - Enhanced Power Supplies
 - Higher Reliability Technology
 - Increased Supportability
 - Better Power Supply Fault Isolation & Monitoring
 - Use Two Supplies instead of Four
- Increased Cooling
 - Moving to 2 power supplies allows full width cooling in
 1U
 - Increase potential airflow from: 50CFM to: 75CFM
 - Newer ICs deliver enhanced thermal monitoring

- Drive Roadmap
- S2A 9900
 - Performance Highlights
 - Reliability, Serviceability & Availability
- Dragon Disk Enclosure
- Janus Storage System

Dragon Enclosure

- ↓ 4U 60-Bay Enclosure
 - 3.5" Drives
 - Redundant Power & Cooling

- Dual SAS I/O slots provide dual-channel access
- -Supports SATA & SAS Drives
 - Muxes added to SATA drives for dual-porting

Dragon Enclosure

- 2 Passive Baseboards
- ♣ 8 active SAS expander cards (4- "A" & 4 "B")
 - Groups of 15 drives
- All expander cards are located in the middle of the enclosure drive section.
- Cards are top removable.
- IO modules are SBB compliant and plug into the rear of the enclosure.
- Redundant Power Supplies
 - Hot-swappable
 - Plug into the rear of the enclosure
 - Provides system cooling

Figure 2. Dragon Top View

Dragon Enclosure

- Power Cycling Capabilities Will Increase System Reliability - Reduce Drive Replacements
 - Not all unresponsive drives are dead drives
 - 9900+ will implement a series of recovery techniques including command retries & drive resets
 - If unsuccessful, Dragon enclosure will have ability to power cycle individual drives to confirm the status of the specific device.
 - If the device cannot be revived it can be replaced online.

performance, capacity and innovation

Storage Architecture and Roadmap Lustre User's Group April, 2007

Dave Fellinger, CTO dfellinger@datadirectnet.com