
Lustre Quotas
HPC workshop, Germany, Sept 2009

Johann Lombardi
Lustre Group
Sun Microsystems

1

2

Topics

> Architecture Overview
> Shortcomings & solutions
> Performance impact
> Quotas on DMU

2

3

Initial Requirements

• Ability to enforce both block and inode quotas
• Hard and soft limits are supported
• Central utility to set/get limits/usage and initialize

quotacheck operation
• No significant performance impact

4

Architecture Primer

• A centralized server hold the cluster wide limits: the
quota master(s)
> guarantees that global quota limits are not exceeded
> track quota usage on slaves

• Quota slaves
> all the OSTs and MDT(s)
> manage local quota usage/hardlimit
> acquire/release quota space from the master

5

Quota Master(s)

• 1.4/1.6/2.0: 1 single master running on the MDS
• In charge of:
> storing the quota limits for each uid/gid
> accounting how much quota space has been granted to

slaves

• quota information are stored in administrative quota files
> files proper to Lustre (admin_quotafile.usr/grp)
> format identical to the one used in the VFS

• For CMD support
> use several quota masters
> use a hash on the uid/gid

6

Quotas Slaves

• All OSTs and MDT(s)
• Rely on ldiskfs quotas
> only use hard limit, not soft limit
> operational quota files are managed by ldiskfs (journaled

quotas since 1.6.5)
> accounting is handled by ldiskfs too

• In charge of returning EDQUOT (quota exceeded)
to the clients when quota is exhausted

7

Acquire/Release Protocol

• Two different RPC types
> DQACQ = Disk Quota ACQuire
> DQREL = Disk Quota RELease

• DQACQ/DQREL RPCs are
> initiated by slaves
> processed by master(s)

• increase/lower the local hardlimit on slaves
• increase/decrease administrative

usage on the master

8

Running out of quota

• EDQUOT = quota exceeded
• quota slaves return this error when:
> the remaining quota space is not

sufficient to satisfy the write request
> AND the master cannot grant additional

quota space to the slave

• EDQUOT is returned by ldiskfs

9

3) Consult admin

quota files

Quota protocol overview:
Enough quota

Clients
LOV

MDS OSS
 2) Send DQACQ request

1) Send bulk write req

6) Reply bulk write: OK

4) Reply to DQACQ: OK grant 100MB

2) Consult admin

quota files

5) Write to disk

ldiskfs quota ok

10

2) Consult admin

quota files. Quota
exceeded

Clients
LOV

MDS OSS
 2) Send DQACQ request

1) Send bulk write req

6) Reply bulk write:
-EDQUOT

4) Reply to DQACQ: EDQUOT

5) Write to disk

ldiskfs quota
returns EDQUOT

Quota protocol overview:
Quota exceeded

11

Quota space acquisition

• For performance reasons, quota slaves don't
acquire quota for each write request
• The master grants quota to slaves by blocks of qunit
• iunit for inodes
> default value is 5120 inodes

• bunit for blocks
> default value is 128MB

12

Early qunit acquisition

• Slaves proactively acquire qunit ahead of time
> early qunit acquisition to improve performance

• Once a request's been processed, slaves “adjust” the local
limit
> If remaining quota space < qtune

– a DQACQ RPC is sent
> If remaining quota space > qtune + qunit

– a DQREL RPC is sent

• itune for inodes / btune for blocks
> default value is ½ qunit

13

Generic Flow of a write request

sync or async?

any quota limits

for this uid/gid?

write data

enough left quota

space to grant one

more qunit?
enough local quota space

to satisfy the request?

write from the

grant cache?

trigger early acquisition

if needed

Client node OSS (quota slave) MDS (quota master)

is the uid/gid

known to be already

over quotas?

queued for

writeback

send w
rite R

PC

write RPC

completed

send dqacq R
PC

write request

 async

 y

es

 no

 1
. write

acknowledged

 sync
2.

 w
rit

eb
ac

k

 no

 yes

 w
rite

acknowledged

 y

es

no

 yes: ignore quota limit

 send reply

 yes: grant a qunit to the slave

 no: deny acq request

 no: let ldisfks

return EDQUOT

send dqacq R
PC

don't wait for the reply

14

Issue #1: Space leak

• Slaves can have up to qunit + qtune of unused quota space
• Quota space granted by the master cannot be claimed back
• Consequence:
> If the master has already granted all the quota space to

slaves, some slaves may return EDQUOT while some others
still have free quota space

