
Quota For LustreFebruary 11, 20081 From Engineering Requirements Speci�cation1. Lustre can operate and enforce disk block quota and �le quota.2. Hard and soft quota are supported3. Central management tools enable setting limits for users and initializingquota check operations4. Quota are only needed for Linux 2.62 Speci�cation of subsystemsDe�nition: An operational quota �le is a quota database containing limits forsome uid's and gid's which is being used to enforce quota. An adminis-trative quota �le is a similar database, but it is used for recovery and softquota or administrative purposes.2.1 Master & slavesA node is a master for a uid or gid if the node holds the cluster wide limits(hard, soft, �les, blocks & gracetimes) for that uid or gid in an administrativequota �le. The administrative quota �le is similar to normal ext3 quota �le.The data structures and code for an administrative quota �le API will be copiedfrom the Linux VFS to ldiskfs and amended. Slave nodes (all other servers) onlyconsider hard quota and only have operational quota �les.Note that a node may be a master for some uid's, gid's and a slave for others.Masters also have an operational quota �le for enforcing hard quota. Masterobserve soft limits in the administrative �le, based on grace times.2.2 Acquire / release protocolThe master administrative quota �le has two kinds of limits: total limits andlimit acquired by all servers (administrative usage). Totoal limits are set by user,1



2.3 Chown Operations 2 SPECIFICATION OF SUBSYSTEMSadministrative usage is initialized to zero and it's amended when master/slavesacquire or release quota.Quota slaves can acquire from the master and release to the master qunitsof disk space (>100MB typically, see ERS). Slaves do this to increase / lowertheir hard limits of operational �le. Upon acquiring quota from a master themaster's administrative usage are increased. Master can acqurie/release qunits,just like slaves, except that it is done locally.On the master only, soft limits are enforced in obd layer based on the ad-ministrative quota �le. Once administrative usage > administrative soft limit,the timer is activated.2.3 Chown OperationsAll objects associated with a �le will have their owners set to that of the MDSinode. These chown operations occur in connection with �le creation and chown-ing on the MDS and are asynchronous. There will also be enough space in therecords to set an EA on the objects indicating the originating MDS, �leset andstorage id of the inode. The arguments will contain the following - but the�nal format of the packet sent is subject to approval by management (it maybe larger):struct object_setattr_args {__u64 osa_mds_id; /* to identify MDS */__u64 osa_fileset_id; /* part of the fid, tbd */__u64 osa_ino; /* inode number on mds */__u64 osa_gen; /* inode generation on mds */__u32 osa_uid; /* owner of the file */__u32 osa_gid; /* group of the file */__u64 osa_mds_transno;/* for recovery of mds rollback */__u64 osa_mds_last_committed;__u32 osa_mds_prev_uid; /* to undo things that didn't complete on the MDS */__u32 osa_mds_prev_gid;}2.4 RecoveryA recovery protocol for limits involvesMaster recovery re-writing the administrative usage on the master node,based on the cluster-wide limits collected from slaves and master.Slave recovery release unreasonable high quota limit.Chown operations for objects will use llog recovery on the MDS (as it is usedfor unlinks).MDS chown operations that are lost are not recovered at this point - butarguments to do so in the future are passed as above. The recovery from this is2



2.5 Con�guration 3 USE CASESfairly simple: the OST writes log operations for each chown operation contain-ing the MDS transaction number and undo information. The MDS reports lastcommitted transactions to the OST. During normal use these lead to cancella-tions of records leading up to that transaction. During recovery, all llog recordsfollowing the record containing the transaction number will be used to undo theOST chown/chgrp operations.For new �les, removal of objects does already take place.2.5 Con�gurationA con�guration protocol will initiate quota check operations, turn quota on,and set limits. All commands will be issued through lfs.2.6 Disk fs handlingDisk �le systems track quota usage. An interface between OSS and MDS anddisk �le systems will enable a check and adjustment of disk �le system quotalimits before operations proceed. Every node will try to acquire quota beforeproceeding. Every node will release quota after �nishing. Acquire and releasecalls are tuned to anticipate use. Disk fs quota check handling will be possiblyon busy �le systems.3 Use casesEach use case is an interaction between a �user� and �system�. For each usecase we describe what subsystem forms the �user� and the �system�. Use thelogical components indicated in sections 3.1-3.4 below to describe the use cases.The purpose is to check that each of the use cases at a high level appears toexecute successfully by using the components listed under 3.1-3.4. In some ofthe scenarios (e.g. 3.2 multiple use scenarios should be described, e.g. how isthe slave-master protocol involved and how is the client - oss protocol involved).3.1 Initialization operation3.1.1 Changing ownersThe following operations are done on a client, and it can be run on a live system:Administrator get root priviliges on the �le systemAdministrator run `lfs quotachog -i <mnt>`1. <mnt> is a mount point of lustre �lesystem2. quotachog is a command of lfs which will do chown/chgrp, incase of concurrent operations by other processes, it can set -ioption to ignore ENOENT error.3



