High Level Design of GSS

Peter Braam, Eric Mei

Feb 27, 2005

1 Requirements

e Support GSSAPI framework in lustre.
e Support kerberos 5 as a mechanism of GSSAPI.

e Support user authentication and integrity/privacy protection for ptlrpc
messages between clients and MDS'’s.

Most of the design came from NFSv4 project, and so far quite similar.

2 Functional Specification

From the whole picture, the newly added security facilities are actually add a
security protection upon the ptlrpc connections between lustre nodes, tighly
coupled with ptlrpc functions, so logically it’s a part of PTLRPC module. But
we try to separate the API as much as possible, and make it below ptlrpc layer,
thus to avoid any high level logic complication, such as recovery, etc.

We choose to implement a general security API which utilized by ptlrpc to
protect their messages, and implement the original mechanism (without strong
authentication and message protection) as a instance of the security. Thus user
could still choose to not use strong security to achieve high performance.

The first strong authentication mechanism we need support is Kerberos 5.
It involves operations such as authenticating with KDC, some Kerberos internal
data structure parsing, etc. It’s hard, and not necessary, to put everything into
kernel. So we resort to user space daemons, which simply call kerberos libraries
to accomplish those tasks.

2.1 General security API

The API is splitted into two parts: client and server. It’s not lustre client and
server node, instead it is about ptlrpc connection: the client is the side which
send out request is the client, which will later receive reply; and the other side
of ptlrpc connection is the server. So, currently all MDS’s, OSS’s and lustre
clients could be both security server and client.



2.1 General security API 2 FUNCTIONAL SPECIFICATION

From now on, the rpc request/reply message buffers will be managed by
security module, since different security policy might require different buffer
layout/manipulation scheme. But it is transparent to rest of ptlrpc and upper
layer, the message buffer pointers are all they know.

2.1.1 Client side API

Each ptlrpc__import must grab a security handler at the initialization.

Each ptlrpc_request must hold a valid credential at first before doing
anything.

ptlrpc must call security API to allocate request buffer before filling into
request data.

ptlrpc must call security API to do message transform on request message
before send out.

ptlrpc must call security API to alloc reply buffer before really submit the
RPC.

ptlrpc must call security API to do message transform /verify on incoming
reply message before parsing it.

Each ptlrpc_request must drop the credential before be destroied.

Each ptlrpc_import must release security handler before be destroied.

So the main client side API are:

/* import interaction */
int ptlrpcs_import_get_sec(obd_import *imp);
void ptlrpcs_import_drop_sec(obd_import *imp);

/* credential APIs */

int ptlrpcs_req_get_cred(ptlrpc_request *req);
void ptlrpcs_req_drop_cred(ptlrpc_request *req);
int ptlrpcs_req_refresh_cred(ptlrpc_request *req);

/* buffer manipulation */

int ptlrpcs_cli_alloc_reqbuf (ptlrpc_request *req,
int msgsize);

int ptlrpcs_cli_alloc_repbuf(ptlrpc_request *req,
int msgsize);

void ptlrpcs_cli_free_reqbuf (ptlrpc_request *req);

void ptlrpcs_cli_free_repbuf (ptlrpc_request *req);

/* rpc message transform */
int ptlrpcs_cli_wrap_request(ptlrpc_request *req);
int ptlrpcs_cli_unwrap_request(ptlrpc_request *req);



2.2 Internal security API 2 FUNCTIONAL SPECIFICATION

For all of them, return 0 means success, otherwise is error number.

2.1.2 Server side API

e Each incoming request must go through security checking/transform be-
fore be parsed.

e ptlrpc must call security API to allocate reply buffer before filling in reply
data.

e Each reply must be performed transform before be sent out.

e Each ptlrpc_request must call security API to cleanup security related
staff.

So the main server API are:

/* security checking for each incoming request */
int svcsec_accept(ptlrpc_request *req);

/* perform transform on reply message */
int svcsec_authorize(ptlrpc_request *req);

/* alloc reply buffer */
int svcsec_alloc_repbuf (ptlrpc_request *req,
int msgsize);

/* cleanup request */
void svcsec_cleanup_req(ptlrpc_request *req);

For all of them, return 0 means success, otherwise is error number.

