
1

LECTURE 4.2
 Log Analysis

1

> Version 1.5 Q1 2008

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 2

Content
• Goal
• Generating logs
• Understanding logs
• Log analysis tools
• Lock dumps
• Stack traces
• Crash/gdb - mcore/netdump

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 3

Goal

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 4

How to understand Lustre
• Can read source code

> But the effect of VFS on behavior is hard to anticipate
• Using debug logs

> Contains enough information to understand
a lot

> Is difficult
> Increasingly during normal operation, no debug logs

– It affects performance pretty badly

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 5

How to debug Lustre
• During development:

> Use logs, use (k)gdb
• During production use:

> Console output
> Lock dumps
> Request dumps
> Stack traces
> Crash with netdump or with mcore

• For very nasty problems:
> Use light weight tracing
> See source & LustreDebugging on wiki

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 6

Log generation

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 7

Dumping logs
• The kernel has a 5MB buffer.

> This is, in fact, not nearly as much as it seems.
> /proc/sys/portals/debug_mb

• A mask can be set:
> /proc/sys/portals/debug

• Then subsystems can be (de)selected:
> /proc/sys/portals/subsystem_debug

• The dump location is also controllable:
> /proc/sys/portals/debug_path
> Default /tmp/lustre-log-localhost.localdomain

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 8

Getting a Debug Log
• Sometimes the system volunteers a debug log.

> After some kernel Oopses, and all Lustre LBUGs
• Other times, we'll ask you to generate one.
• If we do, please clear the buffers before you

reproduce the debug log using:
> lctl clear

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 9

Post-processing
• If you get a log the normal way...

> lctl debug_kernel [filename]
...then lctl will post-process it for you.

• If the kernel dumps it on its own (i.e., an
LBUG):
> It will contain binary information (pointers to text

strings)
> Process this with:

lctl debug_file <infile> <outfile>

• Please do this before you send it to us.

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 10

Dumps
• A debug daemon can write the logs

continuously.
> This has been useful in several cases

• The Lustre wiki has a page about how to start
and stop the daemon.

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 11

Understanding the DEBUG log

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 12

Inode bits lock DEBUG message
• 00010000:00010000:0:1151031337.272617:640:8791:0:
• Subsystem:mask:cpu:time-sec.usec:stack:pid:ext_pid:
• (ldlm_lockd.c:1100:ldlm_handle_bl_callback())
• (file:line no:function)
• ### already unused, calling callback (e0c4275d)
• Free form message
• ns: mds-mds1_UUID lock: c3987d80/0x511830a47d84b222
• ns:namespace lock:ptr/local handle
• lrc: 2/0,0 mode: CR/CR res: 31257/3224802362
• lrc: lockrefs/rdrs,wrtrs mode: granted/reqtd, res[1]/res[2]

here ino/gen
• bits 0x2 rrc: 1 type: IBT flags: 4010
• Bits: 0x2 rrc:res refc, type: i-bit lock, flags: CB_XXX
• remote: 0x0 expref: -99 pid 9783
• remote handle, exportref: <unused> pid: last thread having

lock

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 13

Lock Bits
• /* INODE LOCK PARTS */
• #define MDS_INODELOCK_LOOKUP 0x000001

/* dentry, mode, owner, group, acls, stripe ea */
• #define MDS_INODELOCK_UPDATE 0x000002

/* size, links, timestamps */
• #define MDS_INODELOCK_OPEN 0x000004

/* For opened files */

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 14

Lock flags
• #define LDLM_FL_CBPENDING 0x000010

> /* this lock is being destroyed */
• #define LDLM_FL_LOCAL 0x004000

> /* local lock (ie, no srv/cli split) */

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 15

Extent lock line
00010000:00010000:0:1151098795.206458:4736:15549:0:
(ldlm_request.c:507:ldlm_cli_enqueue())
client-side enqueue START
ns: OSC_lin-cli1.cfs_ost9_MNT lock:

c6db4d80/0x8464f70ca019676e
lrc: 3/1,0 mode: --/PR res: 6025/0 rrc: 1 type: EXT
• Above is the same as before, note that no lock is granted yet

[0->18446744073709551615] (req 0->18446744073709551615)
• Offered / Requested extent; this is the EOF lock

flags: 0 remote: 0x0 expref: -99 pid: 15549
• Same as before

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 16

RPC DEBUG line
00000100:00100000:0:1151097766.922030:2560:10953:0:
(service.c:618:ptlrpc_server_handle_request())
• Same as before

