
Introduction

Andreas Dilger, Kalpak Shah

18 June 2007

This document covers the user interface and internal implementation of an efficient
fragmentation reporting tool for ext3/4. This will includeaddition of a FIEMAP ioctl
to fetch extents and changes to filefrag to use this ioctl. Themain objective of this
tool is to efficiently and easily allow inspection of the disklayout of one or more files
without requiring user access to each of the underlying OST devices. There are three
major components to this design - the ldiskfs interface, theLustre RPC transport for
the extent mapping information, and the llite interface.

1 Requirements

The tool should be efficient in its use of RPCs, even for large files. The FIBMAP ioctl
is not suitable for use on large files, as this can result in millions or even billions of
RPCs to get the mapping information for a single file. It should be possible to get the
information about an arbitrary-sized extent in a single RPC, and the kernel component
and user tool should efficiently use this information.

The user interface should be simple, and the output should beeasily understood - by
default the filename(s), a count of extents (for each file), and the optimal number of ex-
tents for a file with the given striping parameters. The user interface will be "filefrag[options] filename{filename ...}" and will allow retrieving the fragmentation
information for one or more files specified on the command-line. The output will be of
the form:/path/to/file1: extents=2 optimal=1/path/to/file2: extents=10 optimal=4
2 Functional specification

The FIEMAP ioctl (FIle Extent MAP) is similar to the existingFIBMAP ioctl block
device ioctl used for mapping an individual logical block address in a file to a physical
block address in the block device. The FIEMAP ioctl will return the logical to physical
mapping for the extent that contains the specified logical byte address.

1

2 FUNCTIONAL SPECIFICATIONstruct fiemap_extent {__u64 fe_offset;/* offset in bytes for the start of the extent */__u64 fe_length;/* length in bytes for the extent */__u32 fe_flags; /* returned FIEMAP_EXTENT_* flags for the extent */__u32 fe_lun; /* logical device number for extent(starting at 0)*/};struct fiemap {__u64 fm_start; /* logical byte offset (in/out) */__u64 fm_length; /* logical length of map (in/out) */__u32 fm_flags; /* FIEMAP_FLAG_* flags (in/out) */__u32 fm_extent_count; /* extents in fm_extents (in/out) */__u64 fm_unused;struct fiemap_extent fm_extents[0];};
In the ioctl request, the fiemap struct is initialized with the desired mapping informa-
tion. fiemap.fm_start = {desired start byte offset, 0 if whole file};fiemap.fm_length = {length of mapping information in bytes, ~0ULL if whole file}fiemap.fm_extent_count = {number of fiemap_extents in fm_extents array};fiemap.fm_flags = {flags from FIEMAP_FLAG_* array, if needed};ioctl(fd, FIEMAP, &fiemap);for (i = 0; i < fiemap.fm_extent_count; i++) {Process extent fiemap.fm_extents[i];}
The logic for the filefrag would be similar to above. The size of the extent array may
be extrapolated from the filesize and/or FIEMAP can be calledrepeatedly with an
increasing start offset for each ioctl. The fm_start for thenext ioctl can calculated
from the fiemap for the last ioctl.fm_start = fiemap.fm_start + fiemap.fm_length + 1
We do this until we find an extent with FIEMAP_EXTENT_LAST flagset. We will
also need to re-initialise the fiemap flags, fm_extent_count, fm_end.

The FIEMAP_FLAG_* values are specified below. If FIEMAP_FLAG_NUM_EXTENTS
is given then the fm_extents array is not filled, and only fm_extent_count is returned
with the total number of extents in the file. Any new flags that introduce and/or re-
quire an incompatible behaviour in an application or in the kernel need to be in the
range specified by FIEMAP_FLAG_INCOMPAT (e.g. FIEMAP_FLAG_SYNC and
FIEMAP_FLAG_NUM_EXTENTS would fall into that range if theywere not part of
the original specification). This is currently only for future use. If it turns out that

2

2 FUNCTIONAL SPECIFICATION

FIEMAP_FLAG_INCOMPAT is not large enough then it is possible to use the last
INCOMPAT flag 0x01000000 to incidate that more of the flag range contains incom-
patible flags.#define FIEMAP_FLAG_SYNC 0x00000001 /* sync file data before map */#define FIEMAP_FLAG_HSM_READ 0x00000002 /* get data from HSM before map */#define FIEMAP_FLAG_NUM_EXTENTS 0x00000004 /* return only number of extents */#define FIEMAP_FLAG_INCOMPAT 0xff000000 /* error for unknown flags in here */
The returned data from the FIEMAP ioctl is an array of fiemap_extent elements, one
per extent in the file. The first extent will contain the byte specified by fm_start and
the last extent will contain the byte specified by fm_start + fm_len, unless there are
more than the passed-in fm_extent_count extents in the file,or this is beyond the EOF
in which case the last extent will be marked with FIEMAP_EXTENT_LAST. Each
extent returned has a set of flags associated with it that provide additional information
about the extent. Not all filesystems will support all flags.