2.2 Internal security API

The internal of security module could be devided into 2 layers. The upper level
is the general layer, which just defined several sets of functions and rules. In the
lower layer, we can implement several different security policies as the backend
of the general layer. When an external API get called, this layer simply deliver
the control to approriate security backend to accomplish the real things.

Correspond to external API, the internal function sets also are devided into
client and server parts. At client side, there are mainly two types of security
objects: “ptlrpc_sec” and “ptlrpc_cred”. At server side the main object are
“ptlrpc_ svesec”.

2.2.1 Client side: ptlrpc_sec

A ptlrpce__sec represent an instance of the whole security facility. Each obd _import
must hold a handle of a sec, and all following security activities associated with



2.2 Internal security API 2 FUNCTIONAL SPECIFICATION

the import will happen inside the context of this sec. Function sets defined
by ptlrpc_sec are the basic security service which the security backend must
implement, mainly are:

e Create and destroy a sec instance.
e Create a credential for a ptlrpc_request.
e Allocate and free request/reply buffers for a ptlrpc_request.

e The management of credential cache.
So the main API are defined as:

struct ptlrpc_secops {
ptlrpc_sec * (*create_sec)
(sec_flavor_t flavor);
void (*destroy_sec) (ptlrpc_sec *sec);

ptlrpc_cred * (*create_cred)
(ptlrpc_sec *sec,
ptlrpc_request *req,
vis_cred *cred);

int (*alloc_reqgbuf) (ptlrpc_sec *sec,
ptlrpc_request *req,
int msgsize);

void (*free_regbuf) (ptlrpc_sec *sec,
ptlrpc_request *req);

int (*alloc_repbuf) (ptlrpc_sec *sec,
ptlrpc_request *req,
int msgsize);

void (*free_repbuf) (ptlrpc_sec *sec,
ptlrpc_request *req);

s

2.2.2 Client side: ptlrpc_cred

A ptlrpc__cred represent a credential of a certain user. Each ptlrpc_request
must hold a credential before doing anything. The function sets defined by
ptlrpc_cred must implement by each security backend, mainly are:

e Credential management.

e Security transform for a message.

So the main API are defined as:



2.2 Internal security API 2 FUNCTIONAL SPECIFICATION

struct ptlrpc_credops {
/* credential management */
int (xrefresh) (ptlrpc_cred *cred);
int (*match) (ptlrpc_cred *cred,
ptlrpc_request *req,
vfs_cred *vcred);
void (*destroy) (ptlrpc_cred *cred);

/* data transform for integrity protection */

int (*sign) (ptlrpc_cred *cred,
ptlrpc_request *req);

int (xverify) (ptlrpc_cred *cred,
ptlrpc_request *req);

/* data transform for privacy protection */

int (*seal) (ptlrpc_cred *cred,
ptlrpc_request *req);

int (xunseal) (ptlrpc_cred *cred,
ptlrpc_request *req);

s

2.2.3 Server side: ptlrpc_svcsec

A ptlrpc_svesec represent an instance of the server side security facility. It
dose not need to be associated with certain export structure, since the security
services are based on each incoming request, and no per-export status need to
be maintained. The function set defined by ptlrpc_svcsec must be implemented
by each security backend, mainly are:

struct ptlrpc_svcsec {
/* security transform */
int (xaccept) (ptlrpc_request *req);
int (xauthorize) (ptlrpc_request *req);

/* buffer manipulation */
int (*alloc_repbuf) (ptlrpc_svcsec *svcsec,
ptlrpc_request *req,
int msgsize);
void (*free_repbuf) (ptlrpc_svcsec *svcsec,
ptlrpc_reply_state *rs);

/* cleanup associated security staff */
void (*cleanup_req) (ptlrpc_svcsec *svcsec,
ptlrpc_request *req);



2.3 Security backend: NULL 2 FUNCTIONAL SPECIFICATION

2.3 Security backend: NULL

NULL represent “no security”, which is the simplest backend of the internal
security APL It implemented all the APIs described above, but nullified all the
operations like authentication, credit management, message transform, etc. So
it’s actually fallback to oringinal mode: no authenticaion, no message protection.
So NULL security could be also considered as the proof of concept of the security
framework.