OST1 OST2 OST3

150MB quota free
=> can still handle writes

0MB quota free & MDS
has no more quota space
=> Return EDQUOT

150MB quota free
=> can still handle writes

15

• What happens from the user point of view:
> Writes on objects stored on OST3 returns EDQUOT

while 'lfs quota' still returns that the use is far from the
quota limit

> Writes on objects stored on OST1 & 2 are successful
• Users/Admins expect quotas to work on lustre like on any

local fs and are disturbed by this

OST1 OST2 OST3

150MB quota free
=> can still handle writes

0MB quota free & MDS
has no more quota space
=> Return EDQUOT

150MB quota free
=> can still handle writes

Issue #1: Space leak

16

Issue #1: Solution

• Dynamic qunit
> enlarge qunit size when far from quota limit
> shrink qunit size when getting closer to quota limit

• The dynamic qunit patch improves
> quota accuracy when close to quota limit

– the new qunit size is broadcasted to slaves after shrinking

> support for small quotas

• Landed for 1.4.12 and 1.6.5

17

Issue #2: Quota overruns

• Client nodes cache dirty data
> Up to max_dirty_mb (=32MB) per OSC
> The client cannot get ENOSPC thanks to the grant cache

• Today, no interactions between the grant cache and quotas
• If a user is over quota already, slaves
> still accept writes from the grant cache
> but inform the client in the reply that it should stop caching dirty

data for this uid/gid
> This causes quota overruns that can be significant

– Worst case scenario: # clients * # ost * 32MB

18

Issue #2: Solutions

• Workaround landed in 1.x.y
> Ask the client to stop caching data sooner than later
> Tunable via quota_sync_blk (bug16642)
> Unfortunately, does not address all the cases

• Real solution
> introducing some quota knowledge on the client
> Grant quota space to client
> Quota + grant could be given to clients as part of extent locks
> Longer term solution requiring quite a lot of development

19

Issue #3: Adding OSTs

• Online OST addition is not handled properly
> quotacheck/quotaon needs to be run on this new OST
> but currently, this requires a full quotacheck :(

• Solution
> Set up quota files at mkfs time
> Trigger quotacheck on quotaon, if no quota file exists
> Store on the MDS the state of OSTs

20

Issue #4: Enabling quotas by default

• Two ways to enable quotas automatically at start up
> At mkfs time: --param quota_type=ug
> With lctl conf_param

• The annoying thing is that this has to be set up for each
target

• Solution
> Add a global quota parameter
> No real use case for using quota on a subset of OSTs

– Unless we want to support quotas on specific OST pools

21

Impact on Performance (1/2)

• Additional actions are required on slaves when quotas are
enabled
> ldiskfs needs to maintain block/inode accounting for each uid/gid
> qunit must be acquired from the master

– additional RPCs are required

• Enabling quotas has no significant performance impact today
because
> The early qunit acquisition algorithm looks pretty efficient
> The quota master is powerful enough to handle quota requests in a

timely manner

• We now have many quota statistics to investigate performance
issue
> bug 15058, landed in 1.6.6

22

Impact on Performance (2/2)
• Still, performance challenges remain
> 2,000 OSTs @ 500MB/s with 100MB qunit requires 10,000 RPCs

to be processed on the master

• Thoughts:
> Using several quota masters
> Increasing qunit (max qunit size is 128MB today)
> Granting more to slaves initially and relying on the broadcast

mechanism to claim unused qunits back
> Improvement to the dynamic qunit are needed

23

Quota support on DMU

• DMU now supports per uid/gid quota
> Used to support quotas only on fileset
> Quota accounting always enabled on DMU, so quotacheck is

no longer needed

• Some changes to the lustre quota code needed
> Need to interface with the DMU quota API
> Accounting handled by DMU, but lustre is now in charge of

handling quota limits and returning EDQUOT (currently
handled by ldiskfs)

24

Johann Lombardi
johann@sun.com

24

Thanks!!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

