
Lustre™ 2.0 Operations Manual

Part No. 821-2076-10

Lustre manual version: Lustre_2.0_man_v1.1

June 2010



Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by 
intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, 
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, 
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. 

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to 
us in writing. 

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, 
the following notice is applicable: 

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers 
are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific 
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set 
forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065. 

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in 
any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in 
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use. 
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications. 

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other 
names may be trademarks of their respective owners. 

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon 
are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks 
of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd. 

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle 
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and 
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party 
content, products, or services.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license and obtain 
more information about Creative Commons licensing, visit Creative Commons Attribution-Share Alike 3.0 United States or send a letter to 
Creative Commons, 171 2nd Street, Suite 300, San Francisco, California 94105, USA.
Please
Recycle

http://creativecommons.org/licenses/by-sa/3.0/us


Please
Recycle





Contents

Preface xxv

Part I Lustre Architecture

1. Introduction to Lustre 1–1

1.1 Introducing the Lustre File System 1–2

1.1.1 Lustre Key Features 1–3

1.2 Lustre Components 1–5

1.2.1 Lustre Networking (LNET) 1–7

1.2.2 Management Server (MGS) 1–7

1.3 Lustre Systems 1–8

1.4 Files in the Lustre File System 1–10

1.4.1 Lustre File System and Striping 1–12

1.4.2 Lustre Storage 1–13

1.4.2.1 OSS Storage 1–13

1.4.2.2 MDS Storage 1–13

1.4.3 Lustre System Capacity 1–14

1.5 Lustre Configurations 1–14

1.6 Lustre Networking 1–16

1.7 Lustre Failover 1–17
v



2. Understanding Lustre Networking 2–1

2.1 Introduction to LNET 2–1

2.2 Supported Network Types 2–2

2.3 Designing Your Lustre Network 2–3

2.3.1 Identify All Lustre Networks 2–3

2.3.2 Identify Nodes to Route Between Networks 2–3

2.3.3 Identify Network Interfaces to Include/Exclude from LNET 2–3

2.3.4 Determine Cluster-wide Module Configuration 2–4

2.3.5 Determine Appropriate Mount Parameters for Clients 2–4

2.4 Configuring LNET 2–5

2.4.1 Module Parameters 2–5

2.4.1.1 Using Usocklnd 2–7

2.4.1.2 OFED InfiniBand Options 2–8

2.4.2 Module Parameters - Routing 2–8

2.4.2.1 LNET Routers 2–11

2.4.3 Downed Routers 2–12

2.5 Starting and Stopping LNET 2–13

2.5.1 Starting LNET 2–13

2.5.1.1 Starting Clients 2–13

2.5.2 Stopping LNET 2–14
vi Lustre 2.0 Operations Manual • June 2010



Part II Lustre Administration

3. Installing Lustre 3–1

3.1 Preparing to Install Lustre 3–2

3.1.1 Supported Linux Distribution, Architecture and Interconnect 3–2

3.1.2 Required Lustre Software 3–3

3.1.3 Required Tools and Utilities 3–3

3.1.4 (Optional) High-Availability Software 3–4

3.1.5 Debugging Tools 3–4

3.1.6 Environmental Requirements 3–5

3.1.7 Memory Requirements 3–6

3.1.7.1 Client Memory Requirements 3–6

3.1.7.2 MDS Memory Requirements 3–6

3.1.7.3 OSS Memory Requirements 3–7

3.2 Installing Lustre from RPMs 3–9

3.3 Installing Lustre from Source Code 3–13

3.3.1 Patching the Kernel 3–14

3.3.1.1 Introducing the Quilt Utility 3–14

3.3.1.2 Get the Lustre Source and Unpatched Kernel 3–15

3.3.1.3 Patch the Kernel 3–16

3.3.2 Create and Install the Lustre Packages 3–17

3.3.3 Installing Lustre with a Third-Party Network Stack 3–19
Contents vii



4. Configuring Lustre 4–1

4.1 Configuring the Lustre File System 4–2

4.1.0.1 Simple Lustre Configuration Example 4–5

4.1.0.2 Module Setup 4–10

4.1.1 Scaling the Lustre File System 4–10

4.2 Additional Lustre Configuration 4–10

4.3 Basic Lustre Administration 4–11

4.3.1 Specifying the File System Name 4–12

4.3.2 Starting Lustre 4–12

4.3.3 Mounting a Server 4–13

4.3.4 Unmounting a Server 4–14

4.3.5 Working with Inactive OSTs 4–14

4.3.6 Finding Nodes in the Lustre File System 4–15

4.3.7 Mounting a Server Without Lustre Service 4–16

4.3.8 Specifying Failout/Failover Mode for OSTs 4–16

4.3.9 Running Multiple Lustre File Systems 4–17

4.3.10 Setting and Retrieving Lustre Parameters 4–19

4.3.10.1 Setting Parameters with mkfs.lustre 4–19

4.3.10.2 Setting Parameters with tunefs.lustre 4–19

4.3.10.3 Setting Parameters with lctl 4–20

4.3.10.4 Reporting Current Parameter Values 4–21

4.3.11 Regenerating Lustre Configuration Logs 4–22

4.3.12 Changing a Server NID 4–23

4.3.13 Removing and Restoring OSTs 4–25

4.3.13.1 Removing an OST from the File System 4–25

4.3.13.2 Restoring an OST in the File System 4–27

4.3.14 Aborting Recovery 4–27

4.3.15 Determining Which Machine is Serving an OST 4–28
viii Lustre 2.0 Operations Manual • June 2010



4.4 More Complex Configurations 4–29

4.4.1 Failover 4–29

4.5 Operational Scenarios 4–30

4.5.1 Changing the Address of a Failover Node 4–31

5. Service Tags 5–1

5.1 Introduction to Service Tags 5–1

5.2 Using Service Tags 5–2

5.2.1 Installing Service Tags 5–2

5.2.2 Discovering and Registering Lustre Components 5–3

5.2.3 Service Tag Registration Information 5–6

6. Configuring Lustre - Examples 6–1

6.1 Simple TCP Network 6–1

6.1.1 Lustre with Combined MGS/MDT 6–1

6.1.1.1 Installation Summary 6–1

6.1.1.2 Configuration Generation and Application 6–2

6.1.2 Lustre with Separate MGS and MDT 6–3

6.1.2.1 Installation Summary 6–3

6.1.2.2 Configuration Generation and Application 6–3
Contents ix



7. More Complicated Configurations 7–1

7.1 Multihomed Servers 7–1

7.1.1 Modprobe.conf 7–1

7.1.2 Start Servers 7–3

7.1.3 Start Clients 7–4

7.2 Elan to TCP Routing 7–5

7.2.1 Modprobe.conf 7–5

7.2.2 Start servers 7–5

7.2.3 Start clients 7–5

7.3 Load Balancing with InfiniBand 7–6

7.3.1 Setting Up modprobe.conf for Load Balancing 7–6

7.4 Multi-Rail Configurations with LNET 7–7

8. Failover 8–1

8.1 What is Failover? 8–1

8.1.1 Failover Capabilities 8–2

8.1.2 Types of Failover Configurations 8–2

8.2 Failover Functionality in Lustre 8–3

8.2.1 MDT Failover Configuration (Active/Passive) 8–4

8.2.2 OST Failover Configuration (Active/Active) 8–4

8.2.3 Lustre Failover and MMP 8–4

8.2.3.1 Working with MMP 8–5

8.3 Configuring and Using Heartbeat with Lustre Failover 8–6

8.3.1 Creating a Failover Environment 8–6

8.3.1.1 Power Management Software 8–6

8.3.1.2 Power Equipment 8–7
x Lustre 2.0 Operations Manual • June 2010



8.3.2 Setting up the Heartbeat Software 8–7

8.3.2.1 Installing Heartbeat 8–8

8.3.2.2 Configuring Heartbeat 8–8

8.3.2.3 (Optional) Migrating a Heartbeat Configuration 
(v1 to v2) 8–13

8.3.3 Working with Heartbeat 8–14

8.3.3.1 Starting Heartbeat 8–14

8.3.3.2 Switching Resources Between Nodes 8–14

9. Configuring Quotas 9–1

9.1 Working with Quotas 9–1

9.1.1 Enabling Disk Quotas 9–2

9.1.1.1 Administrative and Operational Quotas 9–3

9.1.2 Creating Quota Files and Quota Administration 9–4

9.1.3 Quota Allocation 9–7

9.1.4 Known Issues with Quotas 9–10

9.1.4.1 Granted Cache and Quota Limits 9–10

9.1.4.2 Quota Limits 9–11

9.1.4.3 Quota File Formats 9–12

9.1.5 Lustre Quota Statistics 9–13

9.1.5.1 Interpreting Quota Statistics 9–14
Contents xi



10. RAID 10–1

10.1 Considerations for Backend Storage 10–2

10.1.1 Selecting Storage for the MDS or OSTs 10–2

10.1.2 Reliability Best Practices 10–3

10.1.3 Performance Tradeoffs 10–4

10.1.4 Formatting Options for RAID Devices 10–4

10.1.4.1 Creating an External Journal 10–5

10.1.5 Handling Degraded RAID Arrays 10–6

10.2 Insights into Disk Performance Measurement 10–6

10.3 Lustre Software RAID Support 10–7

10.3.0.1 Enabling Software RAID on Lustre 10–7

11. Kerberos 11–1

11.1 What is Kerberos? 11–1

11.2 Lustre Setup with Kerberos 11–2

11.2.1 Configuring Kerberos for Lustre 11–2

11.2.1.1 Kerberos Distributions Supported on Lustre 11–2

11.2.1.2 Preparing to Set Up Lustre with Kerberos 11–3

11.2.1.3 Configuring Lustre for Kerberos 11–4

11.2.1.4 Configuring Kerberos 11–6

11.2.1.5 Setting the Environment 11–8

11.2.1.6 Building Lustre 11–9

11.2.1.7 Running GSS Daemons 11–10
xii Lustre 2.0 Operations Manual • June 2010



11.2.2 Types of Lustre-Kerberos Flavors 11–11

11.2.2.1 Basic Flavors 11–11

11.2.2.2 Security Flavor 11–12

11.2.2.3 Customized Flavor 11–13

11.2.2.4 Specifying Security Flavors 11–14

11.2.2.5 Mounting Clients 11–14

11.2.2.6 Rules, Syntax and Examples 11–15

11.2.2.7 Authenticating Normal Users 11–16

12. Network Interface Bonding 12–1

12.1 Network Bonding 12–1

12.2 Requirements 12–2

12.3 Using Lustre with Multiple NICs versus Bonding NICs 12–4

12.4 Bonding Module Parameters 12–5

12.5 Setting Up Bonding 12–5

12.5.1 Examples 12–9

12.6 Configuring Lustre with Bonding 12–11

12.6.1 Bonding References 12–11

13. Upgrading and Downgrading Lustre 13–1

13.1 Lustre Interoperability 13–1

13.2 Upgrading Lustre 1.8.x to 2.0 13–2

13.2.1 Performing a File System Upgrade 13–2

14. Lustre SNMP Module 14–1

14.1 Installing the Lustre SNMP Module 14–2

14.2 Building the Lustre SNMP Module 14–2

14.3 Using the Lustre SNMP Module 14–3
Contents xiii



15. Backup and Restore 15–1

15.1 Backing up a File System 15–1

15.1.1 Lustre_rsync 15–2

15.1.1.1 Using Lustre_rsync 15–2

15.1.1.2 Lustre_rsync Examples 15–4

15.2 Backing up a Device (MDS or OST) 15–5

15.2.1 Backing Up the MDS 15–5

15.2.2 Backing Up an OST 15–6

15.3 Backing up Files 15–7

15.3.1 Backing up Extended Attributes 15–7

15.4 Restoring from a File-level Backup 15–8

15.5 Using LVM Snapshots with Lustre 15–9

15.5.1 Creating an LVM-based Backup File System 15–10

15.5.2 Backing up New/Changed Files to the Backup File System 15–11

15.5.3 Creating Snapshot Volumes 15–12

15.5.4 Restoring the File System From a Snapshot 15–13

15.5.5 Deleting Old Snapshots 15–15

15.5.6 Changing Snapshot Volume Size 15–15

16. POSIX 16–1

16.1 Introduction to POSIX 16–1

16.2 Installing POSIX 16–2

16.2.1 POSIX Installation Using a Quick Start Version 16–2

16.3 Building and Running a POSIX-Compliant Test Suite on Lustre 16–3

16.3.1 Building the Test Suite from Scratch 16–3

16.3.2 Running the Test Suite Against Lustre 16–5

16.4 Isolating and Debugging Failures 16–6
xiv Lustre 2.0 Operations Manual • June 2010



17. Benchmarking 17–1

17.1 Bonnie++ Benchmark 17–2

17.2 IOR Benchmark 17–3

17.3 IOzone Benchmark 17–5

18. Lustre I/O Kit 18–1

18.1 Lustre I/O Kit Description and Prerequisites 18–1

18.1.1 Downloading an I/O Kit 18–2

18.1.2 Prerequisites to Using an I/O Kit 18–2

18.2 Running I/O Kit Tests 18–2

18.2.1 sgpdd_survey 18–3

18.2.1.1 Tuning sgpdd_survey 18–4

18.2.2 obdfilter_survey 18–5

18.2.2.1 Running obdfilter_survey Against a Local Disk 18–6

18.2.2.2 Running obdfilter_survey Against a Network 18–7

18.2.2.3 Running obdfilter_survey Against a Network Disk 18–
8

18.2.2.4 Output Files 18–9

18.2.2.5 Script Output 18–10

18.2.2.6 Visualizing Results 18–10

18.2.3 ost_survey 18–11

18.2.4 stats-collect 18–12

18.3 PIOS Test Tool 18–14

18.3.1 Synopsis 18–15

18.3.2 PIOS I/O Modes 18–16

18.3.3 PIOS Parameters 18–17

18.3.4 PIOS Examples 18–20
Contents xv



18.4 LNET Self-Test 18–21

18.4.1 Basic Concepts of LNET Self-Test 18–21

18.4.1.1 Modules 18–21

18.4.1.2 Utilities 18–22

18.4.1.3 Session 18–22

18.4.1.4 Console 18–22

18.4.1.5 Group 18–23

18.4.1.6 Test 18–23

18.4.1.7 Batch 18–24

18.4.1.8 Sample Script 18–25

18.4.2 LNET Self-Test Commands 18–26

18.4.2.1 Session 18–26

18.4.2.2 Group 18–27

18.4.2.3 Batch and Test 18–30

18.4.2.4 Other Commands 18–33

19. Lustre Recovery 19–1

19.1 Recovery Overview 19–2

19.1.1 Client Failure 19–2

19.1.2 Client Eviction 19–3

19.1.3 MDS Failure (Failover) 19–3

19.1.4 OST Failure (Failover) 19–4

19.1.5 Network Partition 19–5

19.1.6 Failed Recovery 19–5
xvi Lustre 2.0 Operations Manual • June 2010



19.2 Metadata Replay 19–6

19.2.1 XID Numbers 19–6

19.2.2 Transaction Numbers 19–6

19.2.3 Replay and Resend 19–7

19.2.4 Client Replay List 19–7

19.2.5 Server Recovery 19–8

19.2.6 Request Replay 19–9

19.2.7 Gaps in the Replay Sequence 19–9

19.2.8 Lock Recovery 19–10

19.2.9 Request Resend 19–10

19.3 Reply Reconstruction 19–11

19.3.1 Required State 19–11

19.3.2 Reconstruction of Open Replies 19–11

19.4 Version-based Recovery 19–13

19.4.1 VBR Messages 19–14

19.4.2 Tips for Using VBR 19–14

19.5 Commit on Share 19–15

19.5.1 Working with Commit on Share 19–15

19.5.2 Tuning Commit On Share 19–16

19.6 Recovering from Errors or Corruption on a Backing File System 19–16

19.7 Recovering from Corruption in the Lustre File System 19–18

19.7.1 Working with Orphaned Objects 19–22
Contents xvii



Part III Lustre Tuning, Monitoring and Troubleshooting

20. Lustre Tuning 20–1

20.1 Module Options 20–2

20.1.1 OSS Service Thread Count 20–2

20.1.1.1 Optimizing the Number of Service Threads 20–2

20.1.2 MDS Service Thread Count 20–3

20.2 LNET Tunables 20–4

20.2.0.1 Transmit and receive buffer size: 20–4

20.2.0.2 irq_affinity 20–4

20.3 Options for Formatting the MDT and OSTs 20–5

20.3.1 Planning for Inodes 20–5

20.3.2 Sizing the MDT 20–5

20.4 Overriding Default Formatting Options 20–6

20.4.1 Number of Inodes for the MDS 20–6

20.4.2 Inode Size for the MDS 20–7

20.4.3 Number of Inodes for an OST 20–7

20.5 Large-Scale Tuning for Cray XT and Equivalents 20–8

20.5.1 Network Tunables 20–8

20.6 Lockless I/O Tunables 20–9

20.7 Data Checksums 20–10
xviii Lustre 2.0 Operations Manual • June 2010



21. LustreProc 21–1

21.1 Proc Entries for Lustre 21–2

21.1.1 Locating Lustre File Systems and Servers 21–2

21.1.2 Lustre Timeouts 21–3

21.1.3 Adaptive Timeouts 21–5

21.1.3.1 Configuring Adaptive Timeouts 21–6

21.1.3.2 Interpreting Adaptive Timeouts Information 21–8

21.1.4 LNET Information 21–9

21.1.5 Free Space Distribution 21–11

21.1.5.1 Managing Stripe Allocation 21–11

21.2 Lustre I/O Tunables 21–12

21.2.1 Client I/O RPC Stream Tunables 21–12

21.2.2 Watching the Client RPC Stream 21–14

21.2.3 Client Read-Write Offset Survey 21–15

21.2.4 Client Read-Write Extents Survey 21–17

21.2.5 Watching the OST Block I/O Stream 21–19

21.2.6 Using File Readahead and Directory Statahead 21–20

21.2.6.1 Tuning File Readahead 21–20

21.2.6.2 Tuning Directory Statahead 21–21

21.2.7 OSS Read Cache 21–22

21.2.7.1 Using OSS Read Cache 21–22

21.2.8 mballoc History 21–25

21.2.9 mballoc3 Tunables 21–27

21.2.10 Locking 21–29

21.2.11 Setting MDS and OSS Thread Counts 21–30
Contents xix



21.3 Debug Support 21–32

21.3.1 RPC Information for Other OBD Devices 21–35

21.3.1.1 Interpreting OST Statistics 21–36

21.3.1.2 llobdstat 21–38

21.3.1.3 Interpreting MDT Statistics 21–38

22. Lustre Monitoring 22–1

22.1 Lustre Changelogs 22–2

22.1.1 Working with Changelogs 22–3

22.1.2 Changelog Examples 22–4

22.2 Lustre Monitoring Tool 22–8

22.3 Red Hat Cluster Manager 22–8

22.4 SNMP Monitoring 22–9

22.5 CollectL 22–9

23. Lustre Troubleshooting 23–1

23.1 Troubleshooting Lustre 23–2

23.1.1 Error Numbers 23–2

23.1.2 Error Messages 23–3

23.1.3 Lustre Logs 23–3

23.2 Reporting a Lustre Bug 23–4
xx Lustre 2.0 Operations Manual • June 2010



23.3 Common Lustre Problems and Performance Tips 23–5

23.3.1 Recovering from an Unavailable OST 23–5

23.3.2 Write Performance Better Than Read Performance 23–6

23.3.3 OST Object is Missing or Damaged 23–7

23.3.4 OSTs Become Read-Only 23–8

23.3.5 Identifying a Missing OST 23–8

23.3.6 Improving Lustre Performance When Working with Small Files
23–10

23.3.7 Default Striping 23–10

23.3.8 Erasing a File System 23–11

23.3.9 How to Fix a Bad LAST_ID on an OST 23–12

23.3.10 Reclaiming Reserved Disk Space 23–15

23.3.11 Considerations in Connecting a SAN with Lustre 23–15

23.3.12 Handling/Debugging "Bind: Address already in use" Error 23–16

23.3.13 Replacing An Existing OST or MDS 23–17

23.3.14 Handling/Debugging Error "- 28" 23–17

23.3.15 Triggering Watchdog for PID NNN 23–18

23.3.16 Handling Timeouts on Initial Lustre Setup 23–19

23.3.17 Handling/Debugging "LustreError: xxx went back in time" 23–20

23.3.18 Lustre Error: "Slow Start_Page_Write" 23–20

23.3.19 Drawbacks in Doing Multi-client O_APPEND Writes 23–21

23.3.20 Slowdown Occurs During Lustre Startup 23–21

23.3.21 Log Message ‘Out of Memory’ on OST 23–21

23.3.22 Number of OSTs Needed for Sustained Throughput 23–22

23.3.23 Setting SCSI I/O Sizes 23–22

23.3.24 Identifying Which Lustre File an OST Object Belongs To 23–23
Contents xxi



24. Lustre Debugging 24–1

24.1 Lustre Debug Messages 24–2

24.1.1 Format of Lustre Debug Messages 24–3

24.1.2 Lustre Debug Messages Buffer 24–3

24.2 Tools for Lustre Debugging 24–4

24.2.1 Debug Daemon Option to lctl 24–6

24.2.1.1 lctl Debug Daemon Commands 24–7

24.2.2 Controlling the Kernel Debug Log 24–8

24.2.3 The lctl Tool 24–8

24.2.4 Finding Memory Leaks 24–10

24.2.5 Printing to /var/log/messages 24–10

24.2.6 Tracing Lock Traffic 24–10

24.2.7 Sample lctl Run 24–11

24.2.8 Adding Debugging to the Lustre Source Code 24–11

24.3 Troubleshooting with strace 24–14

24.4 Looking at Disk Content 24–15

24.4.1 Determine the Lustre UUID of an OST 24–16

24.4.2 Tcpdump 24–16

24.5 Ptlrpc Request History 24–16

24.6 Using LWT Tracing 24–17
xxii Lustre 2.0 Operations Manual • June 2010



Part IV Lustre for Users

25. Striping and I/O Options 25–1

25.1 Lustre File Striping 25–2

25.1.1 Advantages of Striping 25–2

25.1.1.1 Bandwidth 25–2

25.1.2 Disadvantages of Striping 25–3

25.1.2.1 Increased Overhead 25–3

25.1.2.2 Increased Risk 25–3

25.1.3 Stripe Size 25–4

25.2 Setting and Retrieving Striping Information 25–5

25.2.1 Setting File Layouts 25–9

25.2.2 Changing Striping for a Subdirectory 25–9

25.2.3 Using a Specific Striping Pattern/File Layout for a Single File 25–
10

25.2.4 Creating a File on a Specific OST 25–10

25.3 Managing Free Space 25–11

25.3.1 Checking File System Free Space 25–11

25.3.2 Using Stripe Allocations 25–13

25.3.3 Round-Robin Allocator 25–13

25.3.4 Weighted Allocator 25–13

25.3.5 Adjusting the Weighting Between Free Space and Location 25–14

25.4 Handling Full OSTs 25–14

25.4.1 Checking File System Usage 25–14

25.4.2 Taking a Full OST Offline 25–15

25.4.3 Migrating Data within a File System 25–16
Contents xxiii



24.5 Creating and Managing OST Pools 25–18

25.5.1 Working with OST Pools 25–19

25.5.1.1 Using the lfs Command with OST Pools 25–20

25.5.2 Tips for Using OST Pools 25–21

25.6 Performing Direct I/O 25–21

25.6.1 Making File System Objects Immutable 25–21

25.7 Other I/O Options 25–22

25.7.1 Lustre Checksums 25–22

25.7.1.1 Changing Checksum Algorithms 25–23

25.8 Striping Using llapi 25–24

26. Lustre Security 26–1

26.1 Using ACLs 26–1

26.1.1 How ACLs Work 26–1

26.1.2 Using ACLs with Lustre 26–2

26.1.3 Examples 26–3

26.2 Using Root Squash 26–4

26.2.1 Configuring Root Squash 26–4

26.2.2 Enabling and Tuning Root Squash 26–4

26.2.3 Tips on Using Root Squash 26–6

27. Lustre Operating Tips 27–1

27.1 Adding an OST to a Lustre File System 27–2

27.2 A Simple Data Migration Script 27–3

27.3 Adding Multiple SCSI LUNs on Single HBA 27–5

27.4 Failures Running a Client and OST on the Same Machine 27–5

27.5 Improving Lustre Metadata Performance While Using Large Directories
27–6
xxiv Lustre 2.0 Operations Manual • June 2010



Part V Reference

28. User Utilities (man1) 28–1

28.1 lfs 28–2

28.2 lfsck 28–13

28.3 Filefrag 28–15

28.4 Mount 28–17

28.5 Handling Timeouts 28–17

29. Lustre Programming Interfaces (man2) 29–1

29.1 User/Group Cache Upcall 29–1

29.1.1 Name 29–1

29.1.2 Description 29–2

29.1.2.1 Primary and Secondary Groups 29–2

29.1.3 Parameters 29–3

29.1.4 Data Structures 29–3

30. Setting Lustre Properties (man3) 30–1

30.1 Using llapi 30–1

30.1.1 llapi_file_create 30–1

30.1.2 llapi_file_get_stripe 30–4

30.1.3 llapi_file_open 30–5

30.1.4 llapi_quotactl 30–6

30.1.5 llapi_path2fid 30–9
Contents xxv



31. Configuration Files and Module Parameters (man5) 31–1

31.1 Introduction 31–1

31.2 Module Options 31–2

31.2.1 LNET Options 31–3

31.2.1.1 Network Topology 31–3

31.2.1.2 networks ("tcp") 31–5

31.2.1.3 routes (“”) 31–5

31.2.1.4 forwarding ("") 31–7

31.2.2 SOCKLND Kernel TCP/IP LND 31–8

31.2.3 QSW LND 31–10

31.2.4 RapidArray LND 31–11

31.2.5 VIB LND 31–12

31.2.6 OpenIB LND 31–14

31.2.7 Portals LND (Linux) 31–15

31.2.8 Portals LND (Catamount) 31–17

31.2.9 MX LND 31–19

32. System Configuration Utilities (man8) 32–1

32.1 mkfs.lustre 32–2

32.2 tunefs.lustre 32–5

32.3 lctl 32–8

32.4 mount.lustre 32–15

32.5 lustre_rsync 32–18

32.6 Additional System Configuration Utilities 32–22

32.6.1 lustre_rmmod.sh 32–22

32.6.2 e2scan 32–23

32.6.3 Application Profiling Utilities 32–24

32.6.4 More /proc Statistics for Application Profiling 32–24

32.6.5 Testing / Debugging Utilities 32–25
xxvi Lustre 2.0 Operations Manual • June 2010



32.6.6 Flock Feature 32–30

32.6.6.1 Example 32–30

32.6.7 l_getidentity 32–31

32.6.8 llobdstat 32–32

32.6.9 llstat 32–33

32.6.10 lst 32–35

32.6.11 plot-llstat 32–37

32.6.12 routerstat 32–38

32.6.13 ll_recover_lost_found_objs 32–39

33. System Limits 33–1

33.1 Maximum Stripe Count 33–1

33.2 Maximum Stripe Size 33–2

33.3 Minimum Stripe Size 33–2

33.4 Maximum Number of OSTs and MDTs 33–2

33.5 Maximum Number of Clients 33–2

33.6 Maximum Size of a File System 33–3

33.7 Maximum File Size 33–3

33.8 Maximum Number of Files or Subdirectories in a Single Directory 33–3

33.9 MDS Space Consumption 33–4

33.10 Maximum Length of a Filename and Pathname 33–4

33.11 Maximum Number of Open Files for Lustre File Systems 33–5

33.12 OSS RAM Size 33–5

Glossary Glossary–1

Index Index–1
Contents xxvii



xxviii Lustre 2.0 Operations Manual • June 2010



Preface

The Lustre 2.0 Operations Manual provides detailed information and procedures to 
install, configure and tune Lustre. The manual covers topics such as failover, quotas, 
striping and bonding. The Lustre manual also contains troubleshooting information 
and tips to improve Lustre operation and performance. 

Using UNIX Commands
This document might not contain information about basic UNIX® commands and 
procedures such as shutting down the system, booting the system, and configuring 
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com
xxv



Shell Prompts

Typographic Conventions

Note – Characters display differently depending on browser settings. If characters 
do not display correctly, change the character encoding in your browser to Unicode 
UTF-8.

A '\' (backslash) continuation character is used to indicate that commands are too 
long to fit on one text line.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface Meaning Examples

AaBbCc123 The names of commands, files, 
and directories; on-screen 
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted 
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms, 
words to be emphasized. 
Replace command-line variables 
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.
xxvi Lustre 2.0 Operations Manual • June 2010



Third-Party Web Sites
Oracle is not responsible for the availability of third-party web sites mentioned in 
this document. Oracle does not endorse and is not responsible or liable for any 
content, advertising, products, or other materials that are available on or through 
such sites or resources. Oracle will not be responsible or liable for any actual or 
alleged damage or loss caused by or in connection with the use of or reliance on any 
such content, goods, or services that are available on or through such sites or 
resources.
Preface xxvii



xxviii Lustre 2.0 Operations Manual • June 2010



Revision History

BookTitle Part Number Rev Date Comments

Lustre 2.0 Operations Manual xxx-xxxx-10 A April 2010 Beta release of Lustre 2.0 manual





PART I Lustre Architecture

Lustre is a storage-architecture for clusters. The central component is the Lustre file 
system, a shared file system for clusters. The Lustre file system is currently available 
for Linux and provides a POSIX-compliant UNIX file system interface. 

The Lustre architecture is used for many different kinds of clusters. It is best known 
for powering seven of the ten largest high-performance computing (HPC) clusters in 
the world with tens of thousands of client systems, petabytes (PBs) of storage and 
hundreds of gigabytes per second (GB/sec) of I/O throughput. Many HPC sites use 
Lustre as a site-wide global file system, servicing dozens of clusters on an 
unprecedented scale.





CHAPTER 1

Introduction to Lustre

This chapter describes Lustre software and components, and includes the following 
sections:

■ Introducing the Lustre File System

■ Lustre Components

■ Lustre Systems

■ Files in the Lustre File System

■ Lustre Configurations

■ Lustre Networking

■ Lustre Failover

These instructions assume you have some familiarity with Linux system 
administration, cluster systems and network technologies.
1-1



1.1 Introducing the Lustre File System
Lustre is a storage architecture for clusters. The central component is the Lustre file 
system, which is available for Linux and provides a POSIX-compliant UNIX file 
system interface.

The Lustre architecture is used for many different kinds of clusters. It is best known 
for powering seven of the ten largest high-performance computing (HPC) clusters 
worldwide, with tens of thousands of client systems, petabytes (PB) of storage and 
hundreds of gigabytes per second (GB/sec) of I/O throughput. Many HPC sites use 
Lustre as a site-wide global file system, serving dozens of clusters on an 
unprecedented scale.

The scalability of a Lustre file system reduces the need to deploy many separate file 
systems (such as one for each cluster). This offers significant storage management 
advantages, for example, avoiding maintenance of multiple data copies staged on 
multiple file systems. Hand in hand with aggregating file system capacity with many 
servers, I/O throughput is also aggregated and scales with additional servers. 
Moreover, throughput (or capacity) can be easily adjusted by adding servers 
dynamically.

Lustre has been integrated with several vendor’s kernels. We offer Red Hat 
Enterprise Linux (RHEL) and SUSE Linux Enterprise (SUSE) kernels with Lustre 
patches. 
1-2 Lustre 2.0 Operations Manual • June 2010



1.1.1 Lustre Key Features
The key features of Lustre include:

■ Scalability: Lustre scales up or down with respect to the number of client nodes, 
disk storage and bandwidth. Currently, Lustre is running in production 
environments with up to 26,000 client nodes, with many clusters in the 
10,000-20,000 client range. Other Lustre installations provide aggregated disk 
storage and bandwidth of up to 1,000 OSTs running on more than 450 OSSs. 
Several Lustre file systems with a capacity of 1 PB or more (allowing storage of up 
to 2 billion files) have been in use since 2006.

■ Performance: Lustre deployments in production environments currently offer 
performance of up to 100 GB/s. In a test environment, a performance of 130 GB/s 
and 13,000 creates/s has been sustained. Lustre single client node throughput has 
been measured at 2 GB/s (max) and OSS throughput at 2.5 GB/s (max). Lustre has 
been run at 240 GB/sec on the Spider file system at Oak Ridge National 
Laboratories. 

■ POSIX compliance: The full POSIX test suite passes on Lustre clients. In a cluster, 
POSIX compliance means that most operations are atomic and clients never see 
stale data or metadata.

■ High-availability: Lustre offers shared storage partitions for OSS targets (OSTs), 
and a shared storage partition for the MDS target (MDT).

■ Security: In Lustre, it is an option to have TCP connections only from privileged 
ports. Group membership handling is server-based. POSIX access control lists 
(ACLs) are supported.

■ Open source: Lustre is licensed under the GNU GPL.

Additionally, Lustre offers these features:

■ Interoperability: Lustre runs on a variety of CPU architectures and mixed-endian 
clusters and interoperability between adjacent Lustre software releases.

■ Access control list (ACL): Currently, the Lustre security model follows a UNIX file 
system, enhanced with POSIX ACLs. Noteworthy additional features include root 
squash and connecting from privileged ports only.

■ Quotas: User and group quotas are available for Lustre.

■ OSS addition: The capacity of a Lustre file system and aggregate cluster 
bandwidth can be increased without interrupting any operations by adding a new 
OSS with OSTs to the cluster.

■ Controlled striping: The default stripe count and stripe size can be controlled in 
various ways. The file system has a default setting that is determined at format 
time. Directories can be given an attribute so that all files under that directory 
(and recursively under any sub-directory) have a striping pattern determined by 
the attribute. Finally, utilities and application libraries are provided to control the 
striping of an individual file at creation time. 
Chapter 1 Introduction to Lustre 1-3



■ Snapshots: Lustre file servers use volumes attached to the server nodes. The 
Lustre software includes a utility (using LVM snapshot technology) to create a 
snapshot of all volumes and group snapshots together in a snapshot file system 
that can be mounted with Lustre.

■ Backup tools: Lustre 1.6 includes two utilities supporting backups. One tool scans 
file systems and locates files modified since a certain timeframe. This utility makes 
modified files’ pathnames available so they can be processed in parallel by other 
utilities (such as rsync) using multiple clients. Another useful tool is a modified 
version of GNU tar (gtar) which can back up and restore extended attributes (i.e. 
file striping and pool membership) for Lustre.1

■ Other current features of Lustre are described in detail in this manual. Future 
features are described in the Lustre roadmap. 

1. Files backed up using the modified version of gtar are restored per the backed up striping information. The 
backup procedure does not use default striping rules.
1-4 Lustre 2.0 Operations Manual • June 2010



1.2 Lustre Components
A Lustre file system consists of the following basic components (see FIGURE 1-1).

■ Metadata Server (MDS) - The MDS server makes metadata stored in one or more 
MDTs available to Lustre clients. Each MDS manages the names and directories in 
the Lustre file system(s) and provides network request handling for one or more 
local MDTs. 

■ Metadata Target (MDT) - The MDT stores metadata (such as filenames, 
directories, permissions and file layout) on an MDS. Each file system has one 
MDT. An MDT on a shared storage target can be available to many MDSs, 
although only one should actually use it. If an active MDS fails, a passive MDS 
can serve the MDT and make it available to clients. This is referred to as MDS 
failover. 

■ Object Storage Servers (OSS): The OSS provides file I/O service, and network 
request handling for one or more local OSTs. Typically, an OSS serves between 2 
and 8 OSTs, up to 8 TB each2. The MDT, OSTs and Lustre clients can run 
concurrently (in any mixture) on a single node. However, a typical configuration is 
an MDT on a dedicated node, two or more OSTs on each OSS node, and a client on 
each of a large number of compute nodes. 

■ Object Storage Target (OST): The OST stores file data (chunks of user files) as 
data objects on one or more OSSs. A single Lustre file system can have multiple 
OSTs, each serving a subset of file data. There is not necessarily a 1:1 
correspondence between a file and an OST. To optimize performance, a file may be 
spread over many OSTs. A Logical Object Volume (LOV), manages file striping 
across many OSTs. 

■ Lustre clients: Lustre clients are computational, visualization or desktop nodes 
that run Lustre software that allows them to mount the Lustre file system.

The Lustre client software consists of an interface between the Linux Virtual File 
System and the Lustre servers. Each target has a client counterpart: Metadata 
Client (MDC), Object Storage Client (OSC), and a Management Client (MGC). A 
group of OSCs are wrapped into a single LOV. Working in concert, the OSCs 
provide transparent access to the file system. 

Clients, which mount the Lustre file system, see a single, coherent, synchronized 
namespace at all times. Different clients can write to different parts of the same file 
at the same time, while other clients can read from the file.

Lustre includes several additional components, LNET and the MGS, described in the 
following sections.

2. In Lustre 2.0, 16 TB OSTs will be supported on OEL 5 using specific RPMs (with ext4-based ldiskfs).
Chapter 1 Introduction to Lustre 1-5



FIGURE 1-1 Lustre components in a basic cluster
1-6 Lustre 2.0 Operations Manual • June 2010



1.2.1 Lustre Networking (LNET)
Lustre Networking (LNET) is an API that handles metadata and file I/O data for file 
system servers and clients. LNET supports multiple, heterogeneous interfaces on 
clients and servers. LNET interoperates with a variety of network transports through 
Network Abstraction Layers (NAL). Lustre Network Drivers (LNDs) are available for 
a number of commodity and high-end networks, including Infiniband, TCP/IP, 
Quadrics Elan, Myrinet (MX and GM) and Cray.

In clusters with a Lustre file system, servers and clients communicate with one 
another over a custom networking API known as Lustre Networking (LNET), while 
the disk storage behind the MDSs and OSSs is connected to these servers using 
traditional SAN technologies. 

Key features of LNET include:

■ RDMA, when supported by underlying networks such as Elan, Myrinet and 
InfiniBand.

■ Support for many commonly-used network types such as InfiniBand and IP.

■ High availability and recovery features enabling transparent recovery in 
conjunction with failover servers.

■ Simultaneous availability of multiple network types with routing between them.

