
Metadata Re�nementsPeter BraamMay 6, 20051 Requirements from the Engineering RequirementsSpeci�cation (formerly Architecture).In this document we describe a number of metadata handling improvements.The requirements of 1.1 and 1.2 are for detailed issues and do not need a separateHLD, although a good DLD is required.1.1 Regular �le creationWhen a �le is created, the MDS returns object id information. The objects willno longer be pre-created but only the object ids are managed by the MDS. Thechanges to be made are:1. The MDS will not make pre-creation calls to the OST's to create objects.Objects are created upon �rst write.2. The object ids handed out by the MDS are updated transactionally3. objects beyond the last used object ids are removed from the OST's uponrecovery, after client replay & resend completes.4. The objects will store the owner, group in regular attributes and will storethe MDS storeid (mds number, inode number) in an extended attribute.1.2 Regular �le unlink handlingThe MDS will remove objects for �les that are being unlinked. This is doneasynchronously, but without delays. Clients will no longer make destroy callsto the OST's.1.3 Attribute migrationThe MDS will have up to date mtime, atime, ctime and size for inodes that arenot open. This requires setting these attributes on the MDS after the �le isclosed. 1



1.4 OST - MDT uni�cation (not required for cmd2)7 FOCUS IN INSPECTION.1.4 OST - MDT uni�cation (not required for cmd2)The obd�lter and mdd code will be uni�ed to provide a single device o�eringboth api's simulteneously. In particular for objects that have no name in theMDS namespace will be accessed through the object namespace used on theOST.1.5 ClusteredMDS object handling (not required for cmd2)When the MDS wishes to create objects on another MDS it will use object id'sfrom a group assigned to this MDS without actually waiting for creations duringan RPC. The objects will be placed in a directory structure as in 1.4. Directoryentries referencing inodes on another MDS will only contain the object id.1.6 Metadata transaction handling (not required for cmd2)No RPC's will be made from within transactions.2 Functional speci�cation.2.1 Attribute migration3 Use cases.1. A node con�gured for logging will write records2. The granularity of the audit records can be changed or set at con�guretime3. The log records can be read4. The log records can be purged when processed4 Logic speci�cation.The logic of the logging code itself is controlled by the SMFS plugin api.5 State management.6 Architectural alternatives (do not really belongin HLD)7 Focus in inspection. 2