Handling RPC
• There is also:

> Handling, Handled (server),
> Sending, Completed (client)

pname:cluuid+ref:pid:xid:nid:opc
ll_ost_01:e89_lov1_d7d+2:11943:711921:12345-0@lo:400
• Handling/requesting process, client uuid ―

ref:process:xid:nidpid:opc

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 17

Log analysis tools

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 18

llanalyze.pl
• A compact 300 line tool

> Indent and color logs
> Extract features (e.g. locks, RPCs, one PID)
> Can relate calls among multiple logs to show RPC

patterns
• llanalyze.pl needs a maintainer

• llvisualize
> Written by people from Intel
> Very pretty output
> An order of magnitude bigger than llanalyze
> Probably in complete disrepair

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 19

Lock dumps

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 20

Lockdump
 --- Namespace: OSC_lin-cli1.cfs_ost12_MNT (rc: 3, client: 1)

> Locks granted by the OST to this OSC, refcount, ???
 --- Resource: cdf3dd80 (6164/0/0/0)

> Pointer, (object id/0/0/0) an extent in this namespace
 Granted locks:
 -- Lock dump: c6db4b80/0x8464f70ca0196783 (rc: 1)

> Lock pointer and local handle
 Node: NID 0@lo (rhandle: 0x8464f70ca01967c2)

> Lock servers nid, and the handle of the lock there
 Resource: cdf3dd80 (6164/0)

> Back pointer from lock to the resource
 Req mode: PR, grant mode: PR, rc: 1, read: 0, write: 0 flags:

0x100000
 Extent: 0 -> 18446744073709551615 (req 0-

18446744073709551615)
> Already discussed above

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 21

Stack traces

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 22

Stack traces
ll_mdt_rdpg_0 S 00000023 6484 11935 1 11936 11934 (L-TLB)

> What thread is this a stack of?

c2a3ff5c 00000046 e0c9613e 00000023 00000282 c2c82c30 0006ddc8 c010ae46
c2c82c30 00000000 c1405740 c1404de0 00000000 00003f3a 55784afa 0000cc68
c2c82c30 d50945b0 d509471c 00000000 c2a3ff80 ffffffff ffffffff 00000282

> This is register information, not used often

Call Trace:
 [<e0c9613e>] ptlrpc_server_free_request+0x20/0x1cc [ptlrpc]
 [<c010ae46>] do_gettimeofday+0x1a/0x9c
 [<e0c9914a>] ptlrpc_main+0x853/0xb79 [ptlrpc]
 [<c011d6d3>] default_wake_function+0x0/0xc
 [<e0c988ea>] ptlrpc_retry_rqbds+0x0/0xd [ptlrpc]
 [<c02d113a>] ret_from_fork+0x6/0x14
 [<e0c988ea>] ptlrpc_retry_rqbds+0x0/0xd [ptlrpc]
 [<e0c988f7>] ptlrpc_main+0x0/0xb79 [ptlrpc]
 [<c01041f5>] kernel_thread_helper+0x5/0xb

> As is commonly seen this stack trace is not 100% correct. This
thread is almost certainly waiting instead!

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 23

Generating traces - SysRq
• Sometimes the system does it for you

> Oops, LBUG, watchdog timers
• Sysrq

> /etc/sysctl.conf, add kernel.sysrq=1
> Operate with: echo t > /proc/sysrq-trigger

• SysRq-P (one stack trace) is usually uninteresting
• SysRq-T (all stack traces) is voluminous but very

useful
> Especially if a process is hung and wont make progress

• SysRq-M (memory info) is sometimes enlightening
> Is the system essentially out of memory?
> Are any of the counters impossible values?

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 24

crash/gdb – mcore/netdump

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 25

Crash
• Is a gdb extension with very convenient macros

> Macros can easily show all file handles etc.
– By hand this takes time

• Crash can operate on
> A live kernel
> An mcore dump – compact, very reliable, on the node
> A netdump – similar to mcore, over the wire, less

reliable

Lustre Internals Course v1.5 Copyright© 2008 Sun Microsystems, Inc. All Rights Reserved. 26

Other gdb debugging techniques
• Using kgdb with

> VMware
> Physical serial ports
> Ethernet – less reliable

• On the whole, kgdb is excellent for development

• Use gdb with UML
> UML is often difficult to get running
> Debugging is extremely convenient

27

THANK YOU

27

