
High Level Design of GSSPeter Braam, Eric MeiFeb 27, 20051 Requirements
• Support GSSAPI framework in lustre.
• Support kerberos 5 as a mechanism of GSSAPI.
• Support user authentication and integrity/privacy protection for ptlrpcmessages between clients and MDS's.Most of the design came from NFSv4 project, and so far quite similar.2 Functional Speci�cationFrom the whole picture, the newly added security facilities are actually add asecurity protection upon the ptlrpc connections between lustre nodes, tighlycoupled with ptlrpc functions, so logically it's a part of PTLRPC module. Butwe try to separate the API as much as possible, and make it below ptlrpc layer,thus to avoid any high level logic complication, such as recovery, etc.We choose to implement a general security API which utilized by ptlrpc toprotect their messages, and implement the original mechanism (without strongauthentication and message protection) as a instance of the security. Thus usercould still choose to not use strong security to achieve high performance.The �rst strong authentication mechanism we need support is Kerberos 5.It involves operations such as authenticating with KDC, some Kerberos internaldata structure parsing, etc. It's hard, and not necessary, to put everything intokernel. So we resort to user space daemons, which simply call kerberos librariesto accomplish those tasks.2.1 General security APIThe API is splitted into two parts: client and server. It's not lustre client andserver node, instead it is about ptlrpc connection: the client is the side whichsend out request is the client, which will later receive reply; and the other sideof ptlrpc connection is the server. So, currently all MDS's, OSS's and lustreclients could be both security server and client.1



2.1 General security API 2 FUNCTIONAL SPECIFICATIONFrom now on, the rpc request/reply message bu�ers will be managed bysecurity module, since di�erent security policy might require di�erent bu�erlayout/manipulation scheme. But it is transparent to rest of ptlrpc and upperlayer, the message bu�er pointers are all they know.2.1.1 Client side API
• Each ptlrpc_import must grab a security handler at the initialization.
• Each ptlrpc_request must hold a valid credential at �rst before doinganything.
• ptlrpc must call security API to allocate request bu�er before �lling intorequest data.
• ptlrpc must call security API to do message transform on request messagebefore send out.
• ptlrpc must call security API to alloc reply bu�er before really submit theRPC.
• ptlrpc must call security API to do message transform/verify on incomingreply message before parsing it.
• Each ptlrpc_request must drop the credential before be destroied.
• Each ptlrpc_import must release security handler before be destroied.So the main client side API are:/* import interaction */int ptlrpcs_import_get_sec(obd_import *imp);void ptlrpcs_import_drop_sec(obd_import *imp);/* credential APIs */int ptlrpcs_req_get_cred(ptlrpc_request *req);void ptlrpcs_req_drop_cred(ptlrpc_request *req);int ptlrpcs_req_refresh_cred(ptlrpc_request *req);/* buffer manipulation */int ptlrpcs_cli_alloc_reqbuf(ptlrpc_request *req,int msgsize);int ptlrpcs_cli_alloc_repbuf(ptlrpc_request *req,int msgsize);void ptlrpcs_cli_free_reqbuf(ptlrpc_request *req);void ptlrpcs_cli_free_repbuf(ptlrpc_request *req);/* rpc message transform */int ptlrpcs_cli_wrap_request(ptlrpc_request *req);int ptlrpcs_cli_unwrap_request(ptlrpc_request *req);2



