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Topics

> Architecture Overview
> Shortcomings & solutions
> Performance impact
> Quotas on DMU
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Initial Requirements

• Ability to enforce both block and inode quotas
• Hard and soft limits are supported
• Central utility to set/get limits/usage and initialize 

quotacheck operation
• No significant performance impact
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Architecture Primer

• A centralized server hold the cluster wide limits: the 
quota master(s)
> guarantees that global quota limits are not exceeded
> track quota usage on slaves

• Quota slaves
> all the OSTs and MDT(s)
> manage local quota usage/hardlimit
> acquire/release quota space from the master
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Quota Master(s)

• 1.4/1.6/2.0: 1 single master running on the MDS
• In charge of:
> storing the quota limits for each uid/gid
> accounting how much quota space has been granted to 

slaves

• quota information are stored in administrative quota files
> files proper to Lustre (admin_quotafile.usr/grp)
> format identical to the one used in the VFS

• For CMD support
> use several quota masters
> use a hash on the uid/gid
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Quotas Slaves

• All OSTs and MDT(s)
• Rely on ldiskfs quotas
> only use hard limit, not soft limit
> operational quota files are managed by ldiskfs (journaled 

quotas since 1.6.5)
> accounting is handled by ldiskfs too

• In charge of returning EDQUOT (quota exceeded) 
to the clients when quota is exhausted
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Acquire/Release Protocol

• Two different RPC types
> DQACQ = Disk Quota ACQuire
> DQREL = Disk Quota RELease

• DQACQ/DQREL RPCs are 
> initiated by slaves
> processed by master(s)

• increase/lower the local hardlimit on slaves
• increase/decrease administrative

usage on the master
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Running out of quota

• EDQUOT = quota exceeded
• quota slaves return this error when:
> the remaining quota space is not

sufficient to satisfy the write request
> AND the master cannot grant additional

quota space to the slave

• EDQUOT is returned by ldiskfs
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3) Consult admin

quota files

Quota protocol overview: 
Enough quota

Clients
LOV

MDS OSS
 2) Send DQACQ request

1) Send bulk write req

6) Reply bulk write: OK

4) Reply to DQACQ: OK grant 100MB

2) Consult admin

quota files

5) Write to disk

ldiskfs quota ok
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2) Consult admin

quota files. Quota 
exceeded

Clients
LOV

MDS OSS
 2) Send DQACQ request

1) Send bulk write req

6) Reply bulk write: 
-EDQUOT

4) Reply to DQACQ: EDQUOT

5) Write to disk

ldiskfs quota 
returns EDQUOT

Quota protocol overview: 
Quota exceeded
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Quota space acquisition

• For performance reasons, quota slaves don't 
acquire quota for each write request
• The master grants quota to slaves by blocks of qunit
• iunit for inodes
> default value is 5120 inodes

• bunit for blocks 
> default value is 128MB
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Early qunit acquisition

• Slaves proactively acquire qunit ahead of time
> early qunit acquisition to improve performance

• Once a request's been processed, slaves “adjust” the local 
limit
> If remaining quota space < qtune

– a DQACQ RPC is sent
> If remaining quota space > qtune + qunit

– a DQREL RPC is sent

• itune for inodes / btune for blocks
> default value is ½ qunit
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Generic Flow of a write request
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any quota limits 
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grant cache?

trigger early acquisition
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Client node OSS (quota slave) MDS (quota master)
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writeback
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rite R
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write RPC
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send dqacq R
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Issue #1: Space leak

• Slaves can have up to qunit + qtune of unused quota space
• Quota space granted by the master cannot be claimed back
• Consequence:
> If the master has already granted all the quota space to 

slaves, some slaves may return EDQUOT while some others 
still have free quota space

OST1 OST2 OST3

150MB quota free
=> can still handle writes

0MB quota free & MDS 
has no more quota space
=> Return EDQUOT

150MB quota free
=> can still handle writes
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• What happens from the user point of view:
> Writes on objects stored on OST3 returns EDQUOT 

while 'lfs quota' still returns that the use is far from the 
quota limit

> Writes on objects stored on OST1 & 2 are successful
• Users/Admins expect quotas to work on lustre like on any 

local fs and are disturbed by this

OST1 OST2 OST3

150MB quota free
=> can still handle writes

0MB quota free & MDS 
has no more quota space
=> Return EDQUOT

150MB quota free
=> can still handle writes

Issue #1: Space leak
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Issue #1: Solution

• Dynamic qunit
> enlarge qunit size when far from quota limit
> shrink qunit size when getting closer to quota limit

• The dynamic qunit patch improves
> quota accuracy when close to quota limit

– the new qunit size is broadcasted to slaves after shrinking

> support for small quotas

• Landed for 1.4.12 and 1.6.5
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Issue #2: Quota overruns

• Client nodes cache dirty data
> Up to max_dirty_mb (=32MB) per OSC
> The client cannot get ENOSPC thanks to the grant cache

• Today, no interactions between the grant cache and quotas
• If a user is over quota already, slaves 
> still accept writes from the grant cache
> but inform the client in the reply that it should stop caching dirty 

data for this uid/gid
> This causes quota overruns that can be significant

– Worst case scenario: # clients * # ost * 32MB
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Issue #2: Solutions

• Workaround landed in 1.x.y
> Ask the client to stop caching data sooner than later
> Tunable via quota_sync_blk (bug16642)
> Unfortunately, does not address all the cases

• Real solution
> introducing some quota knowledge on the client
> Grant quota space to client
> Quota + grant could be given to clients as part of extent locks
> Longer term solution requiring quite a lot of development
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Issue #3: Adding OSTs

• Online OST addition is not handled properly
> quotacheck/quotaon needs to be run on this new OST
> but currently, this requires a full quotacheck :(

• Solution
> Set up quota files at mkfs time
> Trigger quotacheck on quotaon, if no quota file exists
> Store on the MDS the state of OSTs
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Issue #4: Enabling quotas by default

• Two ways to enable quotas automatically at start up
> At mkfs time: --param quota_type=ug
> With lctl conf_param

• The annoying thing is that this has to be set up for each 
target

• Solution
> Add a global quota parameter
> No real use case for using quota on a subset of OSTs

– Unless we want to support quotas on specific OST pools
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Impact on Performance (1/2)

• Additional actions are required on slaves when quotas are 
enabled
> ldiskfs needs to maintain block/inode accounting for each uid/gid
> qunit must be acquired from the master

– additional RPCs are required

• Enabling quotas has no significant performance impact today 
because
> The early qunit acquisition algorithm looks pretty efficient
> The quota master is powerful enough to handle quota requests in a 

timely manner

• We now have many quota statistics to investigate performance 
issue
> bug 15058, landed in 1.6.6
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Impact on Performance (2/2)
• Still, performance challenges remain
> 2,000 OSTs @ 500MB/s with 100MB qunit requires 10,000 RPCs 

to be processed on the master

• Thoughts:
> Using several quota masters
> Increasing qunit (max qunit size is 128MB today)
> Granting more to slaves initially and relying on the broadcast 

mechanism to claim unused qunits back
> Improvement to the dynamic qunit are needed
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Quota support on DMU

• DMU now supports per uid/gid quota
> Used to support quotas only on fileset
> Quota accounting always enabled on DMU, so quotacheck is 

no longer needed

• Some changes to the lustre quota code needed
> Need to interface with the DMU quota API
> Accounting handled by DMU, but lustre is now in charge of 

handling quota limits and returning EDQUOT (currently 
handled by ldiskfs)
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Thanks!!!
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