1.2.2 Management Server (MGS)
The MGS stores configuration information for all Lustre file systems in a cluster. Each 
Lustre target contacts the MGS to provide information, and Lustre clients contact the 
MGS to retrieve information. The MGS requires its own disk for storage. However, 
there is a provision that allows the MGS to share a disk ("co-locate") with a single 
MDT. The MGS is not considered "part" of an individual file system; it provides 
configuration information for all managed Lustre file systems to other Lustre 
components.
Chapter 1 Introduction to Lustre 1-7



1.3 Lustre Systems
Lustre components work together as coordinated systems to manage file and 
directory operations in the file system (see FIGURE 1-2).

FIGURE 1-2 Lustre system interaction in a file system

The characteristics of the Lustre system include:

Typical number of 
systems Performance

Required 
attached storage

Desirable hardware 
characteristics

Clients 1-100,000 1 GB/sec I/O, 
1,000 metadata 
ops/sec

None None

OSS 1-1,000 500-2.5 GB/sec File system 
capacity/OSS 
count

Good bus bandwidth

MDS 2
(2-100 in future)

3,000-15,000 
metadata ops/sec

1-2% of file 
system capacity

Adequate CPU power, 
plenty of memory
1-8 Lustre 2.0 Operations Manual • June 2010



At scale, the Lustre cluster can include up to 1,000 OSSs and 100,000 clients (see 
FIGURE 1-3).

FIGURE 1-3 Lustre cluster at scale
Chapter 1 Introduction to Lustre 1-9



1.4 Files in the Lustre File System
Traditional UNIX disk file systems use inodes, which contain lists of block numbers 
where file data for the inode is stored. Similarly, for each file in a Lustre file system, 
one inode exists on the MDT. However, in Lustre, the inode on the MDT does not 
point to data blocks, but instead, points to one or more objects associated with the 
files. This is illustrated in FIGURE 1-4. These objects are implemented as files on the 
OST file systems and contain file data.

FIGURE 1-4 MDS inodes point to objects, ext3 inodes point to data
1-10 Lustre 2.0 Operations Manual • June 2010



FIGURE 1-5 shows how a file open operation transfers the object pointers from the 
MDS to the client when a client opens the file, and how the client uses this 
information to perform I/O on the file, directly interacting with the OSS nodes where 
the objects are stored.

FIGURE 1-5 File open and file I/O in Lustre

If only one object is associated with an MDS inode, that object contains all of the data 
in that Lustre file. When more than one object is associated with a file, data in the file 
is "striped" across the objects. 

The MDS knows the layout of each file, the number and location of the file's stripes. 
The clients obtain the file layout from the MDS. Client do I/O against the stripes of a 
file by communicating directly with the relevant OSTs.

The benefits of the Lustre arrangement are clear. The capacity of a Lustre file system 
equals the sum of the capacities of the storage targets. The aggregate bandwidth 
available in the file system equals the aggregate bandwidth offered by the OSSs to 
the targets. Both capacity and aggregate I/O bandwidth scale simply with the 
number of OSSs.
Chapter 1 Introduction to Lustre 1-11



1.4.1 Lustre File System and Striping
Striping allows parts of files to be stored on different OSTs, as shown in FIGURE 1-6. A 
RAID 0 pattern, in which data is "striped" across a certain number of objects, is used; 
the number of objects is called the stripe_count. Each object contains "chunks" of 
data. When the "chunk" being written to a particular object exceeds the stripe_size, 
the next "chunk" of data in the file is stored on the next target. 

FIGURE 1-6 Files striped with a stripe count of 2 and 3 with different stripe sizes

File striping presents several benefits. One is that the maximum file size is not 
limited by the size of a single target. Lustre can stripe files over up to 160 targets, and 
each target can support a maximum disk use of 8 TB3 by a file. This leads to a 
maximum disk use of 1.48 PB4 by a file. Note that the maximum file size is much 
larger (2^64 bytes), but the file cannot have more than 1.48 PB2 of allocated data; 
hence a file larger than 1.48 PB2 must have many sparse sections. While a single file 
can only be striped over 160 targets, Lustre file systems have been built with almost 
5000 targets, which is enough to support a 40 PB file system. 

3. In Lustre 2.0, 16 TB on OEL 5.

4.  In Lustre 2.0, 2.96 PB on OEL 5.
1-12 Lustre 2.0 Operations Manual • June 2010



Another benefit of striped files is that the I/O bandwidth to a single file is the 
aggregate I/O bandwidth to the objects in a file and this can be as much as the 
bandwidth of up to 160 servers.

1.4.2 Lustre Storage
The storage attached to the servers is partitioned, optionally organized with logical 
volume management (LVM) and formatted as file systems. Lustre OSS and MDS 
servers read, write and modify data in the format imposed by these file systems. 

1.4.2.1 OSS Storage

Each OSS can manage multiple object storage targets (OSTs), one for each volume; 
I/O traffic is load-balanced against servers and targets. An OSS should also balance 
network bandwidth between the system network and attached storage to prevent 
network bottlenecks. Depending on the server's hardware, an OSS typically serves 
between 2 and 25 targets, with each target up to 8 terabytes (TBs) in size. 

1.4.2.2 MDS Storage

For the MDS nodes, storage must be attached for Lustre metadata, for which 1-2 
percent of the file system capacity is needed. The data access pattern for MDS storage 
is different from the OSS storage: the former is a metadata access pattern with many 
seeks and read-and-writes of small amounts of data, while the latter is an I/O access 
pattern, which typically involves large data transfers. 

High throughput to MDS storage is not important. Therefore, we recommend that a 
different storage type be used for the MDS (for example FC or SAS drives, which 
provide much lower seek times). Moreover, for low levels of I/O, RAID 5/6 patterns 
are not optimal, a RAID 0+1 pattern yields much better results. 

Lustre uses journaling file system technology on the targets, and for a MDS, an 
approximately 20 percent performance gain can sometimes be obtained by placing 
the journal on a separate device. Typically, the MDS requires CPU power; we 
recommend at least four processor cores.
Chapter 1 Introduction to Lustre 1-13



1.4.3 Lustre System Capacity
Lustre file system capacity is the sum of the capacities provided by the targets.

As an example, 64 OSSs, each with two 8-TB targets, provide a file system with a 
capacity of nearly 1 PB. If this system uses sixteen 1-TB SATA disks, it may be 
possible to get 50 MB/sec from each drive, providing up to 800 MB/sec of disk 
bandwidth. If this system is used as storage backend with a system network like 
InfiniBand that supports a similar bandwidth, then each OSS could provide 800 
MB/sec of end-to-end I/O throughput. Note that the OSS must provide inbound and 
outbound bus throughput of 800 MB/sec simultaneously. The cluster could see 
aggregate I/O bandwidth of 64x800, or about 50 GB/sec. Although the architectural 
constraints described here are simple, in practice it takes careful hardware selection, 
benchmarking and integration to obtain such results.

In a Lustre file system, storage is only attached to server nodes, not to client nodes. If 
failover capability is desired, then this storage must be attached to multiple servers. 
In all cases, the use of storage area networks (SANs) with expensive switches can be 
avoided, because point-to-point connections between the servers and the storage 
arrays normally provide the simplest and best attachments.

1.5 Lustre Configurations
Lustre file systems are easy to configure. First, the Lustre software is installed, and 
then MDT and OST partitions are formatted using the standard UNIX mkfs 
command. Next, the volumes carrying the Lustre file system targets are mounted on 
the server nodes as local file systems. Finally, the Lustre client systems are mounted 
(in a manner similar to NFS mounts). 
1-14 Lustre 2.0 Operations Manual • June 2010



The configuration commands listed below are for the Lustre cluster shown in 
FIGURE 1-7.

On the MDS (mds.your.org@tcp0):

mkfs.lustre --mdt --mgs --fsname=large-fs /dev/sda
mount -t lustre /dev/sda /mnt/mdt

On OSS1:

mkfs.lustre --ost --fsname=large-fs --mgsnode=mds.your.org@tcp0 /dev/sdb
mount -t lustre /dev/sdb/mnt/ost1

On OSS2:

mkfs.lustre --ost --fsname=large-fs --mgsnode=mds.your.org@tcp0 /dev/sdc
mount -t lustre /dev/sdc/mnt/ost2

FIGURE 1-7 A simple Lustre cluster
Chapter 1 Introduction to Lustre 1-15



1.6 Lustre Networking
In clusters with a Lustre file system, the system network connects the servers and the 
clients. The disk storage behind the MDSs and OSSs connects to these servers using 
traditional SAN technologies, but this SAN does not extend to the Lustre client 
system. Servers and clients communicate with one another over a custom networking 
API known as Lustre Networking (LNET). LNET interoperates with a variety of 
network transports through Network Abstraction Layers (NAL).

Key features of LNET include:

■ RDMA, when supported by underlying networks such as Elan, Myrinet and 
InfiniBand.

■ Support for many commonly-used network types such as InfiniBand and IP.

■ High availability and recovery features enabling transparent recovery in 
conjunction with failover servers.

■ Simultaneous availability of multiple network types with routing between them.

LNET includes LNDs to support many network type including: 

■ InfiniBand: OpenFabrics versions 1.0 and 1.2, Mellanox Gold, Cisco, Voltaire, and 
Silverstorm

■ TCP: Any network carrying TCP traffic, including GigE, 10GigE, and IPoIB

■ Quadrics: Elan3, Elan4

■ Myrinet: GM, MX

■ Cray: Seastar, RapidArray

The LNDs that support these networks are pluggable modules for the LNET software 
stack.

LNET offers extremely high performance. It is common to see end-to-end throughput 
over GigE networks in excess of 110 MB/sec, InfiniBand double data rate (DDR) links 
reach bandwidths up to 1.5 GB/sec, and 10GigE interfaces provide end-to-end 
bandwidth of over 1 GB/sec.
1-16 Lustre 2.0 Operations Manual • June 2010



1.7 Lustre Failover
Lustre offers a robust, application-transparent failover mechanism that delivers call 
completion. Lustre MDSs are configured as an active/passive pair, while OSSs are 
typically deployed in an active/active configuration that provides redundancy 
without extra overhead, as shown in FIGURE 1-8. Often the standby MDS is the active 
MDS for another Lustre file system, so no nodes are idle in the cluster.

FIGURE 1-8 Lustre failover configurations for OSSs and MDSs

Although a file system checking tool (lfsck) is provided for disaster recovery, 
journaling and sophisticated protocols re-synchronize the cluster within seconds, 
without the need for a lengthy fsck. Lustre version interoperability between 
successive minor versions is guaranteed. As a result, the Lustre failover capability is 
used regularly to upgrade the software without cluster downtime.
Chapter 1 Introduction to Lustre 1-17



Note – Lustre does not provide redundancy for data; it depends exclusively on 
redundancy of backing storage devices. The backing OST storage should be RAID 5 
or, preferably, RAID 6 storage. MDT storage should be RAID 1 or RAID 0+1.
1-18 Lustre 2.0 Operations Manual • June 2010



CHAPTER 2

Understanding Lustre Networking

This chapter describes Lustre Networking (LNET) and supported networks, and 
includes the following sections:

■ Introduction to LNET

■ Supported Network Types

■ Designing Your Lustre Network

■ Configuring LNET

■ Starting and Stopping LNET

2.1 Introduction to LNET
In a Lustre network, servers and clients communicate with one another using LNET, 
a custom networking API which abstracts away all transport-specific interaction. In 
turn, LNET operates with a variety of network transports through Lustre Network 
Drivers (LNDs).

The following terms are important to understanding LNET.

■ LND: Lustre Network Driver. A modular sub-component of LNET that 
implements one of the network types. LNDs are implemented as individual kernel 
modules (or a library in userspace) and, typically, must be compiled against the 
network driver software.

■ Network: A group of nodes that communicate directly with each other. The 
network is how LNET represents a single cluster. Multiple networks can be used 
to connect clusters together. Each network has a unique type and number (for 
example, tcp0, tcp1, or elan0).

■ NID: Lustre Network Identifier. The NID uniquely identifies a Lustre network 
endpoint, including the node and the network type. There is an NID for every 
network which a node uses.
2-1



Key features of LNET include:

■ RDMA, when supported by underlying networks such as Elan, Myrinet, and 
InfiniBand

■ Support for many commonly-used network types such as InfiniBand and TCP/IP 

■ High availability and recovery features enabling transparent recovery in 
conjunction with failover servers 

■ Simultaneous availability of multiple network types with routing between them

LNET is designed for complex topologies, superior routing capabilities and 
simplified configuration.

2.2 Supported Network Types
LNET supports the following network types:

■ TCP

■ openib (Mellanox-Gold InfiniBand)

■ cib (Cisco Topspin)

■ iib (Infinicon InfiniBand) 

■ vib (Voltaire InfiniBand) 

■ o2ib (OFED - InfiniBand and iWARP)

■ ra (RapidArray)

■ Elan (Quadrics Elan)

■ GM and MX (Myrinet)

■ Cray Seastar
2-2 Lustre 2.0 Operations Manual • June 2010



2.3 Designing Your Lustre Network
Before you configure Lustre, it is essential to have a clear understanding of the Lustre 
network topologies. 

2.3.1 Identify All Lustre Networks
A network is a group of nodes that communicate directly with one another. As 
previously mentioned in this manual, Lustre supports a variety of network types and 
hardware, including TCP/IP, Elan, varieties of InfiniBand, Myrinet and others. The 
normal rules for specifying networks apply to Lustre networks. For example, two 
TCP networks on two different subnets (tcp0 and tcp1) would be considered two 
different Lustre networks.

2.3.2 Identify Nodes to Route Between Networks
Any node with appropriate interfaces can route LNET between different 
networks—the node may be a server, a client, or a standalone router. LNET can route 
across different network types (such as TCP-to-Elan) or across different topologies 
(such as bridging two InfiniBand or TCP/IP networks).

2.3.3 Identify Network Interfaces to Include/Exclude 
from LNET
If not explicitly specified, LNET uses either the first available interface or a 
pre-defined default for a given network type. If there are interfaces that LNET should 
not use (such as administrative networks, IP over IB, and so on), then the included 
interfaces should be explicitly listed.
Chapter 2 Understanding Lustre Networking 2-3



2.3.4 Determine Cluster-wide Module Configuration
The LNET configuration is managed via module options, typically specified in 
/etc/modprobe.conf or /etc/modprobe.conf.local (depending on the distribution). 
To ease the maintenance of large clusters, you can configure the networking setup for 
all nodes using a single, unified set of options in the modprobe.conf file on each 
node. For more information, see the ip2nets option in Setting Up modprobe.conf for 
Load Balancing.

Users of liblustre should set the accept=all parameter. For details, see Module 
Parameters.

2.3.5 Determine Appropriate Mount Parameters for 
Clients
In mount commands, clients use the NID of the MDS host to retrieve their 
configuration information. Since an MDS may have more than one NID, a client 
should use the appropriate NID for its local network. If you are unsure which NID to 
use, there is a lctl command that can help. 

MDS

On the MDS, run:

lctl list_nids

This displays the server's NIDs (networks configured to work with Lustre).

Client

On a client, run:

lctl which_nid <NID list>

This displays the closest NID for the client.
2-4 Lustre 2.0 Operations Manual • June 2010



Client with SSH Access

From a client with SSH access to the MDS, run:

mds_nids=`ssh the_mds lctl list_nids`

lctl which_nid $mds_nids

This displays, generally, the correct NID to use for the MDS in the mount command.

Note – In the mds_nids command above, be sure to use the correct mark (`), not a 
straight quotation mark ('). Otherwise, the command will not work.

2.4 Configuring LNET
This section describes how to configure LNET, including entries in the 
modprobe.conf file which tell LNET which NIC(s) will be configured to work with 
Lustre, and parameters that specify the routing that will be used with Lustre.

Note – We recommend that you use dotted-quad IP addressing rather than host 
names. We have found this aids in reading debug logs, and helps greatly when 
debugging configurations with multiple interfaces.

2.4.1 Module Parameters
LNET hardware and routing are configured via module parameters of the LNET and 
LND-specific modules. Parameters should be specified in the /etc/modprobe.conf or 
/etc/modules.conf file. This example specifies that the node should use a TCP 
interface and an Elan interface:

options lnet networks=tcp0,elan0

Depending on the LNDs used, it may be necessary to specify explicit interfaces. For 
example, if you want to use two TCP interfaces (tcp0 and tcp1, for example), it is 
necessary to specify the module parameters and ethX interfaces, like this:

options lnet networks=tcp0(eth0),tcp1(eth1)

This modprobe.conf entry specifies: 

■ First Lustre network, tcp0, is configured on interface eth0

■ Second Lustre network, tcp1, is configured on interface eth1
Chapter 2 Understanding Lustre Networking 2-5



Note – The requirement to specify explicit interfaces is not consistent across all 
LNDs used with Lustre, and LND behavior may change over time. We recommend 
that if your multi-homed settings do not work, try specifying the ethX interfaces in 
the options lnet networks line.

All LNET routers that bridge two networks are equivalent; their configuration is not 
primary or secondary. All available routers balance their overall load. With the router 
checker configured, Lustre nodes can detect router health status, avoid those that 
appear dead, and reuse the ones that restore service after failures. To do this, LNET 
routing must correspond exactly with the Linux nodes' map of alive routers. There is 
no hard limit on the number of LNET routers. 

Note – When multiple interfaces are available during the network setup, Lustre 
choose the 'best' route. Once the network connection is established, Lustre expects 
the network to stay connected. In a Lustre network, connections do not fail over to 
the other interface, even if multiple interfaces are available on the same node. 

Under Linux 2.6, the LNET configuration parameters can be viewed under 
/sys/module/; generic and acceptor parameters under lnet and LND-specific 
parameters under the corresponding LND name.

Note – Depending on the Linux distribution, options with included commas may 
need to be escaped using single and/or double quotes. Worst-case quotes look like:
options lnet'networks="tcp0,elan0"' 'routes="tcp [2,10]@elan0"'

Additional quotes may confuse some distributions. Check for messages such as:
lnet: Unknown parameter ‘'networks'

After modprobe LNET, remove the additional single quotes (modprobe.conf in this 
case). Additionally, the refusing connection - no matching NID message generally 
points to an error in the LNET module configuration. 

Note – By default, Lustre ignores the loopback (lo0) interface. Lustre does not ignore 
IP addresses aliased to the loopback. In this case, specify all Lustre networks.

The liblustre network parameters may be set by exporting the environment variables 
LNET_NETWORKS, LNET_IP2NETS and LNET_ROUTES. Each of these variables 
uses the same parameters as the corresponding modprobe option.
2-6 Lustre 2.0 Operations Manual • June 2010



Note, it is very important that a liblustre client includes ALL the routers in its setting 
of LNET_ROUTES. A liblustre client cannot accept connections, it can only create 
connections. If a server sends remote procedure call (RPC) replies via a router to 
which the liblustre client has not already connected, then these RPC replies are lost. 

Note – Liblustre is not required or even recommended for running Lustre on Linux. 
Most users will not use liblustre. Instead, you should use the Lustre (VFS) client file 
system to mount Lustre directly. Liblustre does NOT support multi-threaded 
applications.

Note – Liblustre is not widely tested as part of Lustre release testing, and is 
currently maintained only as a courtesy to the Lustre community. 

2.4.1.1 Using Usocklnd

Lustre now offers usocklnd, a socket-based LND that uses TCP in userspace. By 
default, liblustre is compiled with usocklnd as the transport, so there is no need to 
specially enable it.

Use the following environmental variables to tune usocklnd’s behavior.

Variable Description

USOCK_SOCKNAGLE=N Turns the TCP Nagle algorithm on or off. Setting N to 0 (the 
default value), turns the algorithm off. Setting N to 1 turns 
the algorithm on.

USOCK_SOCKBUFSIZ=N Changes the socket buffer size. Setting N to 0 (the default 
value), specifies the default socket buffer size. Setting N to 
another value (must be a positive integer) causes usocklnd 
to try to set the socket buffer size to the specified value.

USOCK_TXCREDITS=N Specifies the maximum number of concurrent sends. The 
default value is 256. N should be set to a positive value.

USOCK_PEERTXCREDITS=N Specifies the maximum number of concurrent sends per 
peer. The default value is 8. N should be set to a positive 
value and should not be greater than the value of the 
USOCK_TXCREDITS parameter.

USOCK_NPOLLTHREADS=N Defines the degree of parallelism of usocklnd, by equaling 
the number of threads devoted to processing network 
events. The default value is the number of CPUs in the 
system. N should be set to a positive value.
Chapter 2 Understanding Lustre Networking 2-7



2.4.1.2 OFED InfiniBand Options

For the SilverStorm/Infinicon InfiniBand LND (iiblnd), the network and HCA may 
be specified, as in this example:

options lnet networks="o2ib3(ib3)"

This specifies that the node is on o2ib network number 3, using HCA ib3.

2.4.2 Module Parameters - Routing
The following parameter specifies a colon-separated list of router definitions. Each 
route is defined as a network number, followed by a list of routers.

route=<net type> <router NID(s)>

Examples: 

options lnet 'networks="o2ib0"' 'routes="tcp0 192.168.10.[1-8]@o2ib0"'

This is an example for IB clients to access TCP servers via 8 IB-TCP routers.

options lnet 'ip2nets="tcp0 10.10.0.*; o2ib0(ib0) 192.168.10.[1-128]"' \ 
'routes="tcp 192.168.10.[1-8]@o2ib0; o2ib 10.10.0.[1-8]@tcp0"

This specifies bi-directional routing; TCP clients can reach Lustre resources on the IB 
networks and IB servers can access the TCP networks. For more information on 
ip2nets, Modprobe.conf.

USOCK_FAIR_LIMIT=N The maximum number of times that usocklnd loops 
processing events before the next polling occurs. The default 
value is 1, meaning that every network event has only one 
chance to be processed before polling occurs the next time. 
N should be set to a positive value.

USOCK_TIMEOUT=N Specifies the network timeout (measured in seconds). 
Network options that are not completed in N seconds 
time out and are canceled. The default value is 50 seconds. 
N should be a positive value.

USOCK_POLL_TIMEOUT=N Specifies the polling timeout; how long usocklnd ‘sleeps’ if 
no network events occur. N results in a slightly lower 
overhead of checking network timeouts and longer delay of 
evicting timed-out events. The default value is 1 second. 
N should be set to a positive value.

USOCK_MIN_BULK=N This tunable is only used for typed network connections. 
Currently, liblustre clients do not use this usocklnd facility.
2-8 Lustre 2.0 Operations Manual • June 2010



Note – Configure IB network interfaces on a different subnet than LAN interfaces.

Best Practices for ip2nets, routes and networks Options

For the ip2nets, routes and networks options, several best practices must be 
followed or configuration errors occur. 

Best Practice 1: If you add a comment to any of the above options, position the 
semicolon after the comment. If you fail to do so, some nodes are not properly 
initialized because LNET silently ignores everything following the '#' character 
(which begins the comment), until it reaches the next semicolon. This is subtle; no 
error message is generated to alert you to the problem. 

This example shows the correct syntax: 

options lnet ip2nets="pt10 192.168.0.[89,93] # comment with semicolon AFTER comment; \ 

pt11 192.168.0.[92,96] # comment 

In this example, the following is ignored: comment with semicolon AFTER comment 

This example shows the wrong syntax: 

options lnet ip2nets="pt10 192.168.0.[89,93]; # comment with semicolon BEFORE comment \ 
pt11 192.168.0.[92,96]; 

In this example, the following is ignored: comment with semicolon BEFORE comment 
pt11 192.168.0.[92,96]. Because LNET silently ignores pt11 192.168.0.[92,96], 
these nodes are not properly initialized.

Best Practice 2: Do not add an excessive number of comments to these options. The 
Linux kernel has a limit on the length of string module options; it is usually 1KB, but 
may differ in vendor kernels. If you exceed this limit, errors result and the 
configuration specified by the user is not processed properly.

Using Routing Parameters Across a Cluster

To ease Lustre administration, the same routing parameters can be used across 
different parts of a routed cluster. For example, the bi-directional routing example 
above can be used on an entire cluster (TCP clients, TCP-IB routers, and IB servers):

■ TCP clients would ignore o2ib0(ib0) 192.168.10.[1-128] in ip2nets since they have 
no such interfaces. Similarly, IB servers would ignore tcp0 192.168.0.*. But TCP-IB 
routers would use both since they are multi-homed.

■ TCP clients would ignore the route "tcp 192.168.10.[1-8]@o2ib0" since the target 
network is a local network. For the same reason, IB servers would ignore "o2ib 
10.10.0.[1-8]@tcp0".
Chapter 2 Understanding Lustre Networking 2-9



■ TCP-IB routers would ignore both routes, because they are multi-homed. 
Moreover, the routers would enable LNet forwarding since their NIDs are 
specified in the 'routes' parameters as being routers.

live_router_check_interval, dead_router_check_interval, auto_down, 
check_routers_before_use and router_ping_timeout 

In a routed Lustre setup with nodes on different networks such as TCP/IP and Elan, 
the router checker checks the status of a router. The auto_down parameter 
enables/disables (1/0) the automatic marking of router state. 

The live_router_check_interval parameter specifies a time interval in seconds 
after which the router checker will ping the live routers. 

In the same way, you can set the dead_router_check_interval parameter for 
checking dead routers. 

You can set the timeout for the router checker to check the live or dead routers by 
setting the router_ping_timeout parameter. The Router pinger sends a ping 
message to a dead/live router once every dead/live_router_check_interval 
seconds, and if it does not get a reply message from the router within 
router_ping_timeout seconds, it considers the router to be down. 

The last parameter is check_routers_before_use, which is off by default. If it is 
turned on, you must also give dead_router_check_interval a positive integer 
value.

The router checker gets the following variables for each router:

■ Last time that it was disabled

■ Duration of time for which it is disabled

The initial time to disable a router should be one minute (enough to plug in a cable 
after removing it). If the router is administratively marked as "up", then the router 
checker clears the timeout. When a route is disabled (and possibly new), the "sent 
packets" counter is set to 0. When the route is first re-used (that is an elapsed disable 
time is found), the sent packets counter is incremented to 1, and incremented for all 
further uses of the route. If the route has been used for 100 packets successfully, then 
the sent-packets counter should be with a value of 100. Set the timeout to 0 (zero), so 
future errors no longer double the timeout.

Note – The router_ping_timeout is consistent with the default LND timeouts. 
You may have to increase it on very large clusters if the LND timeout is also 
increased. For larger clusters, we suggest increasing the check interval.
2-10 Lustre 2.0 Operations Manual • June 2010



2.4.2.1 LNET Routers

All LNET routers that bridge two networks are equivalent. They are not configured 
as primary or secondary, and load is balanced across all available routers. 

With the router checker configured, Lustre nodes can detect router health status, 
avoid those that appear dead, and reuse the ones that restore service after failures.

There are no hard requirements regarding the number of LNET routers, although 
there should enough to handle the required file serving bandwidth (and a 25% 
margin for headroom).

Comparing 32-bit and 64-bit LNET Routers

By default, at startup, LNET routers allocate 544M (i.e. 139264 4K pages) of memory 
as router buffers. The buffers can only come from low system memory (i.e. 
ZONE_DMA and ZONE_NORMAL).

On 32-bit systems, low system memory is, at most, 896M no matter how much RAM 
is installed. The size of the default router buffer puts big pressure on low memory 
zones, making it more likely that an out-of-memory (OOM) situation will occur. This 
is a known cause of router hangs. Lowering the value of the large_router_buffers 
parameter can circumvent this problem, but at the cost of penalizing router 
performance, by making large messages wait for longer for buffers.

On 64-bit architectures, the ZONE_HIGHMEM zone is always empty. Router buffers 
can come from all available memory and out-of-memory hangs do not occur. 
Therefore, we recommend using 64-bit routers.
Chapter 2 Understanding Lustre Networking 2-11



2.4.3 Downed Routers
There are two mechanisms to update the health status of a peer or a router:

■ LNET can actively check health status of all routers and mark them as dead or 
alive automatically. By default, this is off. To enable it set auto_down and if 
desired check_routers_before_use. This initial check may cause a pause 
equal to router_ping_timeout at system startup, if there are dead routers in 
the system.

■ When there is a communication error, all LNDs notify LNET that the peer (not 
necessarily a router) is down. This mechanism is always on, and there is no 
parameter to turn it off. However, if you set the LNET module parameter 
auto_down to 0, LNET ignores all such peer-down notifications.

Several key differences in both mechanisms:

■ The router pinger only checks routers for their health, while LNDs notices all dead 
peers, regardless of whether they are a router or not.

■ The router pinger actively checks the router health by sending pings, but LNDs 
only notice a dead peer when there is network traffic going on.

■ The router pinger can bring a router from alive to dead or vice versa, but LNDs 
can only bring a peer down.
2-12 Lustre 2.0 Operations Manual • June 2010



2.5 Starting and Stopping LNET
Lustre automatically starts and stops LNET, but it can also be manually started in a 
standalone manner. This is particularly useful to verify that your networking setup is 
working correctly before you attempt to start Lustre.

2.5.1 Starting LNET
To start LNET, run:

$ modprobe lnet

$ lctl network up

To see the list of local NIDs, run:

$ lctl list_nids

This command tells you the network(s) configured to work with Lustre

If the networks are not correctly setup, see the modules.conf "networks=" line and 
make sure the network layer modules are correctly installed and configured.

To get the best remote NID, run:

$ lctl which_nid <NID list>

where <NID list> is the list of available NIDs.

This command takes the "best" NID from a list of the NIDs of a remote host. The 
"best" NID is the one that the local node uses when trying to communicate with the 
remote node.

2.5.1.1 Starting Clients

To start a TCP client, run:

mount -t lustre mdsnode:/mdsA/client /mnt/lustre/

To start an Elan client, run:

mount -t lustre 2@elan0:/mdsA/client /mnt/lustre
Chapter 2 Understanding Lustre Networking 2-13



2.5.2 Stopping LNET
Before the LNET modules can be removed, LNET references must be removed. In 
general, these references are removed automatically when Lustre is shut down, but 
for standalone routers, an explicit step is needed to stop LNET. Run:

lctl network unconfigure

Note – Attempting to remove Lustre modules prior to stopping the network may 
result in a crash or an LNET hang. if this occurs, the node must be rebooted (in most 
cases). Make sure that the Lustre network and Lustre are stopped prior to unloading 
the modules. Be extremely careful using rmmod -f.

To unconfigure the LNET network, run:

modprobe -r <any lnd and the lnet modules>

Tip – To remove all Lustre modules, run:

$ lctl modules | awk '{print $2}' | xargs rmmod
2-14 Lustre 2.0 Operations Manual • June 2010



PART II Lustre Administration

Lustre administration includes the steps necessary to meet pre-installation 
requirements, and install and configure Lustre. It also includes advanced topics such 
as failover, quotas, bonding, benchmarking, Kerberos and POSIX.





CHAPTER 3

Installing Lustre

Lustre installation involves two procedures, meeting the installation prerequisites 
and installing the Lustre software, either from RPMs or from source code. This 
chapter includes these sections:

■ Preparing to Install Lustre

■ Installing Lustre from RPMs

■ Installing Lustre from Source Code

Lustre can be installed from either packaged binaries (RPMs) or freely-available 
source code. Installing from the package release is straightforward, and 
recommended for new users. Integrating Lustre into an existing kernel and building 
the associated Lustre software is an involved process. 

For either installation method, the following are required:

■ Linux kernel patched with Lustre-specific patches

■ Lustre modules compiled for the Linux kernel

■ Lustre utilities required for Lustre configuration

Note – When installing Lustre and creating components on devices, a certain 
amount of space is reserved, so less than 100% of storage space will be available. 
Lustre servers use the ext3 file system to store user-data objects and system data. By 
default, ext3 file systems reserve 5% of space that cannot be used by Lustre. 
Additionally, Lustre reserves up to 400 MB on each OST for journal use1. This 
reserved space is unusable for general storage. For this reason, you will see up to 400 
MB of space used on each OST before any file object data is saved to it.

1. Additionally, a few bytes outside the journal are used to create accounting data for Lustre.
3-1



3.1 Preparing to Install Lustre
To successfully install and run Lustre, make sure the following installation 
prerequisites have been met:

■ Supported Linux Distribution, Architecture and Interconnect

■ Required Lustre Software

■ Required Tools and Utilities

■ (Optional) High-Availability Software

■ Debugging Tools

■ Environmental Requirements

■ Memory Requirements

3.1.1 Supported Linux Distribution, Architecture and 
Interconnect
Lustre 2.0 supports the following Linux distributions, architectures2 and 
interconnects. To install Lustre from downloaded packages (RPMs), you must use a 
supported configuration.

2. We encourage the use of 64-bit platforms.

Linux Distribution*

* Lustre does not support security-enhanced (SE) Linux (including clients and servers).

Architecture Interconnect

Server OEL 5.4
RHEL 5.4

x86_64

Client OEL 5.4
RHEL 5
SLES 10, 11
Scientific Linux [New] 
Fedora 12 (2.6.31) [New]

x86_64
i164 (RHEL)
ppc64 (SLES)
i686

Server and Client TCP/IP
Quadrics Elan 3 and 4
Myri-10G and Myrinet-2000
Mellanox
InfiniBand (Voltaire, OpenIB, Silverstorm and 
any OFED-supported InfiniBand adapter)
3-2 Lustre 2.0 Operations Manual • June 2010



Note – Lustre clients running on architectures with different endianness are 
supported. One limitation is that the PAGE_SIZE kernel macro on the client must be 
as large as the PAGE_SIZE of the server. In particular, ia64 clients with large pages 
(up to 64kB pages) can run with i386 servers (4kB pages). If you are running i386 
clients with ia64 servers, you must compile the ia64 kernel with a 4kB PAGE_SIZE 
(so the server page size is not larger than the client page size).

3.1.2 Required Lustre Software 
To install Lustre, the following are required:

■ Linux kernel patched with Lustre-specific patches (the patched Linux kernel is 
required only on the Lustre MDS and OSSs) 

■ Lustre modules compiled for the Linux kernel 

■ Lustre utilities required for Lustre configuration 

■ Lustre-specific tools (e2fsck and lfsck) used to repair a backing file system, 
available in the e2fsprogs package

■ (Optional) Network-specific kernel modules and libraries (for example, kernel 
modules and libraries required for an InfiniBand interconnect)

3.1.3 Required Tools and Utilities
Several third-party utilities are required: 

■ e2fsprogs: Lustre requires a recent version of e2fsprogs that understands extents. 
Use e2fsprogs-1.41-6 or later, available at:

http://downloads.lustre.org/public/tools/e2fsprogs/

A quilt patchset of all changes to the vanilla e2fsprogs is available in 
e2fsprogs-{version}-patches.tgz.

Note – Lustre-patched e2fsprogs utility only needs to be installed on machines that 
mount backend (ldiskfs) file systems, such as the OSS, MDS and MGS nodes. It does 
not need to be loaded on clients.

■ Perl - Various userspace utilities are written in Perl. Any recent version of Perl will 
work with Lustre.
Chapter 3 Installing Lustre 3-3

http://downloads.lustre.org/public/tools/e2fsprogs/


3.1.4 (Optional) High-Availability Software
If you plan to enable failover server functionality with Lustre (either on an OSS or 
the MDS), you must add high-availability (HA) software to your cluster software. 
You can use any HA software package with Lustre.3 For more information, see 
Failover.

3.1.5 Debugging Tools
Lustre is a complex system and you may encounter problems when using it. You 
should have debugging tools on hand to help figure out how and why a problem 
occurred. A variety of diagnostic and analysis tools are available to debug issues 
with the Lustre software. Some of these are provided in Linux distributions, while 
others have been developed and are made available by the Lustre project. 

These in-kernel debug mechanisms are incorporated into the Lustre software:

■ Debug logs

■ Debug daemon

■ /proc/sys/lnet/debug

These tools are also provided with the Lustre software:

■ lctl

■ Lustre subsystem asserts

■ lfs

These general debugging tools are provided as a part of the standard Linux 
distribution: 

■ strace

■ /var/log/messages

■ Crash dumps

■ debugfs

These logging and data collection tools can be used to collect information for 
debugging Lustre kernel issues: 

■ kdump

■ netconsole

■ netdump

3. In this manual, the Linux-HA (Heartbeat) package is referenced, but you can use any HA software. 
3-4 Lustre 2.0 Operations Manual • June 2010



To debug Lustre in a development environment, use: 

■ leak_finder.pl

A variety of debuggers and analysis tools are available including: 

■ kgdb

■ crash

For detailed information about these debugging tools, see Tools for Lustre 
Debugging.

3.1.6 Environmental Requirements
Make sure the following environmental requirements are met before installing 
Lustre:

■ (Recommended) Provide remote shell access to clients. Although not strictly 
required to run Lustre, we recommend that all cluster nodes have remote shell 
client access, to facilitate the use of Lustre configuration and monitoring scripts. 
Parallel Distributed SHell (pdsh) is preferable, although Secure SHell (SSH) is 
acceptable.

■ Ensure client clocks are synchronized. Lustre uses client clocks for timestamps. If 
clocks are out-of-sync between clients and servers, timeouts and client evictions 
will occur. Drifting clocks can also cause problems by, for example, making it 
difficult to debug multi-node issues or correlate logs, which depend on 
timestamps. We recommend that you use Network Time Protocol (NTP) to keep 
client and server clocks in sync with each other. For more information about NTP, 
see: http://www.ntp.org.

■ Maintain uniform file access permissions on all cluster nodes. Use the same user 
IDs (UID) and group IDs (GID) on all clients. If use of supplemental groups is 
required, verify that the group_upcall requirements have been met. See 
User/Group Cache Upcall. 

■ (Recommended) Disable Security-Enhanced Linux (SELinux) on servers and 
clients. Lustre does not support SELinux. Therefore, disable the SELinux system 
extension on all Lustre nodes and make sure other security extensions, like Novell 
AppArmorand network packet filtering tools (such as iptables) do not interfere 
with Lustre.
Chapter 3 Installing Lustre 3-5

http://www.ntp.org/


3.1.7 Memory Requirements
This section describes the memory requirements of Lustre.

3.1.7.1 Client Memory Requirements

We recommend that clients have a minimum of 2 GB RAM.