2.4 Security backend: GSS

GSS implemented a small part of GSSAPI in the kernel, with some changes to
reflect some rules of kernel programming. Like NULL security, GSS module is a
backend of the general security framework, by implementing all internal security
API in gss specific way. At the same time, GSS itself is also an other level of
abstraction layer. It defines a set of functions and rules to be implemented by
specific security mechanism, like kerberos 5. The API roughly are as following.
For each function, return 0 means success, otherwise is gss error code.

struct gss_api_ops {
/* context init/fini/query */
u32 (*import_sec_ctxt) (rawobj_t *in_token,
gSsS_ctx  *ctx);
u32 (*inquire_context) (gss_ctx *ctx,
time_t endtime) ;
u32 (*delete_sec_ctxt) (gss_ctx *ctx);

/* msg integrity transform */

u32 (*get_mic) (gss_ctx *ctx,
rawobj_t *msg,
rawobj_t *mic);

u32 (xverify_mic) (gss_ctx *ctx,
rawobj_t *msg,
rawobj_t *mic);

/* msg privacy transform */

u32 (*wrap) (gss_ctx *ctx,
rawobj_t *in_token,
rawobj_t *out_token);

u32 (*unwrap) (gss_ctx *ctx,
rawobj_t *in_token,
rawobj_t *out_token);

};

The above gss_api_ops which will be implemented by backend mechanism are
all about message protection, no authentication functions included. This is
because the authentication part is not suitable be put into kernel, we’ll use user



2.5 GSS mechanism: krb5 2 FUNCTIONAL SPECIFICATION

level daemons to accomplish it, and just tell kenel the final result of security
context, which will be notify the specific mechanism by import sec ctxt() in
gss_api_ops set.

There is no split upon the gss mechanism interface, they are equally on both
client and server.

The general GSS module implement the all common part for all mechanisms,
such as:

e Interface with general security layer.

e Mechanism management (register/deregister, etc.). Select proper mecha-
nism according to various conditions.

Authentication initiation.

Interaction with user space daemons.

Security context cache & management.

2.5 GSS mechanism: krb5

The gss_krb5 module simply implemented gss _api_ops, mainly are:
e Generate & verify MIC for data buffers.

e Encrypt & Decrypt for data buffers.

All transform upon data must conform to kerberos 5 standard.

2.6 lgssd & lIsvcgssd

There’s two kind of user level daemons: lgssd running on every client nodes;
Isvegssd running on every server nodes. They mainly perform the part of au-
thentication & security context establishment which is not suitable be put into
kernel, as mentioned before. Each daemon should be flexible enough to deal
with different kind of authentications, kerberos 5 is one of them.

When needed, client gss module will issue request to lgssd, with information
about who need authentication, what type of service, which target server. lgssd
do all the things like authentication with authentication server, obtain security
tokens, and notify kernel the final result of security context.

Server gss module will issue request to lsvegssd, with information of the
security initialization data. lsvcgssd will verify the whether the request are
valid or not, compose a reply to client, and notify kernel the final result of
security context.

We obey the standard of GSSAPI, which require data exchange between
server and client during the context establishing phase. In our design lgssd and
Isvegssd will use in-kernel ptlrpe staff to do data exchange instead of all in user
space.



2.7 User interface 3 USE CASES

2.7 User interface

The only interface to users is the mount parameters. Mount will accept options
to determine what kind of security policy will be forced on the connections
between client and MDS’s:

-o sec=sec_flavor
“sec_flavor” must be one of:
e null: NULL security mode.
e krbbi: kerberos 5 authentication with integrity protection on rpc messages.
e krb5p: kerberos 5 authentication with privacy protection on rpc messages.

Without specify parameter “sec” means using default NULL security. On a
client, connections to each MDS must have the same security type.