2.2 Internal security API 2 FUNCTIONAL SPECIFICATIONFor all of them, return 0 means success, otherwise is error number.2.1.2 Server side API
• Each incoming request must go through security checking/transform be-fore be parsed.
• ptlrpc must call security API to allocate reply bu�er before �lling in replydata.
• Each reply must be performed transform before be sent out.
• Each ptlrpc_request must call security API to cleanup security relatedsta�.So the main server API are:/* security checking for each incoming request */int svcsec_accept(ptlrpc_request *req);/* perform transform on reply message */int svcsec_authorize(ptlrpc_request *req);/* alloc reply buffer */int svcsec_alloc_repbuf(ptlrpc_request *req,int msgsize);/* cleanup request */void svcsec_cleanup_req(ptlrpc_request *req);For all of them, return 0 means success, otherwise is error number.2.2 Internal security APIThe internal of security module could be devided into 2 layers. The upper levelis the general layer, which just de�ned several sets of functions and rules. In thelower layer, we can implement several di�erent security policies as the backendof the general layer. When an external API get called, this layer simply deliverthe control to approriate security backend to accomplish the real things.Correspond to external API, the internal function sets also are devided intoclient and server parts. At client side, there are mainly two types of securityobjects: �ptlrpc_sec� and �ptlrpc_cred�. At server side the main object are�ptlrpc_svcsec�.2.2.1 Client side: ptlrpc_secA ptlrpc_sec represent an instance of the whole security facility. Each obd_importmust hold a handle of a sec, and all following security activities associated with3



2.2 Internal security API 2 FUNCTIONAL SPECIFICATIONthe import will happen inside the context of this sec. Function sets de�nedby ptlrpc_sec are the basic security service which the security backend mustimplement, mainly are:
• Create and destroy a sec instance.
• Create a credential for a ptlrpc_request.
• Allocate and free request/reply bu�ers for a ptlrpc_request.
• The management of credential cache.So the main API are de�ned as:struct ptlrpc_secops {ptlrpc_sec * (*create_sec)(sec_flavor_t flavor);void (*destroy_sec) (ptlrpc_sec *sec);ptlrpc_cred * (*create_cred)(ptlrpc_sec *sec,ptlrpc_request *req,vfs_cred *cred);int (*alloc_reqbuf)(ptlrpc_sec *sec,ptlrpc_request *req,int msgsize);void (*free_reqbuf) (ptlrpc_sec *sec,ptlrpc_request *req);int (*alloc_repbuf)(ptlrpc_sec *sec,ptlrpc_request *req,int msgsize);void (*free_repbuf) (ptlrpc_sec *sec,ptlrpc_request *req);};2.2.2 Client side: ptlrpc_credA ptlrpc_cred represent a credential of a certain user. Each ptlrpc_requestmust hold a credential before doing anything. The function sets de�ned byptlrpc_cred must implement by each security backend, mainly are:
• Credential management.
• Security transform for a message.So the main API are de�ned as: 4



2.2 Internal security API 2 FUNCTIONAL SPECIFICATIONstruct ptlrpc_credops {/* credential management */int (*refresh) (ptlrpc_cred *cred);int (*match) (ptlrpc_cred *cred,ptlrpc_request *req,vfs_cred *vcred);void (*destroy) (ptlrpc_cred *cred);/* data transform for integrity protection */int (*sign) (ptlrpc_cred *cred,ptlrpc_request *req);int (*verify) (ptlrpc_cred *cred,ptlrpc_request *req);/* data transform for privacy protection */int (*seal) (ptlrpc_cred *cred,ptlrpc_request *req);int (*unseal) (ptlrpc_cred *cred,ptlrpc_request *req);};2.2.3 Server side: ptlrpc_svcsecA ptlrpc_svcsec represent an instance of the server side security facility. Itdose not need to be associated with certain export structure, since the securityservices are based on each incoming request, and no per-export status need tobe maintained. The function set de�ned by ptlrpc_svcsec must be implementedby each security backend, mainly are:struct ptlrpc_svcsec {/* security transform */int (*accept) (ptlrpc_request *req);int (*authorize)(ptlrpc_request *req);/* buffer manipulation */int (*alloc_repbuf)(ptlrpc_svcsec *svcsec,ptlrpc_request *req,int msgsize);void (*free_repbuf)(ptlrpc_svcsec *svcsec,ptlrpc_reply_state *rs);/* cleanup associated security staff */void (*cleanup_req)(ptlrpc_svcsec *svcsec,ptlrpc_request *req);}; 5



