
Lustre Test Plan
Version recovery

phase 2
Large Scale Test Plan

Author Date Description of Document
Change

Client Approval By Client Approval
Date

Elena Gryaznova 2008-10-17 draft

12/08/08 <COPYRIGHT 2008 SUN MICROSYSTEMS> Page 1 of 6

I. Test Plan Overview

Executive Summary

• Statement of the problem trying to solve:
Test at scale the following version based recovery feature landed into b1_8_gate branch
-- vbr_interop
-- vbr_exp
-- vbr_orphans

• Required inputs:
-- b1_8_gate branch, with landed :
vbr_interop: attachment 17435, attachment 17694 bug 15942
vbr_exp: attachment 18379 bug 15391
vbr_orphans: attachment (still in code phase) bug 15292
-- the packages: Lustre build

• Hardware to be used:
-- Test systems

• Expected output:
-- The current status of the listed features
-- The following tickets will be used for summary and a status of testing.
vbr_interop: bug 15942
vbr_exp: bug 15391
vbr_orphans: bug 15392
large-scale VBR tests: bug 17195

Problem Statement
I. We need to test VBR at scale. This test plan lays out what tests need to be run to verify this feature.

Goal
Verify that VBR functions with a large system.

Success Factors
All tests need to run successfully.

Testing Plan
Pre-gate landing

Define the setup steps that need to happen for the hardware to be ready? Who is responsible
for these tests?

Get system time on a large system. Pre-feature testing has been completed and signed off by SUN
QE for this feature.

12/08/08 <COPYRIGHT 2008 SUN MICROSYSTEMS> Page 2 of 6

Specify the date these tests will start, and length of time that these test will take to complete.

Date started: 2008-10-30

The time estimation for new test creation: 1 week

The time estimation of 1 run:
VBR feature tests (large-scale) : 2 days
Common recovery tests : 4 days

Summary for 1 post-landing tests cycle: 6 days
* In the case of defects found the tests should be repeated. The estimated time of completed testing
depends on:
-- the number of defects found during testing;
-- the time needed by developer to fix the defects;

Specify (at a high level) what tests will be completed?

Functional tests: new acceptance-small tests: large-scale, recovery-scale (without Lustre
reformatting).

Specify how you will restore the hardware (if required) and notify the client your testing is
done.

We will need feedback from the users, recommend we use BZ for outputs.

The bugzilla ticket is filed for each failure.

Summary and status report are printed in the bug that we create for this test.

Test Cases

Test Cases

Post-gate landing

All these tests are (will be) integrated into acceptance-small as large-
scale.sh (LARGE_SCALE).
To run this large scale test:
1. Install lustre.rpm and lustre-tests.rpm on all cluster nodes.
2. Specify the cluster configuration file, see cfg/local.sh and
cfg/ncli.sh for details.
3. Run the test without lustre reformatting as:
 SETUP=: CLEANUP=: FORMAT=: ACC_SM_ONLY=LARGE_SCALE NAME=<config_file>
sh acceptance-small.sh
or
 SETUP=: CLEANUP=: FORMAT=: NAME=<config_file> sh large-scale.sh
Requirements:
1. Installed Lustre build packages on all cluster nodes.
2. installed Lustre user tools (lctl).
3. Shared directory with lustre-tests build on all clients.
4. Formatted Lustre file system, mounted by clients.

12/08/08 <COPYRIGHT 2008 SUN MICROSYSTEMS> Page 3 of 6

5. The configuration file according to the formatted Lustre system.
6. Installed dd, tar, dbench, and iozone.
I.
Feature tests for exports:
1.a Measure N clients connection time without delayed exports (and
orphans).
1.b Create many delayed exports 1000/10000/100000, measure time for
clients connection time - connect N new clients.
large_scale.sh test_1b
1.c Create many delayed exports 1000/10000/100000, measure recovery time:
connect several clients, create/delete the number of files, fail MDS.
Print the statistic number of delayed exports/ the number of clients/ the
time of connections.
large_scale.sh test_1c
1.d Create many delayed exports 1000/10000/100000, expire all exports
and connect new clients, this will invoke massive orphans cleanup. Measure
connection time.
large_scale.sh test_1d