FIEMAP_FLAG_NUM_EXTENTS will return only the number of extents used by the
file. It will be used by default for filefrag since the specific extent information is not
required in many cases.#define FIEMAP_EXTENT_HOLE 0x00000001 /* has no data or space allocation */#define FIEMAP_EXTENT_UNWRITTEN 0x00000002 /* space allocated, but no data */#define FIEMAP_EXTENT_UNMAPPED 0x00000004 /* has data but no space allocation */#define FIEMAP_EXTENT_ERROR 0x00000008 /* mapping error, errno in fe_offset. */#define FIEMAP_EXTENT_NO_DIRECT 0x00000010 /* cannot access data directly */#define FIEMAP_EXTENT_LAST 0x00000020 /* last extent in the file */#define FIEMAP_EXTENT_DELALLOC 0x00000040 /* has data but not yet written */#define FIEMAP_EXTENT_SECONDARY 0x00000080 /* data in secondary storage */#define FIEMAP_EXTENT_EOF 0x00000100 /* if fm_start + fm_len is beyond EOF */#define FIEMAP_EXTENT_UNKNOWN 0x00000200 /* in-use but location is unknown */
FIEMAP_EXTENT_NO_DIRECT means data cannot be directly accessed (maybe en-
crypted, compressed, etc.)

FIEMAP_EXTENT_ERROR and FIEMAP_EXTENT_DELALLOC flags should al-
ways be returned with FIEMAP_EXTENT_UNMAPPED also set. So some flags are
a superset of other flags. FIEMAP_EXTENT_SECONDARY may optionally include
FIEMAP_EXTENT_UNMAPPED.

Inside ext4, this can be implemented for extent-mapped filesby calling something sim-
ilar to the existing ext4_ext_ioctl() for EXT4_IOC_GET_EXTENTS but with a differ-
ent callback function. Or the ext4_fiemap() function can be called directly from the
ioctl code if the latest extents patches do not have ext4_ext_ioctl().

3

3 USE CASES

For block-mapped files it is possible to simulate this behaviour by looping through
->bmap. Maybe the user should be notified by setting a flag(EXT4_FLAG_BMAP)
in fm_flags that bmap is being used instead of the more efficient FIEMAP. Existing
tools like bmap can can fallback to using FIBMAP and lustre tools will only work for
extent-based files and will return EOPNOTSUPP.

The basic logic for the lustre part of FIEMAP will be as follows:ioctl -> llite -> lov -> osc 1 -> ost 0 -> obdfilter 0 -> ldiskfs 0-> osc 2 -> ost 1 -> obdfilter 1 -> ldiskfs 1.....-> osc N -> ost N -> obdfilter N -> ldiskfs N
The *_get_info methods can be used for the communication between the different com-
ponents of lustre.

In the lov layer, we find the ost_idx’s over which the file is striped. Then we calculate
the fm_start and fm_length for each object and do a obd_get_info() for each OST over
which the file is striped. Then the information obtained fromdifferent OSTs will be
put together in one fiemap structure for sending to the calling application.

For Lustre, the OST index (not the stripe index) will be stored into fe_lun, and the
extents will be returned with ost-local offset values and instripe order instead of in file
offset order due to the undesirable interleaving of the stripes that would cause many
more stripes to be shown than are actually allocated.

3 Use cases

1) Files containing holes including an all-hole file.

2) File having an extent which is not yet allocated.

3) Proper working with fm_start + fm_len beyond EOF.

4) Test proper reporting of preallocated extents.

5) Have non-zero fm_start and non-~0ULL fm_end. This can be tested by having
fm_count = 1 and forcing many ioctls.

6) If one or more of the OSTs across which the file is striped is down, then fiemap
should return with information of the available OSTs.

7) If there is an error mapping an in-between extent then the later extents should be
returned.