3 Use Cases

3.1 NULL security case

1. A user on a client access a lustre file which lead to an rpc must be sent to
MDS.

2. Lustre client generate a ptlrpc_request, and call ptlrpes_req  get  cred()
to grab a cred.

. Generic sec module found a matched valid cred.
. Lustre client call ptlrpes_cli_alloc_regbuf() to allocate request buffer.
. Generic sec module pass request to null _sec.

. null _sec allocate the buffer, as normal way.

~N O Ot s W

. Lustre client fill in request data. and call ptlrpes_cli_wrap _request().

o

. Generic sec module pass request to null _sec.
9. null sec do nothing and return.
10. Lustre client call ptlrpes_req allocrepbuf() to allocate reply buffer.
11. Generic sec module pass request to null _sec.
12. null _sec allocate the buffer, as normal way.
13. Lustre client submit the rpc.

14. MDS get the request, call svesec _accept() to perform security checking.



3.2

GSS/krb5 security case 1: first use 3 USE CASES

15.
16.
17.
18.
19.
20.
21.

22.
23.
24.

25.
26.
27.

28.
29.
30.

3.2

Generic sec module pass request to null _svesec.

null _svcsec do nothing and return.

MDS parse request, and pass to normal mds handler.
MDS call svesec _alloc_repbuf() to allocate reply buffer.
Generic svesec module pass request to null _svesec.

null _svcsec allocate the buffer, as normal way.

MDS fill in reply data, and call svesec authorize() to perform security
transform.

Generic svesec module pass request to null _svesec.
null svcsec do nothing and return.

MDS send out the reply, call sveseccleanup req() to do cleanup before
be destroied.

Generic svesec module pass request for null _svesec.
null svcsec do nothing and return.

Lustre client get reply, call ptlrpcs cli_ unwrap reply() to do security
transform.

Generic sec module pass request to null _sec.

null sec do nothing and return.

Lustre client parse the reply, do proper things accordingly, call ptlrpcs_req drop cred()

before be destroied.

GSS/krb5 security case 1: first use

. Suppose a client has mounted as krb5 mode, lgssd and lsvcgssd running

on clients and servers.

. Alice on this client access a lustre file at her first time, which lead to an

rpc must be sent to MDS.

. Lustre client generate a ptlrpc_request, and call ptlrpes_req get cred()

to grab a cred.

. Generic sec module can’t find a valid cred, create a new one for Alice, call

into gss_ sec to refresh it.

. gss_sec send request to lgssd, with information of Alice’s uid, service type,

and target node.



3.2 GSS/krb5 security case 1: first use 3 USE CASES
6. lgssd prepare the context initialization data, pass back to Lustre client
kernel.
7. Lustre client kernel send the initialization data to MDS.
8. MDS call svesec_accept() into svesec to handle the request.
9. Generic svesec module pass the request to gss svcesec.

10. gss_svcesec send the initialization data to lsvegssd.

11. Isvegssd verify the incoming data, generate the security context for server
and reply message to client, pass down to MDS kernel.

12. gss_svcesec install the server side context, by calling service of gss krb5,
and cache the context in the kernel. Finally send reply message back to
lustre client.

13. Lustre client get the reply, pass back to lgssd.

14. 1gssd verify the reply data, generate security context for client side, pass
down to lustre client kernel.

15. gss_sec install the context passed down. Now an security context between
lustre client and MDS has been established, which will be represented by
a valid cred on lustre client.

16. Lustre client call ptlrpes _cli alloc_reqbuf() to allocate request buffer.

17. Generic sec module pass request to gss_sec.

18. gss_sec allocate the buffer, according to the specific security service type.

19. Lustre client fill in request data. and call ptlrpes _cli_ wrap request().

20. Generic sec module pass request to gss_sec.

21. gss_sec pass request to gss krbb.

22. gss_krbb sign or encrypt the message.

23. Lustre client call ptlrpes_req alloc_repbuf() to allocate reply buffer.

24. Generic sec module pass request to gss_sec.

25. gss_sec allocate the buffer, according to the specific security service type.

26. Lustre client submit the rpc.

27. MDS get the request, call svesec accept() to perform security checking.

28. Generic sec module pass request to gss svcsec.

10



3.3

GSS/krbb security case 2: normal use 3 USE CASES

29.