2.3 Security backend: NULL 2 FUNCTIONAL SPECIFICATION2.3 Security backend: NULLNULL represent �no security�, which is the simplest backend of the internalsecurity API. It implemented all the APIs described above, but nulli�ed all theoperations like authentication, credit management, message transform, etc. Soit's actually fallback to oringinal mode: no authenticaion, no message protection.So NULL security could be also considered as the proof of concept of the securityframework.2.4 Security backend: GSSGSS implemented a small part of GSSAPI in the kernel, with some changes tore�ect some rules of kernel programming. Like NULL security, GSS module is abackend of the general security framework, by implementing all internal securityAPI in gss speci�c way. At the same time, GSS itself is also an other level ofabstraction layer. It de�nes a set of functions and rules to be implemented byspeci�c security mechanism, like kerberos 5. The API roughly are as following.For each function, return 0 means success, otherwise is gss error code.struct gss_api_ops {/* context init/fini/query */u32 (*import_sec_ctxt)(rawobj_t *in_token,gss_ctx *ctx);u32 (*inquire_context)(gss_ctx *ctx,time_t endtime);u32 (*delete_sec_ctxt)(gss_ctx *ctx);/* msg integrity transform */u32 (*get_mic) (gss_ctx *ctx,rawobj_t *msg,rawobj_t *mic);u32 (*verify_mic) (gss_ctx *ctx,rawobj_t *msg,rawobj_t *mic);/* msg privacy transform */u32 (*wrap) (gss_ctx *ctx,rawobj_t *in_token,rawobj_t *out_token);u32 (*unwrap) (gss_ctx *ctx,rawobj_t *in_token,rawobj_t *out_token);};The above gss_api_ops which will be implemented by backend mechanism areall about message protection, no authentication functions included. This isbecause the authentication part is not suitable be put into kernel, we'll use user6



2.5 GSS mechanism: krb5 2 FUNCTIONAL SPECIFICATIONlevel daemons to accomplish it, and just tell kenel the �nal result of securitycontext, which will be notify the speci�c mechanism by import_sec_ctxt() ingss_api_ops set.There is no split upon the gss mechanism interface, they are equally on bothclient and server.The general GSS module implement the all common part for all mechanisms,such as:
• Interface with general security layer.
• Mechanism management (register/deregister, etc.). Select proper mecha-nism according to various conditions.
• Authentication initiation.
• Interaction with user space daemons.
• Security context cache & management.2.5 GSS mechanism: krb5The gss_krb5 module simply implemented gss_api_ops, mainly are:
• Generate & verify MIC for data bu�ers.
• Encrypt & Decrypt for data bu�ers.All transform upon data must conform to kerberos 5 standard.2.6 lgssd & lsvcgssdThere's two kind of user level daemons: lgssd running on every client nodes;lsvcgssd running on every server nodes. They mainly perform the part of au-thentication & security context establishment which is not suitable be put intokernel, as mentioned before. Each daemon should be �exible enough to dealwith di�erent kind of authentications, kerberos 5 is one of them.When needed, client gss module will issue request to lgssd, with informationabout who need authentication, what type of service, which target server. lgssddo all the things like authentication with authentication server, obtain securitytokens, and notify kernel the �nal result of security context.Server gss module will issue request to lsvcgssd, with information of thesecurity initialization data. lsvcgssd will verify the whether the request arevalid or not, compose a reply to client, and notify kernel the �nal result ofsecurity context.We obey the standard of GSSAPI, which require data exchange betweenserver and client during the context establishing phase. In our design lgssd andlsvcgssd will use in-kernel ptlrpc sta� to do data exchange instead of all in userspace. 7