1.e Create many delayed exports 1000/10000/100000, make export expired
one-by-one with delay 30 sec, measure recovery time: connect several
clients, create/delete the number of files, fail MDS. Print the statistic
number of delayed exports/ the number of clients/ the time of connections.
This should invoke constant exports+orphans cleanup during test.
large-scale.sh test_1e

II.
Feature tests for orphans
2.a Create many delayed exports 1000/10000/100000 with orphaned files
(1000/10000/100000), measure time for clients connection time - connect N
new clients.
large_scale.sh test_2b
2.b Create many delayed exports 1000/10000/100000 with orphaned files
(1000/10000/100000), measure recovery time: connect several clients,
create/delete the number of files, fail mds. Print the statistic number of
delayed exports/ the number of clients/ the time of connections.
large_scale.sh test_2c
2.c Create many delayed exports 1000/10000/100000 with orphaned files
(1000/10000/100000), measure the connection time.
large_scale.sh test_2d

12/08/08 <COPYRIGHT 2008 SUN MICROSYSTEMS> Page 4 of 6

COMMON scale tests

All these tests are (will be) integrated into acceptance-small as
recovery-scale.sh (RECOVERY_SCALE).
To run this recovery scale tests over acceptance-small:
 SETUP=: CLEANUP=: FORMAT=: ACC_SM_ONLY=RECOVERY_SCALE
NAME=<config_file> sh acceptance-small.sh
To run all recovery scale tests:
 SETUP=: CLEANUP=: FORMAT=: NAME=<config_file> sh recovery-scale.sh
To run the recovery scale tests separately:
 SETUP=: CLEANUP=: FORMAT=: NAME=<config_file> DURATION=<duration>
recovery-mds-scale.sh
 SETUP=: CLEANUP=: FORMAT=: NAME=<config_file> recovery-double-scale.sh
III.
Scale recovery tests (NC:1M:MO) (the test based on test11/17 from CMD3 project)

Scale recovery tests (NC:1M:MO) (the test based on test11/17 from CMD3
project)
3.a (was test11 in cmd3 project)
For defined duration (1-24 hours) repeatedly fail an MDS at defined (5-10
minutes) intervals and verify that no application errors occur. Load of
clients: dd tar dbench iozone.
recovery-mds-scale.sh
Example:
 SETUP=: CLEANUP=: FORMAT=: NAME=<config_file> DURATION=”3600” sh
recovery-mds-scale.sh

3.b (was test17 on cmd3 project)
Fail a random pair of nodes at defined (5-10 minutes) intervals and verify
that no application errors occur. Load of clients: dd tar dbench iozone.
1: Failover MDS, then OST
2: Failover MDS, then 2 clients
4: Failover OST, then another OST
5: Failover OST, then 2 clients
6: Failover OST, then MDS
7: Failover 2 clients, then MDS
8: Failover 2 clients, then OST
9: Failover 2 clients, then 2 different clients
recovery-double-scale.sh
Example:
 SETUP=: CLEANUP=: FORMAT=: NAME=<config_file> sh recovery-mds-scale.sh

IV. More tests can be added after discussion (see bug 17195).

Benchmarking

No benchmarks will be done.

12/08/08 <COPYRIGHT 2008 SUN MICROSYSTEMS> Page 5 of 6

II. Test Plan Approval
• Review date for the Test Plan review with the client:

10/17/08 – reviewed by J.D. Neumann
• – reviewed by Ed Giesen
• Date the Test Plan was approved by the client (and by whom)

• Date(s) agreed to by the client to conduct testing

III.Test Plan – Final Report

Test Results

Benchmarking

Conclusions
Summary of the test:

•
•

Next Steps

•
•
•

12/08/08 <COPYRIGHT 2008 SUN MICROSYSTEMS> Page 6 of 6

	I. Test Plan Overview
	Executive Summary
	Problem Statement
	Goal
	Success Factors
	Testing Plan
	Test Cases
	Benchmarking
	II. Test Plan Approval
	III. Test Plan – Final Report
	Test Results
	Benchmarking
	Conclusions
	Next Steps