30.
31.
32.
33.
34.

35.

36.
37.
38.
39.

40.
41.
42.

43.
44.
45.
46.

gss_svesec parse the incoming request, find corresponding cached context.
Then call service of gss krb5 to verify the message.

gss_krb5 decrypt or verify the incoming message.

MDS parse request, and pass to normal mds handler.
MDS call svesec _alloc_repbuf() to allocate reply buffer.
Generic svesec module pass request to gss_svcsec.

gss_svesec allocate the buffer, according to the specific security service
type.

MDS fill in reply data, and call svcsec authorize() to perform security
transform.

Generic svesec module pass request to gss_svesec.
gss_svesec call service of gss  krb5.
gss__krb5 sign or encrypt the reply message.

MDS send out the reply, call sveseccleanup req() to do cleanup before
be destroied.

Generic svesec module pass request for gss svesec.
gss_svesec cleanup the security related stuff.

Lustre client get reply, call ptlrpcs_cli_unwrap reply() to do security
transform.

Generic sec module pass request to gss_sec.
gss_sec call service of gss krb5.

gss__krb5 verify or decrypt reply message.

Lustre client parse the reply, do proper things accordingly, call ptlrpcs _req drop cred()

before be destroied.

GSS/krb5 security case 2: normal use

. Suppose security context has been established for Alice, i.e. she has ever

successfully accessed lustre filesystem.

. Alice on this client access a lustre file again, which lead to an rpc must be

sent to MDS.

. The event sequence is the same as in 3.2, except there’s no context ini-

tialization procedure anymore because we can find the security context in
kernel cache. Which means no interaction with user space daemons are
needed for the whole procedure.

11



3.4

GSS/krb5 security case 3: destroy 3 USE CASES

3.4

10.
11.

12.
13.
14.

GSS/krb5 security case 3: destroy

. Suppose security context has been established for Alice, i.e. she has ever

successfully accessed lustre filesystem.

. Alice before logout, tell lustre kernel to flush her security context.

. gss_sec find Alice’s contexts, for each of them send destroy notification

rpc to MDS.

. MDS get the requests, hand to svcsec by calling svesec accept().
. Generic svcsec module pass the request to gss_svcsec.

. gss_svcesec find cached contexts for each request, destroy them, and send

back replies.

. gss_sec get the replies, also destroy local cached context.

0-conf mount and umount, in GSS/krb5 mode

. root on a client mount lustre by: mount -t lustre -o sec=krb5p mds1:/mdsl1/client

/mnt /lustre

. Lustre client prepare an import to MDS, create a ptlrpc_sec associated

with the import.

. Lustre client prepare MDS _CONNECT rpc to MDS.

. A security context initialize procedure for root will be done.

. Lustre client send MDS _CONNECT request to MDS, and got reply.
. Lustre client fetch the client startup log from MDS.

. Lustre client destroy the import, which lead to procedure of destroying

the existing security context.

. Lustre replay the startup log, which will constrct new connections to

MDS’s, and lead to security context be established accordingly.

. Mount finish successfully.

root do umount by : umount /mnt/lustre

Lustre client prepare another import to MDS, create a ptlrpc__sec associ-
ated with the import.

Lustre client prepare MDS CONNECT message to MDS.
A security context initialize procedure for root will be done.

Lustre client send MDS CONNECT request to MDS, and got reply.

12



3.6 GSS/krb5 context expiration 3 USE CASES
15. Lustre client fetch the client shutdown log from MDS.
16. Lustre client destroy the import, which lead to procedure of destroying
the existing security context.
17. Lustre replay the shutdown log, which will destruct all connections to
MDS’s, and lead to security context be destroied accordingly.
18. Umount finish successfully.
3.6 GSS/krb5 context expiration
1. Suppose security context has been established for Alice, i.e. she has ever
successfully accessed lustre filesystem.
2. Some time later, Alice’s context on MDS expired, and be destroied.
3. Alice on this client access a lustre file again, which lead to an rpc be sent
to MDS.
4. MDS failed to find the context, send error reply back.
5. Lustre client drop the context, re-establish a new context.
6. Lustre client resent former rpc with the new context.

