e2fsck heuristics for detecting corrupted inodes

Girish Shilamkar

06 April 2007

1 Requirements

The current e2fsck code does piecemeal fixing of corruptésodThis means that
if the inode has a bad size, and bad feature flags, and reteydyad blocks it will
happily correct each one in isolation instead of taking @Hayel look at the inode
and determining it is garbage.

Inorder that e2fsck is able to detect that the complete ins@®rrupt, a counter i.e
badness counter is maintained which will indicate the ex@énorruption of inode. If
the badness is above a certain threshold then the inodegedel

2 Functional specification

The mechanism for processing bad inodes consists of mattkérigode as bad in pass1
[mark_inode_bad()]and then fixing the problem in pass2del2fprocess_bad_inode()]

The new functionality added :

1. Theinodes won't just be marked as bad but even their dedtemdness will be
recorded.

2. More inode fields will contribute towards marking the iedzhd, if found bad.

Whenever any field is found to be corrupt in an inode the baloeanter will be
increased. The cases which indicates corruption in inogle ar

PR_1_SET_IMAGIC /* corrupt inode->i_flags */
PR_1_BAD_EA_BLOCK /* inode->i_alloc corrupt*/
PR_1_INODE_TOOBIG

PR_1_TOOBIG_DIR

PR_1_TOOBIG_REG

3 USE CASES

PR_1_TOOBIG_SYMLINK

PR_1_EXTRA_ISIZE /*bad inode->i_extra_isize */
PR_1_BAD_I_BLOCKS /* traversed blocks != inode.i_block */ PR_1_BAD_I_SIZE /* inc
PR_1_ATTR_VALUE_BLOCK /*Incorrect attr in inode */
PR_1_ATTR_NAME_LEN

PR_1_ATTR_VALUE_SIZE

PR_1_ATTR_VALUE_OFFSET

PR_1_ATTR_VALUE_BLOCK

PR_1_ATTR_HASH

PR_1_SET_EXTENT_FL /* inode->iflags corrupt */
PR_1_UNSET_EXTENT_FL

PR_1_ILLEGAL_BLK_NUM

PR_1_INDIRECT_BAD

PR_1_EXTENT_BAD

PR_1_EXTENT_IDX_BAD

PR_1_SET_IMMUTABLE

PR_1_SET_NONZSIZE

PR_1_HTREE_NODIR

PR_1_HTREE_SET

PR_1_HTREE_BADROOT

PR_1_COMPR_SET

PR_1_ZERO_LENGTH_DIR

PR_1D_DUP_FILE_LIST /*Shared block*/
PR_2_BAD_MODE /*inode->i_modex*/
PR_2_FILE_ACL_ZERO,

New checks to be added:

e Check the values of atime, mtime and ctime. The values arekeldef set to
some futuristic, impossible time. For [am]time check if thdues are set before
that of ctime. Also check that i_ctime >=sb->s_mkfs_time.

e Check the file size if > 2 TB, as of now a file cannot be bigger thaB.
e In pass2 check if inode.i_mode is same as dirent filetype.

e Check ifi_blocks ~=i_size/block_size. In case of sparssfihe condition will
fail but attributing badness of 1 won't delete the inode sroivn.

Note: Bad reference count doesn’t contribute to badnesausecthis case is found in
pass4 and badness is checked in pass2.

3 Use cases

3.1 Sparse file.

e Create a sparse file. Run e2fsck.

3.2 Invalid [amc]time 4 LOGIC SPECIFICATION

e Duetoits sparsenessthei_size !=(i_blocks/block_siaé}ence the inode will
be marked bad. Check this working

e Ensure that file is not deleted.

3.2 Invalid [amc]time

e Corrupt time fields in the inode with future dates, [am]tine¢ &fter than that of
ctime.

e Check if the these cases were identified by e2fsck.

3.3 Incorrect mode setini_mode

e Change the i_mode in inode.
e Run e2fsck.

e This condition should be detected in pass2.

3.4 Too many bad blocks.

e Corruptthe i_block, the last triple indirect blocks areromted.

e Run e2fsck and insure that inode gets deleted due to too nehilbcks.

3.5 Random corruption.

e Corrupt 0-128 bytes in inode at random location.
e Check if the inode was deleted or not.

e Gather statistics for this and analyse it.

4 Logic specification

The implementation of this feature requires changes teotig2fsck i.e the inode_bad_map
bitmsp is re-placed by ext2_icount mechanism. It not onkypsetrack of bad inodes
but also the degree of badness.

In passl and passlb mark_inode_bad() is changed to reeizhtiness, every time
one of the cases of inode corruption is found the badnessiisrimented. The problem
is also fixed immediately as till that point of time it is unkmoif the inode is corrupted
enough to be deleted.

4 LOGIC SPECIFICATION

In pass2, if the inode has been marked bad, it is checked Balaeess value is above
the threshold, if yes the inode is deleted.

How badness is incremented and what is the threshold ?

Badness is incremented every time the following fields irdaare found corrupt.

ext2_inode

{

__ulé i_mode; /* File mode */
__u32 i_size; /* Size in bytes */
__u32 i_atime; /* Access time */
__u32 i_ctime; /* Creation time */
__u32 i_mtime; /* Modification time */
__u32 i_dtime; /* Deletion Time */
__u32 i_blocks; /* Blocks count */
__u32 i_flags; /* File flags */
__u32 i_block [EXT2_N_BLOCKS]

__u32 i_file_acl; /* File ACL */
__u32 i_dir_acl; /* Directory ACL */
}

Normally the badness is incremented by 1 for all the fieldf fatlowing exceptions.

i_mode : If mode is found corrupt the inode is deleted, whigemarmal course of
action.

i_ctime : The badness is incremented by 2 cause, more thififf@grcause , user can
change [am]time.

i_flags : For every flag found corrupt badness is incremenged b
i_block[] :

e Block Map: e2fsck_ind_block_verify() checks for corruptiin i_block[]. If
more than 4 block nos are found to be corrupt then the inodeletetl in the
current implementation. Badness of 1 for each corrupt biaxck

e Extent Map : Every bad extent or extent_idx contributes leadrof 2. If the
extent header corrupt then the inode is deleted immediéteity is the normal
e2fsck behaviour).

The threshold for badness is by default set to 7. It can be-wdden by passing an
extended option to e2fsck.

e.g e2fsck /dev/hdal -E inode_badness_threshold = 10.

5 STATE MANAGEMENT

5 State management

5.1 State invariants

The changes which were made to inode fields if they are foubd worrupt are invari-
ants.

5.2 Scalability & performance
If the number of inodes which have bad fields increases todwtheccurrent ext2_icount
mechanism becomes in-efficient and will also consume momang Otherwise it

can also improve e2fsck performance by avoiding lengthylidage block checking
for obviously-corrupt inodes.

5.3 Recovery changes

ext2_icountis an in-memory data structure. Even if it i$ thee to crash, the behaviour
of e2fsck be same as older one.

5.4 Locking changes

None.

5.5 Disk format changes

None.

5.6 Wire format changes

None.

5.7 Protocol changes

None.

5.8 APIchanges

mark_inode_bad() changed to e2sck_mark_inode_bad@hwidt only marks the in-
ode as bad but also increases the badness of the inode.

e2fsck_process_bad_inode() deletes the inode if the lsadsi¢éound to be more than
7.

5.9 RPCs order changes 5 STATE MANAGEMENT

5.9 RPCs order changes

None.