3.1.7.2 MDS Memory Requirements

MDS memory requirements are determined by the following factors:

■ Number of clients

■ Size of the directories

■ Extent of load

The amount of memory used by the MDS is a function of how many clients are on 
the system, and how many files they are using in their working set. This is driven, 
primarily, by the number of locks a client can hold at one time. The default maximum 
number of locks for a compute node is 100*num_cores, and interactive clients can 
hold in excess of 10,000 locks at times. For the MDS, this works out to approximately 
2 KB per file, including the Lustre DLM lock and kernel data structures for it, just for 
the current working set.

There is, by default, 400 MB for the file system journal, and additional RAM usage 
for caching file data for the larger working set that is not actively in use by clients, 
but should be kept "HOT" for improved access times. Having file data in cache can 
improve metadata performance by a factor of 10x or more compared to reading it 
from disk. Approximately 1.5 KB/file is needed to keep a file in cache.

For example, for a single MDT on an MDS with 1,000 clients, 16 interactive nodes, 
and a 2 million file working set (of which 400,000 files are cached on the clients):

File system journal = 400 MB

1000 * 4-core clients * 100 files/core * 2kB = 800 MB

16 interactive clients * 10,000 files * 2kB = 320 MB

1,600,000 file extra working set * 1.5kB/file = 2400 MB

Thus, the minimum requirement for a system with this configuration is 4-GB RAM. 
However, additional memory may significantly improve performance4. 

4. Having more RAM is always prudent, given the relatively low cost of this component compared to the total 
system cost.
3-6 Lustre 2.0 Operations Manual • June 2010



If there are directories containing 1 million or more files, you may benefit 
significantly from having more memory. For example, in an environment where 
clients randomly access one of 10 million files, having extra memory for the cache 
significantly improves performance.

3.1.7.3 OSS Memory Requirements

When planning the hardware for an OSS node, consider the memory usage of several 
components in the Lustre system (i.e., journal, service threads, file system metadata, 
etc.). Also, consider the effect of the OSS read cache feature, which consumes 
memory as it caches data on the OSS node. 

■ Journal size: By default, each Lustre ldiskfs file system has 400 MB for the journal 
size. This can pin up to an equal amount of RAM on the OSS node per file system. 

■ Service threads: The service threads on the OSS node pre-allocate a 1 MB I/O 
buffer for each ost_io service thread, so these buffers do not need to be allocated 
and freed for each I/O request. 

■ File system metadata: A reasonable amount of RAM needs to be available for file 
system metadata. While no hard limit can be placed on the amount of file system 
metadata, if more RAM is available, then the disk I/O is needed less often to 
retrieve the metadata. 

■ Network transport: If you are using TCP or other network transport that uses 
system memory for send/receive buffers, this must also be taken into 
consideration.

■ Failover configuration: If the OSS node will be used for failover from another 
node, then the RAM for each journal should be doubled, so the backup server can 
handle the additional load if the primary server fails.

■ OSS read cache: OSS read cache provides read-only caching of data on an OSS, 
using the regular Linux page cache to store the data. Just like caching from a 
regular file system in Linux, OSS read cache uses as much physical memory as is 
available. 

Because of these memory requirements, the following calculations should be taken as 
determining the absolute minimum RAM required in an OSS node.
Chapter 3 Installing Lustre 3-7



Calculating OSS Memory Requirements

The minimum recommended RAM size for an OSS with two OSTs is computed 
below:

1.5 MB per OST IO thread * 512 threads = 768 MB

e1000 RX descriptors, RxDescriptors=4096 for 9000 byte MTU = 128 MB

Operating system overhead = 512 MB

400 MB journal size * 2 OST devices = 800 MB

600 MB file system metadata cache * 2 OSTs = 1200 MB

This consumes about 1,700 MB just for the pre-allocated buffers, and an additional 2 
GB for minimal file system and kernel usage. Therefore, for a non-failover 
configuration, the minimum RAM would be 4 GB for an OSS node with two OSTs. 
While it is not strictly required, adding additional memory on the OSS will improve 
the performance of reading smaller, frequently-accessed files.

For a failover configuration, the minimum RAM would be at least 6 GB. For 4 OSTs 
on each OSS in a failover configuration 10GB of RAM is reasonable. When the OSS is 
not handling any failed-over OSTs the extra RAM will be used as a read cache.

As a reasonable rule of thumb, about 2 GB of base memory plus 1 GB per OST can be 
used. In failover configurations, about 2 GB per OST is needed.
3-8 Lustre 2.0 Operations Manual • June 2010



3.2 Installing Lustre from RPMs
This procedure describes how to install Lustre from the RPM packages. This is the 
easier installation method and is recommended for new users. 

Alternately, you can install Lustre directly from the source code. For more 
information on this installation method, see Installing Lustre from Source Code.

Note – In all Lustre installations, the server kernel that runs on an MDS, MGS or 
OSS must be patched. However, running a patched kernel on a Lustre client is 
optional and only required if the client will be used for multiple purposes, such as 
running as both a client and an OST.

Caution – Lustre contains kernel modifications which interact with storage devices 
and may introduce security issues and data loss if not installed, configured or 
administered properly. Before installing Lustre, be cautious and back up ALL data. 

Use this procedure to install Lustre from RPMs.

1. Verify that all Lustre installation requirements have been met.

For more information on these prerequisites, see Preparing to Install Lustre.

2. Download the Lustre RPMs.

a. On the Lustre download site, select your platform. 

The files required to install Lustre (kernels, modules and utilities RPMs) are 
listed for the selected platform. 

b. Download the required files.

Use the Download Manager or download the files individually. 
Chapter 3 Installing Lustre 3-9

http://www.sun.com/software/products/lustre/get.jsp


3. Install the Lustre packages. 

Some Lustre packages are installed on servers (MDS and OSSs), and others are 
installed on Lustre clients. Lustre packages must be installed in a specific order. 

Caution – For a non-production Lustre environment or for testing, a Lustre client 
and server can run on the same machine. However, for best performance in a production 
environment, dedicated clients are always best. Performance and other issues can occur 
when an MDS or OSS and a client are running on the same machine5. The MDS and 
MGS can run on the same machine.

a. For each Lustre package, determine if it needs to be installed on servers 
and/or clients. Use TABLE 3-1 to determine where to install a specific package. 
Depending on your platform, not all of the listed files need to be installed.

5. Running the MDS and a client on the same machine can cause recovery and deadlock issues, and the 
performance of other Lustre clients to suffer. Running the OSS and a client on the same machine can cause 
issues with low memory and memory pressure. The client consume all of the memory and tries to flush pages 
to disk. The OSS needs to allocate pages to receive data from the client, but cannot perform this operation, due 
to low memory. This can result in OOM kill and other issues.

TABLE 3-1 Lustre required packages, descriptions and installation guidance

Lustre Package Description

Install 
on 

servers

Install on 
patchless 

clients

Install on 
patched 
clients

Lustre kernel RPMs

kernel-lustre-<ver> Lustre-patched kernel 
package for RHEL 5 (i686, 
ia64 and x86_64) platform.

X X*

kernel-lustre-smp-<ver> Lustre-patched kernel 
package for SuSE Server 10 
(x86_64) platform.

X X*

kernel-lustre-bigsmp-<ver> Lustre-patched kernel 
package for SuSE Server 10 
(i686) platform.

X X*

kernel-ib-<ver> Lustre OFED package. 
Install if the network 
interconnect is InfiniBand.

X X X*

kernel-lustre-default-<ver>
kernel-lustre-default-base-<ver>

Lustre-patched kernel 
package for SuSE Server 11 
(i686 and x86_64) platform.

X X*

Lustre module RPMs
3-10 Lustre 2.0 Operations Manual • June 2010



b. Install the kernel, modules and ldiskfs packages. 

Use the rpm -ivh command to install the kernel, module and ldiskfs packages. 
For example:

$ rpm -ivh kernel-lustre-smp-<ver> \

kernel-ib-<ver> \

lustre-modules-<ver> \

lustre-ldiskfs-<ver>

c. Install the utilities/userspace packages.

Use the rpm -ivh command to install the utilities packages. For example:

$ rpm -ivh lustre-<ver>

lustre-modules-<ver> Lustre modules for the 
patched kernel.

X X*

lustre-client-modules-<ver> Lustre modules for 
patchless clients.

X

Lustre utilities

lustre-<ver> Lustre utilities package. 
This includes userspace 
utilities to configure and 
run Lustre.

X X*

lustre-ldiskfs-<ver> Lustre-patched backing file 
system kernel module 
package for the ext3 file 
system

X

e2fsprogs-<ver> Utilities package used to 
maintain the ext3 backing 
file system.

X

lustre-client-<ver> Lustre utilities for 
patchless clients

X

* Only install this kernel RPM if you want to patch the client kernel. You do not have to patch the clients to run 
Lustre.

TABLE 3-1 Lustre required packages, descriptions and installation guidance

Lustre Package Description

Install 
on 

servers

Install on 
patchless 

clients

Install on 
patched 
clients
Chapter 3 Installing Lustre 3-11



d. Install the e2fsprogs package.

Use the rpm -ivh command to install the e2fsprogs package. For example:

$ rpm -ivh e2fsprogs-<ver>

If e2fsprogs is already installed on your Linux system, install the Lustre-specific 
e2fsprogs version by using rpm -Uvh to update the existing e2fsprogs package. 
For example:

$ rpm -Uvh e2fsprogs-<ver> 

The rpm command options --force or --nodeps are not required to install or 
update the Lustre-specific e2fsprogs package. We specifically recommend that 
you not use these options. If errors are reported, notify Lustre Support by filing a 
bug.

e. (Optional) If you want to add optional packages to your Lustre file system, 
install them now. 

Optional packages include file system creation and repair tools, debugging 
tools, test programs and scripts, Linux kernel and Lustre source code, and other 
packages. A complete list of optional packages for your platform is provided on 
the Lustre download site. 

4. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the 
patched kernel.

5. Reboot the patched clients and the servers. 

a. If you applied the patched kernel to any clients, reboot them. 

Unpatched clients do not need to be rebooted.

b. Reboot the servers.

Once all machines have rebooted, go to Configuring Lustre to configure Lustre 
Networking (LNET) and the Lustre file system.
3-12 Lustre 2.0 Operations Manual • June 2010

http://www.sun.com/software/products/lustre/get.jsp


3.3 Installing Lustre from Source Code
If you need to build a customized Lustre server kernel or are using a Linux kernel 
that has not been tested with the version of Lustre you are installing, you may need 
to build and install Lustre from source code. This involves several steps: 

■ Patching the core kernel 

■ Configuring the kernel to work with Lustre 

■ Creating Lustre and kernel RPMs from source code. 

Please note that the Lustre/kernel configurations available at the Lustre download 
site have been extensively tested and verified with Lustre. The recommended method 
for installing Lustre servers is to use these pre-built binary packages (RPMs). For 
more information on this installation method, see Installing Lustre from RPMs. 

Caution – Lustre contains kernel modifications which interact with storage devices 
and may introduce security issues and data loss if not installed, configured and 
administered correctly. Before installing Lustre, be cautious and back up ALL data. 

Note – When using third-party network hardware with Lustre, the third-party 
modules (typically, the drivers) must be linked against the Linux kernel. The LNET 
modules in Lustre also need these references. To meet these requirements, a specific 
process must be followed to install and recompile Lustre. See Installing Lustre with a 
Third-Party Network Stack, for an example showing how to install Lustre 1.6.6 using 
the Myricom MX 1.2.7 driver. The same process can be used for other third-party 
network stacks.
Chapter 3 Installing Lustre 3-13

http://www.sun.com/software/products/lustre/get.jsp


3.3.1 Patching the Kernel
If you are using non-standard hardware, plan to apply a Lustre patch, or have 
another reason not to use packaged Lustre binaries, you have to apply several Lustre 
patches to the core kernel and run the Lustre configure script against the kernel.

3.3.1.1 Introducing the Quilt Utility

To simplify the process of applying Lustre patches to the kernel, we recommend that 
you use the Quilt utility. 

Quilt manages a stack of patches on a single source tree. A series file lists the patch 
files and the order in which they are applied. Patches are applied, incrementally, on 
the base tree and all preceding patches. You can: 

■ Apply patches from the stack (quilt push) 

■ Remove patches from the stack (quilt pop) 

■ Query the contents of the series file (quilt series), the contents of the stack 
(quilt applied, quilt previous, quilt top), and the patches that are not 
applied at a particular moment (quilt next, quilt unapplied). 

■ Edit and refresh (update) patches with Quilt, as well as revert inadvertent 
changes, and fork or clone patches and show the diffs before and after work. 

A variety of Quilt packages (RPMs, SRPMs and tarballs) are available from various 
sources. Use the most recent version you can find. Quilt depends on several other 
utilities, e.g., the coreutils RPM that is only available in RedHat 9. For other 
RedHat kernels, you have to get the required packages to successfully install Quilt. If 
you cannot locate a Quilt package or fulfill its dependencies, you can build Quilt 
from a tarball, available at the Quilt project website: 

http://savannah.nongnu.org/projects/quilt

For additional information on using Quilt, including its commands, see Introduction 
to Quilt and the quilt(1) man page.
3-14 Lustre 2.0 Operations Manual • June 2010

http://savannah.nongnu.org/projects/quilt
http://www.suse.de/~agruen/quilt.pdf
http://www.suse.de/~agruen/quilt.pdf
http://linux.die.net/man/1/quilt


3.3.1.2 Get the Lustre Source and Unpatched Kernel

The Lustre Engineering Team has targeted several Linux kernels for use with Lustre 
servers (MDS/OSS) and provides a series of patches for each one. The Lustre patches 
are maintained in the kernel_patch directory bundled with the Lustre source code.

Note – Each patch series has been tailored to a specific kernel version, and may or 
may not apply cleanly to other versions of the kernel.

To obtain the Lustre source and unpatched kernel: 

1. Verify that all of the Lustre installation requirements have been met.

For more information on these prerequisites, see Preparing to Install Lustre.

2. Download the Lustre source code. On the Lustre download site, select a version 
of Lustre to download and then select Source as the platform. 

3. Download the unpatched kernel. 

For convenience, Oracle maintains an archive of unpatched kernel sources at:

http://downloads.lustre.org/public/kernels/

4. To save time later, download e2fsprogs now. 

The source code for Oracle’s Lustre-enabled e2fsprogs distribution can be found 
at:

http://downloads.lustre.org/public/tools/e2fsprogs/
Chapter 3 Installing Lustre 3-15

http://downloads.lustre.org/public/tools/e2fsprogs/
http://www.sun.com/software/products/lustre/get.jsp
http://downloads.lustre.org/public/kernels/


3.3.1.3 Patch the Kernel

This procedure describes how to use Quilt to apply the Lustre patches to the kernel. 
To illustrate the steps in this procedure, a RHEL 5 kernel is patched for Lustre 1.6.5.1.

1. Unpack the Lustre source and kernel to separate source trees. 

a. Unpack the Lustre source.

For this procedure, we assume that the resulting source tree is in 
/tmp/lustre-1.6.5.1

b. Unpack the kernel.

For this procedure, we assume that the resulting source tree (also known as the 
destination tree) is in /tmp/kernels/linux-2.6.18

2. Select a config file for your kernel, located in the kernel_configs directory 
(lustre/kernel_patches/kernel_config). 

The kernel_config directory contains the .config files, which are named to 
indicate the kernel and architecture with which they are associated. For example, 
the configuration file for the 2.6.18 kernel shipped with RHEL 5 (suitable for i686 
SMP systems) is kernel-2.6.18-2.6-rhel5-i686-smp.config.

3. Select the series file for your kernel, located in the series directory 
(lustre/kernel_patches/series). 

The series file contains the patches that need to be applied to the kernel.

4. Set up the necessary symlinks between the kernel patches and the Lustre 
source.

This example assumes that the Lustre source files are unpacked under 
/tmp/lustre-1.6.5.1 and you have chosen the 2.6-rhel5.series file). Run:

$ cd /tmp/kernels/linux-2.6.18

$ rm -f patches series

$ ln -s /tmp/lustre-1.6.5.1/lustre/kernel_patches/series/2.6-\ 
rhel5.series ./series

$ ln -s /tmp/lustre-1.6.5.1/lustre/kernel_patches/patches .

5. Use Quilt to apply the patches in the selected series file to the unpatched 
kernel. Run:

$ cd /tmp/kernels/linux-2.6.18

$ quilt push -av

The patched destination tree acts as a base Linux source tree for Lustre. 
3-16 Lustre 2.0 Operations Manual • June 2010



3.3.2 Create and Install the Lustre Packages
After patching the kernel, configure it to work with Lustre, create the Lustre 
packages (RPMs) and install them.

1. Configure the patched kernel to run with Lustre. Run:

$ cd <path to kernel tree>

$ cp /boot/config-‘uname -r‘ .config

$ make oldconfig || make menuconfig

$ make include/asm

$ make include/linux/version.h

$ make SUBDIRS=scripts

$ make include/linux/utsrelease.h

2. Run the Lustre configure script against the patched kernel and create the Lustre 
packages.

$ cd <path to lustre source tree>

$ ./configure --with-linux=<path to kernel tree>

$ make rpms

This creates a set of .rpms in /usr/src/redhat/RPMS/<arch> with an 
appended date-stamp. The SuSE path is /usr/src/packages.

Note – You do not need to run the Lustre configure script against an unpatched 
kernel.

Example set of RPMs:

lustre-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.1.6.5.1.custom_20081021.i686.rpm

lustre-debuginfo-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.1.6.5.1.custom_20081021.i686.rpm

lustre-modules-1.6.5.1-\
2.6.18_53.xx.xxel5_lustre.1.6.5.1.custom_20081021.i686.rpm

lustre-source-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.1.6.5.1.custom_20081021.i686.rpm

Note – If the steps to create the RPMs fail, contact Lustre Support by reporting a 
bug. See Reporting a Lustre Bug.
Chapter 3 Installing Lustre 3-17



Note – Lustre supports several features and packages that extend the core 
functionality of Lustre. These features/packages can be enabled at the build time by 
issuing appropriate arguments to the configure command. For a list of supported 
features and packages, run ./configure –help in the Lustre source tree. The 
configs/ directory of the kernel source contains the config files matching each the 
kernel version. Copy one to .config at the root of the kernel tree.

3. Create the kernel package. Navigate to the kernel source directory and run:

$ make rpm

Example result: 

kernel-2.6.95.0.3.EL_lustre.1.6.5.1custom-1.i686.rpm

Note – Step 3 is only valid for RedHat and SuSE kernels. If you are using a stock 
Linux kernel, you need to get a script to create the kernel RPM.

4. Install the Lustre packages.

Some Lustre packages are installed on servers (MDS and OSSs), and others are 
installed on Lustre clients. For guidance on where to install specific packages, see 
TABLE 3-1, which lists required packages and for each package, where to install it. 
Depending on the selected platform, not all of the packages listed in TABLE 3-1 
need to be installed.

Note – Running the patched server kernel on the clients is optional. It is not 
necessary unless the clients will be used for multiple purposes, for example, to run as 
a client and an OST. 

Lustre packages should be installed in this order:

a. Install the kernel, modules and ldiskfs packages. 

Navigate to the directory where the RPMs are stored, and use the rpm -ivh 
command to install the kernel, module and ldiskfs packages.

$ rpm -ivh kernel-lustre-smp-<ver> \

kernel-ib-<ver> \

lustre-modules-<ver> \

lustre-ldiskfs-<ver>

b. Install the utilities/userspace packages.

Use the rpm -ivh command to install the utilities packages. For example:

$ rpm -ivh lustre-<ver>
3-18 Lustre 2.0 Operations Manual • June 2010



c. Install the e2fsprogs package.

Make sure the e2fsprogs package downloaded in Step 4 is unpacked, and use 
the rpm -i command to install it. For example:

$ rpm -i e2fsprogs-<ver>

d. (Optional) If you want to add optional packages to your Lustre system, install 
them now. 

5. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the 
patched kernel.

6. Reboot the patched clients and the servers. 

a. If you applied the patched kernel to any clients, reboot them. 

Unpatched clients do not need to be rebooted.

b. Reboot the servers.

Once all the machines have rebooted, the next steps are to configure Lustre 
Networking (LNET) and the Lustre file system. See Configuring Lustre.

3.3.3 Installing Lustre with a Third-Party Network 
Stack
When using third-party network hardware, you must follow a specific process to 
install and recompile Lustre. This section provides an installation example, 
describing how to install Lustre 1.6.6 while using the Myricom MX 1.2.7 driver. The 
same process is used for other third-party network stacks, by replacing MX-specific 
references in Step 2 with the stack-specific build and using the proper --with option 
when configuring the Lustre source code. 

1. Compile and install the Lustre kernel.

a. Install the necessary build tools. GCC and related tools must also be 
installed. For more information, see Required Lustre Software. 

$ yum install rpm-build redhat-rpm-config

$ mkdir -p rpmbuild/{BUILD,RPMS,SOURCES,SPECS,SRPMS}

$ echo '%_topdir %(echo $HOME)/rpmbuild' > .rpmmacros

b. Install the patched Lustre source code.

This RPM is available at the Lustre download page. 

$ rpm -ivh kernel-lustre-source-2.6.18-92.1.10.el5_lustre.1.6.6.x86_64.rpm
Chapter 3 Installing Lustre 3-19

http://www.sun.com/software/products/lustre/get.jsp


c. Build the Linux kernel RPM.

$ cd /usr/src/linux-2.6.18-92.1.10.el5_lustre.1.6.6

$ make distclean

$ make oldconfig dep bzImage modules

$ cp /boot/config-`uname -r` .config

$ make oldconfig || make menuconfig

$ make include/asm

$ make include/linux/version.h

$ make SUBDIRS=scripts

$ make rpm

d. Install the Linux kernel RPM. 

If you are building a set of RPMs for a cluster installation, this step is not 
necessary. Source RPMs are only needed on the build machine.

$ rpm -ivh ~/rpmbuild/kernel-lustre-2.6.18-92.1.10.el5_lustre.1.6.6.x86_64.rpm
$ mkinitrd /boot/2.6.18-92.1.10.el5_lustre.1.6.6

e. Update the boot loader (/etc/grub.conf) with the new kernel boot 
information.

$ /sbin/shutdown 0 -r

2. Compile and install the MX stack.

$ cd /usr/src/

$ gunzip mx_1.2.7.tar.gz (can be obtained from www.myri.com/scs/)

$ tar -xvf mx_1.2.7.tar

$ cd mx-1.2.7

$ ln -s common include

$ ./configure --with-kernel-lib

$ make

$ make install
3-20 Lustre 2.0 Operations Manual • June 2010



3. Compile and install the Lustre source code.

a. Install the Lustre source (this can be done via RPM or tarball). The source file 
is available at the Lustre download page. This example shows installation via 
the tarball.

$ cd /usr/src/

$ gunzip lustre-1.6.6.tar.gz

$ tar -xvf lustre-1.6.6.tar

b. Configure and build the Lustre source code. 

The ./configure --help command shows a list of all of the --with 
options. All third-party network stacks are built in this manner.

$ cd lustre-1.6.6
$ ./configure --with-linux=/usr/src/linux --with-mx=/usr/src/mx-1.2.7
$ make
$ make rpms

The make rpms command output shows the location of the generated RPMs

4. Use the rpm -ivh command to install the RPMS.

$ rpm -ivh lustre-1.6.6-2.6.18_92.1.10.el5_lustre.1.6.6smp.x86_64.rpm
$ rpm -ivh lustre-modules-1.6.6-2.6.18_92.1.10.el5_lustre.1.6.6smp.x86_64.rpm
$ rpm -ivh lustre-ldiskfs-3.0.6-2.6.18_92.1.10.el5_lustre.1.6.6smp.x86_64.rpm

5. Add the following lines to the /etc/modprobe.conf file.

options kmxlnd hosts=/etc/hosts.mxlnd

options lnet networks=mx0(myri0),tcp0(eth0)

6. Populate the myri0 configuration with the proper IP addresses.

vim /etc/sysconfig/network-scripts/myri0

7. Add the following line to the /etc/hosts.mxlnd file.

$ IP HOST BOARD EP_ID

8. Start Lustre.

Once all the machines have rebooted, the next steps are to configure Lustre 
Networking (LNET) and the Lustre file system. See Configuring Lustre.
Chapter 3 Installing Lustre 3-21

http://www.sun.com/software/products/lustre/get.jsp


3-22 Lustre 2.0 Operations Manual • June 2010



CHAPTER 4

Configuring Lustre

You can use the administrative utilities provided with Lustre to set up a system with 
many different configurations. This chapter shows how to configure a simple Lustre 
system comprised of a combined MGS/MDT, an OST and a client, and includes the 
following sections:

■ Configuring the Lustre File System

■ Additional Lustre Configuration

■ Basic Lustre Administration

■ More Complex Configurations

■ Operational Scenarios
4-1



4.1 Configuring the Lustre File System
A Lustre file system consists of four types of subsystems – a Management Server 
(MGS), a Metadata Target (MDT), Object Storage Targets (OSTs) and clients. We 
recommend running these components on different systems, although, technically, 
they can co-exist on a single system. Together, the OSSs and MDS present a Logical 
Object Volume (LOV) which is an abstraction that appears in the configuration.

It is possible to set up the Lustre system with many different configurations by using 
the administrative utilities provided with Lustre. Some sample scripts are included in 
the directory where Lustre is installed. If you have installed the Lustre source code, 
the scripts are located in the lustre/tests sub-directory. These scripts enable 
quick setup of some simple, standard Lustre configurations.

Note – We recommend that you use dotted-quad IP addressing (IPv4) rather than 
host names. This aids in reading debug logs, and helps greatly when debugging 
configurations with multiple interfaces.

1. Define the module options for Lustre networking (LNET), by adding this line to 
the /etc/modprobe.conf file1. 

options lnet networks=<network interfaces that LNET can use> 

This step restricts LNET to use only the specified network interfaces and prevents 
LNET from using all network interfaces. 

As an alternative to modifying the modprobe.conf file, you can modify the 
modprobe.local file or the configuration files in the modprobe.d directory. 

Note – For details on configuring networking and LNET, see Configuring LNET.

2. (Optional) Prepare the block devices to be used as OSTs or MDTs. 

Depending on the hardware used in the MDS and OSS nodes, you may want to set 
up a hardware or software RAID to increase the reliability of the Lustre system. 
For more details on how to set up a hardware or software RAID, see the 
documentation for your RAID controller or see Lustre Software RAID Support.

1. The modprobe.conf file is a Linux file that lives in /etc/modprobe.conf and specifies what parts of the kernel 
are loaded.
4-2 Lustre 2.0 Operations Manual • June 2010



3. Create a combined MGS/MDT file system. 

a. Consider the MDT size needed to support the file system. 

When calculating the MDT size, the only important factor is the number of files 
to be stored in the file system. This determines the number of inodes needed, 
which drives the MDT sizing. For more information, see Sizing the MDT and 
Planning for Inodes. Make sure the MDT is properly sized before performing 
the next step, as a too-small MDT can cause the space on the OSTs to be 
unusable.

b. Create the MGS/MDT file system on the block device. On the MDS node, 
run:

mkfs.lustre --fsname=<fsname> --mgs --mdt <block device name>

The default file system name (fsname) is lustre.

Note – If you plan to generate multiple file systems, the MGS should be on its own 
dedicated block device.

4. Mount the combined MGS/MDT file system on the block device. On the MDS 
node, run:

mount -t lustre <block device name> <mount point>

5. Create the OST2. On the OSS node, run:

mkfs.lustre --ost --fsname=<fsname> --mgsnode=<NID> <block device 
name>

You can have as many OSTs per OSS as the hardware or drivers allow. 

You should only use only 1 OST per block device. Optionally, you can create an 
OST which uses the raw block device and does not require partitioning. 

Note – If the block device has more than 8 TB3 of storage, it must be partitioned 
(because of the ext3 file system limitation). Lustre can support block devices with 
multiple partitions, but they are not recommended because of resulting bottlenecks.

6. Mount the OST. On the OSS node where the OST was created, run:

mount -t lustre <block device name> <mount point>

2. When you create the OST, you are defining a storage device ('sd'), a device number (a, b, c, d), and a partition 
(1, 2, 3) where the OST node lives.

3. In Lustre 2.0, 16 TB on OEL 5 and 8 TB on other distributions.
Chapter 4 Configuring Lustre 4-3



Note – To create additional OSTs, repeat Step 4 and Step 5.

7. Create the client (mount the file system on the client). On the client node, run:

mount -t lustre <MGS node>:/<fsname> <mount point> 

Note – To create additional clients, repeat Step 7.

8. Verify that the file system started and is working correctly by running the df, 
dd and ls commands on the client node.

a. Run the lfs df -h command.

[root@client1 /] lfs df -h

The lfs df -h command lists space usage per OST and the MDT in 
human-readable format.

b. Run the lfs df -ih command.

[root@client1 /] lfs df -ih

The lfs df -ih command lists inode usage per OST and the MDT.

c. Run the dd command.

[root@client1 /] cd /lustre

[root@client1 /lustre] dd if=/dev/zero of=/lustre/zero.dat bs=4M 
count=2

The dd command verifies write functionality by creating a file containing all 
zeros (0s). In this command, an 8 MB file is created.

d. Run the ls command.

[root@client1 /lustre] ls -lsah

The ls -lsah command lists files and directories in the current working 
directory.

If you have a problem mounting the file system, check the syslogs for errors and also 
check the network settings. A common issue with newly-installed systems is 
hosts.deny or filewall rules that prevent connections on port 988. 

Tip – Now that you have configured Lustre, you can collect and register your service 
tags. For more information, see Service Tags.
4-4 Lustre 2.0 Operations Manual • June 2010



4.1.0.1 Simple Lustre Configuration Example

To see the steps in a simple Lustre configuration, follow this worked example in 
which a combined MGS/MDT and two OSTs are created. Three block devices are 
used, one for the combined MGS/MDS node and one for each OSS node. Common 
parameters used in the example are listed below, along with individual node 
parameters.

Common Parameters Value Description

MGS node 10.2.0.1@tcp0Node for the combined MGS/MDS

file system temp Name of the Lustre file system

network type TCP/IP Network type used for Lustre file system temp

Node Parameters Value Description

MGS/MDS node

MGS/MDS node mdt1 MDS in Lustre file system temp

block device /dev/sdb Block device for the combined MGS/MDS node

mount point /mnt/mdt Mount point for the mdt1 block device (/dev/sdb) on the 
MGS/MDS node

First OSS node

OSS node oss1 First OSS node in Lustre file system temp

OST ost1 First OST in Lustre file system temp

block device /dev/sdc Block device for the first OSS node (oss1)

mount point /mnt/ost1 Mount point for the ost1 block device (/dev/sdc) on the 
oss1 node

Second OSS node

OSS node oss2 Second OSS node in Lustre file system temp

OST ost2 Second OST in Lustre file system temp

block device /dev/sdd Block device for the second OSS node (oss2)

mount point /mnt/ost2 Mount point for the ost2 block device (/dev/sdd) on the 
oss2 node

Client node

client node client1 Client in Lustre file system temp

mount point /lustre Mount point for Lustre file system temp on the client1 
node
Chapter 4 Configuring Lustre 4-5



1. Define the module options for Lustre networking (LNET), by adding this line to 
the /etc/modprobe.conf file. 

options lnet networks=tcp

2. Create a combined MGS/MDT file system on the block device. On the MDS 
node, run:

[root@mds /]# mkfs.lustre --fsname=temp --mgs --mdt /dev/sdb

This command generates this output: 

Permanent disk data:
Target: temp-MDTffff
Index: unassigned
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x75

(MDT MGS needs_index first_time update )
Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
Parameters: mdt.group_upcall=/usr/sbin/l_getgroups

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdb

target nametemp-MDTffff
4k blocks 0
options -i 4096 -I 512 -q -O dir_index,uninit_groups -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-MDTffff  -i 4096 -I 512 -q -O 
dir_index,uninit_groups -F /dev/sdb
Writing CONFIGS/mountdata 

3. Mount the combined MGS/MDT file system on the block device. On the MDS 
node, run:

[root@mds /]# mount -t lustre /dev/sdb /mnt/mdt

This command generates this output:

Lustre: temp-MDT0000: new disk, initializing 
Lustre: 3009:0:(lproc_mds.c:262:lprocfs_wr_group_upcall()) \ 
temp-MDT0000: group upcall set to /usr/sbin/l_getgroups
Lustre: temp-MDT0000.mdt: set parameter \ 
group_upcall=/usr/sbin/l_getgroups
Lustre: Server temp-MDT0000 on device /dev/sdb has started 
4-6 Lustre 2.0 Operations Manual • June 2010



4. Create the OSTs. 

In this example, the OSTs (ost1 and ost2) are being created or different OSSs (oss1 
and oss2).

a. Create ost1. On oss1 node, run:

[root@oss1 /]# mkfs.lustre --ost --fsname=temp --mgsnode=
10.2.0.1@tcp0 /dev/sdc

The command generates this output:

Permanent disk data:
Target: temp-OSTffff
Index: unassigned
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x72
(OST needs_index first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdc

target name temp-OSTffff
4k blocks 0
options -I 256 -q -O dir_index,uninit_groups -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OSTffff  -I 256 -q -O
dir_index,uninit_groups -F /dev/sdc
Writing CONFIGS/mountdata 

b. Create ost2. On oss2 node, run:

[root@oss2 /]# mkfs.lustre --ost --fsname=temp --mgsnode=
10.2.0.1@tcp0 /dev/sdd

The command generates this output:

Permanent disk data:
Target: temp-OSTffff
Index: unassigned
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x72
(OST needs_index first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp
Chapter 4 Configuring Lustre 4-7



checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdd

target name temp-OSTffff
4k blocks 0
options -I 256 -q -O dir_index,uninit_groups -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OSTffff  -I 256 -q -O
dir_index,uninit_groups -F /dev/sdc
Writing CONFIGS/mountdata 

5. Mount the OSTs. 

Mount each OST (ost1 and ost2), on the OSS where the OST was created.

a. Mount ost1. On oss1 node, run:

root@oss1 /] mount -t lustre /dev/sdc /mnt/ost1 

The command generates this output:

LDISKFS-fs: file extents enabled 
LDISKFS-fs: mballoc enabled
Lustre: temp-OST0000: new disk, initializing
Lustre: Server temp-OST0000 on device /dev/sdb has started

Shortly afterwards, this output appears:

Lustre: temp-OST0000: received MDS connection from 10.2.0.1@tcp0
Lustre: MDS temp-MDT0000: temp-OST0000_UUID now active, resetting 
orphans 

b. Mount ost2. On oss2 node, run:

root@oss2 /] mount -t lustre /dev/sdd /mnt/ost2 

The command generates this output:

LDISKFS-fs: file extents enabled 
LDISKFS-fs: mballoc enabled
Lustre: temp-OST0000: new disk, initializing
Lustre: Server temp-OST0000 on device /dev/sdb has started

Shortly afterwards, this output appears:

Lustre: temp-OST0000: received MDS connection from 10.2.0.1@tcp0
Lustre: MDS temp-MDT0000: temp-OST0000_UUID now active, resetting 
orphans 
4-8 Lustre 2.0 Operations Manual • June 2010



6. Create the client (mount the file system on the client). On the client node, run:

root@client1 /] mount -t lustre 10.2.0.1@tcp0:/temp /lustre 

This command generates this output:

Lustre: Client temp-client has started

7. Verify that the file system started and is working by running the df, dd and ls 
commands on the client node.

a. Run the df command:

[root@client1 /] lfs df -h 

This command generates output similar to this:

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup00-LogVol00

7.2G 2.4G 4.5G 35% /
dev/sda1 99M 29M 65M 31% /boot
tmpfs 62M 0 62M 0% /dev/shm
10.2.0.1@tcp0:/temp 30M 8.5M 20M 30% /lustre

b. Run the dd command:

[root@client1 /] cd /lustre
[root@client1 /lustre] dd if=/dev/zero of=/lustre/zero.dat bs=4M 
count=2

This command generates output similar to this:

2+0 records in
2+0 records out
8388608 bytes (8.4 MB) copied, 0.159628 seconds, 52.6 MB/s

c. Run the ls command:

[root@client1 /lustre] ls -lsah

This command generates output similar to this:

total 8.0M
4.0K drwxr-xr-x  2 root root 4.0K Oct 16 15:27 .
8.0K drwxr-xr-x 25 root root 4.0K Oct 16 15:27 ..
8.0M -rw-r--r--  1 root root 8.0M Oct 16 15:27 zero.dat 
Chapter 4 Configuring Lustre 4-9



4.1.0.2 Module Setup

Make sure the modules (like LNET) are installed in the appropriate /lib/modules 
directory. The mkfs.lustre utility tries to automatically load LNET (via the Lustre 
module) with the default network settings (using all available network interfaces). To 
change this default setting, use the network=... option to specify the network(s) 
that LNET should use:

modprobe -v lustre "networks=XXX"

For example, to load Lustre with multiple-interface support (meaning LNET will use 
more than one physical circuit for communication between nodes), load the Lustre 
module with the following network=... option:

modprobe -v lustre "networks=tcp0(eth0),o2ib0(ib0)"

where:

tcp0 is the network itself (TCP/IP)

eth0 is the physical device (card) that is used (Ethernet)

o2ib0 is the interconnect (InfiniBand)

4.1.1 Scaling the Lustre File System
A Lustre file system can be scaled by adding OSTs or clients. For instructions on 
creating additional OSTs see Step 4 and Step 5 above; for clients, see Step 7.