7. The rpc finish successfully.

GSS/krb5 client reboot

1. A client reboot, remount lustre filesystem or not.

. MDS’s will keep the old security contexts, since they’v no idea whether

the corresponding contexts on client exist or not.

. Later those context expired and then be destroied.

MDS reboot and recovery

. A MDS crashed and re-setup.
. A gss/krbb client send a request as normal.
. MDS can’t find proper security context, send back error reply.

. The client drop the old context, re-establish a new security context with

the MDS.

. The client re-send former rpc with the new context.

. MDS return ENOTCONN, thus initiate recovery procedure.

13



4 LOGIC SPECIFICATION

4 Logic Specification

4.1 Wire data format

Security subsystem know nothing about the internal structure of lustre msg,
but prepend a security header to every on-wire ptlrpc packet:

struct ptlrpcs_wire_hdr {
u32 secflavor; /* NULL/GSS */

u32 sectype; /* none/integrity/privacy */

u32 msg_len; /* length of lustre message */

u32 sec_len; /* length of security payload */
s

All fields are stored in little-endian format. The layout of every on-wire packet
will be:

struce wire_packet {
ptlrpc_wire_hdr; /* 16 bytes */
lustre_msg; /* 0 - any bytes */
security_payload; /* O - any bytes */
s

In NULL security mode, the security payload is always 0 bytes.

e In gss security mode, the security payload is always non-zero bytes.

In gss/privacy mode, the lustre msg is always 0 bytes, because they have
been encoded into the security payload section.

e At any cases, the whole packet must be 8-bytes aligned.

Right now only gss have security payload. Each security payload start with a
gss header:

struct gss_wire_hdr {

u32 version; /* GSS version */
u32 proc; /* procedure */
u32 seq; /* sequence number */
u32 svc; /* service x/

s

All fields are stored in little-endian format. “proc” means gss control procedure,
could be INIT, INIT CONTINUE, DATA, DESTROY, etc. “seq” is for the
sequence number checking algorithm from RFC 2203, to prevent replay attack.
The whole security payload format will be:

14



4.2 GSS context 4 LOGIC SPECIFICATION

struct gss_security_payload {
gss_wire_hdr;
context_handle;
mech_payload;

s

The “context handle” is let the server find proper security context cached. The
“mech payload” is the actual signature or ciphertext made by specific gss mech-
anism, which is transparent to generic gss layer.

4.2 GSS context

The gss context is divided into two parts: generic gss context and mechanism
specific context. The generic part is in fact quite simple, but not symmetric for
client and server. On the client side, they mainly are:

e Control procedure. Could be INIT, DATA, etc.
e Sequence number.

e Peer context handle. This will be sent to server in each request, used by
server to address the correponding context.

On the server side, they mainly are the facility to implement sequence number
algorithm. The purpose is to prevent replay attack: Suppose a bad guy could
eavesdrop the network, and record an rpc packet transfered across the network,
and some time later re-send the packet again to the same machine. In this case
the target machine should be able to detect this is an replay attack and drop it.

The mechanism specific context could only be interpreted and used by certain
gss mechanism. They are generated by lgssd or Isvegssd and then installed in
the kernel. For gss krb5 mechanism, they are mainly:

Algorithm used in signature/verification.

Algorithm used in encryption/decryption.
Valid time.

Other krb5 specific staff.

4.3 gss context creation and management

The rpc implementation in standard 2.6 kernel contains a general cache and
upcall code, which is used by NFSv4 server to interact with server side daemon
and cache security context in the kernel; And “rpc_ pipefs” mechanism which
allow kernel communicate with user space as message basis, NFSv4 client use it
to interact with client side daemon. At this part we follow what NFSv4 does,
and even use the server cache and rpc_ pipefs at extact the same way as what
NFSv4 use them. Please refers to NFSv4 implementation for the whole details,
here we only outline the basics.