2.7 User interface 3 USE CASES2.7 User interfaceThe only interface to users is the mount parameters. Mount will accept optionsto determine what kind of security policy will be forced on the connectionsbetween client and MDS's:-o sec=sec_flavor�sec_�avor� must be one of:
• null: NULL security mode.
• krb5i: kerberos 5 authentication with integrity protection on rpc messages.
• krb5p: kerberos 5 authentication with privacy protection on rpc messages.Without specify parameter �sec� means using default NULL security. On aclient, connections to each MDS must have the same security type.3 Use Cases3.1 NULL security case1. A user on a client access a lustre �le which lead to an rpc must be sent toMDS.2. Lustre client generate a ptlrpc_request, and call ptlrpcs_req_get_cred()to grab a cred.3. Generic sec module found a matched valid cred.4. Lustre client call ptlrpcs_cli_alloc_reqbuf() to allocate request bu�er.5. Generic sec module pass request to null_sec.6. null_sec allocate the bu�er, as normal way.7. Lustre client �ll in request data. and call ptlrpcs_cli_wrap_request().8. Generic sec module pass request to null_sec.9. null_sec do nothing and return.10. Lustre client call ptlrpcs_req_alloc_repbuf() to allocate reply bu�er.11. Generic sec module pass request to null_sec.12. null_sec allocate the bu�er, as normal way.13. Lustre client submit the rpc.14. MDS get the request, call svcsec_accept() to perform security checking.8



3.2 GSS/krb5 security case 1: �rst use 3 USE CASES15. Generic sec module pass request to null_svcsec.16. null_svcsec do nothing and return.17. MDS parse request, and pass to normal mds handler.18. MDS call svcsec_alloc_repbuf() to allocate reply bu�er.19. Generic svcsec module pass request to null_svcsec.20. null_svcsec allocate the bu�er, as normal way.21. MDS �ll in reply data, and call svcsec_authorize() to perform securitytransform.22. Generic svcsec module pass request to null_svcsec.23. null_svcsec do nothing and return.24. MDS send out the reply, call svcsec_cleanup_req() to do cleanup beforebe destroied.25. Generic svcsec module pass request for null_svcsec.26. null_svcsec do nothing and return.27. Lustre client get reply, call ptlrpcs_cli_unwrap_reply() to do securitytransform.28. Generic sec module pass request to null_sec.29. null_sec do nothing and return.30. Lustre client parse the reply, do proper things accordingly, call ptlrpcs_req_drop_cred()before be destroied.3.2 GSS/krb5 security case 1: �rst use1. Suppose a client has mounted as krb5 mode, lgssd and lsvcgssd runningon clients and servers.2. Alice on this client access a lustre �le at her �rst time, which lead to anrpc must be sent to MDS.3. Lustre client generate a ptlrpc_request, and call ptlrpcs_req_get_cred()to grab a cred.4. Generic sec module can't �nd a valid cred, create a new one for Alice, callinto gss_sec to refresh it.5. gss_sec send request to lgssd, with information of Alice's uid, service type,and target node. 9



3.2 GSS/krb5 security case 1: �rst use 3 USE CASES6. lgssd prepare the context initialization data, pass back to Lustre clientkernel.7. Lustre client kernel send the initialization data to MDS.8. MDS call svcsec_accept() into svcsec to handle the request.9. Generic svcsec module pass the request to gss_svcsec.10. gss_svcsec send the initialization data to lsvcgssd.11. lsvcgssd verify the incoming data, generate the security context for serverand reply message to client, pass down to MDS kernel.12. gss_svcsec install the server side context, by calling service of gss_krb5,and cache the context in the kernel. Finally send reply message back tolustre client.13. Lustre client get the reply, pass back to lgssd.14. lgssd verify the reply data, generate security context for client side, passdown to lustre client kernel.15. gss_sec install the context passed down. Now an security context betweenlustre client and MDS has been established, which will be represented bya valid cred on lustre client.16. Lustre client call ptlrpcs_cli_alloc_reqbuf() to allocate request bu�er.17. Generic sec module pass request to gss_sec.18. gss_sec allocate the bu�er, according to the speci�c security service type.19. Lustre client �ll in request data. and call ptlrpcs_cli_wrap_request().20. Generic sec module pass request to gss_sec.21. gss_sec pass request to gss_krb5.22. gss_krb5 sign or encrypt the message.23. Lustre client call ptlrpcs_req_alloc_repbuf() to allocate reply bu�er.24. Generic sec module pass request to gss_sec.25. gss_sec allocate the bu�er, according to the speci�c security service type.26. Lustre client submit the rpc.27. MDS get the request, call svcsec_accept() to perform security checking.28. Generic sec module pass request to gss_svcsec.10