4.2 Additional Lustre Configuration
Once the Lustre file system is configured, it is ready for use. If additional 
configuration is necessary, several configuration utilities are available. For man pages 
and reference information, see:

■ mkfs.lustre

■ tunefs.lustre

■ lctl

■ mount.lustre

System Configuration Utilities (man8) profiles utilities (e.g., lustre_rmmod, e2scan, 
l_getgroups, llobdstat, llstat, plot-llstat, routerstat, and ll_recover_lost_found_objs), 
and tools to manage large clusters, perform application profiling, and debug Lustre. 
4-10 Lustre 2.0 Operations Manual • June 2010



4.3 Basic Lustre Administration
Once you have the Lustre file system up and running, you can use the procedures in 
this section to perform these basic Lustre administration tasks:

■ Specifying the File System Name

■ Starting Lustre

■ Mounting a Server

■ Unmounting a Server

■ Working with Inactive OSTs

■ Finding Nodes in the Lustre File System

■ Mounting a Server Without Lustre Service

■ Specifying Failout/Failover Mode for OSTs

■ Running Multiple Lustre File Systems 

■ Setting and Retrieving Lustre Parameters

■ Regenerating Lustre Configuration Logs

■ Changing a Server NID

■ Removing and Restoring OSTs

■ Changing a Server NID

■ Aborting Recovery

■ Determining Which Machine is Serving an OST

■ Failover

■ Changing the Address of a Failover Node 
Chapter 4 Configuring Lustre 4-11



4.3.1 Specifying the File System Name
The file system name is limited to 8 characters. We have encoded the file system and 
target information in the disk label, so you can mount by label. This allows system 
administrators to move disks around without worrying about issues such as SCSI 
disk reordering or getting the /dev/device wrong for a shared target. Soon, file 
system naming will be made as fail-safe as possible. Currently, Linux disk labels are 
limited to 16 characters. To identify the target within the file system, 8 characters are 
reserved, leaving 8 characters for the file system name:

<fsname>-MDT0000 or <fsname>-OST0a19

To mount by label, use this command:

$ mount -t lustre -L <file system label> <mount point>

This is an example of mount-by-label:

$ mount -t lustre -L testfs-MDT0000 /mnt/mdt

Caution – Mount-by-label should NOT be used in a multi-path environment.

Although the file system name is internally limited to 8 characters, you can mount 
the clients at any mount point, so file system users are not subjected to short names. 
Here is an example:

mount -t lustre uml1@tcp0:/shortfs /mnt/<long-file_system-name>

4.3.2 Starting Lustre
The startup order of Lustre components depends on whether you have a combined 
MGS/MDT or these components are separate. 

■ If you have a combined MGS/MDT, the recommended startup order is OSTs, then 
the MGS/MDT, and then clients. 

■ If the MGS and MDT are separate, the recommended startup order is: MGS, then 
OSTs, then the MDT, and then clients. 

Note – If an OST is added to a Lustre file system with a combined MGS/MDT, then 
the startup order changes slightly; the MGS must be started first because the OST 
needs to write its configuration data to it. In this scenario, the startup order is 
MGS/MDT, then OSTs, then the clients.
4-12 Lustre 2.0 Operations Manual • June 2010



4.3.3 Mounting a Server
Starting a Lustre server is straightforward and only involves the mount command. 
Lustre servers can be added to /etc/fstab:

mount -t lustre

The mount command generates output similar to this:

/dev/sda1 on /mnt/test/mdt type lustre (rw)

/dev/sda2 on /mnt/test/ost0 type lustre (rw)

192.168.0.21@tcp:/testfs on /mnt/testfs type lustre (rw)

In this example, the MDT, an OST (ost0) and file system (testfs) are mounted.

LABEL=testfs-MDT0000 /mnt/test/mdt lustre defaults,_netdev,noauto 0 0

LABEL=testfs-OST0000 /mnt/test/ost0 lustre defaults,_netdev,noauto 0 0

In general, it is wise to specify noauto and let your high-availability (HA) package 
manage when to mount the device. If you are not using failover, make sure that 
networking has been started before mounting a Lustre server. RedHat, SuSE, Debian 
(and perhaps others) use the _netdev flag to ensure that these disks are mounted 
after the network is up. 

We are mounting by disk label here—the label of a device can be read with e2label. 
The label of a newly-formatted Lustre server ends in FFFF, meaning that it has yet to 
be assigned. The assignment takes place when the server is first started, and the disk 
label is updated.

Caution – Do not do this when the client and OSS are on the same node, as memory 
pressure between the client and OSS can lead to deadlocks. 

Caution – Mount-by-label should NOT be used in a multi-path environment.
Chapter 4 Configuring Lustre 4-13



4.3.4 Unmounting a Server
To stop a Lustre server, use the umount <mount point> command.

For example, to stop ost0 on mount point /mnt/test, run:

$ umount /mnt/test

Gracefully stopping a server with the umount command preserves the state of the 
connected clients. The next time the server is started, it waits for clients to reconnect, 
and then goes through the recovery procedure. 

If the force (-f) flag is used, then the server evicts all clients and stops WITHOUT 
recovery. Upon restart, the server does not wait for recovery. Any currently 
connected clients receive I/O errors until they reconnect.

Note – If you are using loopback devices, use the -d flag. This flag cleans up loop 
devices and can always be safely specified.

4.3.5 Working with Inactive OSTs
To mount a client or an MDT with one or more inactive OSTs, run commands similar 
to this:

client> mount -o exclude=testfs-OST0000 -t lustre uml1:/testfs\ 
/mnt/testfs

client> cat /proc/fs/lustre/lov/testfs-clilov-*/target_obd

To activate an inactive OST on a live client or MDT, use the lctl activate 
command on the OSC device. For example: 

lctl --device 7 activate

Note – A colon-separated list can also be specified. For example, exclude=
testfs-OST0000:testfs-OST0001.
4-14 Lustre 2.0 Operations Manual • June 2010



4.3.6 Finding Nodes in the Lustre File System
There may be situations in which you need to find all nodes in your Lustre file 
system or get the names of all OSTs. 

To get a list of all Lustre nodes, run this command on the MGS:

# cat /proc/fs/lustre/mgs/MGS/live/*

Note – This command must be run on the MGS.

In this example, file system lustre has three nodes, lustre-MDT0000, 
lustre-OST0000, and lustre-OST0001.

cfs21:/tmp# cat /proc/fs/lustre/mgs/MGS/live/* 

fsname: lustre 

flags: 0x0     gen: 26 

lustre-MDT0000 

lustre-OST0000 

lustre-OST0001 

To get the names of all OSTs, run this command on the MDS:

# cat /proc/fs/lustre/lov/<fsname>-mdtlov/target_obd 

Note – This command must be run on the MDS.

In this example, there are two OSTs, lustre-OST0000 and lustre-OST0001, 
which are both active.

cfs21:/tmp# cat /proc/fs/lustre/lov/lustre-mdtlov/target_obd 

0: lustre-OST0000_UUID ACTIVE 

1: lustre-OST0001_UUID ACTIVE 
Chapter 4 Configuring Lustre 4-15



4.3.7 Mounting a Server Without Lustre Service
If you are using a combined MGS/MDT, but you only want to start the MGS and not 
the MDT, run this command:

mount -t lustre <MDT partition> -o nosvc <mount point>

The <MDT partition> variable is the combined MGS/MDT.

In this example, the combined MGS/MDT is testfs-MDT0000 and the mount point 
is mnt/test/mdt.

$ mount -t lustre -L testfs-MDT0000 -o nosvc /mnt/test/mdt

4.3.8 Specifying Failout/Failover Mode for OSTs
Lustre uses two modes, failout and failover, to handle an OST that has become 
unreachable because it fails, is taken off the network, is unmounted, etc.

■ In failout mode, Lustre clients immediately receive errors (EIOs) after a timeout, 
instead of waiting for the OST to recover. 

■ In failover mode, Lustre clients wait for the OST to recover. 

By default, the Lustre file system uses failover mode for OSTs. To specify failout 
mode instead, run this command:

$ mkfs.lustre --fsname=<fsname> --ost --mgsnode=<MGS node NID> 
--param="failover.mode=failout" <block device name>

In this example, failout mode is specified for the OSTs on MGS uml1, file system 
testfs.

$ mkfs.lustre --fsname=testfs --ost --mgsnode=uml1 --param=
"failover.mode=failout" /dev/sdb

Caution – Before running this command, unmount all OSTS that will be affected by 
the change in the failover/failout mode. 

Note – After initial file system configuration, use the tunefs.lustre utility to 
change the failover/failout mode. For example, to set the failout mode, run:

$ tunefs.lustre --param failover.mode=failout <OST partition>
4-16 Lustre 2.0 Operations Manual • June 2010



4.3.9 Running Multiple Lustre File Systems
There may be situations in which you want to run multiple file systems. This is 
doable, as long as you follow specific naming conventions.

By default, the mkfs.lustre command creates a file system named lustre. To 
specify a different file system name (limited to 8 characters), run this command: 

mkfs.lustre --fsname=<new file system name>

Note – The MDT, OSTs and clients in the new file system must share the same name 
(prepended to the device name). For example, for a new file system named foo, the 
MDT and two OSTs would be named foo-MDT0000, foo-OST0000, and 
foo-OST0001.

To mount a client on the file system, run:

mount -t lustre mgsnode:/<new fsname> <mountpoint>

For example, to mount a client on file system foo at mount point /mnt/lustre1, 
run:

mount -t lustre mgsnode:/foo /mnt/lustre1

Note – If a client(s) will be mounted on several file systems, add the following line 
to /etc/xattr.conf file to avoid problems when files are moved between the file 
systems: lustre.* skip

Note – The MGS is universal; there is only one MGS per Lustre installation, not per 
file system. 

Note – There is only one file system per MDT. Therefore, specify --mdt --mgs on 
one file system and --mdt --mgsnode=<MGS node NID> on the other file systems.
Chapter 4 Configuring Lustre 4-17



A Lustre installation with two file systems (foo and bar) could look like this, where 
the MGS node is mgsnode@tcp0 and the mount points are /mnt/lustre1 and 
/mnt/lustre2.

mgsnode# mkfs.lustre --mgs /mnt/lustre1

mdtfoonode# mkfs.lustre --fsname=foo --mdt \
--mgsnode=mgsnode@tcp0 /mnt/lustre1

ossfoonode# mkfs.lustre --fsname=foo --ost \
--mgsnode=mgsnode@tcp0 /mnt/lustre1

ossfoonode# mkfs.lustre --fsname=foo --ost \
--mgsnode=mgsnode@tcp0 /mnt/lustre2

mdtbarnode# mkfs.lustre --fsname=bar --mdt \
--mgsnode=mgsnode@tcp0 /mnt/lustre1

ossbarnode# mkfs.lustre --fsname=bar --ost \
--mgsnode=mgsnode@tcp0 /mnt/lustre1

ossbarnode# mkfs.lustre --fsname=bar --ost \
--mgsnode=mgsnode@tcp0 /mnt/lustre2

To mount a client on file system foo at mount point /mnt/lustre1, run:

mount -t lustre mgsnode@tcp0:/foo /mnt/lustre1

To mount a client on file system bar at mount point /mnt/lustre2, run:

mount -t lustre mgsnode@tcp0:/bar /mnt/lustre2
4-18 Lustre 2.0 Operations Manual • June 2010



4.3.10 Setting and Retrieving Lustre Parameters
There are several options for setting parameters in Lustre.

■ When the file system is created, using mkfs.lustre. See Setting Parameters with 
mkfs.lustre

■ When a server is stopped, using tunefs.lustre. See Setting Parameters with 
tunefs.lustre

■ When the file system is running, using lctl. See Setting Parameters with lctl 

Additionally, you can use lctl to retrieve Lustre parameters. See Reporting Current 
Parameter Values.

4.3.10.1 Setting Parameters with mkfs.lustre

When the file system is created, parameters can simply be added as a --param 
option to the mkfs.lustre command. For example:

$ mkfs.lustre --mdt --param="sys.timeout=50" /dev/sda

4.3.10.2 Setting Parameters with tunefs.lustre

If a server (OSS or MDS) is stopped, parameters can be added using the --param 
option to the tunefs.lustre command. For example:

$ tunefs.lustre --param="failover.node=192.168.0.13@tcp0" /dev/sda

With tunefs.lustre, parameters are "additive" -- new parameters are specified in 
addition to old parameters, they do not replace them. To erase all old 
tunefs.lustre parameters and just use newly-specified parameters, run: 

$ tunefs.lustre --erase-params --param=<new parameters> 

The tunefs.lustre command can be used to set any parameter settable in a 
/proc/fs/lustre file and that has its own OBD device, so it can be specified as 
<obd|fsname>.<obdtype>.<proc_file_name>=<value>. For example: 

$ tunefs.lustre --param mdt.group_upcall=NONE /dev/sda1
Chapter 4 Configuring Lustre 4-19



4.3.10.3 Setting Parameters with lctl

When the file system is running, the lctl command can be used to set parameters 
(temporary or permanent) and report current parameter values. Temporary 
parameters are active as long as the server or client is not shut down. Permanent 
parameters live through server and client reboots. 

Note – The lctl list_param command enables users to list all parameters that 
can be set. See Listing Parameters.

Setting Temporary Parameters 

Use the lctl set_param command to set temporary parameters on the node 
where it is run. These parameters map to items in 
/proc/{fs,sys}/{lnet,lustre}. The lctl set_param command uses this 
syntax:

lctl set_param [-n] <obdtype>.<obdname>.<proc_file_name>=<value>

For example:

# lctl set_param osc.*.max_dirty_mb=1024

osc.myth-OST0000-osc.max_dirty_mb=32 

osc.myth-OST0001-osc.max_dirty_mb=32 

osc.myth-OST0002-osc.max_dirty_mb=32 

osc.myth-OST0003-osc.max_dirty_mb=32 

osc.myth-OST0004-osc.max_dirty_mb=32

Setting Permanent Parameters

Use the lctl conf_param command to set permanent parameters. In general, the 
lctl conf_param command can be used to specify any parameter settable in a 
/proc/fs/lustre file, with its own OBD device. The lctl conf_param command 
uses this syntax (same as the mkfs.lustre and tunefs.lustre commands):

<obd|fsname>.<obdtype>.<proc_file_name>=<value>) 

Here are a few examples of lctl conf_param commands: 

$ mgs> lctl conf_param testfs-MDT0000.sys.timeout=40

$ lctl conf_param testfs-MDT0000.mdt.group_upcall=NONE 

$ lctl conf_param testfs.llite.max_read_ahead_mb=16 

$ lctl conf_param testfs-MDT0000.lov.stripesize=2M 

$ lctl conf_param testfs-OST0000.osc.max_dirty_mb=29.15 
4-20 Lustre 2.0 Operations Manual • June 2010



$ lctl conf_param testfs-OST0000.ost.client_cache_seconds=15 

$ lctl conf_param testfs.sys.timeout=40 

Caution – Parameters specified with the lctl conf_param command are set 
permanently in the file system’s configuration file on the MGS. 

Listing Parameters

To list Lustre or LNET parameters that are available to set, use the lctl 
list_param command. For example:

lctl list_param [-FR] <obdtype>.<obdname>

The following arguments are available for the lctl list_param command.

-F Add '/', '@' or '=' for directories, symlinks and writeable files, respectively

-R Recursively lists all parameters under the specified path

For example:

$ lctl list_param obdfilter.lustre-OST0000 

4.3.10.4 Reporting Current Parameter Values

To report current Lustre parameter values, use the lctl get_param command 
with this syntax: 

lctl get_param [-n] <obdtype>.<obdname>.<proc_file_name>

This example reports data on RPC service times.

$ lctl get_param -n ost.*.ost_io.timeouts 

service : cur 1 worst 30 (at 1257150393, 85d23h58m54s ago) 1 1 1 1 

This example reports the number of inodes available on each OST.

# lctl get_param osc.*.filesfree

osc.myth-OST0000-osc-ffff88006dd20000.filesfree=217623 

osc.myth-OST0001-osc-ffff88006dd20000.filesfree=5075042 

osc.myth-OST0002-osc-ffff88006dd20000.filesfree=3762034 

osc.myth-OST0003-osc-ffff88006dd20000.filesfree=91052 

osc.myth-OST0004-osc-ffff88006dd20000.filesfree=129651
Chapter 4 Configuring Lustre 4-21



4.3.11 Regenerating Lustre Configuration Logs
If the Lustre system’s configuration logs are in a state where the file system cannot be 
started, use the writeconf command to erase them. After the writeconf command 
is run and the servers restart, the configuration logs are re-generated and stored on 
the MGS (as in a new file system). 

You should only use the writeconf command if: 

■ The configuration logs are in a state where the file system cannot start

■ A server NID is being changed

The writeconf command is destructive to some configuration items (i.e., OST pools 
information and items set via conf_param), and should be used with caution. To 
avoid problems:

■ Shut down the file system before running the writeconf command

■ Run the writeconf command on all servers (MDT first, then OSTs)

■ Start the file system in this order (OSTs first, then MDT, then clients) 

Caution – The OST pools feature enables a group of OSTs to be named for file 
striping purposes. If you use OST pools, be aware that running the writeconf 
command erases all pools information (as well as any other parameters set via lctl 
conf_param). We recommend that the pools definitions (and conf_param settings) 
be executed via a script, so they can be reproduced easily after a writeconf is 
performed.

To regenerate Lustre’s system configuration logs: 

1. Shut down the file system in this order. 

a. Unmount the clients. 

b. Unmount the MDT. 

c. Unmount all OSTs. 

2. Make sure the the MDT and OST devices are available. 

3. Run the writeconf command on all servers.

Run writeconf on the MDT first, and then the OSTs.

a. On the MDT, run:

<mdt node>$ tunefs.lustre --writeconf <device>

b. On each OST, run:

<ost node>$ tunefs.lustre --writeconf <device>
4-22 Lustre 2.0 Operations Manual • June 2010



4. Restart the file system in this order.

a. Mount the MGS (or the combined MGS/MDT).

b. Mount the MDT.

c. Mount the OSTs. 

d. Mount the clients.

After the writeconf command is run, the configuration logs are re-generated as 
servers restart. 

4.3.12 Changing a Server NID
If you need to change the NID on the MDT or an OST, run the writeconf command 
to erase Lustre configuration information (including server NIDs), and then 
re-generate the system configuration using updated server NIDs. 

Change a server NID in these situations:

■ New server hardware is added to the file system, and the MDS or an OSS is being 
moved to the new machine

■ New network card is installed in the server 

■ You want to reassign IP addresses

To change a server NID:

1. Update the LNET configuration in the /etc/modprobe.conf file so the list of 
server NIDs (lctl list_nids) is correct. 

The lctl list_nids command indicates which network(s) are configured to 
work with Lustre.
Chapter 4 Configuring Lustre 4-23



2. Shut down the file system in this order. 

a. Unmount the clients. 

b. Unmount the MDT. 

c. Unmount all OSTs. 

3. Run the writeconf command on all servers.

Run writeconf on the MDT first, and then the OSTs.

a. On the MDT, run:

<mdt node>$ tunefs.lustre --writeconf <device>

b. On each OST, run:

<ost node>$ tunefs.lustre --writeconf <device>

c. If the NID on the MGS was changed, communicate the new MGS location to 
each server. Run:

tunefs.lustre --erase-param --mgsnode=<new_nid(s)> --writeconf /dev/..

4. Restart the file system in this order.

a. Mount the MGS (or the combined MGS/MDT).

b. Mount the MDT.

c. Mount the OSTs. 

d. Mount the clients.

After the writeconf command is run, the configuration logs are re-generated as 
servers restart, and server NIDs in the updated list_nids file are used. 
4-24 Lustre 2.0 Operations Manual • June 2010



4.3.13 Removing and Restoring OSTs
OSTs can be removed from and restored to a Lustre file system. Currently in Lustre, 
removing an OST really means that the OST is ‘deactivated’ in the file system, not 
permanently removed. A removed OST still appears in the file system; do not create 
a new OST with the same name.

You may want to remove (deactivate) an OST and prevent new files from being 
written to it in several situations:

■ Hard drive has failed and a RAID resync/rebuild is underway

■ OST is nearing its space capacity

4.3.13.1 Removing an OST from the File System

When removing an OST, remember that the MDT does not communicate directly 
with OSTs. Rather, each OST has a corresponding OSC which communicates with the 
MDT. It is necessary to determine the device number of the OSC that corresponds to 
the OST. Then, you use this device number to deactivate the OSC on the MDT.

To remove an OST from the file system:

1. For the OST to be removed, determine the device number of the corresponding 
OSC on the MDT.

a. List all OSCs on the node, along with their device numbers. Run:

lctl dl | grep " osc "

This is sample lctl dl | grep " osc " output:

11 UP osc lustre-OST-0000-osc-cac94211 4ea5b30f-6a8e-55a0-7519-2f20318ebdb4 5
12 UP osc lustre-OST-0001-osc-cac94211 4ea5b30f-6a8e-55a0-7519-2f20318ebdb4 5
13 IN osc lustre-OST-0000-osc lustre-MDT0000-mdtlov_UUID 5
14 UP osc lustre-OST-0001-osc lustre-MDT0000-mdtlov_UUID 5

b. Determine the device number of the OSC that corresponds to the OST to be 
removed.

2. Temporarily deactivate the OSC on the MDT. On the MDT, run:

$ mdt> lctl --device <devno> deactivate

For example, based on the command output in Step 1, to deactivate device 13 (the 
MDT’s OSC for OST-0000), the command would be:

$ mdt> lctl --device 13 deactivate

This marks the OST as inactive on the MDS, so no new objects are assigned to the 
OST. This does not prevent use of existing objects for reads or writes.
Chapter 4 Configuring Lustre 4-25



Note – Do not deactivate the OST on the clients. Do so causes errors (EIOs), and the 
copy out to fail. 

Caution – Do not use lctl conf_param to deactivate the OST. It permanently 
sets a parameter in the file system configuration. 

3. Discover all files that have objects residing on the deactivated OST. Run:

lfs find --obd {OST UUID} / <mount_point> 

4. Copy (not move) the files to a new directory in the file system.

Copying the files forces object re-creation on the active OSTs.

5. Move (not copy) the files back to their original directory in the file system.

Moving the files causes the original files to be deleted, as the copies replace them.

6. Once all files have been moved, permanently deactivate the OST on the clients 
and the MDT. On the MGS, run:

# mgs> lctl conf_param <OST name>.osc.active=0

Note – A removed OST still appears in the file system; do not create a new OST with 
the same name.
4-26 Lustre 2.0 Operations Manual • June 2010



Temporarily Deactivating an OST in the File System

You may encounter situations when it is necessary to temporarily deactivate an OST, 
rather than permanently deactivate it. For example, you may need to deactivate a 
failed OST that cannot be immediately repaired, but want to continue to access the 
remaining files on the available OSTs.

To temporarily deactivate an OST: 

1. Mount the Lustre file system.

2. On the MDS and all clients, run: 

# lctl set_param osc.<faname>-<OST name>-*.active=0

Clients accessing files on the deactivated OST receive an IO error (-5), rather than 
pausing until the OST completes recovery.

4.3.13.2 Restoring an OST in the File System

Restoring an OST to the file system is as easy as activating it. When the OST is active, 
it is automatically added to the normal stripe rotation and files are written to it.

To restore an OST:

1. Make sure the OST to be restored is running.

2. Reactivate the OST. On the MGS, run:

# mgs> lctl conf_param <OST name>.osc.active=1

4.3.14 Aborting Recovery
You can abort recovery with either the lctl utility or by mounting the target with the 
abort_recov option (mount -o abort_recov). When starting a target, run:

$ mount -t lustre -L <MDT name> -o abort_recov <mount point>

Note – The recovery process is blocked until all OSTs are available. 
Chapter 4 Configuring Lustre 4-27



4.3.15 Determining Which Machine is Serving an OST
In the course of administering a Lustre file system, you may need to determine which 
machine is serving a specific OST. It is not as simple as identifying the machine’s IP 
address, as IP is only one of several networking protocols that Lustre uses and, as 
such, LNET does not use IP addresses as node identifiers, but NIDs instead. 

To identify the NID that is serving a specific OST, run one of the following 
commands on a client (you do not need to be a root user):

client$ lctl get_param osc.${fsname}-${OSTname}*.ost_conn_uuid

For example: 

client$ lctl get_param osc.*-OST0000*.ost_conn_uuid 

osc.myth-OST0000-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

- OR -

client$ lctl get_param osc.*.ost_conn_uuid 

osc.myth-OST0000-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

osc.myth-OST0001-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

osc.myth-OST0002-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

osc.myth-OST0003-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

osc.myth-OST0004-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp
4-28 Lustre 2.0 Operations Manual • June 2010



4.4 More Complex Configurations
If a node has multiple network interfaces, it may have multiple NIDs. When a node 
is specified, all of its NIDs must be listed, delimited by commas (,) so other nodes can 
choose the NID that is appropriate for their network interfaces. When failover nodes 
are specified, they are delimited by a colon (:) or by repeating a keyword 
(--mgsnode= or --failnode=). To obtain all NIDs from a node (while LNET is 
running), run:

lctl list_nids

This displays the server's NIDs (networks configured to work with Lustre).

4.4.1 Failover
This example has a combined MGS/MDT failover pair on uml1 and uml2, and a OST 
failover pair on uml3 and uml4. There are corresponding Elan addresses on uml1 and 
uml2.

uml1> mkfs.lustre --fsname=testfs --mdt --mgs \ 

--failnode=uml2,2@elan /dev/sda1

uml1> mount -t lustre /dev/sda1 /mnt/test/mdt

uml3> mkfs.lustre --fsname=testfs --ost --failnode=uml4 \ 

--mgsnode=uml1,1@elan --mgsnode=uml2,2@elan /dev/sdb

uml3> mount -t lustre /dev/sdb /mnt/test/ost0

client> mount -t lustre uml1,1@elan:uml2,2@elan:/testfs /mnt/testfs

uml1> umount /mnt/mdt

uml2> mount -t lustre /dev/sda1 /mnt/test/mdt

uml2> cat /proc/fs/lustre/mds/testfs-MDT0000/recovery_status

Where multiple NIDs are specified, comma-separation (for example, uml2,2@elan) 
means that the two NIDs refer to the same host, and that Lustre needs to choose the 
"best" one for communication. Colon-separation (for example, uml1:uml2) means 
that the two NIDs refer to two different hosts, and should be treated as failover 
locations (Lustre tries the first one, and if that fails, it tries the second one.)
Chapter 4 Configuring Lustre 4-29



Note – If you have an MGS or MDT configured for failover, perform these steps:

1. On the OST, list the NIDs of all MGS nodes at mkfs time. 

OST# mkfs.lustre --fsname sunfs --ost --mgsnode=10.0.0.1 
--mgsnode=10.0.0.2 /dev/{device}

2. On the client, mount the file system. 

client# mount -t lustre 10.0.0.1:10.0.0.2:/sunfs /cfs/client/

4.5 Operational Scenarios
In the operational scenarios below, the management node is the MDS. The 
management service is started as the initial part of the startup of the primary MDT.

Tip – All targets that are configured for failover must have some kind of shared 
storage among two server nodes. 

IP Network, Single MDS, Single OST, No Failover

On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> <partition>

mount -t lustre <partition> <mountpoint>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> <partition> 

mount -t lustre <partition> <mountpoint>

On the client, run:

mount -t lustre <MGS NID>:/<fsname> <mountpoint>
4-30 Lustre 2.0 Operations Manual • June 2010



IP Network, Failover MDS

For failover, storage holding target data must be available as shared storage to 
failover server nodes. Failover nodes are statically configured as mount options.

On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> \ 
--failover=<failover MGS NID> <partition> 

mount -t lustre <partition> <mount point>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> \ 
--mgsnode=<MGS NID>,<failover MGS NID> <partition> 
mount -t lustre <partition> <mount point>

On the client, run:

mount -t lustre <MGS NID>[,<failover MGS NID>]:/<fsname> \ 
<mount point>

IP Network, Failover MDS and OSS

On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> \ 
--failover=<failover MGS NID> <partition> 

mount -t lustre <partition> <mount point>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> \ 

--mgsnode=<MGS NID>[,<failover mds hostdesc>] \ 
--failover=<failover OSS NID> <partition> 

mount -t lustre <partition> <mount point>

On the client, run:

mount -t lustre <MGS NID>[,<failover MGS NID>]:/<fsname> \ 
<mount point>

4.5.1 Changing the Address of a Failover Node
To change the address of a failover node (e.g, to use node X instead of node Y), run 
this command on the OSS/OST partition:

tunefs.lustre --erase-params --failnode=<NID> <device> 
Chapter 4 Configuring Lustre 4-31



4-32 Lustre 2.0 Operations Manual • June 2010



CHAPTER 5

Service Tags

This chapter describes the use of service tags with Lustre, and includes the following 
sections:

Introduction to Service Tags

Using Service Tags

5.1 Introduction to Service Tags
Service tags are part of an IT asset inventory management system provided by 
Oracle. A service tag is a unique identifier for a piece of hardware or software (gear) 
that enables usage data about the tagged item to be shared over a local network in 
standard XML format. The service tag program is used for a number of Oracle 
products, including hardware, software and services, and has now been 
implemented for Lustre.

Service tags are provided for each MGS, MDS, OSS node and Lustre client. Using 
service tags enables automatic discovery and tracking of these system components, 
so administrators can better manage their Lustre environment.

Note – Service tags are used solely to provide an inventory list of system and 
software information to Oracle; they do not contain any personal information. 
Service tag components that communicate information are read-only and contained. 
They are not capable of accepting information and they cannot communicate with 
any other services on your system.

For more information on service tags, see the Service Tag wiki and Service Tag FAQ.
5-1

http://wikis.sun.com/display/ServiceTag/Home
http://wikis.sun.com/display/ServiceTag/Sun+Service+Tag+FAQ


5.2 Using Service Tags
To begin using service tags with your Lustre system, download the service tag 
package and registration client. The entire service tag process can be easily managed 
from the Sun Inventory webpage.

5.2.1 Installing Service Tags
Service tag packages (for RedHat and SuSE Linux) are downloadable from the Lustre 
downloads page. To download and install the service tags package:

1. Navigate to the Lustre download page and download the service tag package, 
sun-servicetag-1.1.4-1.i386.rpm1, for Lustre.

2. Install the service tag package on all Lustre nodes (MGSs, MDSs, OSSs and 
clients).

The service tag package includes several init.d scripts which are started on reboot 
(/etc/init.d/stosreg and /etc/init.d/psn start).

This package also adds entries in the [x]inetd’s configuration scripts to provide 
remote access to the nodes needed to collect information. The script restarts 
[x]inetd (killall -HUP xinetd 1>/dev/null 2>&1).

3. If this is a new installation, format the OSTs, MDTs, MGSs and Lustre clients.

4. Mount the OSTs, MDTs, MGSs and Lustre clients, and verify that the Lustre file 
system is running normally.

1. This is the current service tag package. The version number is subject to change.
5-2 Lustre 2.0 Operations Manual • June 2010



5.2.2 Discovering and Registering Lustre Components
After installing the service tag package on all of your Lustre nodes, discover and 
register the Lustre components. To perform this procedure, Lustre must be fully 
configured and running.

1. Navigate to the Oracle Lustre download page and download the Registration 
client, eis-regclient.jar.

2. Install the Registration client on one node (the collection node) that can reach 
all Lustre clients and servers over a TCP/IP network. 

3. Install Java Virtual Machine (Java VM) on the collection node. 

Java VM is available at the Java download site.

4. Start the Registration client, run:

$ java -jar eis-regclient.jar

The Registration Client utility launches.

FIGURE 5-1 Registration Client 
Chapter 5 Service Tags 5-3

http://www.sun.com/software/products/lustre/get.jsp
http://www.java.com/en/download/index.jsp


Note – The Registration client requires an X display to run. If the node from which 
you want to do the registration has no native X display, you can use SSH’s X 
forwarding to display the Registration client interface on your local machine.

The registration process includes up to five steps. The first step is to discover the 
service tags created when you started Lustre.

The Registration client looks for Sun products on your local subnet, by default. 
Alternately, you can specify another subnet, specific hosts or IP addresses.

5. Select an option to locate service tags and click Next.

The Product Data screen displays Sun products (that support service tags) as they 
are located. For each product, the system name, product name, and version (if 
applicable) are listed.

FIGURE 5-2 Product Data

If the list of located products does not look complete, select Back and enter a more 
accurate search.
5-4 Lustre 2.0 Operations Manual • June 2010



Note – Located service tags are not limited to Lustre components. The Registration 
client locates any Sun product on your system that is supported in the Sun inventory 
management program.

6. Register the service tags or save them for later use.

There are two options for registering service tags.

■ Click Next to continue with the remaining steps 3-5 of the registration process, 
including authentication to the Inventory management website and uploading 
your service tags.

■ Save the collected service tags and register them on another machine. This 
option is good if the system used to collect the service tags does not have Web 
access. Click Save As and enter a file where the tags should be saved. You can 
then move this file (using network copy, a USB key, etc.) to a machine with Web 
access. 

On the Web-access machine, navigate to Sun Inventory and click Discover & 
Register to start the Registration client. Select the ‘Locate Product on Other 
Subnets, Specific System or Load Previously Saved Data’ option and check the 
‘File Name’ box. Enter (or navigate to) the file where the collected service tags 
were saved, click Next and follow the remaining steps 3-5 to complete the 
registration process, including authentication to the Inventory management 
website and uploading your service tags.

7. If you wish, navigate to Sun Inventory and log into your account to view and 
manage your IT assets.

Note – For more information about service tags, see https://inventory.sun.com, 
which links to the http://wikis.sun.com/display/ServiceTag/Home wiki. This wiki 
includes an FAQ about the service tag program.
Chapter 5 Service Tags 5-5

https://inventory.sun.com
https://inventory.sun.com
https://inventory.sun.com
http://wikis.sun.com/display/ServiceTag/Hom


5.2.3 Service Tag Registration Information
The service tag registration process collects the following product, registration 
agentry and system information.

Data Name Description

Product Information

Lustre-specific information Node type (client, MDS, OSS or MGS)

Instance identifier Unique identifier for that instance of the gear

Product name Name of the gear

Product identifier Unique identifier for the gear being registered

Product vendor Vendor of the gear

Product version Version of the gear 

Parent name Parent gear of the registered gear

Parent identifier Unique identifier for the parent of the gear

Customer tag Optional, customer-defined value

Time stamp Day and time that the gear is registered 

Source Where the gear identifiers came from

Container Name of the gear's container 

Registration Agentry Information

Agentry Identifier Unique value for that instance of the agentry

Agentry Version Value of the agentry

Registry Identifier File version containing product registration information

System Information

Host System hostname

System Operating System

Release Operating system version

Architecture Physical hardware architecture

Platform Hardware platform

Manufacturer Hardware manufacturer

CPU manufacturer CPU manufacturer

HostID System host ID

Serial number System chassis serial number
5-6 Lustre 2.0 Operations Manual • June 2010



CHAPTER 6

Configuring Lustre - Examples

This chapter provides Lustre configuration examples and includes the following 
section:

■ Simple TCP Network

6.1 Simple TCP Network
This chapter presents several examples of Lustre configurations on a simple TCP 
network.

6.1.1 Lustre with Combined MGS/MDT
Below is an example is of a Lustre setup “datafs” having combined MDT/MGS with 
four OSTs and a number of Lustre clients.

6.1.1.1 Installation Summary
■ Combined (co-located) MDT/MGS

■ Four OSTs

■ Any number of Lustre clients
6-1



6.1.1.2 Configuration Generation and Application

1. Install the Lustre RPMS (per Installing Lustre) on all nodes that are going to be 
part of the Lustre file system. Boot the nodes in Lustre kernel, including the 
clients.

2. Change modprobe.conf by adding the following line to it.

options lnet networks=tcp

3. Configuring Lustre on MGS and MDT node.

$ mkfs.lustre --fsname datafs --mdt --mgs /dev/sda

4. Make a mount point on MDT/MGS for the file system and mount it.

$ mkdir -p /mnt/data/mdt

$ mount -t lustre /dev/sda /mnt/data/mdt

5. Configuring Lustre on all four OSTs.

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdd

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda1

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdb

Note – While creating the file system, make sure you are not using disk with the 
operating system.

6. Make a mount point on all the OSTs for the file system and mount it.

$ mkdir -p /mnt/data/ost0

$ mount -t lustre /dev/sda /mnt/data/ost0

$ mkdir -p /mnt/data/ost1

$ mount -t lustre /dev/sdd /mnt/data/ost1

$ mkdir -p /mnt/data/ost2

$ mount -t lustre /dev/sda1 /mnt/data/ost2

$ mkdir -p /mnt/data/ost3

$ mount -t lustre /dev/sdb /mnt/data/ost3

$ mount -t lustre mdt16@tcp0:/datafs /mnt/datafs
6-2 Lustre 2.0 Operations Manual • June 2010



6.1.2 Lustre with Separate MGS and MDT
The following example describes a Lustre file system “datafs” having an MGS and an 
MDT on separate nodes, four OSTs, and a number of Lustre clients.

6.1.2.1 Installation Summary
■ One MGS

■ One MDT 

■ Four OSTs 

■ Any number of Lustre clients

6.1.2.2 Configuration Generation and Application

1. Install the Lustre RPMs (per Installing Lustre) on all the nodes that are going to 
be a part of the Lustre file system. Boot the nodes in the Lustre kernel, 
including the clients.

2. Change the modprobe.conf by adding the following line to it.

options lnet networks=tcp

3. Start Lustre on the MGS node.

$ mkfs.lustre --mgs /dev/sda

4. Make a mount point on MGS for the file system and mount it.

$ mkdir -p /mnt/mgs

$ mount -t lustre /dev/sda1 /mnt/mgs

5. Start Lustre on the MDT node.

$ mkfs.lustre --fsname=datafs --mdt --mgsnode=mgsnode@tcp0 \ 
/dev/sda2

6. Make a mount point on MDT/MGS for the file system and mount it.

$ mkdir -p /mnt/data/mdt

$ mount -t lustre /dev/sda /mnt/data/mdt

7. Start Lustre on all the four OSTs.

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdd

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda1

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdb
Chapter 6 Configuring Lustre - Examples 6-3



8. Make a mount point on all the OSTs for the file system and mount it

$ mkdir -p /mnt/data/ost0

$ mount -t lustre /dev/sda /mnt/data/ost0

$ mkdir -p /mnt/data/ost1

$ mount -t lustre /dev/sdd /mnt/data/ost1

$ mkdir -p /mnt/data/ost2

$ mount -t lustre /dev/sda1 /mnt/data/ost2

$ mkdir -p /mnt/data/ost3

$ mount -t lustre /dev/sdb /mnt/data/ost3

$ mount -t lustre mdsnode@tcp0:/datafs /mnt/datafs
6-4 Lustre 2.0 Operations Manual • June 2010



CHAPTER 7

More Complicated Configurations

This chapter describes more complicated Lustre configurations and includes the 
following sections:

■ Multihomed Servers

■ Elan to TCP Routing

■ Load Balancing with InfiniBand

■ Multi-Rail Configurations with LNET

7.1 Multihomed Servers
If you are using multiple networks with Lustre, certain configuration settings are 
required. Throughout this section, a worked example is used to illustrate these 
settings. 