15



4.4 Igssd and Isvcgssd 4 LOGIC SPECIFICATION

4.3.1 Security client

At client side, rpc_ pipefs is required to be mounted, usually at /var/lib/nfs/rpc_ pipefs.
When each instance of ptlrpc_sec is created, an pipe which is the outlet to user
daemon will also be created in the pipefs.

When in-kernel gss is asked to create security context for certain user, it
simply pump an simple message, which contains uid, service name, target uuid,
target nid, etc. into pipe, and wait for the reply from user space. The correct
reply will contains:

o General gss context. This will be installed in generic gss layer.

e Mechanism specific context. GSS will call mechanism’s import _sec_ context()
to install into mechanism layer.

Each ptlrpc_sec structure contains a context hash table, each context entry
has it’s own expire time. Expired entry will be dropped once be found expired.
When we drop a valid context by force, an notification RPC will be sent to
server to also destroy server side of the context. The whole client side cache
management will be quite simple and straightforward.

4.3.2 Security server

An “nfsd” filesystem must be mounted at /proc/fs/nfsd, which is to communicate
between user space and kernel. This require NFSv4 muct be enabled in the
kernel.

We use the general cache management code provided by rpc. The interaction
between gss and cache is roughly as:

e We need implement two kinds of cache type in the framework of general
cache manager: one for context intialization, one for context. They are
all about define how to submit request and parse reply.

e When an context initialize request comes in, gss generate a context init
cache entry, assoiated with the request data, submit to cache manager.
Then wait for the reply.

e Cache manager will create an context cache entry, reply the entry handler
to GSS. And submit all data to user space daemon.

e Then GSS will wait until the context entry is filled.

4.4 lgssd and lsvcgssd

Since we only support kerberos 5 as the mechanism of GSS, all following dis-
cussions are assuming krb5 case. Both daemons are built on GSSAPI, which
means they call service of gssapi to negotiate security context. So on both sides,
user space GSSAPI enviroment must be properly configured, mostly of which
is configure kerberos 5 as the mechanism of GSSAPI. The GSSAPI library is

16



4.5 RPC of security initialization 4 LOGIC SPECIFICATION

usually static library, must be prepared when build lgssd and lsvegssd, but not
necessary for running lgssd and lsvegssd.

Beside GSSAPI, our daemons, especially lgssd, will exploit some features of
kerberos 5 directly, so kerberos 5 development enviroment must also be properly
configured.

4.4.1 lgssd

Each client node will have one lgssd running. It constantly monitor the change
and event at certain directory in rpc_pipefs. When lgssd got an context ini-
tialize request from rpc_pipefs, it at first compose the service pincipal, e.g.
“lustre. mds@CN.CFS”. Then find out whether there’s already cached ticket of
it for this user. If not found, then obtain the ticket from KDC, using kerberos 5
API. This require that node already have kerberos 5 TGT cached. If succeefully
got the new ticket, lgssd will also cache it locally.

After that, lgssd call GSSAPI init sec_context() to prepare the initialize
request data, then pass down to kerenl which will in turn send to server. In
kerberos 5 case, only one data exchange is needed for initial negotieation. So
the reply either contains error notification, or GSSAPI specific reply data. lgssd
will parse the reply, form the suitable context and passdown to kernel.

Note that the lgssd must know certain internal strucutre of gss and kerberos
5 to be able to parse the reply.

4.4.2 lsvegssd

At startup, lsvegssd will prepare it’s service credential, which is about parse
kerberos 5 service keytab, prepare for the service. And enter a loop to monitor
event of nfsd filesystem. When a request comes up, it read the incoming gss
request, and pass into GSSAPI accept sec context(), which will check the
request using service credential. If succeed, the server side context and gss
reply to client will be generated. Isvegssd will pass all of them into kernel,
which will in turn install the server side context and send the rest to client.
Note Isvegssd also must know certain internal structure of gss the kerberos 5.

