
Lustre Capability DLD

Lai Siyao

7th Jun 2005

OSS Capability

1 Functional speci�cation

OSS capabilities are generated by MDS, sent to client when client opens/truncate
a �le, and is then included in each request from client to OSS to authorize an
action.

In case that the client might modify the capability obtained from MDS, the
capability is signed with HMAC.

1.1 new data types

1.1.1 struct lustre_capa

struct lustre_capa {

__u32 lc_uid; /* uid, mapped uid */

__u32 lc_op; /* operations allowed */

__u32 lc_mdsid; /* mds# */

__u32 lc_igen; /* inode generation */

__u64 lc_ino; /* inode# */

__u32 lc_ruid; /* remote uid on client */

__u32 lc_flags; /* security features for capability */

__u64 lc_expiry; /* expiry time (sec): servers have clocks */ __u32 lc_keyid; /* key used for the capability */

__u8 lc_hmac[CAPA_DIGEST_SIZE]; /* HMAC */

} __attribute__((packed));

lc_ruid remote uid on client, this will only be used on client, both MDS and
OSS will use lc_uid.

lc_op CAPA_READ/CAPA_WRITE/CAPA_TRUNC.

lc_expiry capability expiry. And similar to kerberos, when capability is en-
abled all nodes on the system are supposed to have the almost synchro-
nized time.

1

lc_�ags only one �ag now: CAPA_FL_SHORT_EXPIRY, which is set when
capability timeout value is less than CAPA_EXPIRY(1024 sec). And this
�ag will be used in client capability renewal.

lc_hmac is the HMAC for all �elds above lc_hmac.

1.1.2 struct lustre_capa_key

struct lustre_capa_key {

__u32 lk_mdsid; /* mds# */

__u32 lk_keyid; /* key# */

__u32 lk_expiry; /* expiry */

__u32 lk_key[CAPA_KEY_LEN]; /* key */

};

1.1.3 struct obd_capa

struct obd_capa {

struct list_head c_list;

struct lustre_capa c_capa;

int c_type;

atomic_t c_refc; /* ref count */

unsigned long c_expiry; /* jiffies */

union {

struct client_capa cli;

struct target_capa tgt;

} u;

};

struct client_capa {

struct inode *inode;

struct lustre_handle file_handle; /* mds_file_data handle */

struct list_head lli_list; /* link to inode */

atomic_t open_count; /* capa open count */

};

struct target_capa {

struct hlist_node hash;

}

struct obd_capa is used to manage capabilities cache on di�erent OBDs:
client, MDS and OSS.

Capabilities in MDS and OSS are cached to avoid signing penalty. On MDS
and OSS the capability cache size is �xed: 3000. Via u.hash capabilities are
hashed, it is used for lookup. And c_list links capability on MDS and OSS to
LRU lists.

Client caches capabilities because of page cache: client doesn't know when
pages in client page cache will be obtained from/�ushed to OSS, so all capa-
bilities are cached until they expire. Compared to MDS and OSS capabilities

2

on client are not hashed, but they will be linked on ll_inode_info.lli_capas
via lli_list for lookup, and increase open_count once open, decrease when
close. The handle �eld in struct client_capa contains the handle to struct
mds_�le_data on MDS, which will be used to verify access permission while
renewing capability.

OSS might have two available capability keys at a certain time, the latest one is
called red key, and the old one black key. And clients might use either of them.

1.1.4 struct mds_capa_key

struct mds_capa_key {

struct list_head k_list;

struct lustre_capa_key k_key;

struct obd_device *k_obd;

unsigned long k_expiry; /* jiffies */

};

This struct is used to update capability key periodically on MDS, and the update
key will be propogated to all OSS's.

2 Use Case

2.1 read �le

client ll_lookup_it(), which calls mdc_enqueue() with IT_OPEN.

MDS mds_open() will handle this intent request, it will pack the signed
capability in reply message.

client capability is unpacked and updated locally.

client OST_READ �nally will call osc_build_req(). In osc_brw_prep_request()
packed the proper capability in request to OSS.

OSS ost_brw_read will handle this request, it will unpack and verify the
capability, if valid, IO will go on, else this request is rejected.

client will close the open �le and update capability.

2.2 client renew capability

llite �nd the capability to renew, call mdc_getattr to renew the capabil-
ity.