In this example, servers megan and oscar each have three TCP NICs (eth0, eth1, and 
eth2) and an Elan NIC. The eth2 NIC is used for management purposes and should 
not be used by LNET. TCP clients have a single TCP interface and Elan clients have a 
single Elan interface.

7.1.1 Modprobe.conf
Options under modprobe.conf are used to specify the networks available to a node. 
You have the choice of two different options – the networks option, which explicitly 
lists the networks available and the ip2nets option, which provides a list-matching 
lookup. Only one option can be used at any one time. The order of LNET lines in 
modprobe.conf is important when configuring multi-homed servers. If a server 
node can be reached using more than one network, the first network specified in 
modprobe.conf will be used.
7-1



Networks

On the servers:

options lnet networks=tcp0(eth0, eth1),elan0

Elan-only clients:

options lnet networks=elan0

TCP-only clients:

options lnet networks=tcp0

Note – In the case of TCP-only clients, the first available non-loopback IP interface is 
used for tcp0 since the interfaces are not specified.

ip2nets

The ip2nets option is typically used to provide a single, universal modprobe.conf 
file that can be run on all servers and clients. An individual node identifies the 
locally available networks based on the listed IP address patterns that match the 
node's local IP addresses. Note that the IP address patterns listed in the ip2nets 
option are only used to identify the networks that an individual node should 
instantiate. They are not used by LNET for any other communications purpose. The 
servers megan and oscar have eth0 IP addresses 192.168.0.2 and .4. They also have 
IP over Elan (eip) addresses of 132.6.1.2 and .4. TCP clients have IP addresses 
192.168.0.5-255. Elan clients have eip addresses of 132.6.[2-3].2, .4, .6, .8.

modprobe.conf is identical on all nodes:

options lnet 'ip2nets="tcp0(eth0,eth1)192.168.0.[2,4]; tcp0 \ 
192.168.0.*; elan0 132.6.[1-3].[2-8/2]"'

Note – LNET lines in modprobe.conf are only used by the local node to determine 
what to call its interfaces. They are not used for routing decisions.

Because megan and oscar match the first rule, LNET uses eth0 and eth1 for tcp0 on 
those machines. Although they also match the second rule, it is the first matching 
rule for a particular network that is used. The servers also match the (only) Elan rule. 
The [2-8/2] format matches the range 2-8 stepping by 2; that is 2,4,6,8. For example, 
clients at 132.6.3.5 would not find a matching Elan network.
7-2 Lustre 2.0 Operations Manual • June 2010



7.1.2 Start Servers
For the combined MGS/MDT with TCP network, run:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/mdt

- OR -

For the MGS on the separate node with TCP network, run:

$ mkfs.lustre --mgs /dev/sda

$ mkdir -p /mnt/mgs

$ mount -t lustre /dev/sda /mnt/mgs

For starting the MDT on node mds16 with MGS on node mgs16, run:

$ mkfs.lustre --fsname=spfs --mdt --mgsnode=mgs16@tcp0 /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda2 /mnt/test/mdt

For starting the OST on TCP-based network, run:

$ mkfs.lustre --fsname spfs --ost --mgsnode=mgs16@tcp0 /dev/sda$

$ mkdir -p /mnt/test/ost0

$ mount -t lustre /dev/sda /mnt/test/ost0
Chapter 7 More Complicated Configurations 7-3



7.1.3 Start Clients
TCP clients can use the host name or IP address of the MDS, run:

mount –t lustre megan@tcp0:/mdsA/client /mnt/lustre

Use this command to start the Elan clients, run:

mount –t lustre 2@elan0:/mdsA/client /mnt/lustre

Note – If the MGS node has multiple interfaces (for instance, cfs21 and 1@elan), only 
the client mount command has to change. The MGS NID specifier must be an 
appropriate nettype for the client (for example, a TCP client could use uml1@tcp0, 
and an Elan client could use 1@elan). Alternatively, a list of all MGS NIDs can be 
given, and the client chooses the correctd one. For example:

$ mount -t lustre mgs16@tcp0,1@elan:/testfs /mnt/testfs
7-4 Lustre 2.0 Operations Manual • June 2010



7.2 Elan to TCP Routing
Servers megan and oscar are on the Elan network with eip addresses 132.6.1.2 and 
.4. Megan is also on the TCP network at 192.168.0.2 and routes between TCP and 
Elan. There is also a standalone router, router1, at Elan 132.6.1.10 and TCP 
192.168.0.10. Clients are on either Elan or TCP.

7.2.1 Modprobe.conf
modprobe.conf is identical on all nodes, run:

options lnet 'ip2nets="tcp0 192.168.0.*; elan0 132.6.1.*"' \  
'routes="tcp [2,10]@elan0; elan 192.168.0.[2,10]@tcp0"'

7.2.2 Start servers
To start router1, run:

modprobe lnet

lctl network configure

To start megan and oscar, run:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/mdt

$ mount -t lustre mgs16@tcp0,1@elan:/testfs /mnt/testfs

7.2.3 Start clients
For the TCP client, run:

mount -t lustre megan:/mdsA/client /mnt/lustre/

For the Elan client, run:

mount -t lustre 2@elan0:/mdsA/client /mnt/lustre
Chapter 7 More Complicated Configurations 7-5



7.3 Load Balancing with InfiniBand 
A Lustre file system contains OSSs with two InfiniBand HCAs. Lustre clients have 
only one InfiniBand HCA using OFED Infiniband ''o2ib'' drivers. Load balancing 
between the HCAs on the OSS is accomplished through LNET.

7.3.1 Setting Up modprobe.conf for Load Balancing
To configure LNET for load balancing on clients and servers:

1. Set the modprobe.conf options.

Depending on your configuration, set modprobe.conf options as follows:

■ Dual HCA OSS server

options lnet networks="o2ib0(ib0),o2ib1(ib1) 192.168.10.1.[101-102] 

■ Client with the odd IP address

options lnet networks=o2ib0(ib0) 192.168.10.[103-253/2] 

■ Client with the even IP address

options lnet networks=o2ib1(ib0) 192.168.10.[102-254/2]

2. Run the modprobe lnet command and create a combined MGS/MDT file 
system. 

The following commands create the MGS/MDT file system and mount the servers 
(MGS/MDT and OSS). 

modprobe lnet

$ mkfs.lustre --fsname lustre --mgs --mdt <block device name>

$ mkdir -p <mount point>

$ mount -t lustre <block device> <mount point>

$ mount -t lustre <block device> <mount point>

$ mkfs.lustre --fsname lustre --mgs --mdt <block device name>

$ mkdir -p <mount point>

$ mount -t lustre <block device> <mount point>

$ mount -t lustre <block device> <mount point> 
7-6 Lustre 2.0 Operations Manual • June 2010



For example: 

modprobe lnet

$ mkfs.lustre --fsname lustre --mdt --mgs /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/mdt

$ mount -t lustre mgs@o2ib0:/lustre /mnt/mdt

$ mkfs.lustre --fsname lustre --ost --mgsnode=mds@o2ib0 /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/ost

$ mount -t lustre mgs@o2ib0:/lustre /mnt/ost

3. Mount the clients. 

mount -t lustre <MGS node>:/<fsname> <mount point>

This example shows an IB client being mounted. 

mount -t lustre
192.168.10.101@o2ib0,192.168.10.102@o2ib1:/mds/client /mnt/lustre

7.4 Multi-Rail Configurations with LNET
To aggregate bandwidth across both rails of a dual-rail IB cluster (o2iblnd)1 using 
LNET, consider these points:

■ LNET can work with multiple rails, however, it does not load balance across them. 
The actual rail used for any communication is determined by the peer NID.

■ Multi-rail LNET configurations do not provide an additional level of network fault 
tolerance. The configurations described below are for bandwidth aggregation only. 
Network interface failover is planned as an upcoming Lustre feature.

■ A Lustre node always uses the same local NID to communicate with a given peer 
NID. The criteria used to determine the local NID are: 

■ Fewest hops (to minimize routing), and 

■ Appears first in the "networks" or "ip2nets" LNET configuration strings

1. Multi-rail configurations are only supported by o2iblnd; other IB LNDs do not support multiple interfaces.
Chapter 7 More Complicated Configurations 7-7



As an example, consider a two-rail IB cluster running the OFA stack (OFED) with 
these IPoIB address assignments.

ib0 ib1

Servers 192.168.0.* 192.168.1.*

Clients 192.168.[2-127].* 192.168.[128-253].*

You could create these configurations:

■ A cluster with more clients than servers. The fact that an individual client cannot 
get two rails of bandwidth is unimportant because the servers are the actual 
bottleneck.

ip2nets="o2ib0(ib0), o2ib1(ib1)192.168.[0-1].* #all servers;\
o2ib0(ib0) 192.168.[2-253].[0-252/2]#even clients;\
o2ib1(ib1) 192.168.[2-253].[1-253/2]#odd clients"

This configuration gives every server two NIDs, one on each network, and statically 
load-balances clients between the rails.

■ A single client that must get two rails of bandwidth, and it does not matter if the 
maximum aggregate bandwidth is only (# servers) * (1 rail). 

ip2nets=" o2ib0(ib0) 192.168.[0-1].[0-252/2] #even servers;\
o2ib1(ib1) 192.168.[0-1].[1-253/2] #odd servers;\
o2ib0(ib0),o2ib1(ib1) 192.168.[2-253].* #clients"

This configuration gives every server a single NID on one rail or the other. Clients 
have a NID on both rails.

■ All clients and all servers must get two rails of bandwidth.

ip2nets=” o2ib0(ib0),o2ib2(ib1) 192.168.[0-1].[0-252/2] #even servers;\
o2ib1(ib0),o2ib3(ib1) 192.168.[0-1].[1-253/2] #odd servers;\
o2ib0(ib0),o2ib3(ib1) 192.168.[2-253].[0-252/2)#even clients;\
o2ib1(ib0),o2ib2(ib1) 192.168.[2-253].[1-253/2)#odd clients"

This configuration includes two additional proxy o2ib networks to work around 
Lustre's simplistic NID selection algorithm. It connects "even" clients to "even" 
servers with o2ib0 on rail0, and "odd" servers with o2ib3 on rail1. Similarly, it 
connects "odd" clients to "odd" servers with o2ib1 on rail0, and "even" servers with 
o2ib2 on rail1.
7-8 Lustre 2.0 Operations Manual • June 2010



CHAPTER 8

Failover

This chapter describes failover in a Lustre system and includes the following 
sections:

■ What is Failover?

■ Failover Functionality in Lustre

■ Configuring and Using Heartbeat with Lustre Failover

8.1 What is Failover?
A computer system is ''highly available'' when the services it provides are available 
with minimal downtime. In a highly-available system, if a failure condition occurs, 
such as the loss of a server or a network or software fault, the system’s services 
continue without interruption. Generally, we measure availability by the percentage 
of time the system is required to be available. 

Availability is accomplished by replicating hardware and/or software so that when a 
primary server fails or is unavailable, a standby server can be switched into its place 
to run applications and associated resources. This process, called failover, should be 
automatic and, in most cases, completely application-transparent.

A failover hardware setup requires a pair of servers with a shared resource (typically 
a physical storage device, which may be based on SAN, NAS, hardware RAID, SCSI 
or FC technology). The method of sharing storage should be essentially transparent 
at the device level in that the same physical logical unit number (LUN) should be 
visible from both servers. To ensure high availability at the physical storage level, we 
encourage the use of RAID arrays to protect against drive-level failures. 
8-1



8.1.1 Failover Capabilities 
To establish a highly-available Lustre file system, power management software or 
hardware and high availability (HA) software are used to provide the following 
failover capabilities: 

■ Resource fencing - Protects physical storage from simultaneous access by two 
nodes. 

■ Resource management - Starts and stops the Lustre resources as a part of failover, 
maintains the cluster state, and carries out other resource management tasks. 

■ Health monitoring - Verifies the availability of hardware and network resources 
and responds to health indications provided by Lustre.

Although these capabilities can be provided by a variety of software and/or 
hardware solutions, the currently supported solution for Lustre is Heartbeat. For 
information about accessing the latest version of Heartbeat, see:

www.sun.com/software/products/hpcsoftware/getit.jsp

HA software is responsible for detecting failure of the primary Lustre server node 
and controlling the failover. Lustre works with any HA software that supports 
resource (I/O) fencing. For proper resource fencing, the HA software must be able to 
completely power off the failed server or disconnect it from the shared storage 
device. If two active nodes have access to the same storage device, data may be 
severely corrupted.

8.1.2 Types of Failover Configurations 
Nodes in a cluster can be configured for failover in several ways. They are often 
configured in pairs (for example, two OSTs attached to a shared storage device), but 
other failover configurations are also possible. Failover configurations include:

■ Active/passive pair - In this configuration, the active node provides resources and 
serves data, while the passive node is usually standing by idle. If the active node 
fails, the passive node takes over and becomes active.

■ Active/active pair - In this configuration, both nodes are active, each providing a 
subset of resources. In case of a failure, the second node takes over resources from 
the failed node. 

The active/passive configuration is seldom used for OST servers as it doubles 
hardware costs without improving performance. On the other hand, an active/active 
cluster configuration can improve performance by serving and providing arbitrary 
failover protection to a number of OSTs. In an active/active configuration, multiple 
OSS nodes are configured to serve the same OST, but only one OSS node can serve 
the OST at a time. The OST must never be active on more than one OSS at a time. 
8-2 Lustre 2.0 Operations Manual • June 2010

http://www.sun.com/software/products/hpcsoftware/getit.jsp


8.2 Failover Functionality in Lustre
The failover functionality provided in Lustre supports the following failover 
scenario. When a client attempts to do I/O to a failed Lustre target, it continues to try 
until it receives an answer from any of the configured failover nodes for the Lustre 
target. A user-space application does not detect anything unusual, except that the 
I/O may take longer than usual to complete. 

Lustre failover requires two nodes configured as a failover pair, which must share 
one or more storage devices. Lustre can be configured to provide MDT or OST 
failover. 

■ For MDT failover, two MDSs are configured to serve the same MDT. Only one 
MDS node can serve an MDT at a time. 

■ For OST failover, multiple OSS nodes are configured to be able to serve the same 
OST. However, only one OSS node can serve the OST at a time. An OST can be 
moved between OSS nodes that have access to the same storage device using 
umount/mount commands.

To add a failover partner to a Lustre configuration, the --failnode option is used. 
This can be done at creation time (using mkfs.lustre) or later when the Lustre 
system is active (using tunefs.lustre). For explanations of these utilities, see 
mkfs.lustre and tunefs.lustre.

For a failover example, see More Complicated Configurations. 

Note – Failover is supported in Lustre only at the file system level. In a complete 
failover solution, support for system-level components, such as node failure 
detection or power control, is provided by a third party tool.

Caution – OST failover functionality does not protect against corruption caused by 
a disk failure. If the storage media (i.e., physical disk) used for an OST fails, Lustre 
cannot recover it. We strongly recommend that some form of RAID be used for OSTs. 
Lustre functionality assumes that the storage is reliable, so it adds no extra reliability 
features.
Chapter 8 Failover 8-3



8.2.1 MDT Failover Configuration (Active/Passive)
Two MDSs are usually configured as an active/passive failover pair. Note that both 
nodes must have access to shared storage for the MDT(s) and the MGS. The primary 
(active) MDS manages the Lustre system metadata resources. If the primary MDS 
fails, the secondary (passive) MDS takes over these resources and serves the MDTs 
and the MGS. 

Note – In an environment with multiple file systems, the MDSs can be configured in 
a quasi active/active configuration, with each MDS managing metadata for a subset 
of the Lustre file system.

8.2.2 OST Failover Configuration (Active/Active)
OSTs are usually configured in a load-balanced, active/active failover configuration. 
A failover cluster is built from two OSSs. 

Note – OSSs configured as a failover pair must have shared disks/RAID.

In an active configuration, 50% of the available OSTs are assigned to one OSS and the 
remaining OSTs are assigned to the other OSS. Each OSS serves as the primary node 
for half the OSTs and as a failover node for the remaining OSTs.

In this mode, if one OSS fails, the other OSS takes over all of the failed OSTs. The 
clients attempt to connect to each OSS serving the OST, until one of them responds. 
Data on the OST is written synchronously, and the clients replay transactions that 
were in progress and uncommitted to disk before the OST failure.

8.2.3 Lustre Failover and MMP
The failover functionality in Lustre is supported by the multiple mount protection 
(MMP) feature, which protects the file system from being mounted simultaneously to 
more than one node. This feature is important in a shared storage environment (for 
example, when a failover pair of OSTs share a partition).

Lustre's backend file system, ldiskfs, supports the MMP mechanism. A block in the 
file system is updated by a kmmpd daemon at one second intervals, and a sequence 
number is written in this block. If the file system is cleanly unmounted, then a special 
"clean" sequence is written to this block. When mounting the file system, ldiskfs 
checks if the MMP block has a clean sequence or not.
8-4 Lustre 2.0 Operations Manual • June 2010



Even if the MMP block has a clean sequence, ldiskfs waits for some interval to 
guard against the following situations:

■ If I/O traffic is heavy, it may take longer for the MMP block to be updated.

■ If another node is trying to mount the same file system, a "race" condition may 
occur.

With MMP enabled, mounting a clean file system takes at least 10 seconds. If the file 
system was not cleanly unmounted, then the file system mount may require 
additional time.

Note – The MMP feature is only supported on Linux kernel versions >= 2.6.9.

8.2.3.1 Working with MMP 

On a new Lustre file system, MMP is automatically enabled by mkfs.lustre at 
format time if failover is being used and the kernel and e2fsprogs version support it. 
On an existing file system, a Lustre administrator can manually enable MMP when 
the file system is unmounted.

Use the following commands to determine whether MMP is running in Lustre and to 
enable or disable the MMP feature.

To determine if MMP is enabled, run: 

dumpe2fs -h <device>|grep mmp

Here is a sample command: 

dumpe2fs -h /dev/sdc | grep mmp 

Filesystem features: has_journal ext_attr resize_inode dir_index 

filetype extent mmp sparse_super large_file uninit_bg

To manually disable MMP, run: 

tune2fs -O ^mmp <device> 

To manually enable MMP, run: 

tune2fs -O mmp <device>

When MMP is enabled, if ldiskfs detects multiple mount attempts after the file 
system is mounted, it blocks these later mount attempts and reports the time when 
the MMP block was last updated, the node name, and the device name of the node 
where the file system is currently mounted.
Chapter 8 Failover 8-5



8.3 Configuring and Using Heartbeat with 
Lustre Failover
This section describes how to configure Lustre failover using the Heartbeat cluster 
infrastructure daemon.

8.3.1 Creating a Failover Environment
Lustre provides failover mechanisms only at the file system level. No failover 
support is provided for system-level components, such as node failure detection or 
power control, as would typically be provided in a complete failover solution. 
Additional tools are also needed to provide resource fencing, control and monitoring. 

8.3.1.1 Power Management Software

Lustre failover requires power control and management capability to verify that a 
failed node is shut down before I/O is directed to the failover node. This avoids 
double-mounting the two nodes, and the risk of unrecoverable data corruption. A 
variety of power management tools will work, but two packages that are commonly 
used with Lustre are STONITH and PowerMan.

Shoot The Other Node In The HEAD (STONITH), is a set of power management 
tools provided with the Linux-HA package. STONITH has native support for many 
power control devices and is extensible. It uses expect scripts to automate control. 

PowerMan, available from the Lawrence Livermore National Laboratory (LLNL), is 
used to control remote power control (RPC) devices from a central location. 
PowerMan provides native support for several RPC varieties and expect-like 
configuration simplifies the addition of new devices.

The latest versions of PowerMan are available at:

sourceforge.net/projects/powerman

For more information about PowerMan, go to:

computing.llnl.gov/linux/powerman.html
8-6 Lustre 2.0 Operations Manual • June 2010

https://computing.llnl.gov/linux/powerman.html
http://sourceforge.net/projects/powerman


8.3.1.2 Power Equipment

Lustre failover also requires the use of RPC devices, which come in different 
configurations. Lustre server nodes may be equipped with some kind of service 
processor that allows remote power control. If a Lustre server node is not equipped 
with a service processor, then a multi-port, Ethernet-addressable RPC may be used as 
an alternative. For recommended products, refer to the list of supported RPC devices 
on the PowerMan website. 

computing.llnl.gov/linux/powerman.html

8.3.2 Setting up the Heartbeat Software 
Lustre must be combined with high-availability (HA) software to enable a complete 
Lustre failover solution. Lustre can be used with different HA packages, including 
Heartbeat, the Linux-HA software. 

For current information about Heartbeat, see linux-ha.org/wiki.

The Heartbeat package is one of the core components of the Linux-HA project. 
Heartbeat is highly-portable and runs on every known Linux platform, as well as 
FreeBSD and Solaris. 

This section describes how to install Heartbeat v2 and configure it with and without 
STONITH. Because Heartbeat v1 has simpler configuration files, which can be used 
with both Heartbeat v1 and v2, the configuration examples show how to configure 
Heartbeat using Heartbeat v1 configuration files. 

Heartbeat v2 adds monitoring and supports more complex cluster topologies, and 
the Heartbeat v2 configuration is stored as an XML file. To support users with 
Heartbeat v2, this section also includes a procedure to migrate Heartbeat v1 
configuration files to v2. 
Chapter 8 Failover 8-7

http://linux-ha.org/wiki
https://computing.llnl.gov/linux/powerman.html


8.3.2.1 Installing Heartbeat

1. Install Lustre (see Installing Lustre). 

2. Install the Heartbeat packages. 

Heartbeat v2 requires several packages. This example uses Heartbeat v. 2.1.4. The 
required Heartbeat packages are, in order:

■ heartbeat-stonith -> heartbeat-stonith-2.1.4-1.x86_64.rpm 

■ heartbeat-pils -> heartbeat-pils-2.1.4-1.x86_64.rpm 

■ heartbeat -> heartbeat-2.1.4-1.x86_64.rpm

You can download the Heartbeat packages and guides covering basic setup and 
testing here: 

www.sun.com/software/products/hpcsoftware/getit.jsp

Heartbeat packages are available for many Linux distributions. Additionally, 
Heartbeat has some dependencies on other packages. It is recommended that you 
use a package manager like yum, yast or aptitude to install the Heartbeat 
packages and resolve their package dependencies. 

8.3.2.2 Configuring Heartbeat

This section describes Heartbeat configuration and provides a worked example to 
illustrate the configuration steps. 

Note – Depending on the particular packaging, Heartbeat files may be located in a 
different directory or path than indicated in the following procedures.
8-8 Lustre 2.0 Operations Manual • June 2010

http://www.sun.com/software/products/hpcsoftware/getit.jsp


For remote power control, both OSS nodes are equipped with a service processor 
(SP). The SPs are accessible over the network via their hostnames. Individual node 
parameters are listed below. 

Configuring Heartbeat without STONITH

Note – This procedure describes Heartbeat configuration using a v1 configuration 
file, which can be used with both Heartbeat v1 and v2. See (Optional) Migrating a 
Heartbeat Configuration (v1 to v2) for an optional procedure to convert the v1 
configuration file to an XML-formatted v2 configuration file.

Note – Depending on the particular packaging, Heartbeat files may be located in a 
different directory or path than indicated in the following procedure. For example, 
they may be located in /etc/ha.d/ or /var/lib/heartbeat.

Parameters Value Description

First OSS node

OSS node oss01 First OSS node in the Lustre file system

OST ost01 First OST in the Lustre file system

block device /dev/sda Block device for the first OSS node (oss01)

mount point /mnt/ost1 Mount point for the oss01 block device (/dev/sda) on the oss01 node

hostname oss01sp Hostname for the first OSS node’s SP

Second OSS node

OSS node oss02 Second OSS node in the Lustre file system

OST ost02 Second OST in the Lustre file system

block device /dev/sdb Block device for the second OSS node (oss02)

mount point /mnt/ost02 Mount point for the ost02 block device (/dev/sdb) on the oss02 node

hostname oss02sp Hostname for the second OSS node’s SP
Chapter 8 Failover 8-9



To configure Heartbeat without STONITH:

1. Create (or edit) the Heartbeat configuration file, /etc/ha.d/ha.cf. 

This file must be identical on both nodes.

In this example configuration (without STONITH configuration), the 
/etc/ha.d/ha.cf file looks like this:

# log file settings 

# write debug output to /var/log/ha-debug 

debugfile /var/log/ha-debug 

# write log messages to /var/log/ha-log 

logfile /var/log/ha-log 

# use syslog to write to logfiles 

logfacility local0 

# set some time-outs. these values are only recommendations, which 
depend e.g. on the OSS load 

# send keep-alive packages every 2 seconds 

keepalive 2 

# wait 90 seconds before declaring a node dead 

deadtime 90 

# write a warning to the logfile after 30 seconds without an answer 
from the failover node 

warntime 30 

# wait for 120 seconds before declaring a node dead after heartbeat 
is brought up 

initdead 120 

# define communication channels 

# use port 12345 to communicate with fail-over node 

udpport 12345 

# use network interfaces eth0 and ib0 to detect a failed node 

bcast eth0 ib0 

# Use manual failback 

auto_failback off 

# node names in this failover-pair. These names must match the 
output of `hostname` 

node oss01 

node oss02
8-10 Lustre 2.0 Operations Manual • June 2010



2. Define the resources that will be controlled by Heartbeat by editing the 
/etc/ha/d/haresources file. 

This file must be identical on both nodes.

In this example configuration, the /etc/ha.d/haresources file looks like this:

oss01 Filesystem::/dev/sda::/mnt/ost01::lustre 

oss02 Filesystem::/dev/sdb::/mnt/ost02::lustre

The resource definition file tells Heartbeat that one file system resource is 
associated with oss01 and oss02. Each resource is defined on separate lines. 

The file system resource script takes three inputs separated by "::". The first 
parameter is the device name, the second is the mount point and the third is the 
file system type.

Depending on the configuration, a resource can be more complex, e.g., software 
RAID needs to be assembled before the file system can be mounted. In this case, 
an haresources file may look like this:

oss01 Raid1::/etc/mdadm.conf.oss::/dev/md1 
Filesystem::/dev/md1::/mnt/ost01::lustre 

oss02 Raid1::/etc/mdadm.conf.oss::/dev/md2 
Filesystem::/dev/md2::/mnt/ost02::lustre

When a resource group is started by Heartbeat, the resources start from left to 
right. In this example, the RAID is assembled first, and the file system is mounted 
second. If the resource group is stopped, then the file system is unmounted first 
and the RAID is stopped second. 

Other resource scripts can be found in the /etc/ha.d/resource.d/ folder.

3. Create the /etc/ha.d/authkeys file and fix its permissions.

This file must be identical on both nodes.

In this example configuration, the authkeys file looks like this:

auth 1 

1 sha1 PutYourSuperSecretKeyHere

Make sure that the permissions for this files are set to 0600, by running chmod 
0600 /etc/ha.d/authkeys on both nodes.

4. Test the Heartbeat configuration.

Run the following command on both nodes:

service heartbeat start

Check the log files on both nodes to find any problems and fix them.

After the initial deadtime interval, you should see the nodes discover each other's 
state and start the Lustre resources associated with them. 
Chapter 8 Failover 8-11



Configuring Heartbeat with STONITH

STONITH automates the process of power control and management. Expect scripts 
are dependent on the exact set of commands provided by each hardware vendor. As 
a result, any change in the power control hardware or firmware requires that 
STONITH be adjusted.

Note – This procedure describes configuring Heartbeat using a v1 configuration file, 
which can be used with both Heartbeat v1 and v2. See (Optional) Migrating a 
Heartbeat Configuration (v1 to v2) for an optional procedure to convert the v1 
configuration file to an XML-formatted v2 configuration file.

Note – Depending on the particular packaging, Heartbeat files may be located in a 
different directory or path than indicated in the following procedure. For example, 
they may be located in /etc/ha.d/ or /var/lib/heartbeat.

The heartbeat-stonith package comes with a number of pre-defined STONITH scripts 
for different power control hardware. Additionally, Heartbeat can be configured to 
run an external script. Heartbeat can be configured in two STONITH modes:

■ One STONITH command for all nodes found in ha.cf:

stonith <type> <config file>

■ One STONITH command per-node:

stonith_host <hostfrom> <stonith_type> <params...>

You can use an external script to kill each node, e.g.:

stonith_host oss01 external foo /etc/ha.d/reset-nodeB 

stonith_host oss02 external foo /etc/ha.d/reset-nodeA

To get the proper STONITH syntax, run:

$ stonith -L

The above command lists supported models.

To list required parameters and specify the configuration filename, run:

$ stonith -l -t <model>

To attempt a test, run:

$ stonith -l -t <model> <fake host name>

To test STONITH, use a real hostname. To work with Heartbeat correctly, the external 
STONITH scripts should take the parameters {start|stop|status} and return 0 or 1.
8-12 Lustre 2.0 Operations Manual • June 2010



To add STONITH functionality (using an ipmi service processor) to the configuration 
example, add the following lines to the /etc/ha.d/ha.cf configuration file:

# define how a node can be powered off in case of a failure. more 
details below 

stonith_host oss01 external/ipmi oss02 oss02sp root changeme lanplus 

stonith_host oss02 external/ipmi oss01 oss01sp root changeme lanplus

STONITH is only invoked if one of the failover nodes is no longer responding to 
Heartbeat messages and the cluster does stop resources in an orderly manner. If two 
cluster nodes can communicate, they usually shut down properly. This means that 
many tests do not produce a STONITH, for example:

■ Calling init 0, shutdown, or reboot on a node will cause no STONITH 

■ Stopping Heartbeat on a node stops the resources cleanly and fails them over to 
the other node without invoking STONITH.

8.3.2.3 (Optional) Migrating a Heartbeat Configuration (v1 to v2)

Heartbeat includes a script that enables v1 configuration files to be migrated to v2 
XML configuration files. The script reads the v1 configuration files (ha.cf and 
haresources), and then writes an XML file to STDOUT. The script is 

$ /usr/lib/heartbeat/haresources2cib.py 

or 

$ /usr/lib64/heartbeat/haresources2cib.py 

To redirect the script output after the cib.xml file has been generated, it is 
recommended that you check the XML file and change some parameters, such as 
resource-stickiness and timeouts, to more appropriate values. For example: 

$ /usr/lib64/heartbeat/haresources2cib.py > cib.xml

Then the cib.xml file should than be copied to /var/lib/heartbeat/crm/cib.xml on 
both failover nodes. 

To test the new configuration, start Heartbeat on both nodes and check the log files. 

Note – If a Heartbeat v2 configuration file is available on the system, it is not 
necessary to remove the v1 configuration files, as they are ignored.
Chapter 8 Failover 8-13



8.3.3 Working with Heartbeat
After Lustre and Heartbeat are correctly configured, the following commands can be 
used to control Heartbeat.

8.3.3.1 Starting Heartbeat

To start Heartbeat, run this command on both failover nodes:

service heartbeat start

After a node fails, start Heartbeat manually and analyze the cause of the problem 
before taking over the failed resources. You should NOT start Heartbeat 
automatically after a node failure.

8.3.3.2 Switching Resources Between Nodes

Depending on whether Heartbeat v1 or v2 configuration files are being used, there 
are different ways to switch resources between nodes. 

For Heartbeat v1 configuration files, two scripts are provided (hb_takeover and 
hb_standby), that make it easy to switch resources between failover nodes. 
Depending on your system, these scripts are located in /usr/lib/heartbeat/ or 
/usr/lib64/heartbeat/. 

The hb_takeover and hb_standby scripts take the following arguments:

■ all -- take/fail over all resources 

■ foreign -- take/fail over foreign resources 

■ local -- take/fail over local resources only 

■ failback -- fail/take over foreign resources

Performing an hb_takeover on the current node is equivalent to performing an 
hb_standby on the other node. 

For Heartbeat v2 configuration files, the crm_resource command is used to interact 
with Heartbeat's Cluster Resource Manager and switch resources between nodes. For 
more information on crm_resource, see:

linux.die.net/man/8/crm_resource
8-14 Lustre 2.0 Operations Manual • June 2010

http://linux.die.net/man/8/crm_resource


To switch resources between nodes:

1. Generate a complete list of resources known to the Heartbeat cluster resource 
manager. Run:

crm_resource --list 

2. From the list, identify the group name for the resource to fail over. 

3. Determine if and where the specified resource is running. Run:

crm_resource -W -r <resource_name>

4. Migrate the resource to the host. Run:

crm_resource -M -r <resource_name> -H <target_host_name> 

5. To un-migrate a resource, run:

crm_resource -U -r <resource_name>
Chapter 8 Failover 8-15



8-16 Lustre 2.0 Operations Manual • June 2010



CHAPTER 9

Configuring Quotas

This chapter describes how to configure quotas and includes the following sections:

■ Working with Quotas

■ Enabling Disk Quotas

■ Creating Quota Files and Quota Administration

■ Quota Allocation

■ Known Issues with Quotas

■ Lustre Quota Statistics

9.1 Working with Quotas
Quotas allow a system administrator to limit the amount of disk space a user or 
group can use in a directory. Quotas are set by root, and can be specified for 
individual users and/or groups. Before a file is written to a partition where quotas 
are set, the quota of the creator's group is checked. If a quota exists, then the file size 
counts towards the group's quota. If no quota exists, then the owner's user quota is 
checked before the file is written. Similarly, inode usage for specific functions can be 
controlled if a user over-uses the allocated space. 

Lustre quota enforcement differs from standard Linux quota support in several ways:

■ Quotas are administered via the lfs command (post-mount).

■ Quotas are distributed (as Lustre is a distributed file system), which has several 
ramifications.

■ Quotas are allocated and consumed in a quantized fashion.

■ Client does not set the usrquota or grpquota options to mount. When quota is 
enabled, it is enabled for all clients of the file system; started automatically using 
quota_type or started manually with lfs quotaon.
9-1



Caution – Although quotas are available in Lustre, root quotas are NOT enforced.

lfs setquota -u root (limits are not enforced)

lfs quota -u root (usage includes internal Lustre data that is dynamic in size 
and does not accurately reflect mount point visible block and inode usage).

9.1.1 Enabling Disk Quotas
Use this procedure to enable (configure) disk quotas in Lustre.

1. If you have re-complied your Linux kernel, be sure that CONFIG_QUOTA and 
CONFIG_QUOTACTL are enabled. Also, verify that CONFIG_QFMT_V1 
and/or CONFIG_QFMT_V2 are enabled.

Quota is enabled in all Linux 2.6 kernels supplied for Lustre.

2. Start the server.

3. Mount the Lustre file system on the client and verify that the lquota module has 
loaded properly by using the lsmod command.

$ lsmod

[root@oss161 ~]# lsmod

Module Size Used by

obdfilter 220532 1

fsfilt_ldiskfs 52228 1

ost 96712 1

mgc 60384 1

ldiskfs 186896 2 fsfilt_ldiskfs

lustre 401744 0

lov 289064 1 lustre

lquota 107048 4 obdfilter

mdc 95016 1 lustre

ksocklnd 111812 1

The Lustre mount command no longer recognizes the usrquota and grpquota 
options. If they were previously specified, remove them from /etc/fstab.

When quota is enabled, it is enabled for all file system clients (started automatically 
using quota_type or manually with lfs quotaon).

Note – Lustre with the Linux kernel 2.4 does not support quotas.
9-2 Lustre 2.0 Operations Manual • June 2010



To enable quotas automatically when the file system is started, you must set the 
mdt.quota_type and ost.quota_type parameters, respectively, on the MDT and 
OSTs. The parameters can be set to the string u (user), g (group) or ug for both users 
and groups. 

You can enable quotas at mkfs time (mkfs.lustre --param mdt.quota_type=
ug) or with tunefs.lustre. As an example:

tunefs.lustre --param ost.quota_type=ug $ost_dev

Caution – If you are using mkfs.lustre --param mdt.quota_type=ug or 
tunefs.lustre --param ost.quota_type=ug, be sure to run the command on 
all OSTs and the MDT. Otherwise, abnormal results may occur.

9.1.1.1 Administrative and Operational Quotas

Lustre has two kinds of quota files:

■ Administrative quotas (for the MDT), which contain limits for users/groups for 
the entire cluster.

■ Operational quotas (for the MDT and OSTs), which contain quota information 
dedicated to a cluster node.

Lustre 1.6.5 introduced the v2 file format for administrative quota files, with 
continued support for the old file format (v1). The mdt.quota_type parameter also 
handles ‘1’ and ‘2’ options, to specify the Lustre quota versions that will be used. For 
example:

--param mdt.quota_type=ug1

--param mdt.quota_type=u2

Lustre 1.6.6 introduced the v2 file format for operational quotas, with continued 
support for the old file format (v1). The ost.quota_type parameter handles ‘1’ and 
‘2’ options, to specify the Lustre quota versions that will be used. For example:

--param ost.quota_type=ug2

--param ost.quota_type=u1

For more information about the v1 and v2 formats, see Quota File Formats.
Chapter 9 Configuring Quotas 9-3



9.1.2 Creating Quota Files and Quota Administration
Once each quota-enabled file system is remounted, it is capable of working with disk 
quotas. However, the file system is not yet ready to support quotas. If umount has 
been done regularly, run the lfs command with the quotaon option. If umount has 
not been done, perform these steps: 

1. Take Lustre ''offline''. That is, verify that no write operations (append, write, 
truncate, create or delete) are being performed (preparing to run lfs 
quotacheck). Operations that do not change Lustre files (such as read or 
mount) are okay to run.

Caution – When lfs quotacheck is run, Lustre must NOT be performing any 
write operations. Failure to follow this caution may cause the statistic information of 
quota to be inaccurate. For example, the number of blocks used by OSTs for users or 
groups will be inaccurate, which can cause unexpected quota problems. 

2. Run the lfs command with the quotacheck option:

# lfs quotacheck -ug /mnt/lustre

By default, quota is turned on after quotacheck completes. Available options are:

■ u — checks the user disk quota information 

■ g — checks the group disk quota information

The lfs quotacheck command checks all objects on all OSTs and the MDS to 
sum up for every UID/GID. It reads all Lustre metadata and re-computes the 
number of blocks/inodes that each UID/GID has used. If there are many files in 
Lustre, it may take a long time to complete.

Note – User and group quotas are separate. If either quota limit is reached, a process 
with the corresponding UID/GID cannot allocate more space on the file system.