3.1 Initialization operation 3 USE CASESSystem quotachog will abort if change failed, and then report error, indicat-ing what was searched etc. Generally user cannot ignore the error,and should �x it and redo the above, except that user can set -ioption for quotachog to ignore ENOENT error.3.1.2 Mounting existing �le systems with quota supportAdministrator �le systems on all server nodes should be mounted with quotasupport, and this is enabled by default.System all needed modules are loaded, and �le systems are mounted withquota support.Administrator run `lfs quotacheck`, it will initiate quota check on all MDS' andOSTs.System on each node �quotacheck� will walk through the diskfs. When thecheck �nishes, it will report the check status back to the initiator.If it fails, the error is listed.Administrator user should �x the errors and recheck before preceeding to thenext step.Administrator run `lfs quotaon`, it will initiate quotaon on all MDS' and OSTsone by one.System each node will start to check/handle quota. The status will be re-ported back to the initiator.Administrator user should �x the errors if there are.Administrator run `lfs setquota`, it will set limits in administrative quota �leon the corresponding MDS master for the speci�ed uid/gid.System if previous limits(hardlimit & softlimit) for the uid/gid are zero,master will initialize quota on all slaves and local node, otherwiseonly modify the administrative quota �le. Moreover, the limit infois saved in administrative quota �le on master. The status will bereported to initiator.Administrator if some nodes failed, generally user should not ignore the errors.3.1.3 a new �le system to a state where it is using quotaLike above, but only need three steps: `lfs quotacheck`, `lfs quotaon` and `lfssetquota`.
4



3.2 Normal use block quota 3 USE CASES3.2 Normal use block quotaDemonstrate how quota are acquired and released during normal use throughsequences of the API's and network calls de�ned in this document.DESCRIBE CASES WHERE1. A USER DOES THIS OR THAT: WHAT are the system responses2. The client does this or that: what are the OSS & MDS responses3. The OST does this or that, what are the obd�lter / diskfs reponses3.2.1 Acquire quotaUser issues �le write operation.System performs write successfully and returns the written bytes.Client makes IO requests to OSS.OSS acquires qunit if needed.Master increase usage in adminstrative �le then reply to OSS with grantedqunit.OSS updates local operational quota �le, performs write operation andreplies client the ~noquota �ag.OST calls obd_commitrw to commit write.Obd�lter if not enough qunit, acquire qunit by dqacq rpc from master, updateslocal operational quota �le after dqacq reply, then performs normaldirect write.3.2.2 Release quotaUser issues truncate or unlink operation.System performs the truncate/unlink operation and returns error code.Client makes OST_PUNCH or OST_DESTROY requests to OSS.OSS performs truncate/unlink on objects. release qunit to master ifneeded.Master decrease usage in administrative �le and reply to OSS.OSS updates local operational quota �le.5



3.3 Running out of block quota 3 USE CASESOST calls obd_destroy/obd_punch.Obd�lter performs unlink/truncate on objects, if there is qunit to be released,release qunit by dqrel rpc to master then updates local operationalquota �le.3.3 Running out of block quotaUser issues �le write operation.System write fails and return EDQUOT. (but the pages in cache will bewritten successfully)Client makes IO requests to OSS.OSS acquires qunit from master.Master reply noquota to OSS.OSS fs write fails, rewrites pages from client cache forcibly, replies clientthe noquota �ag and error code.OST calls obd_commitrw to commit write.Obd�lter acquiring qunit fails, then performs normal direct write and fails,and then rewrites the pages from client cache, returns error codeand noquota �ag to OST.3.4 Freeing space to get under quotaThe release steps are the same as those in 3.2.23.2.2.User issues �le write operation.Client makes synchronous write rpc to OSS if there is noquota �ag.OSS performs fs write successfully, return client ~noquota �ag.Client clears noquota �ag for this uid/gid.3.5 Enforcing soft quota3.5.1 Start soft quota timerUser issues �le write/create operations.System returns successfully. 6



3.6 File quota on the MDS 3 USE CASESClient makes �le write/create requests to OSS/MDS.OSS/MDS sends dqacq rpcs to get more quota from master.Master starts the timer once administrative usage > administrative softlimit and grants qunit to OSS/MDS.OSS/MDS write/create succeeds.3.5.2 Soft quota timer goes o�User issues �le write/create operations.System returns EDQUOT.Client makes �le write/create requests to OSS/MDS.OSS/MDS sends dqacq rpcs to get more quota from master.Master returns noquota to OSS/MDS.OSS/MDS write/create fails and returns error code to Client.3.5.3 Stop soft quota timerThe release steps are the same as those in 3.2.23.2.2.Slave calls dqrel rpc to release extra quota.Master stops the timer once administrative usage <= administrative softlimit.3.6 File quota on the MDSFor CMD, it is similiar to block quota described above. For b1_4, it is com-pletely managed by MDS locally.3.7 Listing quotaUser runs 'lfs quota', it will make an rpc to the correspondingMDS masterfor the speci�ed uid/gid.System displays usage & limits related to quota for the uid/gid on all nodesin the cluster, if some nodes failed, reports the error to user.3.8 Recovery of quotajust describe interaction initiator - response, no internals7