4.5 RPC of security initialization

The security context negotiation is done by kernel ptlrpc layer. But this RPC is
special because all other normal RPCs will go through series of security check-
ing/transform which is not needed for this one. So we treat it as raw RPC and
initiate it by:

int ptlrpc_do_rawrpc(struct obd_import *imp,
char *reqbuf, int reqlen,
char *repbuf, int replen,
int timeout);

17



4.6 Krbb5 mechanism 5 STATE MANAGEMENT

It simply send “reqlen” of “reqbuf” to destination described by peer of “imp”,
and got maximum “replen” of reply into “repbuf”. ptlrpc_do_rawrpc() use
some ptlrpc facilities like callback/wakeup, etc, but will not trigger any recovery
process since we consider the whole initialize procedure is happen underlying
the ptlrpc layer.

4.6 Krbb5 mechanism

This module is a backend of in-kernel GSS. It’s all about the details of how to
sign/verify and encrypt/decrypt messages in kerberos 5 standard way. We also
follow what NFSv4 does, so please refers to NFSv4 implementation for detials.
As of NFSv4, currently we only support DES and MD5 Algorithm.

4.7 Reverse RPC

The procedure of establishing gss context is complex as we described. Client
need to obtain kerberos ticket, while server need to be installed an service
keytab. In most cases, the server side of security activity is the lustre server,
e.g. MDS, and client is the lustre client. But some RPCs, e.g. LDLM ASTs,
some llog RPCs, are initiated by lustre server node. Apparently we can’t use
the same procedure to initialize security context for those reverse connections.

It looks not good to use any context which already be established between
client and server, since those contexts could be expired or dropped at anytime,
and AST rpc is crucial in lustre, fail to send out will lead to client be evicted.
So the reverse context must be always valid. And the situation is made more
complex by the fact that a key will be considered insecure if it is used to encrypt
too many messages.

Currently we force all reverse connections use NULL security, which is always
valid but of course not secure. Although AST and llog RPC itself didn’t contains
any confidential of user message, but malicious users might use fake rpc packet
to attack lustre filesystem. Later we may have to design a secure way for reverse
connection.

5 State Management

5.1 Impact on recovery

We try to put the security part under the layer of ptlrpc, to avoid disturbing
recovery procedure. There’s some consideration here:

e Client initiate the security negotiation using “raw rpc”, to avoid any re-
covery related staff.

e Server handle the negotiation request without trigger any ptlrpc recovery
staff.

18



5.2 Prerequisite on server and client 6 ALTERNATIVES

e Sometime client might get reply of server that the security context is
invalid, after the context is re-established, client need send the original
request again. In this case, client need make sure this request is sent as it
was, especially without changing any flags like RESENT, etc.

5.2 Prerequisite on server and client

Security identities on lustre client side is based users. Each user want to access
lustre filesystem must at first authenticate with authentication server, which is
KDC in kerberos case, and cache the credential locally. Lustre client use cached
credential of appropriate user to authenticate with MDS.

On lustre server side the identities is based on service. In Kerberos 5 case, we
need create a service principal, and create a kaytab for it. The kaytab is usually
a regular file stored on disk, and must be installed /parsed before providing any
services.

All lustre clients must have lgssd running, while all MDS’s must have Isvegssd
running.

5.3 GSS context pairs

There will be a lot of gss contexts be established in a typical lustre system.
Each user on each lustre client will have a gss context to each MDS. If we use
GSS also in client-OSS, MDS-OSS or inter MDS’s, the number will be even
much bigger. Suppose we setup a large cluster, the time of mounting tens of
thousands of client will be much longer.

5.4 Others

No disk format changes. No changes on current network API.

6 Alternatives

e Now the null security is at the same layer as gss: both are two security
policies under framework of generic security API. It _might be possible
to remove the generic security API, and make gss be the generic layer, and
implement null security as a special mechanism of gss. This could reduce
the security layering by one.

e Currently at client side, each import has an ptlrpc_sec, which contains
hash table of cached contexts. Probably we can use a single large pool of
context cache for the whole client, just like single hash table for cached
contexts at server side.

19



7 FOCUS OF INSPECTION

7 Focus of Inspection

e Are there oversights on recovery issue?

e How could the gss scheme scale?

What’s thought about reverse import?

What impact on us to use NFSv4 staff, both in-kernel cache/rpc_pipefs
and user space daemons?

20