Note – When lfs quotacheck runs, it creates a quota file -- a sparse file with a size 
proportional to the highest UID in use and UID/GID distribution. As a general rule, 
if the highest UID in use is large, then the sparse file will be large, which may affect 
functions such as creating a snapshot.
9-4 Lustre 2.0 Operations Manual • June 2010



Note – For Lustre 1.6 releases before version 1.6.5, and 1.4 releases before version 
1.4.12, if the underlying ldiskfs file system has not unmounted gracefully (due to a 
crash, for example), re-run quotacheck to obtain accurate quota information. Lustre 
1.6.5 and 1.4.12 use journaled quota, so it is not necessary to run quotacheck after 
an unclean shutdown.

In certain failure situations (e.g., when a broken Lustre installation or build is used), 
re-run quotacheck after checking the server kernel logs and fixing the root problem.

The lfs command includes several command options to work with quotas:

■ quotaon — enables disk quotas on the specified file system. The file system quota 
files must be present in the root directory of the file system. 

■ quotaoff — disables disk quotas on the specified file system.

■ quota — displays general quota information (disk usage and limits)

■ setquota — specifies quota limits and tunes the grace period. By default, the 
grace period is one week.

Usage: 

lfs quotaon [-ugf] <filesystem>

lfs quotaoff [-ug] <filesystem>

lfs quota [-q] [-v] [-o obd_uuid] [-u|-g <uname>|uid|gname|gid>]  
<filesystem>

lfs quota -t <-u|-g> <filesystem>

lfs setquota <-u|--user|-g|--group> <username|groupname> 
[-b <block-softlimit>] [-B <block-hardlimit>] [-i <inode-softlimit>] 
[-I <inode-hardlimit>] <filesystem>

Examples:

In all of the examples below, the file system is /mnt lustre.

To turn on user and group quotas, run:

$ lfs quotaon -ug /mnt/lustre

To turn off user and group quotas, run:

$ lfs quotaoff -ug /mnt/lustre

To display general quota information (disk usage and limits) for the user running the 
command and his primary group, run:

$ lfs quota /mnt/lustre 
Chapter 9 Configuring Quotas 9-5



To display general quota information for a specific user ("bob" in this example), run:

$ lfs quota -u bob /mnt/lustre

To display general quota information for a specific user ("bob" in this example) and 
detailed quota statistics for each MDT and OST, run:

$ lfs quota -u bob -v /mnt/lustre

To display general quota information for a specific group ("eng" in this example), 
run:

$ lfs quota -g eng /mnt/lustre

To display block and inode grace times for user quotas, run:

$ lfs quota -t -u /mnt/lustre

To set user and group quotas for a specific user ("bob" in this example), run:

$ lfs setquota -u bob 307200 309200 10000 11000 /mnt/lustre

In this example, the quota for user "bob" is set to 300 MB (309200*1024) and the 
hard limit is 11,000 files. Therefore, the inode hard limit should be 11000. 

Note – For the Lustre command $ lfs setquota/quota ... the qunit for block is KB 
(1024) and the qunit for inode is 1.

The quota command displays the quota allocated and consumed for each Lustre 
device. Using the previous setquota example, running this lfs quota command:

$ lfs quota -u bob -v /mnt/lustre 

displays this command output:

Disk quotas for user bob (uid 500):

Filesystem blocks quota limit grace files quota limit grace

/mnt/lustre 0 307200 309200 0 10000 11000        

lustre-MDT0000_UUID 0 0 102400 0 0    5000 

lustre-OST0000_UUID 0 0 102400 

lustre-OST0001_UUID 0 0 102400 
9-6 Lustre 2.0 Operations Manual • June 2010



9.1.3 Quota Allocation
The Linux kernel sets a default quota size of 1 MB. (For a block, the default is 128 
MB. For files, the default is 5120.) Lustre handles quota allocation in a different 
manner. A quota must be properly set or users may experience unnecessary failures. 
The file system block quota is divided up among the OSTs within the file system. 
Each OST requests an allocation which is increased up to the quota limit. The quota 
allocation is then quantized to reduce the number of quota-related request traffic. By 
default, Lustre supports both user and group quotas to limit disk usage and file 
counts.

The quota system in Lustre is completely compatible with the quota systems used on 
other file systems. The Lustre quota system distributes quotas from the quota master. 
Generally, the MDS is the quota master for both inodes and blocks. All OSTs and the 
MDS are quota slaves to the OSS nodes. The minimum transfer unit is 100 MB, to 
avoid performance impacts for quota adjustments. The file system block quota is 
divided up among the OSTs and the MDS within the file system. Only the MDS uses 
the file system inode quota.

This means that the minimum quota for block is 100 MB* (the number of OSTs + the 
number of MDSs), which is 100 MB* (number of OSTs + 1). The minimum quota for 
inode is the inode qunit. If you attempt to assign a smaller quota, users maybe not be 
able to create files. The default is established at file system creation time, but can be 
tuned via /proc values (described below). The inode quota is also allocated in a 
quantized manner on the MDS.
Chapter 9 Configuring Quotas 9-7



This sets a much smaller granularity. It is specified to request a new quota in units of 
100 MB and 500 inodes, respectively. If we look at the setquota example again, 
running this lfs quota command:

# lfs quota -u bob -v /mnt/lustre

displays this command output:

Disk quotas for user bob (uid 500):

Filesystem blocks quota limit grace files quota limit grace

/mnt/lustre 207432 307200 30920 1041 10000 11000

lustre-MDT0000_UUID 992 0 102400 1041 05000        

lustre-OST0000_UUID 103204* 0 102400  

lustre-OST0001_UUID 103236* 0 102400

The total quota of 30,920 is allotted to user bob, which is further distributed to two 
OSTs and one MDS with a 102,400 block quota.

Note – Values appended with “*” show the limit that has been over-used (exceeding 
the quota), and receives this message Disk quota exceeded. For example:
\
$ cp: writing `/mnt/lustre/var/cache/fontconfig/ 
beeeeb3dfe132a8a0633a017c99ce0-x86.cache’: Disk quota exceeded.

The requested quota of 300 MB is divided across the OSTs. Each OST has an initial 
allocation of 100 MB blocks, with iunit limiting to 5000.

Note – It is very important to note that the block quota is consumed per OST and 
the MDS per block and inode (there is only one MDS for inodes). Therefore, when 
the quota is consumed on one OST, the client may not be able to create files 
regardless of the quota available on other OSTs.
9-8 Lustre 2.0 Operations Manual • June 2010



Additional information:

Grace period — The period of time (in seconds) within which users are allowed to 
exceed their soft limit. There are four types of grace periods: 

■ user block soft limit

■ user inode soft limit

■ group block soft limit

■ group inode soft limit

The grace periods are applied to all users. The user block soft limit is for all users 
who are using a blocks quota. 

Soft limit — Once you are beyond the soft limit, the quota module begins to time, 
but you still can write block and inode. When you are always beyond the soft limit 
and use up your grace time, you get the same result as the hard limit. For inodes and 
blocks, it is the same. Usually, the soft limit MUST be less than the hard limit; if not, 
the quota module never triggers the timing. If the soft limit is not needed, leave it as 
zero (0). 

Hard limit — When you are beyond the hard limit, you get -EQUOTA and cannot 
write inode/block any more. The hard limit is the absolute limit. When a grace 
period is set, you can exceed the soft limit within the grace period if are under the 
hard limits.

Lustre quota allocation is controlled by two values quota_bunit_sz and 
quota_iunit_sz referring to KBs and inodes respectively. These values can be 
accessed on the MDS as /proc/fs/lustre/mds/*/quota_* and on the OST as 
/proc/fs/lustre/obdfilter/*/quota_*. The /proc values are bounded by 
two other variables quota_btune_sz and quota_itune_sz. By default, the 
*tune_sz variables are set at 1/2 the *unit_sz variables, and you cannot set 
*tune_sz larger than *unit_sz. You must set bunit_sz first if it is increasing by 
more than 2x, and btune_sz first if it is decreasing by more than 2x.

Total number of inodes — To determine the total number of inodes, use lfs df -i 
(and also /proc/fs/lustre/*/*/filestotal). For more information on using 
the lfs df -i command and the command output, see Querying File System Space.

Unfortunately, the statfs interface does not report the free inode count directly, but 
instead reports the total inode and used inode counts. The free inode count is 
calculated for df from (total inodes - used inodes).

It is not critical to know a file system’s total inode count. Instead, you should know 
(accurately), the free inode count and the used inode count for a file system. Lustre 
manipulates the total inode count in order to accurately report the other two values.

The values set for the MDS must match the values set on the OSTs.
Chapter 9 Configuring Quotas 9-9



The quota_bunit_sz parameter displays bytes, however lfs setquota uses KBs. 
The quota_bunit_sz parameter must be a multiple of 1024. A proper minimum KB 
size for lfs setquota can be calculated as: 

Size in KBs = (quota_bunit_sz * ( number of OSTS + 1 )) / 1024

We add one (1) to the number of OSTs as the MDS also consumes KBs. As inodes are 
only consumed on the MDS, the minimum inode size for lfs setquota is equal to 
quota_iunit_sz.

Note – Setting the quota below this limit may prevent the user from all file creation. 

9.1.4 Known Issues with Quotas
Using quotas in Lustre can be complex and there are several known issues.

9.1.4.1 Granted Cache and Quota Limits

In Lustre, granted cache does not respect quota limits. In this situation, OSTs grant 
cache to Lustre client to accelerate I/O. Granting cache causes writes to be successful 
in OSTs, even if they exceed the quota limits, and will overwrite them. 

The sequence is: 

1. A user writes files to Lustre.

2. If the Lustre client has enough granted cache, then it returns ‘success’ to users 
and arranges the writes to the OSTs.

3. Because Lustre clients have delivered success to users, the OSTs cannot fail 
these writes. 

Because of granted cache, writes always overwrite quota limitations. For example, if 
you set a 400 GB quota on user A and use IOR to write for user A from a bundle of 
clients, you will write much more data than 400 GB, and cause an out-of-quota error 
(-EDQUOT).
9-10 Lustre 2.0 Operations Manual • June 2010



Note – The effect of granted cache on quota limits can be mitigated, but not 
eradicated. Reduce the max_dirty_buffer in the clients (can be set from 0 to 512). 
To set max_dirty_buffer to 0: 

* In releases after Lustre 1.6.5, lctl set_param osc.*.max_dirty_mb=0. 

* In releases before Lustre 1.6.5, proc/fs/lustre/osc/*/max_dirty_mb; do 
echo 512 > $O

9.1.4.2 Quota Limits

Available quota limits depend on the Lustre version you are using.

■ Lustre version 1.4.11 and earlier (for 1.4.x releases) and Lustre version 1.6.4 and 
earlier (for 1.6.x releases) support quota limits less than 4 TB.

■ Lustre versions 1.4.12, 1.6.5 and later support quota limits of 4 TB and greater in 
Lustre configurations with OST storage limits of 4 TB and less.

■ Future Lustre versions are expected to support quota limits of 4 TB and greater 
with no OST storage limits.

Lustre Version Quota Limit Per User/Per Group OST Storage Limit

1.4.11 and earlier < 4TB n/a

1.4.12 => 4TB <= 4TB of storage

1.6.4 and earlier < 4TB n/a

1.6.5 => 4TB <= 4TB of storage

Future Lustre versions => 4TB No storage limit
Chapter 9 Configuring Quotas 9-11



9.1.4.3 Quota File Formats

Lustre 1.6.5 introduced the v2 file format for administrative quotas, with 64-bit limits 
that support large-limits handling. The old quota file format (v1), with 32-bit limits, 
is also supported. Lustre 1.6.6 introduced the v2 file format for operational quotas. A 
few notes regarding the current quota file formats:

Lustre 1.6.5 and later use mdt.quota_type to force a specific administrative quota 
version (v2 or v1).

■ For the v2 quota file format, (OBJECTS/admin_quotafile_v2.{usr,grp}) 

■ For the v1 quota file format, (OBJECTS/admin_quotafile.{usr,grp}) 

Lustre 1.6.6 and later use ost.quota_type to force a specific operational quota 
version (v2 or v1).

■ For the v2 quota file format, (lquota_v2.{user,group}) 

■ For the v1 quota file format, (lquota.{user,group}) 

The quota_type specifier can be used to set different combinations of 
administrative/operational quota file versions on a Lustre node:

■ "1" - v1 (32-bit) administrative quota file, v1 (32-bit) operational quota file (default 
in releases before Lustre 1.6.5) 

■ "2" - v2 (64-bit) administrative quota file, v1 (32-bit) operational quota file (default 
in Lustre 1.6.5) 

■ "3" - v2 (64-bit) administrative quota file, v2 (64-bit) operational quota file (default 
in releases after Lustre 1.6.5)

If quotas do not exist or look broken, then quotacheck creates quota files of a 
required name and format. 

If Lustre is using the v2 quota file format when only v1 quota files exist, then 
quotacheck converts old v1 quota files to new v2 quota files. This conversion is 
triggered automatically, and is transparent to users. If an old quota file does not exist 
or looks broken, then the new v2 quota file will be empty. In case of an error, details 
can be found in the kernel log of the corresponding MDS/OST. During conversion of 
a v1 quota file to a v2 quota file, the v2 quota file is marked as broken, to avoid it 
being used if a crash occurs. The quota module does not use broken quota files 
(keeping quota off). 

In most situations, Lustre administrators do not need to set specific versioning 
options. Upgrading Lustre without using quota_type to force specific quota file 
versions results in quota files being upgraded automatically to the latest version. The 
option ensures backward compatibility, preventing a quota file upgrade to a version 
which is not supported by earlier Lustre versions.
9-12 Lustre 2.0 Operations Manual • June 2010



9.1.5 Lustre Quota Statistics
Lustre includes statistics that monitor quota activity, such as the kinds of quota RPCs 
sent during a specific period, the average time to complete the RPCs, etc. These 
statistics are useful to measure performance of a Lustre file system. 

Each quota statistic consists of a quota event and min_time, max_time and 
sum_time values for the event.

Quota Event Description

sync_acq_req Quota slaves send a acquiring_quota request and 
wait for its return.

sync_rel_req Quota slaves send a releasing_quota request and 
wait for its return.

async_acq_req Quota slaves send an acquiring_quota request and 
do not wait for its return.

async_rel_req Quota slaves send a releasing_quota request and do 
not wait for its return.

wait_for_blk_quota
(lquota_chkquota)

Before data is written to OSTs, the OSTs check if the 
remaining block quota is sufficient. This is done in 
the lquota_chkquota function.

wait_for_ino_quota
(lquota_chkquota)

Before files are created on the MDS, the MDS checks 
if the remaining inode quota is sufficient. This is 
done in the lquota_chkquota function.

wait_for_blk_quota
(lquota_pending_commit)

After blocks are written to OSTs, relative quota 
information is updated. This is done in the 
lquota_pending_commit function.

wait_for_ino_quota
(lquota_pending_commit)

After files are created, relative quota information is 
updated. This is done in the 
lquota_pending_commit function.

wait_for_pending_blk_quota_req
(qctxt_wait_pending_dqacq)

On the MDS or OSTs, there is one thread sending a 
quota request for a specific UID/GID for block 
quota at any time. At that time, if other threads 
need to do this too, they should wait. This is done 
in the qctxt_wait_pending_dqacq function.

wait_for_pending_ino_quota_req
(qctxt_wait_pending_dqacq)

On the MDS, there is one thread sending a quota 
request for a specific UID/GID for inode quota at 
any time. If other threads need to do this too, they 
should wait. This is done in the 
qctxt_wait_pending_dqacq function.
Chapter 9 Configuring Quotas 9-13



9.1.5.1 Interpreting Quota Statistics

Quota statistics are an important measure of a Lustre file system’s performance. 
Interpreting these statistics correctly can help you diagnose problems with quotas, 
and may indicate adjustments to improve system performance.

For example, if you run this command on the OSTs:

cat /proc/fs/lustre/lquota/lustre-OST0000/stats

You will get a result similar to this:

snapshot_time 1219908615.506895 secs.usecs
async_acq_req 1 samples [us]32 32 32
async_rel_req 1 samples [us]5 5 5
nowait_for_pending_blk_quota_req(qctxt_wait_pending_dqacq) 1 samples [us] 2 2 2
quota_ctl 4 samples [us]80 3470 4293
adjust_qunit 1 samples [us]70 70 70
....

In the first line, snapshot_time indicates when the statistics were taken. The 
remaining lines list the quota events and their associated data. 

In the second line, the async_acq_req event occurs one time. The min_time, 
max_time and sum_time statistics for this event are 32, 32 and 32, respectively. The 
unit is microseconds (µs).

In the fifth line, the quota_ctl event occurs four times. The min_time, max_time 
and sum_time statistics for this event are 80, 3470 and 4293, respectively. The unit is 
microseconds (µs).

nowait_for_pending_blk_quota_req
(qctxt_wait_pending_dqacq)

On the MDS or OSTs, there is one thread sending a 
quota request for a specific UID/GID for block 
quota at any time. When threads enter 
qctxt_wait_pending_dqacq, they do not need to 
wait. This is done in the qctxt_wait_pending_dqacq 
function.

nowait_for_pending_ino_quota_req
(qctxt_wait_pending_dqacq)

On the MDS, there is one thread sending a quota 
request for a specific UID/GID for inode quota at 
any time. When threads enter 
qctxt_wait_pending_dqacq, they do not need to 
wait. This is done in the qctxt_wait_pending_dqacq 
function.

quota_ctl The quota_ctl statistic is generated when lfs 
setquota, lfs quota and so on, are issued.

adjust_qunit Each time qunit is adjusted, it is counted.

Quota Event Description
9-14 Lustre 2.0 Operations Manual • June 2010



Involving Lustre Support in Quotas Analysis

Quota statistics are collected in /proc/fs/lustre/lquota/.../stats. Each 
MDT and OST has one statistics proc file. If you have a problem with quotas, but 
cannot successfully diagnose the issue, send the statistics files in the folder to Lustre 
Support for analysis. To prepare the files:

1. Initialize the statistics data to 0 (zero). Run:

lctl set_param lquota.${FSNAME}-MDT*.stats=0

lctl set_param lquota.${FSNAME}-OST*.stats=0

2. Perform the quota operation that causes the problem or degraded performance.

3. Collect all statistics in /proc/fs/lustre/lquota/ and send them to Lustre Support. 
Note the following:

■ Proc quota entries are collected in these folders:

/proc/fs/lustre/obdfilter/lustre-OSTXXXX/quota* 

- AND -

/proc/fs/lustre/mds/lustre-MDTXXXX/quota*

Proc quota entries are copied to /proc/fs/lustre/lquota.

■ To maintain compatibility, old quota proc entries in the following folders are 
not deleted in the current Lustre release (although they may be deprecated in 
the future): 

/proc/fs/lustre/obdfilter/lustre-OSTXXXX/ 

- AND - 

/proc/fs/lustre/mds/lustre-MDTXXXX/ 

■ Only use the quota entries in /proc/fs/lustre/lquota/.
Chapter 9 Configuring Quotas 9-15



9-16 Lustre 2.0 Operations Manual • June 2010



CHAPTER 10

RAID

This chapter describes software and hardware RAID, and includes the following 
sections:

■ Considerations for Backend Storage

■ Insights into Disk Performance Measurement

■ Lustre Software RAID Support
10-1



10.1 Considerations for Backend Storage
Lustre's architecture allows it to use any kind of block device as backend storage. The 
characteristics of such devices, particularly in the case of failures vary significantly 
and have an impact on configuration choices.

This section surveys issues and recommendations regarding backend storage.

10.1.1 Selecting Storage for the MDS or OSTs

MDS

The MDS does a large amount of small writes. For this reason, we recommend that 
you use RAID1 for MDT storage. If you require more capacity for an MDT than one 
disk provides, we recommend RAID1 + 0 or RAID10. LVM is not recommended at 
this time for performance reasons. 

OST

A quick calculation (shown below), makes it clear that without further redundancy, 
RAID5 is not acceptable for large clusters and RAID6 is a must.

Take a 1 PB file system (2,000 disks of 500 GB capacity). The MTTF1 of a disk is about 
1,000 days. This means that the expected failure rate is 2000/1000 = 2 disks per day. 
Repair time at 10% of disk bandwidth is close to 1 day (500 GB at 5 MB/sec = 100,000 
sec = 1 day).

If we have a RAID 5 stripe that is 10 disks wide, then during 1 day of rebuilding, the 
chance that a second disk in the same array fails is about 9 / 1000 ~= 1/100. This 
means that, in the expected period of 50 days, a double failure in a RAID 5 stripe 
leads to data loss. 

So, RAID 6 or another double parity algorithm is necessary for OST storage. 

For better performance, we recommend that you create RAID sets with no more than 
8 data disks (+1 or +2 parity disks) as this will provide more IOPS from having 
multiple independent RAID sets.

1. Mean Time to Failure
10-2 Lustre 2.0 Operations Manual • June 2010



File system: Use RAID5 with 5 or 9 disks or RAID6 with 6 or 10 disks, each on a 
different controller. The stripe width is the optimal minimum I/O size. Ideally, the 
RAID configuration should allow 1 MB Lustre RPCs to fit evenly on a single RAID 
stripe without an expensive read-modify-write cycle. Use this formula to determine 
the stripe_width.

<stripe_width> = <chunksize> * (<disks> - <parity_disks>) <= 1 MB 

where <parity_disks> is 1 for RAID5/RAID-Z and 2 for RAID6/RAID-Z2. If the 
RAID configuration does not allow <chunksize> to fit evenly into 1 MB, select 
<chunksize>, such that <stripe_width> is close to 1 MB, but not larger. 

For example, RAID6 with 6 disks has 4 data and 2 parity disks, so we get:

<chunksize> <= 1024kB/4; either 256kB, 128kB or 64kB

The <stripe_width> value must equal <chunksize> * (<disks> - 
<parity_disks>). Use it for OST file systems only (not MDT file systems).

$ mkfs.lustre --mountfsoptions="stripe=<stripe_width_blocks>" ...

External journal: Use RAID1 with two partitions of 400 MB (or more), each from 
disks on different controllers. 

To set up the journal device (/dev/mdJ), run:

$ 'mke2fs -O journal_dev -b 4096 /dev/mdJ'

Then run --reformat on the file system device (/dev/mdX), specifying the RAID 
geometry to the underlying ldiskfs file system, where:

<chunk_blocks> = <chunksize> / 4096 
<stripe_width_blocks> = <stripe_width> / 4096: 

$ mkfs.lustre --reformat ... 
--mkfsoptions "-j -J device=/dev/mdJ -E stride=<chunk_blocks>" /dev/mdX

10.1.2 Reliability Best Practices
It is considered mandatory that you use disk monitoring software, so rebuilds 
happen without any delay. 

We recommend backups of the metadata file systems. This can be done with LVM 
snapshots or using raw partition backups. 
Chapter 10 RAID 10-3



10.1.3 Performance Tradeoffs
Writeback cache can dramatically increase write performance on any type of RAID 
array.2 Unfortunately, unless the RAID array has battery-backed cache (a feature only 
found in some higher-priced hardware RAID arrays), interrupting the power to the 
array may result in out-of-sequence writes. This causes problems for journaling.

If writeback cache is enabled, a file system check is required after the array loses 
power. Data may also be lost because of this.

Therefore, we recommend against the use of writeback cache when data integrity is 
critical. You should carefully consider whether the benefits of using writeback cache 
outweigh the risks.

10.1.4 Formatting Options for RAID Devices
When formatting a file system on a RAID device, it is beneficial to specify additional 
parameters at the time of formatting. This ensures that the file system is optimized 
for the underlying disk geometry. Use the --mkfsoptions parameter to specify 
these options when formatting the OST or MDT.

For RAID 5, RAID 6, RAID 1+0 storage, specifying the -E stride = <chunksize> 
option improves the layout of the file system metadata ensuring that no single disk 
contains all of the allocation bitmaps. The <chunksize> parameter is in units of 
4096-byte blocks and represents the amount of contiguous data written to a single 
disk before moving to the next disk. This is applicable to both MDS and OST file 
systems. 

For more information on how to override the defaults while formatting MDS or OST 
file systems, see Options for Formatting the MDT and OSTs.

2. Client writeback cache improves performance for many small files or for a single, large file alike. However, if 
the cache is filled with small files, cache flushing is likely to be much slower (because of less data being sent 
per RPC), so there may be a drop-off in total throughput.
10-4 Lustre 2.0 Operations Manual • June 2010



10.1.4.1 Creating an External Journal

If you have configured a RAID array and use it directly as an OST, it houses both 
data and metadata. For better performance3, we recommend putting OST metadata 
on another journal device, by creating a small RAID 1 array and using it as an 
external journal for the OST.

It is not known if external journals improve performance of MDTs. Currently, we 
recommend against using them for MDTs to reduce complexity.

No more than 102,400 file system blocks will ever be used for a journal. For Lustre's 
standard 4 KB block size, this corresponds to a 400 MB journal. A larger partition can 
be created, but only the first 400 MB will be used. Additionally, a copy of the journal 
is kept in RAM on the OSS. Therefore, make sure you have enough memory available 
to hold copies of all the journals.

To create an external journal, perform these steps for each OST on the OSS:

1. Create a 400 MB (or larger) journal partition (RAID 1 is recommended).

In this example, /dev/sdb is a RAID 1 device, run:

$ sfdisk -uC /dev/sdb << EOF 

> ,50,L 

> EOF

2. Create a journal device on the partition. Run:

$ mke2fs -b 4096 -O journal_dev /dev/sdb1

3. Create the OST.

In this example, /dev/sdc is the RAID 6 device to be used as the OST, run:

$ mkfs.lustre --ost --mgsnode=mds@osib \ 
--mkfsoptions="-J device=/dev/sdb1" /dev/sdc

4. Mount the OST as usual.

3. Performance is affected because, while writing large sequential data, small I/O writes are done to update 
metadata. This small-sized I/O can affect performance of large sequential I/O with disk seeks.
Chapter 10 RAID 10-5



10.1.5 Handling Degraded RAID Arrays
Lustre 2.0 include functionality that notifies Lustre if an external RAID array has 
degraded performance (resulting in a degraded OST), either because a disk has failed 
and not been replaced, or because a disk was replaced and is undergoing a rebuild. 
To avoid a global performance slowdown due to a degraded OST, the MDS can avoid 
the OST for new object allocation if it is notified of the degraded state. 

The new file (called "degraded"), in /proc/fs/lustre/obdfilter/{OST}, marks 
the OST as degraded if it is written with a "1" (or any non-zero value), until a "0" is 
written to it. Therefore, "1" should be written to the file when the array becomes 
degraded and "0" should be written when the array becomes healthy.

If the OST is remounted due to a reboot or other condition, the flag resets to "0".

10.2 Insights into Disk Performance 
Measurement
Several tips and insights for disk performance measurement are provided below. 
Some of this information is specific to RAID arrays and/or the Linux RAID 
implementation.

■ Performance is limited by the slowest disk.

Before creating a software RAID array, benchmark all disks individually. We have 
frequently encountered situations where drive performance was not consistent for 
all devices in the array. Replace any disks that are significantly slower than the 
rest.

■ Disks and arrays are very sensitive to request size.

To identify the optimal request size for a given disk, benchmark the disk with 
different record sizes ranging from 4 KB to 1 to 2 MB.

Note – Try to avoid sync writes; probably subsequent write would make the stripe 
full and no reads will be needed. Try to configure RAID arrays and the application so 
that most of the writes are full-stripe and stripe-aligned. 
10-6 Lustre 2.0 Operations Manual • June 2010



■ (Suggested) MDT setup for maximum performance. 

RAID1 with an internal journal and two disks from different controllers. 

If you need a larger MDT, create multiple RAID1 devices from pairs of disks, and 
then make a RAID0 array of the RAID1 devices. This ensures maximum reliability 
because multiple disk failures only have a small chance of hitting both disks in the 
same RAID1 device. 

Doing the opposite (RAID1 of a pair of RAID0 devices) has a 50% chance that 
even two disk failures can cause the loss of the whole MDT device. The first 
failure disables an entire half of the mirror and the second failure has a 50% 
chance of disabling the remaining mirror.

10.3 Lustre Software RAID Support
A number of Linux kernels offer software RAID support, by which the kernel 
organizes disks into a RAID array. All Lustre-supported kernels have software RAID 
capability, but Lustre has added performance improvements to the RHEL 4 and 
RHEL 5 kernels that make operations even faster4. Therefore, if you are using 
software RAID functionality, we recommend that you use a Lustre-patched RHEL 4 
or 5 kernel to take advantage of these performance improvements, rather than a SLES 
kernel.

10.3.0.1 Enabling Software RAID on Lustre

This procedure describes how to set up software RAID on a Lustre system. It requires 
use of mdadm, a third-party tool to manage devices using software RAID.

1. Install Lustre, but do not configure it yet. See Installing Lustre.

2. Create the RAID array with the mdadm command.

The mdadm command is used to create and manage software RAID arrays in 
Linux, as well as to monitor the arrays while they are running. To create a RAID 
array, use the --create option and specify the MD device to create, the array 
components, and the options appropriate to the array.

Note – For best performance, we generally recommend using disks from as many 
controllers as possible in one RAID array.

4. These enhancements have mostly improved write performance.
Chapter 10 RAID 10-7



To illustrate how to create a software RAID array for Lustre, the steps below 
include a worked example that creates a 10-disk RAID 6 array from disks 
/dev/dsk/c0t0d0 through c0tod4 and /dev/dsk/c1t0d0 through c1tod4. 
This RAID array has no spares. 

For the 10-disk RAID 6 array, there are 8 active disks. The chunk size must be 
chosen such that <chunksize> <= 1024KB/8. Therefore, the largest valid chunk 
size is 128KB.

a. Create a RAID array for an OST. On the OSS, run:

$ mdadm --create <array_device> -c <chunksize> -l \ 
<raid_level> -n <active_disks> -x <spare_disks> <block_devices> 

where:

For the worked example, the command is:

$ mdadm --create /dev/md10 -c 128 -l 6 -n 10 -x 0 \
/dev/dsk/c0t0d[01234] /dev/dsk/c1t0d[01234]

This command output displays: 

mdadm: array /dev/md10 started.

We also want an external journal on a RAID 1 device.  We create this from two 
400MB partitions on separate disks: /dev/dsk/c9t0d20p1 and 
/dev/dsk/c1t0d20p1 

<array_device> RAID array to create, in the form of /dev/mdX

<chunksize> Size of each stripe piece on the array’s disks (in KB); 
discussed above.

<raid_level> Architecture of the RAID array. RAID 5 and RAID 6 are 
commonly used for OSTs.

<active_disks> Number of active disks in the array, including parity disks.

<spare_disks> Number of spare disks initially assigned to the array. More 
disks may be brought in via spare pooling (see below).

<block_devices
>

List of the block devices used for the RAID array; wildcards 
may be used.
10-8 Lustre 2.0 Operations Manual • June 2010



b. Create a RAID array for an external journal. On the OSS, run:

$ mdadm --create <array_device> -l <raid_level> -n \ 
<active_devices> -x <spare_devices> <block_devices>

where:

For the worked example, the command is:

$ mdadm --create /dev/md20 -l 1 -n 2 -x 0 /dev/dsk/c0t0d20p1 \
/dev/dsk/c1t0d20p1

This command output displays: 

mdadm: array /dev/md20 started.

We now have two arrays - a RAID 6 array for the OST (/dev/md20), and a RAID 
1 array for the external journal (/dev/md20). 

The arrays will now be re-synced, a process which re-synchronizes the various 
disks in the array so their contents match. The arrays may be used during the 
re-sync process (including formatting the OSTs), but performance will not be as 
high as usual. The re-sync progress may be monitored by reading the 
/proc/mdstat file.

Next, you need to create a RAID array for an MDT. In this example, a RAID 10 
array is created with 4 disks: /dev/dsk/c0t0d1, c0t0d3, c1t0d1, and c1t0d3. 
For smaller arrays, RAID 1 could be used. 

<array_device> RAID array to create, in the form of /dev/mdX

<raid_level> Architecture of the RAID array. RAID 1 is 
recommended for external journals.

<active_devices> Number of active disks in the RAID array, including 
mirrors.

<spare_devices> Number of spare disks initially assigned to the RAID 
array. More disks may be brought in via spare pooling 
(see below).

<block_devices> List of the block devices used for the RAID array; 
wildcards may be used.
Chapter 10 RAID 10-9



c. Create a RAID array for an MDT. On the MDT, run:

$ mdadm --create <array_device> -l <raid_level> -n \
<active_devices> -x <spare_devices> <block_devices>

where:

For the worked example, the command is:

$ mdadm --create -l 10 -n 4 -x 0 /dev/md10 /dev/dsk/c[01]t0d[13]

This command output displays:

mdadm: array /dev/md10 started.

If you creating many arrays across many servers, we recommend scripting this 
process.

Note – Do not use the --assume-clean option when creating arrays. This could 
lead to data corruption on RAID 5 and will cause array checks to show errors with all 
RAID types.

<array_device> RAID array to create, in the form of /dev/mdX

<raid_level> Architecture of the RAID array. RAID 1 or RAID 10 is 
recommended for MDTs. 

<active_devices> Number of active disks in the RAID array, including 
mirrors.

<spare_devices> Number of spare disks initially assigned to the RAID 
array. More disks may be brought in via spare pooling 
(see below).

<block_devices> List of the block devices used for the RAID array; 
wildcards may be used.
10-10 Lustre 2.0 Operations Manual • June 2010



3. Set up the mdadm tool. 

The mdadm tool enables you to monitor disks for failures (you will receive a 
notification). It also enables you to manage spare disks. When a disk fails, you can 
use mdadm to make a spare disk active, until such time as the failed disk is 
replaced. 

Here is an example mdadm.conf from an OSS with 7 OSTs including external 
journals. Note how spare groups are configured, so that OSTs without spares still 
benefit from the spare disks assigned to other OSTs.

ARRAY /dev/md10 level=raid6 num-devices=10

    UUID=e8926d28:0724ee29:65147008:b8df0bd1 spare-group=raids

ARRAY /dev/md11 level=raid6 num-devices=10 spares=1 

    UUID=7b045948:ac4edfc4:f9d7a279:17b468cd spare-group=raids

ARRAY /dev/md12 level=raid6 num-devices=10 spares=1 

    UUID=29d8c0f0:d9408537:39c8053e:bd476268 spare-group=raids

ARRAY /dev/md13 level=raid6 num-devices=10

    UUID=1753fa96:fd83a518:d49fc558:9ae3488c spare-group=raids

ARRAY /dev/md14 level=raid6 num-devices=10 spares=1 

    UUID=7f0ad256:0b3459a4:d7366660:cf6c7249 spare-group=raids

ARRAY /dev/md15 level=raid6 num-devices=10

    UUID=09830fd2:1cac8625:182d9290:2b1ccf2a spare-group=raids

ARRAY /dev/md16 level=raid6 num-devices=10

    UUID=32bf1b12:4787d254:29e76bd7:684d7217 spare-group=raids

ARRAY /dev/md20 level=raid1 num-devices=2 spares=1 

    UUID=bcfb5f40:7a2ebd50:b3111587:8b393b86 spare-group=journals

ARRAY /dev/md21 level=raid1 num-devices=2 spares=1 

    UUID=6c82d034:3f5465ad:11663a04:58fbc2d1 spare-group=journals

ARRAY /dev/md22 level=raid1 num-devices=2 spares=1 

    UUID=7c7274c5:8b970569:03c22c87:e7a40e11 spare-group=journals

ARRAY /dev/md23 level=raid1 num-devices=2 spares=1 

    UUID=46ecd502:b39cd6d9:dd7e163b:dd9b2620 spare-group=journals

ARRAY /dev/md24 level=raid1 num-devices=2 spares=1 

    UUID=5c099970:2a9919e6:28c9b741:3134be7e spare-group=journals

ARRAY /dev/md25 level=raid1 num-devices=2 spares=1 

    UUID=b44a56c0:b1893164:4416e0b8:75beabc4 spare-group=journals

ARRAY /dev/md26 level=raid1 num-devices=2 spares=1

    UUID=2adf9d0f:2b7372c5:4e5f483f:3d9a0a25 spare-group=journals

# Email address to notify of events (e.g. disk failures)

MAILADDR admin@example.com
Chapter 10 RAID 10-11



4. Set up periodic checks of the RAID array. 

We recommend checking the software RAID arrays monthly for consistency. This 
can be done using cron and should be scheduled for an idle period so 
performance is not affected. 

To start a check, write "check" into /sys/block/[ARRAY]/md/sync_action. 
For example, to check /dev/md10, run this command on the Lustre server:

$ echo check > /sys/block/md10/md/sync_action

5. Format the OSTs and MDT, and continue with normal Lustre setup and 
configuration. 

For configuration information, see Configuring Lustre. 

Note – Per Bugzilla 18475, we recommend that stripe_cache_size be set to 16KB 
(instead of 2KB).

These additional resources may be helpful when enabling software RAID on Lustre:

■ md(4), mdadm(8), mdadm.conf(5) manual pages 

■ Linux software RAID wiki: http://linux-raid.osdl.org/ 

■ Kernel documentation: Documentation/md.txt
10-12 Lustre 2.0 Operations Manual • June 2010

http://linux-raid.osdl.org/ 


CHAPTER 11

Kerberos

This chapter describes how to use Kerberos with Lustre and includes the following 
sections:

■ What is Kerberos?

■ Lustre Setup with Kerberos

11.1 What is Kerberos?
Kerberos is a mechanism for authenticating all entities (such as users and services) on 
an “unsafe” network. Users and services, known as "principals", share a secret 
password (or key) with the Kerberos server. This key enables principals to verify that 
messages from the Kerberos server are authentic. By trusting the Kerberos server, 
users and services can authenticate one another. 

Note – Kerberos is a preview feature in Lustre 2.0. 
11-1



11.2 Lustre Setup with Kerberos
Setting up Lustre with Kerberos can provide advanced security protections for the 
Lustre network. Broadly, Kerberos offers three types of benefit:

■ Allows Lustre connection peers (MDS, OSS and clients) to authenticate one 
another.

■ Protects the integrity of the PTLRPC message from being modified during 
network transfer.

■ Protects the privacy of the PTLRPC message from being eavesdropped during 
network transfer.

Kerberos uses the “kernel keyring” client upcall mechanism.