5 LOGIC SPECIFICATION3.8.1 Master recovery/Slave recoveryMaster enquires all slaves' operational limits by issuing a get limits rpc.Slave releases unreasonable high limits then replies with limit.Master updates usage of administrative quota �le.4 State considerations4.1 Node state4.2 Context state5 Logic speci�cationThe quota implementation falls into a few, almost separate, components.ORDER OF IMPLEMENTATION1. Administrative utilities, with su�cient �exibility to create unit test cases2. Administrative quota �le implementation3. OSS enforcement of quota (can be tested separately)4. client - OSS protocol5. quota context6. quota acquire release protocol7. MDS-OST setattr calls8. comprehensive testing of use cases9. recovery protocol10. soft limit5.1 Administrative utilitiesFor all of the following commands it is probably useful to de�ne a single datastructure that has enough �elds to hold all the data that needs to be transfered.Top priority1. All utilities are either:(a) �le system ioctls - where non-standard Lustre speci�c info is needed(e.g. listing) 8



5.2 Adminstrative quota �le & disk �le system quota5 LOGIC SPECIFICATION(b) standard quotactl interfaces2. A lustre obd_iocontrol will allow an MDS to initiate quota check or quo-taon operations on all OST's. It should be possible to issue this ioctlas a �le system ioctl on a client, or giving an MDS device on an MDS.NOTE: This rpc can be the same as the master to slave recovery enquiryrpc de�ned below.3. an obd_iocontrol and special lfs is needed to display usage & limits relatedto quota for a uid/gid on all nodes in the cluster. This needs to be addedto lfs and need to be a command that can be issued from a �le systemclient.4. a command is needed to set the limits for a uid/gid, perhaps based ona template. The limits need to be set on the master and in the limitdatabase. All slaves need to be noti�ed that quota tracking for the uid/gidis now in e�ect (perhaps by increasing quota limits on the node to a non-zero value). Similarly it should be possible to disable quota for a uid /gid.5. Documentation for all of these will be implemented as manual page ex-tensions and as part of the Lustre Users Guide.6. A chown.chgrp utility. Build a small c utility that stats a �le and thenissues the chown/chgrp system call to change the ownder/group on all �lesunder the speci�ed mount point. This is issued from a client. This canonly be run after the MDS has been changed to incorporate part 3.35.2 Adminstrative quota �le & disk �le system quota1. The administrative quota �le will be a quota �le similar to ext3 basedquota �les with the usual VFS determined tree format.2. The VFS quota api will be adapted to enable the administrative commandsto create quota �les by name and operate on them without sb (super block)or dquot quota context arguments as required.3. (Design this, but implementation is second priority) Quota checkwill be adapted to handle checking on a live �le system, as follows:(a) if inodes are not checked in sequence order (1,2,3, etc) the followingis probably not possible.(b) block all operations on an inode while it is being �checked�.(c) account for quota on inodes that are already checked(d) do not account on inodes that are not yet checked9



5.3 OSS enforcement 5 LOGIC SPECIFICATION5.3 OSS enforcement1. The direct I/O and truncate calls on the OSS will enforce quota5.4 Client OST/MDT protocolThe following component can initially be implemented based on quota statuscodes returned by the disk �le system. In due course the status of quota will bedetermined by the acquire calls made in the OST or obd�lter.1. All writes functions executed on OST's track quota for newly allocatedspace.2. If a client �ushes a page cache to an OST the data will be written (evenif quota are exceeded). For this root privilege is needed - since only v2quota format is supported, root always has the right of exceeding quotalimits.3. If a client exceeds quota, a return code will indicate that the for thatfurther writes for �les owned by that uid/gid must now be done syn-chronously.4. If quota limits on the OSS are su�cient again, through removal of �les orenlarging limits, the �ag must be cleared.5. For MDC �le quota are currently handled synchronously on the server.5.5 Quota context and server quota enforcement1. The MDS will automatically track block quota associated with directories.It is important the llog �les are owned by root users and not subject toquota2. For root owned �les, Lustre quota should not be enabled (there are toomany administratively controlled root-owned �les right now).3. There will be an active quota context for a uid or gid for which quotaoperations are in progress. Processes acquiring quota will �nd the contextfor that user or group and wait on the context intelligently and not all�re RPC's to the master. The context should also intelligently handlerecovery operations running concurrently with normal quota use.5.6 Slave to Master acquire / release protocol1. Tunables(a) All servers will have tunables for qunits and early acquisition of morequnits. 10