3.3 GSS/krb5 security case 2: normal use 3 USE CASES29. gss_svcsec parse the incoming request, �nd corresponding cached context.Then call service of gss_krb5 to verify the message.30. gss_krb5 decrypt or verify the incoming message.31. MDS parse request, and pass to normal mds handler.32. MDS call svcsec_alloc_repbuf() to allocate reply bu�er.33. Generic svcsec module pass request to gss_svcsec.34. gss_svcsec allocate the bu�er, according to the speci�c security servicetype.35. MDS �ll in reply data, and call svcsec_authorize() to perform securitytransform.36. Generic svcsec module pass request to gss_svcsec.37. gss_svcsec call service of gss_krb5.38. gss_krb5 sign or encrypt the reply message.39. MDS send out the reply, call svcsec_cleanup_req() to do cleanup beforebe destroied.40. Generic svcsec module pass request for gss_svcsec.41. gss_svcsec cleanup the security related stu�.42. Lustre client get reply, call ptlrpcs_cli_unwrap_reply() to do securitytransform.43. Generic sec module pass request to gss_sec.44. gss_sec call service of gss_krb5.45. gss_krb5 verify or decrypt reply message.46. Lustre client parse the reply, do proper things accordingly, call ptlrpcs_req_drop_cred()before be destroied.3.3 GSS/krb5 security case 2: normal use1. Suppose security context has been established for Alice, i.e. she has eversuccessfully accessed lustre �lesystem.2. Alice on this client access a lustre �le again, which lead to an rpc must besent to MDS.3. The event sequence is the same as in 3.2, except there's no context ini-tialization procedure anymore because we can �nd the security context inkernel cache. Which means no interaction with user space daemons areneeded for the whole procedure. 11



3.4 GSS/krb5 security case 3: destroy 3 USE CASES3.4 GSS/krb5 security case 3: destroy1. Suppose security context has been established for Alice, i.e. she has eversuccessfully accessed lustre �lesystem.2. Alice before logout, tell lustre kernel to �ush her security context.3. gss_sec �nd Alice's contexts, for each of them send destroy noti�cationrpc to MDS.4. MDS get the requests, hand to svcsec by calling svcsec_accept().5. Generic svcsec module pass the request to gss_svcsec.6. gss_svcsec �nd cached contexts for each request, destroy them, and sendback replies.7. gss_sec get the replies, also destroy local cached context.3.5 0-conf mount and umount, in GSS/krb5 mode1. root on a client mount lustre by: mount -t lustre -o sec=krb5pmds1:/mds1/client/mnt/lustre2. Lustre client prepare an import to MDS, create a ptlrpc_sec associatedwith the import.3. Lustre client prepare MDS_CONNECT rpc to MDS.4. A security context initialize procedure for root will be done.5. Lustre client send MDS_CONNECT request to MDS, and got reply.6. Lustre client fetch the client startup log from MDS.7. Lustre client destroy the import, which lead to procedure of destroyingthe existing security context.8. Lustre replay the startup log, which will constrct new connections toMDS's, and lead to security context be established accordingly.9. Mount �nish successfully.10. root do umount by : umount /mnt/lustre11. Lustre client prepare another import to MDS, create a ptlrpc_sec associ-ated with the import.12. Lustre client prepare MDS_CONNECT message to MDS.13. A security context initialize procedure for root will be done.14. Lustre client send MDS_CONNECT request to MDS, and got reply.12



3.6 GSS/krb5 context expiration 3 USE CASES15. Lustre client fetch the client shutdown log from MDS.16. Lustre client destroy the import, which lead to procedure of destroyingthe existing security context.17. Lustre replay the shutdown log, which will destruct all connections toMDS's, and lead to security context be destroied accordingly.18. Umount �nish successfully.3.6 GSS/krb5 context expiration1. Suppose security context has been established for Alice, i.e. she has eversuccessfully accessed lustre �lesystem.2. Some time later, Alice's context on MDS expired, and be destroied.3. Alice on this client access a lustre �le again, which lead to an rpc be sentto MDS.4. MDS failed to �nd the context, send error reply back.5. Lustre client drop the context, re-establish a new context.6. Lustre client resent former rpc with the new context.7. The rpc �nish successfully.3.7 GSS/krb5 client reboot1. A client reboot, remount lustre �lesystem or not.2. MDS's will keep the old security contexts, since they'v no idea whetherthe corresponding contexts on client exist or not.3. Later those context expired and then be destroied.3.8 MDS reboot and recovery1. A MDS crashed and re-setup.2. A gss/krb5 client send a request as normal.3. MDS can't �nd proper security context, send back error reply.4. The client drop the old context, re-establish a new security context withthe MDS.5. The client re-send former rpc with the new context.6. MDS return ENOTCONN, thus initiate recovery procedure.13