11.2.1 Configuring Kerberos for Lustre
This section describes supported Kerberos distributions and how to set up and 
configure Kerberos on Lustre.

11.2.1.1 Kerberos Distributions Supported on Lustre

Lustre supports the following Kerberos distributions:

■ MIT Kerberos 1.3.x 

■ MIT Kerberos 1.4.x 

■ MIT Kerberos 1.5.x

■ MIT Kerberos 1.6 (not yet verified)

On a number of operating systems, the Kerberos RPMs are installed when the 
operating system is first installed. To determine if Kerberos RPMs are installed on 
your OS, run: 

# rpm -qa | grep krb

If Kerberos is installed, the command returns a list like this:

krb5-devel-1.4.3-5.1

krb5-libs-1.4.3-5.1

krb5-workstation-1.4.3-5.1

pam_krb5-2.2.6-2.2
11-2 Lustre 2.0 Operations Manual • June 2010



Note – The Heimdal implementation of Kerberos is not currently supported on 
Lustre, although it support will be added in an upcoming release.

11.2.1.2 Preparing to Set Up Lustre with Kerberos

To set up Lustre with Kerberos:

1. Configure NTP to synchronize time across all machines.

2. Configure DNS with zones.

3. Verify that there are fully-qualified domain names (FQDNs), that are resolvable 
in both forward and reverse directions for all servers. This is required by 
Kerberos.

4. On every node, install flowing packages:

■ libgssapi (version 0.10 or higher)

Some newer Linux distributions include libgssapi by default. If you do not have 
libgssapi, build and install it from source:
http://www.citi.umich.edu/projects/nfsv4/linux/libgssapi/libssapi-0.10.tar.gz

■ keyutils
Chapter 11 Kerberos 11-3

http://www.citi.umich.edu/projects/nfsv4/linux/libgssapi/libgssapi-0.10.tar.gz


11.2.1.3 Configuring Lustre for Kerberos

To configure Lustre for Kerberos:

1. Configure the client nodes. 

a. For each client node, create a lustre_root principal and generate the keytab.

kadmin> addprinc -randkey lustre_root/client_host.domain@REALM

kadmin> ktadd -e aes128-cts:normal lustre_root/client_host.domain@REALM

b. Install the keytab on the client node.

Note – For each client-OST pair, there is only one security context, shared by all 
users on the client. This protects data written by one user to be passed to an OST by 
another user due to asynchronous bulk I/O. The client-OST connection only 
guarantees message integrity or privacy; it does not authenticate users.

2. Configure the MDS nodes. 

a. For each MDS node, create a lustre_mds principal and generate the keytab.

kadmin> addprinc -randkey lustre_mds/mdthost.domain@REALM
kadmin> ktadd -e aes128-cts:normal lustre_mds/mdthost.domain@REALM

b. Install the keytabl on the MDS node.

3. Configure the OSS nodes. 

a. For each OSS node, create a lustre_oss principal and generate the keytab.

kadmin> addprinc -randkey lustre_oss/osthost.domain@REALM
kadmin> ktadd -e aes128-cts:normal lustre_oss/osshost.domain@REALM

b. Install the keytab on the OSS node.

Tip – To avoid assigning a unique keytab to each client node, create a general 
lustre_root principal and keytab, and install the keytab on as many client nodes as 
needed. 

kadmin> addprinc -randkey lustre_root@REALM
kadmin> ktadd -e aes128-cts:normal lustre_root@REALM

Remember that if you use a general keytab, then one compromised client means that 
all client nodes are insecure.
11-4 Lustre 2.0 Operations Manual • June 2010



General Installation Notes
■ The host.domain should be the FQDN in your network. Otherwise, the server may 

not recognize any GSS request.

■ To install a keytab entry on a node, use the ktutil1 utility.

■ Lustre supports these encryption types for MIT Kerberos 5, v1.4 and higher: 

■ des-cbc-crc 

■ des-cbc-md5 

■ des3-hmac-sha1 

■ aes128-cts

■ aes256-cts 

■ arcfour-hmac-md5

For MIT Kerberos 1.3.x, only des-cbc-md5 works because of a known issue 
between libgssapi and the Kerberos library.

Note – The encryption type (or enctype) is an identifier specifying the encryption, 
mode and hash algorithms. Each Kerberos key has an associated enctype that 
identifies the cryptographic algorithm and mode used when performing 
cryptographic operations with the key. It is important that the enctypes requested by 
the client are actually supported on the system hosting the client. This is the case if 
the defaults that control enctypes are not overridden.

1. Kerberos keytab file maintenance utility.
Chapter 11 Kerberos 11-5



11.2.1.4 Configuring Kerberos

To configure Kerberos to work with Lustre:

1. Modify the files for Kerberos:

$ /etc/krb5.conf

[libdefaults]

default_realm = CLUSTERFS.COM

[realms]

CLUSTERFS.COM = {

kdc = mds16.clustrefs.com

admin_server = mds16.clustrefs.com

}

[domain_realm]

.clustrefs.com = CLUSTERFS.COM

clustrefs.com = CLSUTREFS.COM

[logging]

default = FILE:/var/log/kdc.log

2. Prepare the Kerberos database.

3. Create service principals so Lustre supports Kerberos authentication.

Note – You can create service principals when configuring your other services to 
support Kerberos authentication.
11-6 Lustre 2.0 Operations Manual • June 2010



4. Configure the client nodes. For each client node:

a. Create a lustre_root principal and generate the keytab: 

kadmin> addprinc -randkey lustre_root/client_host.domain@REALM

kadmin> ktadd -e aes128-cts:normal

lustre_root/client_host.domain@REALM 

This process populates /etc/krb5.keytab, which is not human-readable. Use 
the ktutil program to read and modify it.

b. Install the keytab. 

Note – There is only one security context for each client-OST pair, shared by all 
users on the client. This protects data written by one user to be passed to an OST by 
another user due to asynchronous bulk I/O. The client-OST connection only 
guarantees message integrity or privacy; it does not authenticate users.

5. Configure the MDS nodes. For each MDT node, create a lustre_mds principal, 
and generate and install the keytab.

kadmin> addprinc -randkey lustre_mds/mdthost.domain@REALM

kadmin> ktadd -e aes128-cts:normal

lustre_mds/mdthost.domain@REALM

6. Configure the OSS nodes. For each OST node, create a lustre_oss principal, and 
generate and install the keytab.

kadmin> addprinc -randkey lustre_oss/oss_host.domain@REALM

kadmin> ktadd -e aes128-cts:normal 
lustre_oss/oss_host.domain@REALM

To save the trouble of assigning a unique keytab for each client node, create a general 
lustre_root principal and its keytab, and then install the keytab on as many client 
nodes as needed.

kadmin> addprinc -randkey lustre_root@REALM

kadmin> ktadd -e aes128-cts:normal lustre_root@REALM

Note – If one client is compromised, all client nodes become insecure.

For more detailed information on installing and configuring Kerberos, see: 

http://web.mit.edu/Kerberos/krb5-1.6/#documentation
Chapter 11 Kerberos 11-7

http://web.mit.edu/Kerberos/krb5-1.6/#documentation


11.2.1.5 Setting the Environment 

Perform the following steps to configure the system and network to use Kerberos.

System-wide Configuration

1. On each MDT, OST, and client node, add the following line to /etc/fstab to 
mount them automatically.

nfsd /proc/fs/nfsd nfsd defaults 0 0

2. On each MDT and client node, dd the following line to /etc/request-key.conf.

create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S

Networking

If your network is not using SOCKLND or InfiniBand (and uses Quadrics, Elan or 
Myrinet, for example), configure a /etc/lustre/nid2hostname (simple script that 
translates a NID to a hostname) on each server node (MDT and OST). This is an 
example on an Elan cluster:

#!/bin/bash

set -x

exec 2>/tmp/$(basename $0).debug

# convert a NID for a LND to a hostname, for GSS for example

# called with three arguments: lnd netid nid

#   $lnd will be string "QSWLND", "GMLND", etc.

#   $netid will be number in hex string format, like "0x16", etc.

#   $nid has the same format as $netid

# output the corresponding hostname, or error message leaded by a '@' 
for error logging.

lnd=$1

netid=$2

nid=$3
11-8 Lustre 2.0 Operations Manual • June 2010



# uppercase the hex

nid=$(echo $nid | tr '[abcdef]' '[ABCDEF]')

# and convert to decimal

nid=$(echo -e "ibase=16\n${nid/#0x}" | bc)

case $lnd in

QSWLND) # simply stick "mtn" on the front

echo "mtn$nid"

;;

*)        echo "@unknown LND: $lnd"

;;

esac

11.2.1.6 Building Lustre 

If you are compiling the kernel from the source, enable GSS during configuration:

# ./configure --with-linux=path_to_linux_source --enable-gss - \ 
other-options

When you enable Lustre with GSS, the configuration script checks all dependencies, 
like Kerberos and libgssapi installation, and in-kernel Sun RPC-related facilities. 
When you install lustre-xxx.rpm on target machines, RPM again checks for 
dependencies like Kerberos and libgssapi.
Chapter 11 Kerberos 11-9



11.2.1.7 Running GSS Daemons 

If you turn on GSS between an MDT-OST or MDT-MDT, GSS treats the MDT as a 
client. You should run lgssd on the MDT.

There are two types of GSS daemons: lgssd and lsvcgssd. Before starting Lustre, 
make sure they are running on each node:

■ OST: lsvcgssd 

■ MDT: lsvcgssd 

■ CLI: none 

Note – Verbose logging can help you make sure Kerberos is set up correctly. To use 
verbose logging and run it in the foreground, run lsvcgssd -vvv -f

-v increases the verbose level of a debugging message by 1. For example, to set the 
verbose level to 3, run lsvcgssd -v -v -v

-f runs lsvcgssd in the foreground, instead of as daemon.

We are maintaining a patch against nfs-utils, and bringing necessary patched files 
into the Lustre tree. After a successful build, GSS daemons are built under 
lustre/utils/gss and are part of lustre-xxxx.rpm.
11-10 Lustre 2.0 Operations Manual • June 2010



11.2.2 Types of Lustre-Kerberos Flavors
There are three major flavors in which you can configure Lustre with Kerberos:

■ Basic Flavors

■ Security Flavor

■ Customized Flavor

Select a flavor depending on your priorities and preferences.

11.2.2.1 Basic Flavors

Currently, we support six basic flavors: null, plain, krb5n, krb5a, krb5i, and krb5p.

Basic Flavor Authentication
RPC Message 
Protection

Bulk Data 
Protection Remarks

null N/A N/A N/A* Almost no performance 
overhead. The on-wire RPC 
data is compatible with old 
versions of Lustre (1.4.x, 
1.6.x).

plain N/A null checksum
(adler32)

Carries checksum (which 
only protects data mutating 
during transfer, cannot 
guarantee the genuine 
author because there is no 
actual authentication). 

krb5n GSS/Kerberos5 null checksum
(adler32)

No protection of the RPC 
message, adler32 checksum 
protection of bulk data; 
light performance 
overhead.
Chapter 11 Kerberos 11-11



11.2.2.2 Security Flavor

A security flavor is a string that describes what kind of security transform is 
performed on a given PTLRPC connection. It covers two parts of messages, the RPC 
message and BULK data. You can set either part in one of the following modes: 

■ null – No protection

■ integrity – Data integrity protection (checksum or signature)

■ privacy – Data privacy protection (encryption)

krb5a GSS/Kerberos5 partial 
integrity

checksum 
(adler32)

Only the header of the RPC 
message is integrity 
protected, adler32 
checksum protection of 
bulk data, more 
performance overhead 
compared to krb5n.

krb5i GSS/Kerberos5 integrity integrity 
[sha1]

RPC message integrity 
protection algorithm is 
determined by actual 
Kerberos algorithms in use; 
heavy performance 
overhead. 

krb5p GSS/Kerberos5 privacy privacy 
[sha1/aes128]

RPC message privacy 
protection algorithm is 
determined by actual 
Kerberos algorithms in use; 
heaviest performance 
overhead. 

* In Lustre 1.6.5, bulk data checksumming is enabled (by default) to provide integrity checking using the adler32 
mechanism if the OSTs support it. Adler32 checksums offer lower CPU overhead than CRC32.

Basic Flavor Authentication
RPC Message 
Protection

Bulk Data 
Protection Remarks
11-12 Lustre 2.0 Operations Manual • June 2010



11.2.2.3 Customized Flavor 

In most situations, you do not need a customized flavor, a basic flavor is sufficient for 
regular use. But to some extent, you can customize the flavor string. The flavor string 
format is:

base_flavor[-bulk{nip}[:hash_alg[/cipher_alg]]] 

Here are some examples of customized flavors:

plain-bulkn

Use plain on the RPC message (null protection), and no protection on the bulk 
transfer.

krb5i-bulkn

Use krb5i on the RPC message, but do not protect the bulk transfer.

krb5p-bulki

Use krb5p on the RPC message, and protect data integrity of the bulk transfer.

krb5p-bulkp:sha512/aes256

Use krb5p on the RPC message, and protect data privacy of the bulk transfer by 
algorithm SHA512 and AES256.

Currently, Lustre supports these bulk data cryptographic algorithms: 

■ Hash: 

■ adler32

■ crc32

■ md5

■ sha1 / sha256 / sha384 / sha512

■ wp256 / wp384 / wp512

■ Cipher: 

■ arc4

■ aes128 / aes192 / aes256

■ cast128 / cast256

■ twofish128 / twofish256
Chapter 11 Kerberos 11-13



11.2.2.4 Specifying Security Flavors

If you have not specified a security flavor, the CLIENT-MDT connection defaults to 
plain, and all other connections use null. 

Specifying Flavors by Mount Options

When mounting OST or MDT devices, add the mount option (shown below) to 
specify the security flavor: 

# mount -t lustre -o sec=plain /dev/sda1 /mnt/mdt/

This means all connections to this device will use the plain flavor. You can split this 
sec=flavor as:

# mount -t lustre -o sec_mdt={flavor1},sec_cli={flavor1}/dev/sda \ 
/mnt/mdt/

This means connections from other MDTs to this device will use flavor1, and 
connections from all clients to this device will use flavor2.

Specifying Flavors by On-Disk Parameters

You can also specify the security flavors by specifying on-disk parameters on OST 
and MDT devices:

# tune2fs -o security.rpc.mdt=flavor1 -o security.rpc.cli=flavor2 \ 
device

On-disk parameters are overridden by mount options.

11.2.2.5 Mounting Clients

Root on client node mounts Lustre without any special tricks.
11-14 Lustre 2.0 Operations Manual • June 2010



11.2.2.6 Rules, Syntax and Examples 

The general rules and syntax for using Kerberos are: 

<target>.srpc.flavor.<network>[.<direction>]=flavor

■ <target>: This could be file system name or specific MDT/OST device name. For 
example, lustre, lustre-MDT0000, lustre-OST0001. 

■ <network>: LNET network name of the RPC initiator. For example, tcp0, elan1, 
o2ib0. 

■ <direction>: This could be one of cli2mdt, cli2ost, mdt2mdt, or mdt2ost. In 
most cases, you do not need to specify the <direction> part. 

Examples: 

■ Apply krb5i on ALL connections: 

mgs> lctl conf_param lustre.srpc.flavor.default=krb5i

■ For nodes in network tcp0, use krb5p. All other nodes use null. 

mgs> lctl conf_param lustre.srpc.flavor.tcp0=krb5p

mgs> lctl conf_param lustre.srpc.flavor.default=null

■ For nodes in network tcp0, use krb5p; for nodes in elan1, use plain; Among other 
nodes, clients use krb5i to MDT/OST, MDT use null to other MDTs, MDT use 
plain to OSTs. 

mgs> lctl conf_param lustre.srpc.flavor.tcp0=krb5p

mgs> lctl conf_param lustre.srpc.flavor.elan1=plain

mgs> lctl conf_param lustre.srpc.flavor.default.cli2mdt=krb5i

mgs> lctl conf_param lustre.srpc.flavor.default.cli2ost=krb5i

mgs> lctl conf_param lustre.srpc.flavor.default.mdt2mdt=null

mgs> lctl conf_param lustre.srpc.flavor.default.mdt2ost=plain
Chapter 11 Kerberos 11-15



11.2.2.7 Authenticating Normal Users 

On client nodes, non-root users must use kinit to access Lustre (just like other 
Kerberized applications). kinit is used to obtain and cache Kerberos ticket-granting 
tickets. Two requirements to authenticating users:

■ Before kinit is run, the user must be registered as a principal with the Kerberos 
server (the Key Distribution Center or KDC). In KDC, the username is noted as 
username@REALM.

■ The client and MDT nodes should have the same user database. 

To destroy the established security contexts before logging out, run lfs flushctx:

# lfs flushctx [-k]

Here -k also means destroy the on-disk Kerberos credential cache. It is equivalent to 
kdestroy. Otherwise, it only destroys established contexts in the Lustre kernel.
11-16 Lustre 2.0 Operations Manual • June 2010



CHAPTER 12

Network Interface Bonding

This chapter describes how to set up bonding with Lustre, and includes the following 
sections:

■ Network Bonding

■ Requirements

■ Using Lustre with Multiple NICs versus Bonding NICs

■ Bonding Module Parameters

■ Setting Up Bonding

■ Configuring Lustre with Bonding

12.1 Network Bonding
Bonding, also known as link aggregation, trunking and port trunking, is a method of 
aggregating multiple physical network links into a single logical link for increased 
bandwidth.

Several different types of bonding are supported in Linux. All these types are 
referred to as “modes,” and use the bonding kernel module.

Modes 0 to 3 provide support for load balancing and fault tolerance by using 
multiple interfaces. Mode 4 aggregates a group of interfaces into a single virtual 
interface where all members of the group share the same speed and duplex settings. 
This mode is described under IEEE spec 802.3ad, and it is referred to as either “mode 
4” or “802.3ad.”

(802.3ad refers to mode 4 only. The detail is contained in Clause 43 of the IEEE 8 - the 
larger 802.3 specification. For more information, consult IEEE.)
12-1



12.2 Requirements
The most basic requirement for successful bonding is that both endpoints of the 
connection must support bonding. In a normal case, the non-server endpoint is a 
switch. (Two systems connected via crossover cables can also use bonding.) Any 
switch used must explicitly support 802.3ad Dynamic Link Aggregation.

The kernel must also support bonding. All supported Lustre kernels have bonding 
functionality. The network driver for the interfaces to be bonded must have the 
ethtool support. To determine slave speed and duplex settings, ethtool support is 
necessary. All recent network drivers implement it.

To verify that your interface supports ethtool, run:

# which ethtool

/sbin/ethtool

# ethtool eth0

Settings for eth0:

Supported ports: [ TP MII ]

Supported link modes: 10baseT/Half 10baseT/Full/

100baseT/Half 100baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

Advertised auto-negotiation: Yes

Speed: 100Mb/s

Duplex: Full

Port: MII

PHYAD: 1

Transceiver: internal

Auto-negotiation: on

Supports Wake-on: pumbg

Wake-on: d

Current message level: 0x00000001 (1)

Link detected: yes
12-2 Lustre 2.0 Operations Manual • June 2010



# ethtool eth1

Settings for eth1:

Supported ports: [ TP MII ]

Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

Advertised auto-negotiation: Yes

Speed: 100Mb/s

Duplex: Full

Port: MII

PHYAD: 32

Transceiver: internal

Auto-negotiation: on

Supports Wake-on: pumbg

Wake-on: d

Current message level: 0x00000007 (7)

Link detected: yes

To quickly check whether your kernel supports bonding, run:

# grep ifenslave /sbin/ifup

# which ifenslave

/sbin/ifenslave

Note – Bonding and ethtool have been available since 2000. All Lustre-supported 
kernels include this functionality.
Chapter 12 Network Interface Bonding 12-3



12.3 Using Lustre with Multiple NICs versus 
Bonding NICs
Lustre can use multiple NICs without bonding. There is a difference in performance 
when Lustre uses multiple NICs versus when it uses bonding NICs.

Whether an aggregated link actually yields a performance improvement proportional 
to the number of links provided, depends on network traffic patterns and the 
algorithm used by the devices to distribute frames among aggregated links. 
Performance with bonding depends on:

■ Out-of-order packet delivery 

This can trigger TCP congestion control. To avoid this, some bonding drivers 
restrict a single TCP conversation to a single adapter within the bonded group. 

■ Load balancing between devices in the bonded group. 

Consider a scenario with a two CPU node with two NICs. If the NICs are bonded, 
Lustre establishes a single bundle of sockets to each peer. Since ksocklnd bind 
sockets to CPUs, only one CPU moves data in and out of the socket for a 
uni-directional data flow to each peer. If the NICs are not bonded, Lustre 
establishes two bundles of sockets to the peer. Since ksocklnd spreads traffic 
between sockets, and sockets between CPUs, both CPUs move data.
12-4 Lustre 2.0 Operations Manual • June 2010



12.4 Bonding Module Parameters
Bonding module parameters control various aspects of bonding.

Outgoing traffic is mapped across the slave interfaces according to the transmit hash 
policy. For Lustre, we recommend that you set the xmit_hash_policy option to the 
layer3+4 option for bonding. This policy uses upper layer protocol information if 
available to generate the hash. This allows traffic to a particular network peer to span 
multiple slaves, although a single connection does not span multiple slaves.

$ xmit_hash_policy=layer3+4

The miimon option enables users to monitor the link status. (The parameter is a time 
interval in milliseconds.) It makes an interface failure transparent to avoid serious 
network degradation during link failures. A reasonable default setting is 100 
milliseconds; run: 

$ miimon=100

For a busy network, increase the timeout.

12.5 Setting Up Bonding
To set up bonding:

1. Create a virtual 'bond' interface by creating a configuration file in:

/etc/sysconfig/network-scripts/ # vi /etc/sysconfig/ \ 
network-scripts/ifcfg-bond0

2. Append the following lines to the file.

DEVICE=bond0

IPADDR=192.168.10.79 # Use the free IP Address of your network

NETWORK=192.168.10.0

NETMASK=255.255.255.0

USERCTL=no

BOOTPROTO=none

ONBOOT=yes
Chapter 12 Network Interface Bonding 12-5



3. Attach one or more slave interfaces to the bond interface. Modify the eth0 and 
eth1 configuration files (using a VI text editor). 

a. Use the VI text editor to open the eth0 configuration file.

# vi /etc/sysconfig/network-scripts/ifcfg-eth0

b. Modify/append the eth0 file as follows:

DEVICE=eth0

USERCTL=no

ONBOOT=yes

MASTER=bond0

SLAVE=yes

BOOTPROTO=none

c. Use the VI text editor to open the eth1 configuration file.

# vi /etc/sysconfig/network-scripts/ifcfg-eth1

d. Modify/append the eth1 file as follows:

DEVICE=eth1

USERCTL=no

ONBOOT=yes

MASTER=bond0

SLAVE=yes

BOOTPROTO=none

4. Set up the bond interface and its options in /etc/modprobe.conf. Start the slave 
interfaces by your normal network method.

# vi /etc/modprobe.conf

a. Append the following lines to the file.

alias bond0 bonding

options bond0 mode=balance-alb miimon=100

b. Load the bonding module.

# modprobe bonding

# ifconfig bond0 up

# ifenslave bond0 eth0 eth1

5. Start/restart the slave interfaces (using your normal network method).

Note – You must modprobe the bonding module for each bonded interface. If you 
wish to create bond0 and bond1, two entries in modprobe.conf are required.
12-6 Lustre 2.0 Operations Manual • June 2010



The examples below are from RedHat systems. For setup use: 
/etc/sysconfig/networking-scripts/ifcfg-* The OSDL website referenced 
below includes detailed instructions for other configuration methods, instructions to 
use DHCP with bonding, and other setup details. We strongly recommend you use 
this website.

http://linux-net.osdl.org/index.php/Bonding

6. Check /proc/net/bonding to determine status on bonding. There should be a file 
there for each bond interface.

# cat /proc/net/bonding/bond0

Ethernet Channel Bonding Driver: v3.0.3 (March 23, 2006)

Bonding Mode: load balancing (round-robin)

MII Status: up

MII Polling Interval (ms): 0

Up Delay (ms): 0

Down Delay (ms): 0

Slave Interface: eth0

MII Status: up

Link Failure Count: 0

Permanent HW addr: 4c:00:10:ac:61:e0

Slave Interface: eth1

MII Status: up

Link Failure Count: 0

Permanent HW addr: 00:14:2a:7c:40:1d
Chapter 12 Network Interface Bonding 12-7

http://linux-net.osdl.org/index.php/Bonding


7. Use ethtool or ifconfig to check the interface state. ifconfig lists the first bonded 
interface as “bond0.”

ifconfig

bond0 Link encap:Ethernet  HWaddr 4C:00:10:AC:61:E0

inet addr:192.168.10.79  Bcast:192.168.10.255 \
Mask:255.255.255.0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING MASTER MULTICAST  MTU:1500 Metric:1

RX packets:3091 errors:0 dropped:0 overruns:0 frame:0

TX packets:880 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:314203 (306.8 KiB)  TX bytes:129834 (126.7 KiB)

eth0 Link encap:Ethernet  HWaddr 4C:00:10:AC:61:E0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING SLAVE MULTICAST  MTU:1500 Metric:1

RX packets:1581 errors:0 dropped:0 overruns:0 frame:0

TX packets:448 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:162084 (158.2 KiB)  TX bytes:67245 (65.6 KiB)

Interrupt:193 Base address:0x8c00

eth1 Link encap:Ethernet  HWaddr 4C:00:10:AC:61:E0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING SLAVE MULTICAST  MTU:1500 Metric:1

RX packets:1513 errors:0 dropped:0 overruns:0 frame:0

TX packets:444 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:152299 (148.7 KiB)  TX bytes:64517 (63.0 KiB)

Interrupt:185 Base address:0x6000
12-8 Lustre 2.0 Operations Manual • June 2010



12.5.1 Examples
This is an example of modprobe.conf for bonding Ethernet interfaces eth1 and eth2 
to bond0:

# cat /etc/modprobe.conf

alias eth0 8139too

alias scsi_hostadapter sata_via

alias scsi_hostadapter1 usb-storage

alias snd-card-0 snd-via82xx

options snd-card-0 index=0

options snd-via82xx index=0

alias bond0 bonding

options bond0 mode=balance-alb miimon=100

options lnet networks=tcp

alias eth1 via-rhine

# cat /etc/sysconfig/network-scripts/ifcfg-bond0

DEVICE=bond0

BOOTPROTO=none

NETMASK=255.255.255.0

IPADDR=192.168.10.79 # (Assign here the IP of the bonded interface.)

ONBOOT=yes

USERCTL=no

ifcfg-ethx 

# cat /etc/sysconfig/network-scripts/ifcfg-eth0

TYPE=Ethernet

DEVICE=eth0

HWADDR=4c:00:10:ac:61:e0

BOOTPROTO=none

ONBOOT=yes

USERCTL=no

IPV6INIT=no

PEERDNS=yes

MASTER=bond0

SLAVE=yes
Chapter 12 Network Interface Bonding 12-9



In the following example, the bond0 interface is the master (MASTER) while eth0 
and eth1 are slaves (SLAVE).

Note – All slaves of bond0 have the same MAC address (Hwaddr) – bond0. All 
modes, except TLB and ALB, have this MAC address. TLB and ALB require a unique 
MAC address for each slave.

$ /sbin/ifconfig

bond0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0

UP BROADCAST RUNNING MASTER MULTICAST MTU:1500  Metric:1

RX packets:7224794 errors:0 dropped:0 overruns:0 frame:0

TX packets:3286647 errors:1 dropped:0 overruns:1 carrier:0

collisions:0 txqueuelen:0

eth0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500  Metric:1

RX packets:3573025 errors:0 dropped:0 overruns:0 frame:0

TX packets:1643167 errors:1 dropped:0 overruns:1 carrier:0

collisions:0 txqueuelen:100

Interrupt:10 Base address:0x1080

eth1Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500  Metric:1

RX packets:3651769 errors:0 dropped:0 overruns:0 frame:0

TX packets:1643480 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

Interrupt:9 Base address:0x1400
12-10 Lustre 2.0 Operations Manual • June 2010



12.6 Configuring Lustre with Bonding
Lustre uses the IP address of the bonded interfaces and requires no special 
configuration. It treats the bonded interface as a regular TCP/IP interface. If needed, 
specify “bond0” using the Lustre networks parameter in /etc/modprobe

options lnet networks=tcp(bond0)

12.6.1 Bonding References
We recommend the following bonding references:

In the Linux kernel source tree, see documentation/networking/bonding.txt

http://linux-ip.net/html/ether-bonding.html

http://www.sourceforge.net/projects/bonding

This is the bonding SourceForge website:

http://linux-net.osdl.org/index.php/Bonding

This is the most extensive reference and we highly recommend it. This website 
includes explanations of more complicated setups, including the use of DHCP with 
bonding.
Chapter 12 Network Interface Bonding 12-11

http://www.sourceforge.net/projects/bonding
http://linux-net.osdl.org/index.php/Bonding
http://linux-ip.net/html/ether-bonding.html


12-12 Lustre 2.0 Operations Manual • June 2010



CHAPTER 13

Upgrading and Downgrading 
Lustre

The chapter describes how to upgrade to Lustre 2.0 and downgrade to Lustre 1.8.x 
and includes the following sections:

■ Lustre Interoperability

■ Upgrading Lustre 1.8.x to 2.0 

13.1 Lustre Interoperability
Lustre 2.0 is built on a new architectural code base, which is different than the one 
used with Lustre 1.8. These architectural changes require existing Lustre 1.8.x users 
to follow a slightly different procedure to upgrade to Lustre 2.0 - requiring clients to 
be unmounted and the file system be shut down. Once the servers are upgraded and 
restarted, then the clients can be remounted. After the upgrade, Lustre 2.0 servers 
can interoperate with compatible 1.8 clients and servers1. Lustre 2.0 does not support 
2.0 clients interoperating with 1.8 servers. 

Note – Lustre 1.8 clients support a mix of 1.8 and 2.0 OSTs, not all OSSs need to be 
upgraded at the same time.

1. Lustre 2.0 is compatible with version 1.8.4 and above. If you are planning a heterogeneous environment 
(mixed 1.8 and 2.0 servers), make sure that version 1.8.4 is installed on the client and server nodes that are not 
upgraded to 2.0.
13-1



13.2 Upgrading Lustre 1.8.x to 2.0
Upgrading to Lustre 2.0 involves shutting down the file system and upgrading 
servers, and optionally clients, all at the same time. Lustre 2.0 does not support a 
rolling upgrade in which the file system operates continuously while individual 
servers (or their failover partners) and clients are upgraded one at a time. 

Note – Although the Lustre 1.8 to 2.0 upgrade path has been tested, it is not 
officially supported. If you decide to upgrade 1.8 servers to Lustre 2.0, we are not 
able to provide support for this configuration, even if the servers are later 
downgraded to Lustre 1.8. 

For best results, we recommend performing a fresh Lustre 2.0 installation, rather than 
upgrading from 1.8 to 2.0. 

13.2.1 Performing a File System Upgrade
This procedure describes a file system upgrade in which Lustre 2.0 packages are 
installed on multiple 1.8.x servers and, optionally, clients, requiring a file system shut 
down. You can choose to upgrade the entire Lustre file system to 2.0 or just upgrade 
the Lustre servers to 2.0 and leave the clients at 1.8.x. Lustre 2.0 servers can 
interoperate with compatible 1.8 clients and servers. 

Tip – In a Lustre upgrade, the package install and file system unmount steps are 
reversible; you can do either step first. To minimize downtime, this procedure first 
performs the 2.0 package installation, and then unmounts the file system.

1. Make a complete, restorable file system backup before upgrading Lustre. 

2. If any Lustre nodes will not be upgraded to 2.0, make sure that these client and 
server nodes are at version 1.8.4. 

Lustre 2.0 is compatible with version 1.8.4 and above. If you are planning a 
heterogeneous environment (mixed 1.8 and 2.0 clients and servers), make sure that 
version 1.8.4 is installed on nodes that are not upgraded to 2.0.

3. Install the 2.0 packages on the Lustre servers and, optionally, the clients. 

Some or all servers can be upgraded. Some or all clients can be upgraded.

For help determining where to install a specific package, see TABLE 3-1 (Lustre 
packages, descriptions and installation guidance).
13-2 Lustre 2.0 Operations Manual • June 2010



a. Install the kernel, modules and ldiskfs packages. For example:

$ rpm -ivh

kernel-lustre-smp-<ver> \

kernel-ib-<ver> \

lustre-modules-<ver> \

lustre-ldiskfs-<ver>

b. Upgrade the utilities/userspace packages. For example:

$ rpm -Uvh lustre-<ver>

c. If a new e2fsprogs package is available, upgrade it. For example:

$ rpm -Uvh e2fsprogs-<ver>

Use e2fsprogs-1.41-6 or later, available at:

http://downloads.lustre.org/public/tools/e2fsprogs/

d. (Optional) If you want to add optional packages to your Lustre system, 
install them now.

4. Shut down the file system.

Shut down the components in this order: clients, then the MDT, then OSTs. 
Unmounting a block device causes Lustre to be shut down on that node.

a. Unmount the clients. On each client node, run:

umount <mount point>

b. Unmount the MDT. On the MDS node, run:

umount <mount point>

c. Unmount the OSTs (be sure to unmount all OSTs). On each OSS node, run:

umount <mount point>

5. Unload the old Lustre modules by rebooting the node or manually removing 
the Lustre modules. 

Run lustre_rmmod several times and use lsmod to check the currently loaded 
modules.
Chapter 13 Upgrading and Downgrading Lustre 13-3

http://downloads.lustre.org/public/tools/e2fsprogs/


6. Start the upgraded file system.

Start the components in this order: OSTs, then the MDT, then clients.

a. Mount the OSTs (be sure to mount all OSTs). On each OSS node, run:

mount -t lustre <block device name> <mount point>

b. Mount the MDT. On the MDS node, run:

mount -t lustre <block device name> <mount point> 

c. Mount the file system on the clients. On each client node, run:

mount -t lustre <MGS node>:/<fsname> <mount point> 

If you have a problem upgrading Lustre, contact us via the Bugzilla bug tracker.
13-4 Lustre 2.0 Operations Manual • June 2010

https://bugzilla.lustre.org


CHAPTER 14

Lustre SNMP Module

The Lustre SNMP module reports information about Lustre components and system 
status, and generates traps if an LBUG occurs. The Lustre SNMP module works with 
the net-snmp. The module consists of a plug-in (lustresnmp.so), which is loaded by 
the snmpd daemon, and a MIB file (Lustre-MIB.txt). 

This chapter describes how to install and use the Lustre SNMP module, and includes 
the following sections:

■ Installing the Lustre SNMP Module

■ Building the Lustre SNMP Module

■ Using the Lustre SNMP Module
14-1



14.1 Installing the Lustre SNMP Module
To install the Lustre SNMP module:

1. Locate the SNMP plug-in (lustresnmp.so) in the base Lustre RPM and install it.

/usr/lib/lustre/snmp/lustresnmp.so

2. Locate the MIB (Lustre-MIB.txt) in /usr/share/lustre/snmp/mibs/Lustre-MIB.txt 
and append the following line to snmpd.con.

dlmod lustresnmp /usr/lib/lustre/snmp/lustresnmp.so

3. You may need to copy Lustre-MIB.txt to a different location to use few tools. For 
this, use either of these commands.

~/.snmp/mibs 

/usr/local/share/snmp/mibs

14.2 Building the Lustre SNMP Module
To build the Lustre SNMP module, you need the net-snmp-devel package. The 
default net-snmp install includes a snmpd.conf file.

1. Complete the net-snmp setup by checking and editing the snmpd.conf file, 
located in /etc/snmp

/etc/snmp/snmpd.conf

2. Build the Lustre SNMP module from the Lustre src.rpm

■ Install the Lustre source

■ Run ./configure

■ Add the --enable-snmp option
14-2 Lustre 2.0 Operations Manual • June 2010



14.3 Using the Lustre SNMP Module
Once the Lustre SNMP module in installed and built, use it for purposes:

■ For all Lustre components, the SNMP module reports a number and total and free 
capacity (usually in bytes).

■ Depending on the component type, SNMP also reports total or free numbers for 
objects like OSD and OSC or other files (LOV, MDC, and so on). 

■ The Lustre SNMP module provides one read/write variable, sysStatus, which 
starts and stops Lustre.

■ The sysHealthCheck object reports status either as healthy' or 'not healthy' and 
provides information for the failure. 

■ The Lustre SNMP module generates traps on the detection of LBUG 
(lustrePortalsCatastropeTrap), and detection of various OBD-specific healthchecks 
(lustreOBDUnhealthyTrap). 
Chapter 14 Lustre SNMP Module 14-3



14-4 Lustre 2.0 Operations Manual • June 2010



CHAPTER 15

Backup and Restore

Lustre provides backups at the file system-level, device-level and file-level. This 
chapter describes how to backup and restore on Lustre, and includes the following 
sections:

■ Backing up a File System

■ Backing up a Device (MDS or OST)

■ Backing up Files

■ Restoring from a File-level Backup

■ Using LVM Snapshots with Lustre

15.1 Backing up a File System
Backing up a complete file system gives you full control over the files to back up, and 
allows restoration of individual files as needed. File system-level backups are also the 
easiest to integrate into existing backup solutions. 

File system backups are performed from a Lustre client (or many clients working 
parallel in different directories) rather than on individual server nodes; this is no 
different than backing up any other file system.

However, due to the large size of most Lustre file systems, it is not always possible to 
get a complete backup. We recommend that you back up subsets of a file system. 
This includes subdirectories of the entire file system, filesets for a single user, files 
incremented by date, and so on. 
15-1



15.1.1 Lustre_rsync
Lustre 2.0 introduces the lustre_rsync feature, which keeps the entire file system in 
sync on a backup by replicating the file system’s changes to a second file system. 
Lustre_rsync uses Lustre changelogs to efficiently synchronize the file systems 
without having to scan (directory walk) the Lustre file system1. This efficiency is 
critically important for large file systems, and distinguishes the Lustre lustre_rsync 
feature from other replication/backup solutions. 

15.1.1.1 Using Lustre_rsync

The lustre_rsync feature works by periodically running lustre_rsync, a userspace 
program used to synchronize changes in the Lustre file system onto the target file 
system. The lustre_rsync utility keeps a status file, which enables it to be safely 
interrupted and restarted without losing synchronization between the file systems.