MDS will receive the request, then check the access mode of this capability
based on mds_�le_data, if it's ok, update the capability and send
back.

3

llite update capability.

2.3 MDS update capability key

MDS the capability key is to expire, and the mds_capa_key_timer_callback
is triggered. A new capability key is generated and the key id
is increased, and the new key is propogated to all OSS' through
obd_set_info.

OSS will receives the new capability key, and then updated the capability
key list in memory.

MDS obd_set_info returns successfully, then it will store the new key in
its capability key �le, from then on the new key will be used to sign
capability.

3 Logical Speci�cations

3.1 client side

3.1.1 obtaining capability

Upon lookup �nishes, the capability for the opened �le is packed in the reply. In
ll_update_inode() this capability will be linked into ll_inode_info.lli_capas:

struct ll_inode_info {

....

struct list_head lli_capas;

}

And in ll_�le_open(), the open count and �le handle (mds opened �le handle)
of this capability are updated. Accordingly, the open count will be dereferenced
in close. The open count and open client handle here are used by capability
renewal (see below).

3.1.2 renewing capability

Client will renew capabilities whose open count are larger than 0 with MDS
when they are close to expiring. The renewal request is prepared by a thread
ll_capa_thread, and then handed to ptlrpcd to send asynchronously. A new
timer ll_capa_timer is added to track renewal. In this request the �le handle
to struct mds_�le_data along with the capability will be packed. And all
client capabilities are in a sorted list to help �nd the capabilities to renew.

4

Obd function getattr will be used to renew capability:

int md_getattr(struct obd_export *exp, struct lustre_id *id, __u64 valid, const char *ea_name, int ea_namelen, unsigned int ea_size, struct obd_capa *ocapa, struct ptlrpc_request **request)

One issue here: how to ensure the capability doesn't expire before the page is
�ushed to OSS?

This is achieved by renewing capability much earlier than it expires, that
is, the delta time pre-expire should be larger than dirty_expire_centisecs (The
longest number of centiseconds for which data is allowed to remain dirty, the
default value is 30 * 100, that is 30 sec). And the default pre-expire delta time
for capability is CAPA_PRE_EXPIRY (300 sec).

3.2 MDS side

3.2.1 capability HMAC

The HMAC value of capability will be calculated by kernel function crypto_hmac(),
and by default the crypto algorithm is SHA1. For MDS and OBDFILTER the
crypto will be initialize during module setup.

NOTE: in crypto_hmac(), struct crypto_tfm is not thread-safe.

3.2.2 packing capability

int mds_pack_capa(struct obd_device *obd, struct lustre_capa *capa, int reply_off, struct mds_body *body)

mds_pack_capa will generate the capability for the speci�ed user and oper-
ation on speci�ed inode if it's not found in hash, otherwise it just packs the
capability found in the reply message. It will be called in three places:

1. upon mds_open, a capability is sent back.
2. client renew capability with md_getattr.
3. upon truncate client will setattr on MDS, if ATTR_CAPA is set a

CAPA_TRUNC capability is packed in the reply.

3.2.3 capability hash

Capabilities are hashed on MDS' and OSS', the size of hash is �xed (3000). The
capability hash code should be put in obdclass. There should be reference count
for capability, and a hash lock will protect the capability hash and list.

MDS' and OSS' capabilities are in a LRU list: the most unused capabilities
will be released when generating new capability but the capability count has
exceeded 3000.

5

3.2.4 permission check for capabilities to renew

When MDS receives capability renewal request, capa.lc_op will be checked
aginst mds_�le_data the �le handle pointing to, because the permission
check is based on original open, not current access mode.

3.3 IO with capabilities

3.3.1 direct IO

This is in 2.4 only: ll_direct_IO_24. A capability with uid: current->fsuid
and speci�ed opc will be looked up in capability list of this inode, if found, this
capability will be used for this direct IO.

3.3.2 synchronous read in partial write

This is in ll_preare_write(), and it will then call ll_brw. Just like above, a
proper capability is looked up for it.

3.3.3 synchronous/asynchronous IO

Both synchronous and asynchronous IO requests are packed in osc_build_req ,
however there are two issues here:

* all the pages in one request might not belong to one fsuid, but only one
capability for one request.