4

4 LOGIC SPECIFICATION

4 Logic specificationstruct fiemap_internal {struct fiemap *fiemap_s;struct fiemap_extent fm_extent;char *cur_ext_ptr;unsigned int current_extent;int err;};/** Callback function called for each extent to gather fiemap* information.*/int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,struct ext4_ext_cache *newex,struct fiemap_internal *fiemap_i){ struct fiemap *fiemap_s = fiemap_i->fiemap_s;struct fiemap_extent *fm_extent = &fiemap_i->fm_extent;int current_extent = fiemap_i->current_extent;unsigned long blksize = inode->i_sb->s_blocksize;if (fiemap_i->err) {fm_extent->fe_offset = fiemap_i->err;fm_extent->fe_flags |= FIEMAP_EXTENT_ERROR;return EXT_CONTINUE;}/** We only need to return number of extents.*/if (fiemap_s->fm_flags & FIEMAP_FLAG_NUM_EXTENTS)goto count_extents;if (current_extent >= fiemap_s->fm_extent_count)return EXT_BREAK;/** Cleanup old data in fiemap_i->fm_extent.*/memset(fm_extent, 0, sizeof(struct fiemap_extent));fm_extent->fe_offset = newex->ec_start * blksize;fm_extent->fe_length = newex->ec_len * blksize;if (newex->ec_type == EXT4_EXT_CACHE_GAP)fm_extent->fe_flags |= FIEMAP_EXTENT_HOLE;/** Mark this fiemap_extent as FIEMAP_EXTENT_EOF if it's the end of
5

4 LOGIC SPECIFICATION* file*/if ((newex->ec_block + newex->ec_len) * blksize >= inode->i_size)fm_extent->fe_flags |= FIEMAP_EXTENT_EOF;if (!copy_to_user(fiemap_i->cur_ext_ptr, fm_extent,sizeof(struct fiemap_extent))) {fiemap_i->cur_ext_ptr += sizeof(struct fiemap_extent);} else {fiemap_i->err = -EFAULT;return EXT_BREAK;}count_extents:fiemap_i->current_extent++;/** Stop if we are beyond requested mapping size but return complete* last extent*/if ((newex->ec_block + newex->ec_len) * blksize >=fiemap_s->fm_length)return EXT_BREAK;return EXT_CONTINUE;}int ext4_fiemap(struct inode *inode, struct file *filp,unsigned int cmd, unsigned long arg){ unsigned int extent_count;struct fiemap *fiemap_s;struct fiemap_internal fiemap_i;struct fiemap_extent *last_extent;ext4_fsblk_t start_blk;size_t num_bytes;int err = 0;if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))return -EOPNOTSUPP;if (!access_ok(VERIFY_WRITE, arg, sizeof(struct fiemap)))return -EFAULT;/** Fetch only the extent_count first so we can know the number of* bytes we have to get from userspace.*/err = get_user(extent_count,&((struct fiemap __user *)arg)->fm_extent_count);if (err)return err;num_bytes = sizeof(struct fiemap);
6

5 STATE MANAGEMENTfiemap_s = (struct fiemap *) kmalloc(num_bytes, GFP_KERNEL);if (copy_from_user(fiemap_s, (struct fiemap __user *)arg, num_bytes))return -EFAULT;if (!access_ok(VERIFY_WRITE, arg, num_bytes +fiemap_s->fm_extent_count *sizeof(struct fiemap_extent)))return -EFAULT;start_blk = fiemap_s->fm_start > > inode->i_sb->s_blocksize;fiemap_i.fiemap_s = fiemap_s;fiemap_i.cur_ext_ptr = (char *)(arg + sizeof(struct fiemap));fiemap_i.current_extent = 0;fiemap_i.err = 0;/** Walk the extent tree gathering extent information*/mutex_lock(&EXT4_I(inode)->truncate_mutex);err = ext4_ext_walk_space(inode, start_blk , EXT_MAX_BLOCK,(void *)ext4_ext_fiemap_cb, &fiemap_i);mutex_unlock(&EXT4_I(inode)->truncate_mutex);if (err)return err;fiemap_s->fm_extent_count = fiemap_i.current_extent - 1;last_extent = &fiemap_i.fm_extent;last_extent->fe_flags |= FIEMAP_EXTENT_LAST;fiemap_s->fm_length = last_extent->fe_offset +last_extent->fe_length;err = copy_to_user((void *)arg, fiemap_s, num_bytes);return err;}
5 State management

5.1 State invariants

5.2 Scalability & performance

FIEMAP is expected to speedup filefrag by a very large factor by allowing packing of
information about GBs of data in a single RPC. To further speed up the performance,
we have the EXT4_FLAG_NUM_EXTENTflag with which only the number of extents
per OST would be reported without filling the extent information.

7

5.3 Recovery changes 5 STATE MANAGEMENT

5.3 Recovery changes

5.4 Locking changes

5.5 Disk format changes

5.6 Wire format changes

5.7 Protocol changes

FIEMAP will be added to *_get_info methods and swabbing of the fiemap structures
would have to be done accordingly.

5.8 API changes

5.9 RPCs order changes

8