4 LOGIC SPECIFICATION4 Logic Speci�cation4.1 Wire data formatSecurity subsystem know nothing about the internal structure of lustre_msg,but prepend a security header to every on-wire ptlrpc packet:struct ptlrpcs_wire_hdr {u32 secflavor; /* NULL/GSS */u32 sectype; /* none/integrity/privacy */u32 msg_len; /* length of lustre message */u32 sec_len; /* length of security payload */};All �elds are stored in little-endian format. The layout of every on-wire packetwill be:struce wire_packet {ptlrpc_wire_hdr; /* 16 bytes */lustre_msg; /* 0 - any bytes */security_payload; /* 0 - any bytes */};
• In NULL security mode, the security payload is always 0 bytes.
• In gss security mode, the security payload is always non-zero bytes.
• In gss/privacy mode, the lustre_msg is always 0 bytes, because they havebeen encoded into the security payload section.
• At any cases, the whole packet must be 8-bytes aligned.Right now only gss have security payload. Each security payload start with agss header:struct gss_wire_hdr {u32 version; /* GSS version */u32 proc; /* procedure */u32 seq; /* sequence number */u32 svc; /* service */};All �elds are stored in little-endian format. �proc� means gss control procedure,could be INIT, INIT_CONTINUE, DATA, DESTROY, etc. �seq� is for thesequence number checking algorithm from RFC 2203, to prevent replay attack.The whole security payload format will be:

14



4.2 GSS context 4 LOGIC SPECIFICATIONstruct gss_security_payload {gss_wire_hdr;context_handle;mech_payload;};The �context_handle� is let the server �nd proper security context cached. The�mech_payload� is the actual signature or ciphertext made by speci�c gss mech-anism, which is transparent to generic gss layer.4.2 GSS contextThe gss context is divided into two parts: generic gss context and mechanismspeci�c context. The generic part is in fact quite simple, but not symmetric forclient and server. On the client side, they mainly are:
• Control procedure. Could be INIT, DATA, etc.
• Sequence number.
• Peer context handle. This will be sent to server in each request, used byserver to address the correponding context.On the server side, they mainly are the facility to implement sequence numberalgorithm. The purpose is to prevent replay attack: Suppose a bad guy couldeavesdrop the network, and record an rpc packet transfered across the network,and some time later re-send the packet again to the same machine. In this casethe target machine should be able to detect this is an replay attack and drop it.The mechanism speci�c context could only be interpreted and used by certaingss mechanism. They are generated by lgssd or lsvcgssd and then installed inthe kernel. For gss_krb5 mechanism, they are mainly:
• Algorithm used in signature/veri�cation.
• Algorithm used in encryption/decryption.
• Valid time.
• Other krb5 speci�c sta�.4.3 gss context creation and managementThe rpc implementation in standard 2.6 kernel contains a general cache andupcall code, which is used by NFSv4 server to interact with server side daemonand cache security context in the kernel; And �rpc_pipefs� mechanism whichallow kernel communicate with user space as message basis, NFSv4 client use itto interact with client side daemon. At this part we follow what NFSv4 does,and even use the server cache and rpc_pipefs at extact the same way as whatNFSv4 use them. Please refers to NFSv4 implementation for the whole details,here we only outline the basics. 15