5.7 Full integration and system testing 5 LOGIC SPECIFICATION(b) The tunables can be set to con�gurable values through lconf, oneset of values for slave behavior, one for master behavior each sepa-rated for OSS nodes, one for MDS nodes, as part of the con�gurationzerocon�g llog.(c) The tunables can also be adjusted dynamically in /proc.(d) Adjusting through proc only is not acceptable.2. There will be a function that determines the master node for a given uidor gid. For the 1.4 branch this function is always returning the MDS, butit will be designed to make it easy to adapt to clustered metadata.3. There will be dqacq and dqrel rpc's initiated by slave nodes. The codewill be organized so that it can be run on slave OSS and slave MDS nodeswithout modi�cation. These functions will increase / decrease the locallimits and administrative usage on master.4. A unit test program will run a collection of not less than 3 slaves and amaster through a sequence of interesting acquisitions and releases.5.7 Full integration and system testing1. Full unit tests for all components.2. Demonstrate successful handling of recovery from exceeding soft and hardlimits.5.8 MDS - OST setattr calls1. When the MDS creates or chown a �le it will queue an asynchronousobd_setattr rpc to the OST that:(a) changes the owner/group of the objects for the �le.(b) transfers the storage id (ask Yury for data type) to the OSS (this isin the create case only). It writes the storage id in an EA.2. The obd_setattr calls will be journaled almost exactly like mds_unlinkcalls in an llog (except that for unlink presently the client unlinks theobjects) and records will be canceled when the setattr commands committo disk on the OST.3. The obd_setattr rpc's will be queued on an RPC set for asynchronouscompletion, i.e. the MDS will reply to the client without waiting for theresult. The simple strategy (�chown, even if user goes over quota�, seeERS) will be followed.4. For this part not more than 4 (four) lines of code may be added tomds_open. Adding 0 lines to this function (the longest in Lustre) wouldbe better. 11



5.9 Server Node Recovery 5 LOGIC SPECIFICATION5. Demonstrate handling recovery of 300,000 orphaned chown operationswhile the cluster is in use already.5.9 Server Node RecoveryNote: in CMD nodes will be slaves for some uids and masters for others. Thealgorithm outlined here handles the general case.1. Nodes will recovery quota asynchronously, ie. they will start normal op-erations, without waiting for quota recovery to complete.2. Slave recovery initiation:(a) Slave recovery is initiated on a per-connection basisi. Upon obtaining a new connection to a server node that can be amaster during normal operationsii. Upon entering normal operations while connections are present(b) The recovery is aborted if a connection fails.(c) A collection of threads is needed to handle this recovery(d) The quota �le handling should be su�ciently concurrent that multi-ple connections can recover in parallel3. Slave recovery:(a) During normal use the node will iterate through all the users andgroups in the operational quota �le.(b) If the connection is not one to the master for this uid/gid go to thenext uid/gid.(c) If such a uid/gid is also found in the node's administrative quota �le,this node is the master for that id and this id will be skipped, elsecontinue.(d) Release unreasonably high limits for this uid/gid.(e) The contexts used for updating quota from the �lter should be designso that these releases can be made concurrent with normal use.4. Master recovery initiation(a) Master recovery requires connections to all other servers, it is initi-ated:i. If upon entering normal operations all connections are presentii. If during normal operation all connections reach a usable state(b) It is aborted if any connection fails during master recovery5. Master recovery: 12



5.10 Soft Limits 6 CHANGELOG(a) During normal use the master will iterate through the administrativequota �le.(b) It will lock quota operations on the master for that uid.(c) For each uid/gid found it will make a new quota related master toslave RPC to all other servers and ask for the current limit (andusage).(d) If a response is obtained from all nodes, the operational limit on themaster node is updated so that the sum of all operational limits isthe clusterwide administrative limit.(e) '(f) If a response is not obtained from all servers, abort.5.10 Soft LimitsSoft quota is not enforced in fs layer on master or slave. It's only enforced inobd layer on Master:1. The grace time and soft start time will be kept in adminstrative �le.2. Master monitor the administrative usage on each qunit acquire/releasehandling: log the soft start time once the administrative usage >= ad-ministrative soft limit, clear the soft start time once the administrativeusage < administrative soft limit.3. Master will reject any qunit acquire request if soft start time + grace time< current time.Make sure we have unit tests and integration and system tests that verify thiscomprehensively.6 Changelog2005/01/29 First draft. Based on review of Zhaohongs writings and ERS.2005/02/06 Second draft, much more detail to aid the team

13