* there isn't a clean way to obtain the fsuid for the mmaped pages.

The solution is: the latest capability with the correct opc for this inode will be
used in the request. (a security �aw?)

3.3.4 truncate

For truncate, client will send a setattr rpc to MDS with attr->ia_valid set with
ATTR_MTIME | ATTR_CTIME | ATTR_CAPA, mds will pack a truncate
capability in the reply in case of ATTR_CAPA.

After punch on all oss, this truncate capability will be cleared right after. (no
concurrent truncate in vfs, so it's safe)

3.4 OSS side

After OSS receives the read/write/truncate request, it will �rst verify if the
capability is valid, which is achieved by verifying HMAC associated with the
capability. And also the capability content (opc and �d).

6

3.5 capability key

3.5.1 capability key update

MDS will renew its capablity key with all OSS' periodically. A timermds_eck_timer
is added to track this. And the obd_set_info will be used to propagate new
capability key to OSS'. This rpc should be replayable.

3.5.2 capability key �le on disk

Capability keys are stored in disk �le on MDS only, and this key �le will contain
two keys: red and black key.

3.6 OST authorization revocation

This can't be supported by current implementation.

4 Recovery

* MDS' will propagate capability keys to OSS' during setup, and all obd�lters
will setup capability keys list based on them.

* In case of connection failure between MDS and OSS, and the MDS is alive, it
will be mds_notify() when the connection recovers, in mds_dt_synchronize()
the capability keys should be sent to all OSS as above.

* Generate capability in open resend case. (in reconstruct_open).

5 Test

Since by default the capability and its key expiry might be fairly long, to help
test, the capability and key timeout should be set through proc.

5.1 basic operations

read/write/truncate.

7

5.2 enable/disable capability

5.3 capability renewal and capability key update

5.4 two users access the same �le concurrently

5.5 dbench

5.6 MDS recovery of capability

5.7 OSS recovery of capability

MDS Capability

6 FUNCTIONAL SPECIFICATION

MDS capability, in another words, could be called �d capability, which proves a
client has access to a �d. The �d capability is obtained in lookup request, and
each request to MDS which concerns �d operation will pack it the request.

The lustre_capa and obd_capa struct de�ned above will be reused here.

7 USE CASE

7.1 obtain �d capability with open

client �nd �d capability for the parent dir.

client if the �d capability has expired, renew it.

client pack parent �d capability in lookup (with intent IT_OPEN) request.

MDS verify �d capability for parent dir.

MDS open �le, and pack the �d capability for this inode in the reply.

client store this �d capability for future use.

8 LOGIC SPECIFICATION

8.1 client �d capability

Each inode has a single �d capability, once it's obtained, it's stored in ll_inode_info.lli_�d_capa .
And the following requests will lookup �d capability from here.

8

There are two places where client �d capabilities get freed:

• ll_clear_inode(): where inode is cleared.

• ll_mdc_blocking_ast(): when MDS_INODELOCK_LOOKUP lock is
canceld.

8.2 �d capability renewal

Similar to OSS capability, �d capability will expire after its timeout. To re-
new �d capability, current �d capability is sent to MDS via MDS_GETATTR
request (the same as OSS capability renewal), and then MDS will check the
validity of this �d capability, if it's ok, update the expiry of this capability and
generate new HMAC, and then reply back to client.

But unlike OSS capability, �d capabilities are not renewed by a separate thread,
instead they will be renewed synchronously before sending the request to MDS.
By this way we could avoid the overhead of renewing unused �d capabilities
periodically, which might be huge.

But the above policy will lead to a problem: the �d capability might become too
aged that the capability HMAC key used to sign this capability is not in used in
MDS any more, then if client want to renew it, but MDS will fail to validate it.
To solve this, all unused �d capabilities will be renewed by a separate thread as
before, but the interval will be much larger, it's the timeout of capability key. (
by default, this timeout value is 1 day)

9 RECOVERY

During recovery the �d capabilities packed in resend and replay requests might
have expired in some cases, but all these are handled in ptlrpc layer, and these
capabilities won't have chance to get renewed. Therefore MDS only check the
validity of the �d capability for resend and replay requests (HMAC is correct),
but ignore the capability duration.

10 TEST

Focus on compatibility with old version.

9