4.4 lgssd and lsvcgssd 4 LOGIC SPECIFICATION4.3.1 Security clientAt client side, rpc_pipefs is required to be mounted, usually at /var/lib/nfs/rpc_pipefs.When each instance of ptlrpc_sec is created, an pipe which is the outlet to userdaemon will also be created in the pipefs.When in-kernel gss is asked to create security context for certain user, itsimply pump an simple message, which contains uid, service name, target uuid,target nid, etc. into pipe, and wait for the reply from user space. The correctreply will contains:
• General gss context. This will be installed in generic gss layer.
• Mechanism speci�c context. GSS will call mechanism's import_sec_context()to install into mechanism layer.Each ptlrpc_sec structure contains a context hash table, each context entryhas it's own expire time. Expired entry will be dropped once be found expired.When we drop a valid context by force, an noti�cation RPC will be sent toserver to also destroy server side of the context. The whole client side cachemanagement will be quite simple and straightforward.4.3.2 Security serverAn �nfsd� �lesystemmust be mounted at /proc/fs/nfsd, which is to communicatebetween user space and kernel. This require NFSv4 muct be enabled in thekernel.We use the general cache management code provided by rpc. The interactionbetween gss and cache is roughly as:
• We need implement two kinds of cache type in the framework of generalcache manager: one for context intialization, one for context. They areall about de�ne how to submit request and parse reply.
• When an context initialize request comes in, gss generate a context initcache entry, assoiated with the request data, submit to cache manager.Then wait for the reply.
• Cache manager will create an context cache entry, reply the entry handlerto GSS. And submit all data to user space daemon.
• Then GSS will wait until the context entry is �lled.4.4 lgssd and lsvcgssdSince we only support kerberos 5 as the mechanism of GSS, all following dis-cussions are assuming krb5 case. Both daemons are built on GSSAPI, whichmeans they call service of gssapi to negotiate security context. So on both sides,user space GSSAPI enviroment must be properly con�gured, mostly of whichis con�gure kerberos 5 as the mechanism of GSSAPI. The GSSAPI library is16



4.5 RPC of security initialization 4 LOGIC SPECIFICATIONusually static library, must be prepared when build lgssd and lsvcgssd, but notnecessary for running lgssd and lsvcgssd.Beside GSSAPI, our daemons, especially lgssd, will exploit some features ofkerberos 5 directly, so kerberos 5 development enviroment must also be properlycon�gured.4.4.1 lgssdEach client node will have one lgssd running. It constantly monitor the changeand event at certain directory in rpc_pipefs. When lgssd got an context ini-tialize request from rpc_pipefs, it at �rst compose the service pincipal, e.g.�lustre_mds@CN.CFS�. Then �nd out whether there's already cached ticket ofit for this user. If not found, then obtain the ticket from KDC, using kerberos 5API. This require that node already have kerberos 5 TGT cached. If succeefullygot the new ticket, lgssd will also cache it locally.After that, lgssd call GSSAPI init_sec_context() to prepare the initializerequest data, then pass down to kerenl which will in turn send to server. Inkerberos 5 case, only one data exchange is needed for initial negotieation. Sothe reply either contains error noti�cation, or GSSAPI speci�c reply data. lgssdwill parse the reply, form the suitable context and passdown to kernel.Note that the lgssd must know certain internal strucutre of gss and kerberos5 to be able to parse the reply.4.4.2 lsvcgssdAt startup, lsvcgssd will prepare it's service credential, which is about parsekerberos 5 service keytab, prepare for the service. And enter a loop to monitorevent of nfsd �lesystem. When a request comes up, it read the incoming gssrequest, and pass into GSSAPI accept_sec_context(), which will check therequest using service credential. If succeed, the server side context and gssreply to client will be generated. lsvcgssd will pass all of them into kernel,which will in turn install the server side context and send the rest to client.Note lsvcgssd also must know certain internal structure of gss the kerberos 5.4.5 RPC of security initializationThe security context negotiation is done by kernel ptlrpc layer. But this RPC isspecial because all other normal RPCs will go through series of security check-ing/transform which is not needed for this one. So we treat it as raw RPC andinitiate it by:int ptlrpc_do_rawrpc(struct obd_import *imp,char *reqbuf, int reqlen,char *repbuf, int replen,int timeout);17



4.6 Krb5 mechanism 5 STATE MANAGEMENTIt simply send �reqlen� of �reqbuf� to destination described by peer of �imp�,and got maximum �replen� of reply into �repbuf�. ptlrpc_do_rawrpc() usesome ptlrpc facilities like callback/wakeup, etc, but will not trigger any recoveryprocess since we consider the whole initialize procedure is happen underlyingthe ptlrpc layer.4.6 Krb5 mechanismThis module is a backend of in-kernel GSS. It's all about the details of how tosign/verify and encrypt/decrypt messages in kerberos 5 standard way. We alsofollow what NFSv4 does, so please refers to NFSv4 implementation for detials.As of NFSv4, currently we only support DES and MD5 Algorithm.4.7 Reverse RPCThe procedure of establishing gss context is complex as we described. Clientneed to obtain kerberos ticket, while server need to be installed an servicekeytab. In most cases, the server side of security activity is the lustre server,e.g. MDS, and client is the lustre client. But some RPCs, e.g. LDLM ASTs,some llog RPCs, are initiated by lustre server node. Apparently we can't usethe same procedure to initialize security context for those reverse connections.It looks not good to use any context which already be established betweenclient and server, since those contexts could be expired or dropped at anytime,and AST rpc is crucial in lustre, fail to send out will lead to client be evicted.So the reverse context must be always valid. And the situation is made morecomplex by the fact that a key will be considered insecure if it is used to encrypttoo many messages.Currently we force all reverse connections use NULL security, which is alwaysvalid but of course not secure. Although AST and llog RPC itself didn't containsany con�dential of user message, but malicious users might use fake rpc packetto attack lustre �lesystem. Later we may have to design a secure way for reverseconnection.5 State Management5.1 Impact on recoveryWe try to put the security part under the layer of ptlrpc, to avoid disturbingrecovery procedure. There's some consideration here:
• Client initiate the security negotiation using �raw rpc�, to avoid any re-covery related sta�.
• Server handle the negotiation request without trigger any ptlrpc recoverysta�. 18



5.2 Prerequisite on server and client 6 ALTERNATIVES
• Sometime client might get reply of server that the security context isinvalid, after the context is re-established, client need send the originalrequest again. In this case, client need make sure this request is sent as itwas, especially without changing any �ags like RESENT, etc.5.2 Prerequisite on server and clientSecurity identities on lustre client side is based users. Each user want to accesslustre �lesystem must at �rst authenticate with authentication server, which isKDC in kerberos case, and cache the credential locally. Lustre client use cachedcredential of appropriate user to authenticate with MDS.On lustre server side the identities is based on service. In Kerberos 5 case, weneed create a service principal, and create a kaytab for it. The kaytab is usuallya regular �le stored on disk, and must be installed/parsed before providing anyservices.All lustre clients must have lgssd running, while all MDS's must have lsvcgssdrunning.5.3 GSS context pairsThere will be a lot of gss contexts be established in a typical lustre system.Each user on each lustre client will have a gss context to each MDS. If we useGSS also in client-OSS, MDS-OSS or inter MDS's, the number will be evenmuch bigger. Suppose we setup a large cluster, the time of mounting tens ofthousands of client will be much longer.5.4 OthersNo disk format changes. No changes on current network API.6 Alternatives
• Now the null security is at the same layer as gss: both are two securitypolicies under framework of generic security API. It _might_ be possibleto remove the generic security API, and make gss be the generic layer, andimplement null security as a special mechanism of gss. This could reducethe security layering by one.
• Currently at client side, each import has an ptlrpc_sec, which containshash table of cached contexts. Probably we can use a single large pool ofcontext cache for the whole client, just like single hash table for cachedcontexts at server side.

19



7 FOCUS OF INSPECTION7 Focus of Inspection
• Are there oversights on recovery issue?
• How could the gss scheme scale?
• What's thought about reverse import?
• What impact on us to use NFSv4 sta�, both in-kernel cache/rpc_pipefsand user space daemons?

20