The first time that lustre_rsync is run, the user must specify a set of parameters for 
the program to use. These parameters are described in the following table and the 
lustre_rsync man page. On subsequent runs, these parameters are stored in the the 
status file, and only the name of the status file needs to be passed to lustre_rsync. 

Before using lustre_rsync: 

■ Register the changelog user. For details, see the changelog_register parameter in 
the lctl man page. 

- AND -

■ Verify that the Lustre file system (source) and the replica file system (target) are 
identical before registering the changelog user. If the file systems are discrepant, 
use a utility, e.g. regular rsync (not lustre_rsync), to make them identical.

1. The second file system need not be a Lustre file system, but it must be sufficiently large. 
15-2 Lustre 2.0 Operations Manual • June 2010



The lustre_rsync utility uses the following parameters:

Parameter Description

--source=<src> The path to the root of the Lustre file system (source) which will be 
synchronized. This is a mandatory option if a valid status log created 
during a previous synchronization operation (--statuslog) is not 
specified.

--target=<tgt> The path to the root where the source file system will be 
synchronized (target). This is a mandatory option if the status log 
created during a previous synchronization operation (--statuslog) 
is not specified. This option can be repeated if multiple 
synchronization targets are desired.

--mdt=<mdt> The metadata device to be synchronized. A changelog user must be 
registered for this device. This is a mandatory option if a valid status 
log created during a previous synchronization operation (--statuslog) 
is not specified. 

--user=<user id> The changelog user ID for the specified MDT. To use lustre_rsync, the 
changelog user must be registered. For details, see the 
changelog_register parameter in the lctl man page. This is a 
mandatory option if a valid status log created during a previous 
synchronization operation (--statuslog) is not specified. 

--statuslog=<log> A log file to which synchronization status is saved. When the 
lustre_rsync utility starts, if the status log from a previous 
synchronization operation is specified, then the state is read from the 
log and otherwise mandatory --source, --target and --mdt options can 
be skipped. Specifying the --source, --target and/or --mdt options, in 
addition to the --statuslog option, causes the specified parameters in 
the status log to be overriden. Command line options take 
precedence over options in the status log.

--xattr <yes|no> Specifies whether extended attributes (xattrs) are synchronized or 
not. The default is to synchronize extended attributes. 
NOTE: Disabling xattrs causes Lustre striping information not to be 
synchronized. 

--verbose Produces verbose output.

--dry-run Shows the output of lustre_rsync commands (copy, mkdir, etc.) 
on the target file system without actually executing them.

--abort-on-err Stops processing the lustre_rsync operation if an error occurs. 
The default is to continue the operation.
Chapter 15 Backup and Restore 15-3



15.1.1.2 Lustre_rsync Examples

Sample lustre_rsync commands are listed below.

Register a changelog user for an MDT (e.g. lustre-MDT0000). 

# lctl --device lustre-MDT0000 changelog_register lustre-MDT0000 
Registered changelog userid 'cl1'

Synchronize a Lustre file system (/mnt/lustre) to a target file system (/mnt/target).

$ lustre_rsync --source=/mnt/lustre --target=/mnt/target \ 

--mdt=lustre-MDT0000 --user=cl1 \ 

--statuslog sync.log  --verbose 

Lustre filesystem: lustre 

MDT device: lustre-MDT0000 

Source: /mnt/lustre 

Target: /mnt/target 

Statuslog: sync.log 

Changelog registration: cl1 

Starting changelog record: 0 

Errors: 0 

lustre_rsync took 1 seconds 

Changelog records consumed: 22

After the file system undergoes changes, synchronize the changes onto the target file 
system. Only the statuslog name needs to be specified, as it has all the parameters 
passed earlier.

$ lustre_rsync --statuslog sync.log --verbose 

Replicating Lustre filesystem: lustre 

MDT device: lustre-MDT0000 

Source: /mnt/lustre 

Target: /mnt/target 

Statuslog: sync.log 

Changelog registration: cl1 

Starting changelog record: 22 

Errors: 0 

lustre_rsync took 2 seconds 

Changelog records consumed: 42

To synchronize a Lustre file system (/mnt/lustre) to two target file systems 
(/mnt/target1 and /mnt/target2).

$ lustre_rsync --source=/mnt/lustre \ 

--target=/mnt/target1 --target=/mnt/target2 \ 

--mdt=lustre-MDT0000 --user=cl1 

--statuslog sync.log
15-4 Lustre 2.0 Operations Manual • June 2010



15.2 Backing up a Device (MDS or OST)
In some cases, it is useful to do a full, device-level backup of an individual device 
(MDS or OST), before replacing hardware, performing maintenance, etc. Doing full 
device-level backups ensures that all of the data is preserved in the original state and 
is the easiest method of doing a backup. 

Note – A device-level backup of the MDS is especially important because, if it fails 
permanently, the entire file system would need to be restored. 

If hardware replacement is the reason for the backup or if a spare storage device is 
available, it is possible to do a raw copy of the MDS or OST from one block device to 
the other, as long as the new device is at least as large as the original device. To do 
this, run:

dd if=/dev/{original} of=/dev/{new} bs=1M

If hardware errors cause read problems on the original device, use the command 
below to allow as much data as possible to be read from the original device while 
skipping sections of the disk with errors: 

dd if=/dev/{original} of=/dev/{new} bs=4k conv=sync,noerror count=
{original size in 4kB blocks}

Even in the face of hardware errors, the ext3 file system is very robust and it may be 
possible to recover the file system data after running e2fsck -f on the new device. 

15.2.1 Backing Up the MDS
This procedure provides another way to back up the MDS. 

1. Make a mount point for the file system. Run:

mkdir -p /mnt/mds

2. Mount the file system. Run:

mount -t ldiskfs {mdsdev} /mnt/mds

3. Change to the mount point being backed up. Run:

cd /mnt/mds
Chapter 15 Backup and Restore 15-5



4. Back up the EAs. Run:

getfattr -R -d -m '.*' -P . > ea.bak

Note – In most distributions, the getfattr command is part of the "attr" package. 
If the getfattr command returns errors like Operation not supported, then the 
kernel does not correctly support EAs. Stop and use a different backup method or 
contact us for assistance.

5. Verify that the ea.bak file has properly backed up the EA data on the MDS. 
Without this EA data, the backup is not useful. Look at this file with "more" or 
a text editor. For each file, it should have an item similar to this:

# file: ROOT/mds_md5sum3.txt

trusted.lov=
0s0AvRCwEAAABXoKUCAAAAAAAAAAAAAAAAAAAQAAEAAADD5QoAAAAAAAAAAAAAAAAA
AAAAAAEAAAA=

6. Back up all file system data. Run:

tar czvf {backup file}.tgz --sparse .

Note – In Lustre 1.6.7 and later, the --sparse option reduces the size of the backup 
file. Be sure to use it so the tar command does not mistakenly create an archive full 
of zeros. 

7. Change directory out of the mounted file system. Run:

cd -

8. Unmount the file system. Run:

umount /mnt/mds

Note – When restoring an MDT backup on a different node as part of an MDT 
migration, you also have to change server NIDs and use the --writeconf 
command to re-generate the configuration logs. See Changing a Server NID and 
osc.myth-OST0004-osc-ffff88006dd20000.filesfree=129651.

15.2.2 Backing Up an OST
Follow the same procedure as Backing Up the MDS (except skip Step 5) and, for each 
OST device file system, replace mds with ost in the commands.
15-6 Lustre 2.0 Operations Manual • June 2010



15.3 Backing up Files
In other cases, it is desirable to back up only the file data on an MDS or OST instead 
of the entire device, e.g., if the device is very large but has little data in it, if the 
configuration of the parameters of the ext3 filesystem need to be changed, to use less 
space for the backup, etc.

In this situation, it is possible to mount the ext3 filesystem directly from the storage 
device, and do a file-level backup. Lustre MUST STOP be stopped on this node.

15.3.1 Backing up Extended Attributes
In Lustre, each OST object has an extended attribute (EA) that contains the MDT 
inode number and stripe index for the object. The EA’s striping information includes 
the location of file data on the OSTs and OST pool membership. The EA data must be 
backed up or the file backup will not be useful. Current backup tools do not properly 
save the EA data, so the following extra steps are required. 

1. Make a mountpoint for the file system.

mkdir /mnt/mds

2. Mount the filesystem.

mount -t ldiskfs {olddev} /mnt/mds

3. Change to the mountpoint being backed up.

cd /mnt/mds

4. Back up the extended attributes.

getfattr -R -d -m '.*' -P . > ea.bak

In most distributions, the getfattr command is part of the "attr" package. If the 
getfattr command returns errors like "Operation not supported", then your 
kernel does not support EAs correctly. Stop and use a different backup method or 
submit a Bugzilla ticket.

5. Verify that the ea.bak file has properly backed up the EA data on the MDS. You 
can look at this file with "more" or a text editor. For each file, it should have an 
item similar to this

# file: ROOT/mds_md5sum3.txt 

trusted.lov=0s0AvRCwEAAABXoKUCAAAAAAAAQAAEAAADD5QoAAAAAAAAAAEAAAA=
Chapter 15 Backup and Restore 15-7



6. Back up all file system data.

tar czvf {backup file}.tgz --sparse .

7. Change out of the mounted file system.

cd -

8. Unmount the file system.

umount /mnt/mds

9. Print the file system label and write it down.

e2label {olddev}

The same process should be followed on each MDS or OST file system. 

15.4 Restoring from a File-level Backup
To restore data from a file-level backup, you need to format the device, restore the 
file data and then restore the EA data.

1. Format the new device. Run:

mkfs.lustre {--mdt|--ost} {other options} {newdev}

2. Mount the file system. Run:

mount -t ldiskfs {newdev} /mnt/mds

3. Change to the new file system mount point. Run:

cd /mnt/mds

4. Restore the file system backup. Run:

tar xzvpf {backup file} --sparse

5. Restore the file system extended attributes. Run:

setfattr --restore=ea.bak

6. Verify that the extended attributes were restored. If this is not correct, then all 
data in the files will be lost, and would show up as all files in the filesystem 
having zero length. 

getfattr -d -m ".*" ROOT/mds_md5sum3.txt

trusted.lov=0s0AvRCwEAAABXoKUCAAAAAAAAQAAEAAADD5QoAAAAAAAAAEAAAA=
15-8 Lustre 2.0 Operations Manual • June 2010



7. Remove the (now invalid) recovery logs. Run:

rm OBJECTS/* CATALOGS

8. Change out of the MDS file system.

cd -

9. Unmount the MDS file system.

umount /mnt/mds

If the file system was used between the time the backup was made and when it was 
restored, then the lfsck tool (part of Lustre e2fsprogs) can be run to ensure the file 
system is coherent. If all of the device file systems were backed up at the same time 
after the entire Lustre file system was stopped, this is not necessary. The file system 
should be immediately usable even if lfsck is not run, though there will be I/O 
errors reading from files that are present on the MDS but not the OSTs, and files that 
were created after the MDS backup will not be accessible/visible. 

15.5 Using LVM Snapshots with Lustre
If you want to perform disk-based backups (because, for example, access to the 
backup system needs to be as fast as to the primary Lustre file system), you can use 
the Linux LVM snapshot tool to maintain multiple, incremental file system backups.

Because LVM snapshots cost CPU cycles as new files are written, taking snapshots of 
the main Lustre file system will probably result in unacceptable performance losses. 
You should create a new, backup Lustre file system and periodically (e.g., nightly) 
back up new/changed files to it. Periodic snapshots can be taken of this backup file 
system to create a series of "full" backups. 

Note – Creating an LVM snapshot is not as reliable as making a separate backup, 
because the LVM snapshot shares the same disks as the primary MDT device, and 
depends on the primary MDT device for much of its data. If the primary MDT device 
becomes corrupted, this may result in the snapshot being corrupted. 
Chapter 15 Backup and Restore 15-9



15.5.1 Creating an LVM-based Backup File System
Use this procedure to create a backup Lustre file system for use with the LVM 
snapshot mechanism.

1. Create LVM volumes for the MDT and OSTs.

Create LVM devices for your MDT and OST targets. Make sure not to use the 
entire disk for the targets; save some room for the snapshots. The snapshots start 
out as 0 size, but grow as you make changes to the current file system. If you 
expect to change 20% of the file system between backups, the most recent 
snapshot will be 20% of the target size, the next older one will be 40%, etc. Here is 
an example:

cfs21:~# pvcreate /dev/sda1

Physical volume "/dev/sda1" successfully created

cfs21:~# vgcreate volgroup /dev/sda1

Volume group "volgroup" successfully created

cfs21:~# lvcreate -L200M -nMDT volgroup

Logical volume "MDT" created

cfs21:~# lvcreate -L200M -nOST0 volgroup

Logical volume "OST0" created

cfs21:~# lvscan

ACTIVE '/dev/volgroup/MDT' [200.00 MB] inherit

ACTIVE '/dev/volgroup/OST0' [200.00 MB] inherit

2. Format the LVM volumes as Lustre targets.

In this example, the backup file system is called “main” and designates the 
current, most up-to-date backup. 

cfs21:~# mkfs.lustre --mdt --fsname=main /dev/volgroup/MDT

 No management node specified, adding MGS to this MDT.

    Permanent disk data:

 Target:     main-MDTffff

 Index:      unassigned

 Lustre FS:  main

 Mount type: ldiskfs

 Flags:      0x75

               (MDT MGS needs_index first_time update )

 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

 Parameters:

checking for existing Lustre data

 device size = 200MB

 formatting backing filesystem ldiskfs on /dev/volgroup/MDT

         target name  main-MDTffff

         4k blocks     0

         options        -i 4096 -I 512 -q -O dir_index -F
15-10 Lustre 2.0 Operations Manual • June 2010



 mkfs_cmd = mkfs.ext2 -j -b 4096 -L main-MDTffff  -i 4096 -I 512 -q 
-O dir_index -F /dev/volgroup/MDT

 Writing CONFIGS/mountdata

cfs21:~# mkfs.lustre --ost --mgsnode=cfs21 --fsname=main 
/dev/volgroup/OST0

    Permanent disk data:

 Target:     main-OSTffff

Index:      unassigned

 Lustre FS:  main

 Mount type: ldiskfs

 Flags:      0x72

               (OST needs_index first_time update )

 Persistent mount opts: errors=remount-ro,extents,mballoc

 Parameters: mgsnode=192.168.0.21@tcp

checking for existing Lustre data

 device size = 200MB

 formatting backing filesystem ldiskfs on /dev/volgroup/OST0

         target name  main-OSTffff

         4k blocks     0

         options        -I 256 -q -O dir_index -F

 mkfs_cmd = mkfs.ext2 -j -b 4096 -L main-OSTffff  -I 256 -q -O 
dir_index -F /dev/ volgroup/OST0

 Writing CONFIGS/mountdata

cfs21:~# mount -t lustre /dev/volgroup/MDT /mnt/mdt

cfs21:~# mount -t lustre /dev/volgroup/OST0 /mnt/ost

cfs21:~# mount -t lustre cfs21:/main /mnt/main

15.5.2 Backing up New/Changed Files to the Backup 
File System
At periodic intervals e.g., nightly, back up new and changed files to the LVM-based 
backup file system. 

cfs21:~# cp /etc/passwd /mnt/main 

cfs21:~# cp /etc/fstab /mnt/main 

cfs21:~# ls /mnt/main 

fstab  passwd
Chapter 15 Backup and Restore 15-11



15.5.3 Creating Snapshot Volumes 
Whenever you want to make a "checkpoint" of the main Lustre file system, create 
LVM snapshots of all target MDT and OSTs in the LVM-based backup file system. 
You must decide the maximum size of a snapshot ahead of time, although you can 
dynamically change this later. The size of a daily snapshot is dependent on the 
amount of data changed daily in the main Lustre file system. It is likely that a 
two-day old snapshot will be twice as big as a one-day old snapshot. 

You can create as many snapshots as you have room for in the volume group. If 
necessary, you can dynamically add disks to the volume group.

The snapshots of the target MDT and OSTs should be taken at the same point in time. 
Make sure that the cronjob updating the backup file system is not running, since that 
is the only thing writing to the disks. Here is an example:

cfs21:~# modprobe dm-snapshot

cfs21:~# lvcreate -L50M -s -n MDTb1 /dev/volgroup/MDT

   Rounding up size to full physical extent 52.00 MB

   Logical volume "MDTb1" created

cfs21:~# lvcreate -L50M -s -n OSTb1 /dev/volgroup/OST0

   Rounding up size to full physical extent 52.00 MB

   Logical volume "OSTb1" created

After the snapshots are taken, you can continue to back up new/changed files to 
"main".  The snapshots will not contain the new files.

cfs21:~# cp /etc/termcap /mnt/main

cfs21:~# ls /mnt/main

fstab  passwd  termcap
15-12 Lustre 2.0 Operations Manual • June 2010



15.5.4 Restoring the File System From a Snapshot 
Use this procedure to restore the file system from an LVM snapshot.

1. Rename the LVM snapshot.

Rename the file system snapshot from "main" to "back" so you can mount it 
without unmounting "main". This is recommended, but not required. Use the 
--reformat flag to tunefs.lustre to force the name change. For example:

cfs21:~# tunefs.lustre --reformat --fsname=back --writeconf 
/dev/volgroup/MDTb1

 checking for existing Lustre data

 found Lustre data

 Reading CONFIGS/mountdata

Read previous values:

 Target:     main-MDT0000

 Index:      0

 Lustre FS:  main

 Mount type: ldiskfs

 Flags:      0x5

              (MDT MGS )

 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

 Parameters:

Permanent disk data:

 Target:     back-MDT0000

 Index:      0

 Lustre FS:  back

 Mount type: ldiskfs

 Flags:      0x105

              (MDT MGS writeconf )

 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

 Parameters:

Writing CONFIGS/mountdata

cfs21:~# tunefs.lustre --reformat --fsname=back --writeconf 
/dev/volgroup/OSTb1

 checking for existing Lustre data

 found Lustre data

 Reading CONFIGS/mountdata

Read previous values:

 Target:     main-OST0000

 Index:      0

 Lustre FS:  main

 Mount type: ldiskfs

 Flags:      0x2

              (OST )
Chapter 15 Backup and Restore 15-13



 Persistent mount opts: errors=remount-ro,extents,mballoc

 Parameters: mgsnode=192.168.0.21@tcp

Permanent disk data:

 Target:     back-OST0000

 Index:      0

 Lustre FS:  back

 Mount type: ldiskfs

 Flags:      0x102

              (OST writeconf )

 Persistent mount opts: errors=remount-ro,extents,mballoc

 Parameters: mgsnode=192.168.0.21@tcp

Writing CONFIGS/mountdata

When renaming an FS, we must also erase the last_rcvd file from the 
snapshots

cfs21:~# mount -t ldiskfs /dev/volgroup/MDTb1 /mnt/mdtback

 cfs21:~# rm /mnt/mdtback/last_rcvd

 cfs21:~# umount /mnt/mdtback

 cfs21:~# mount -t ldiskfs /dev/volgroup/OSTb1 /mnt/ostback

 cfs21:~# rm /mnt/ostback/last_rcvd

 cfs21:~# umount /mnt/ostback

2. Mount the file system from the LVM snapshot. 

For example:

 cfs21:~# mount -t lustre /dev/volgroup/MDTb1 /mnt/mdtback                                                                              

 cfs21:~# mount -t lustre /dev/volgroup/OSTb1 /mnt/ostback

 cfs21:~# mount -t lustre cfs21:/back /mnt/back

3. Note the old directory contents, as of the snapshot time. 

For example:

cfs21:~/cfs/b1_5/lustre/utils# ls /mnt/back

 fstab  passwds
15-14 Lustre 2.0 Operations Manual • June 2010



15.5.5 Deleting Old Snapshots 
To reclaim disk space, you can erase old snapshots as your backup policy dictates. 
Run:

lvremove /dev/volgroup/MDTb1

15.5.6 Changing Snapshot Volume Size
You can also extend or shrink snapshot volumes if you find your daily deltas are 
smaller or larger than expected. Run:

lvextend -L10G /dev/volgroup/MDTb1

Note – Extending snapshots seems to be broken in older LVM. It is working in LVM 
v2.02.01. 
Chapter 15 Backup and Restore 15-15



15-16 Lustre 2.0 Operations Manual • June 2010



CHAPTER 16

POSIX

This chapter describes how to install and run the POSIX compliance suite of file 
system tests and includes the following sections:

■ Introduction to POSIX

■ Installing POSIX

■ Building and Running a POSIX-Compliant Test Suite on Lustre

■ Isolating and Debugging Failures

16.1 Introduction to POSIX
Portable Operating System Interface (POSIX) is a set of standard, operating system 
interfaces based on the Unix OS. POSIX defines file system behavior on single UNIX 
node. Although used mainly with UNIX systems, the POSIX standard can apply to 
any operating system.

POSIX specifies the user and software interfaces to the OS. Required program-level 
services include basic I/O (file, terminal, and network) services. POSIX also defines a 
standard threading library API which is supported by most modern operating 
systems. 

POSIX in a cluster means that most of the operations are atomic. Clients cannot see 
the metadata. POSIX offers strict mandatory locking which gives guarantee of 
semantics. Users do not have control on these locks.

Note – Lustre is not completely POSIX-compliant, so test results may show some 
errors. If you have questions about test results, contact our QE and Test Team 
(lustre-koala-team@sun.com).
16-1



16.2 Installing POSIX
Several quick start versions of the POSIX compliance suite are available to download. 
Each version is gcc- and architecture-specific. You need to determine which version 
of gcc you are running locally ({{{gcc -v}}}) and then download the appropriate 
tarball. 

If a package is not available for your particular combination of gcc+architecture, see 
Building and Running a POSIX-Compliant Test Suite on Lustre.

The following quick start versions are provided:

■ one-step-gcc2.96-i686.tgz 

■ one-step-gcc2.96-ia64.tgz 

■ one-step-gcc3.04-i686.tgz 

■ one-step-gcc3.2-i686.tgz 

16.2.1 POSIX Installation Using a Quick Start Version
Use this procedure to install POSIX using a quick start version.

1. Download the POSIX scripts into /usr/src/posix.

■ Test script: one-step-gcc<gcc version>-<arch>.tgz

■ Quick start script: one-step-setup.sh

Both scripts are available at: 

http://downloads.lustre.org/public/tools/benchmarks/posix/

2. Launch the setup script. Run:

cd /usr/src/posix 

sh one-step-setup.sh

3. Edit the configuration file /mnt/lustre/TESTROOT/tetexec.cfg with 
appropriate values for your system. 
16-2 Lustre 2.0 Operations Manual • June 2010

http://downloads.lustre.org/public/tools/benchmarks/posix/
http://downloads.lustre.org/public/tools/benchmarks/posix/one-step-gcc2.96-i686.tgz
http://downloads.lustre.org/public/tools/benchmarks/posix//one-step-gcc2.96-ia64.tgz
http://downloads.lustre.org/public/tools/benchmarks/posix/one-step-gcc3.04-i686.tgz
http://downloads.lustre.org/public/tools/benchmarks/posix/one-step-gcc3.2-i686.tgz
http://downloads.lustre.org/public/tools/benchmarks/posix/


4. Save the TESTROOT for running Lustre tests. Run:

cd /mnt/lustre 

tar zcvf /usr/src/posix/TESTROOT.tgz TESTROOT

Note – The quick start installation procedure only works with the paths /home/tet 
and /mnt/lustre. If you want to change the paths, follow the steps in Building and 
Running a POSIX-Compliant Test Suite on Lustre and create a new tarball. 

5. Launch the test suite. Run:

su - vxs0 

. ../profile 

tcc -e -a /mnt/lustre/TESTROOT -s scen.exec -p

16.3 Building and Running a 
POSIX-Compliant Test Suite on Lustre 
This section describes how to build and run a POSIX compliance test suite for a 
compiler and architecture for which we do not provide a quick start package. 

16.3.1 Building the Test Suite from Scratch
This section describes building a POSIX compliance suite to test a Lustre file system. 

1. Download all POSIX files in 
http://downloads.lustre.org/public/tools/benchmarks/posix

■ tet_vsxgen_3.02.tgz 

■ lts_vsx-pcts2.0beta2.tgz 

■ install.sh 

■ myscen.bld 

■ myscen.exec 

Note – We now use the latest release of the LSB-VSX POSIX test suite 
(lts_vsx-pcts2.0beta2.tgz) and the generic TET/VSXgen framework 
(tet_vsxgen_3.02.tgz). In this release, the issue of "getgroups() did not return 
NGROUPS_MAX" has been fixed.
Chapter 16 POSIX 16-3

http://downloads.lustre.org/public/tools/benchmarks/posix/


2. DO NOT configure or mount a Lustre file system yet. 

3. Run the {{{install.sh}}} script and select /home/tet for the root directory 
for the test suite installation. Say 'y' to install the users and groups. Accept the 
defaults to install the packages.

4. Create a temporary directory to hold the POSIX tests while they are being built. 
Run:

mkdir -p /mnt/lustre/TESTROOT;chown vsx0.vsxg0 !$

5. Log in as the test user. Run:

su - vsx0

6. Build the test suite. Run:

../setup.sh

Most of the default answers are correct, except the root directory from which to 
run the testsets. For this you should specify /mnt/lustre/TESTROOT. For 
"Install pseudolanguages?", answer 'n'.

7. When the script prompts "Install scripts into TESTROOT/BIN..?", do not stop 
the script from running (this does not work). Instead, use another terminal to 
replace the existing files with the downloaded files. Enter:

cp .../myscen.bld  /home/tet/test_sets/scen.bld 

cp .../myscen.exec /home/tet/test_sets/scen.exec

This confines the tests that are run to those relevant for file systems, avoiding 
hours of running other tests on sockets, math, stdio, libc, shell, etc. 

8. Continue with the installation at this point. Answer 'y' to the "Build 
testsets" question. 

The script builds and installs all file system tests and then runs them all. Although 
the script is running the files on a local file system, this is a valuable baseline for 
comparison with the behavior of Lustre. 

The results are put into /home/tet/test_sets/results/0002e/journal. It 
is suggested that you rename or symlink this directory to 
/home/tet/test_sets/results/ext3/journal (or the name of the local file 
system that the test was run on). 

Running the full test should only take about 5 minutes. 
16-4 Lustre 2.0 Operations Manual • June 2010



9. Answer 'n' to re-running just the failed tests.

The results (in a table) are in /home/tet/test_sets/results/report.

10. Save the test suite for later use, to run additional tests on a Lustre file system. 
Tar up the tests to avoid rebuilding them each time. Enter:

tar cvzf TESTROOT.tgz -C /mnt/lustre TESTROOT

Tip – At this time, you probably want to remove the installed tests, to save a bit of 
space and, more importantly, to avoid confusion if you forget to mount your Lustre 
file system before running the tests.

16.3.2 Running the Test Suite Against Lustre
1. As root, set up your Lustre file system, mounted on /mnt/lustre (e.g., sh 

llmount.sh) and untar the POSIX tests back to their home. Enter:

tar --same-owner -xzpvf /path/to/tarball/TESTROOT.tgz -C 
/mnt/lustre

2. As the vsx0 user, you can re-run the tests as many times as necessary. If you are 
newly su'd or logged in as the vsx0 user, you need to source the environment 
with '. profile' so your path and other environment is set up correctly. To run the 
tests, enter:

. /home/tet/profile 

tcc -e -s scen.exec -a /mnt/lustre/TESTROOT -p

Each new result is put in a new directory under 
/home/tet/test_sets/results and given a directory name similar to 0004e, 
an increasing number that ends with e for test execution or b for building the 
tests). 

3. To look at a formatted report, enter:

vrpt results/0004e/journal | less

Some tests are "Unsupported", "Untested", or "Not In Use", which does not 
necessarily indicate a problem. 
Chapter 16 POSIX 16-5



4. To compare two test results, run:

vrptm results/ext3/journal results/0004e/journal | less

This is more interesting than looking at the result of a single test, since it helps 
find test failures that are specific to the file system instead of the Linux VFS or 
kernel. Up to 6 test results can be compared at one time. 

It is often useful to rename the results directory to have more meaningful names 
(such as before_unlink_fix).

16.4 Isolating and Debugging Failures
When failures occur, you need to gather information about what is happening at 
runtime. For example, some tests may cause kernel panics depending on your 
configuration.

■ The POSIX compliance suite does not have debugging enabled by default, so it is 
useful to turn on the debugging options of VSX. Two important debug options 
reside in the tetexec.cfg configuration file, under the TESTROOT directory: 

■ VSX_DBUG_FILE=output_file - If you are running the test under UML with 
hostfs support, use a file on the hostfs as the debug output file. In the case of a 
crash, the debug output is then be safely written to the debug file. 

Note – The default value for this option puts the debug log under your test directory 
in /mnt/lustre/TESTROOT, which may not be useful if you experience a kernel 
panic and lustre (or your machine) crashes. 

■ VSX_DBUG_FLAGS=xxxxx - For detailed information about debug flags, refer 
to the documentation included with the POSIX test suite. The following 
example causes VSX to output all debug messages: 

VSX_DBUG_FLAGS=t:d:n:f:F:L:l,2:p:P

■ VSX is based on the TET framework which provides common libraries for VSX. 
You can have TET print verbose debug messages by inserting the -T option when 
running the tests: 

tcc -Tall5 -e -s scen.exec -a /mnt/lustre/TESTROOT -p 2>&1 | tee 
/tmp/POSIX-command-line-output.log

■ VSX prints detailed messages in the report for failed tests. This includes the test 
strategy, the kind of operations done by the test suite, and what is going wrong. 
16-6 Lustre 2.0 Operations Manual • June 2010



Each subtest (e.g., 'access', 'create') usually contains a number of single tests. The 
report shows exactly which single test fails. In this case, you can find more 
information directly from the VSX source code. For example, if the fifth single test of 
subtest chmod failed, you could look at the source:

/home/tet/test_sets/tset/POSIX.os/files/chmod/chmod.c

...which contains a single test array:

public  struct tet_testlist tet_testlist[] = {

test1, 1,

test2, 2,

test3, 3,

test4, 4,

test5, 5,

test6, 6,

test7, 7,

test8, 8,

test9, 9,

test10, 10,

test11, 11,

test12, 12,

test13, 13,

test14, 14,

test15, 15,

test16, 16,

test17, 17,

test18, 18,

test19, 19,

test20, 20,

test21, 21,

test22, 22,

test23, 23,

NULL, 0

};

If this single test is causing problems, as in the case of a kernel panic, or if you are 
trying to isolate a single failure, it may be useful to edit the tet_testlist array 
down to the single test in question and then recompile the test suite. Then, you can 
create a new tarball of the resulting TESTROOT directory, named appropriately (e.g, 
TESTROOT-chmod-5-only.tgz) and re-run the POSIX suite using the steps above. 

It may also be helpful to edit the scen.exec file to run only the test set in question: 

all 

"total tests in POSIX.os 1"

/tset/POSIX.os/files/chmod/T.chmod
Chapter 16 POSIX 16-7



Note – Rebuilding individual POSIX tests is not straightforward due to the reliance 
on tcc. One option is to substitute edited source files into the source tree while 
following the manual installation procedure described above and let the existing 
POSIX install scripts do the work. The installation scripts (specifically 
/home/tet/test_sets/run_testsets.sh), contain relevant commands to build 
the test suite -- something akin to tcc -p -b -s $HOME/scen.bld $* -- but 
these commands may not work outside the scripts. Let us know if you get better 
mileage rebuilding these tests. 
16-8 Lustre 2.0 Operations Manual • June 2010



CHAPTER 17

Benchmarking

The benchmarking process involves identifying the highest standard of excellence 
and performance, learning and understanding these standards, and finally adapting 
and applying them to improve the performance. Benchmarks are most often used to 
provide an idea of how fast any software or hardware runs. 

Complex interactions between I/O devices, caches, kernel daemons, and other OS 
components result in behavior that is difficult to analyze. Moreover, systems have 
different features and optimizations, so no single benchmark is always suitable. The 
variety of workloads that these systems experience also adds in to this difficulty. One 
of the most widely researched areas in storage subsystem is file system design, 
implementation, and performance. 

This chapter describes benchmark suites to test Lustre and includes the following 
sections:

■ Bonnie++ Benchmark

■ IOR Benchmark

■ IOzone Benchmark
17-1



17.1 Bonnie++ Benchmark
Bonnie++ is a benchmark suite that having aim of performing a number of simple 
tests of hard drive and file system performance. Then you can decide which test is 
important and decide how to compare different systems after running it. Each 
Bonnie++ test gives a result of the amount of work done per second and the 
percentage of CPU time utilized.

There are two sections to the program's operations. The first is to test the I/O 
throughput in a fashion that is designed to simulate some types of database 
applications. The second is to test creation, reading, and deleting many small files in 
a fashion similar to the usage patterns.

Bonnie++ is a benchmark tool that test hard drive and file system performance by 
sequential I/O and random seeks. Bonnie++ tests file system activity that has been 
known to cause bottlenecks in I/O-intensive applications. 

To install and run the Bonnie++ benchmark:

1. Download the most recent version of the Bonnie++ software:

http://www.coker.com.au/bonnie++/

2. Install and run the Bonnie++ software (per the ReadMe file accompanying the 
software). 

Sample output:

Version  1.03 --Sequential Output-- --Sequential Input- --Random--

-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--

MachineSize K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec 
%CP

mds 2G 3811822 21245 10 51967 10 90.00

------Sequential Create------ --------Random Create--------

-Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--

files  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP

16   510   0 +++++ +++   283   1   465   0 +++++ +++   291   1

mds,2G,,,38118,22,21245,10,,,51967,10,90.0,0,16,510,0,+++++,+++,28
3,1,465,0,+++++,+++,291,1
17-2 Lustre 2.0 Operations Manual • June 2010

http://www.coker.com.au/bonnie++/


Version  1.03 --Sequential Output-- --Sequential Input- --Random--

-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--

MachineSize K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP  /sec 
%CP

mds              2G 27460  92 41450  25 21474  10 19673  60 52871  
10  88.0   0

------Sequential Create------ --------Random Create--------

-Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--

files  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP

16 29681  99 +++++ +++ 30412  90 29568  99 +++++ +++ 28077  82

mds,2G,27460,92,41450,25,21474,10,19673,60,52871,10,88.0,0,16,2968
1,99,+++++,+++,30412,90,29568,99,+++++,+++,28077,82

17.2 IOR Benchmark
The IOR_survey script tests the performance of the Lustre file system. It uses IOR 
(Interleaved or Random), a script used for testing performance of parallel file 
systems using various interfaces and access patterns. IOR uses MPI for process 
synchronization.

Under the control of compile-time defined constants (and, to a lesser extent, 
environment variables), I/O is done via MPI-IO. The data are written and read using 
independent parallel transfers of equal-sized blocks of contiguous bytes that cover 
the file with no gaps and that do not overlap each other. The test consists of creating 
a new file, writing it with data, then reading the data back.

The IOR benchmark, developed by LLNL, tests system performance by focusing on 
parallel/sequential read/write operations that are typical of scientific applications. 

To install and run the IOR benchmark:

1. Satisfy the prerequisites to run IOR.

a. Download lam 7.0.6 (local area multi-computer):

http://www.lam-mpi.org/7.0/download.php

b. Obtain a Fortran compiler for the Fedora Core 4 operating system.

c. Download the most recent version of the IOR software:

http://sourceforge.net/projects/ior-sio
Chapter 17 Benchmarking 17-3

http://www.lam-mpi.org/7.0/download.php
http://sourceforge.net/projects/ior-sio


2. Install the IOR software (per the ReadMe file and User Guide accompanying 
the software).

3. Run the IOR software. In user mode, use the lamboot command to start the lam 
service and use appropriate Lustre-specific commands to run IOR (described in 
the IOR User Guide).

Sample Output:

IOR-2.9.0: MPI Coordinated Test of Parallel I/O

Run began: Fri Sep 29 11:43:56 2006

Command line used: ./IOR -w -r -k -O lustrestripecount 10 –o test

Machine: Linux mds

Summary:

api = POSIX

test filename = test

access = single-shared-file

clients = 1 (1 per node)

repetitions = 1

xfersize = 262144 bytes

blocksize = 1 MiB

aggregate filesize= 1 MiB

access bw(MiB/s) block(KiB)xfer(KiB) open(s)wr/rd(s)close(s)iter

------ --------- --------- -------- --------------------------

write 173.89 1024.00 256.00 0.0000300.0057010.0000160   

read 278.49 1024.00 256.00 0.0000090.0035660.0000120   

Max Write: 173.89 MiB/sec (182.33 MB/sec)

Max Read: 278.49 MiB/sec (292.02 MB/sec)

Run finished: Fri Sep 29 11:43:56 2006
17-4 Lustre 2.0 Operations Manual • June 2010



17.3 IOzone Benchmark
IOZone is a file system benchmark tool which generates and measures a variety of 
file operations. Iozone has been ported to many machines and runs under many 
operating systems. Iozone is useful to perform a broad file system analysis of a 
vendor’s computer platform. The benchmark tests file I/O performance for the 
operations like read, write, re-read, re-write, read backwards, read strided, fread, 
fwrite, random read/write, pread/pwrite variants, aio_read, aio_write, mm, etc.

The IOzone benchmark tests file I/O performance for the following operations: read, 
write, re-read, re-write, read backwards, read strided, fread, fwrite, random 
read/write, pread/pwrite variants, aio_read, aio_write, and mmap.

To install and run the IOzone benchmark:

1. Download the most recent version of the IOZone software from this location:

http://www.iozone.org

2. Install the IOZone software (per the ReadMe file accompanying the IOZone 
software).
Chapter 17 Benchmarking 17-5

http://www.lam-mpi.org/7.0/download.php


3. Run the IOZone software (per the ReadMe file accompanied with the IOZone 
software).

Sample Output

Iozone: Performance Test of File I/O

Version $Revision: 3.263 $

Compiled for 32 bit mode.

Build: linux 

Contributors:William Norcott, Don Capps, Isom Crawford, 

Kirby Collins, Al Slater, Scott Rhine, Mike Wisner,

Ken Goss, Steve Landherr, Brad Smith, Mark Kelly, 

Dr. Alain CYR, Randy Dunlap, Mark Montague, Dan Million,

Jean-Marc Zucconi, Jeff Blomberg, Erik Habbinga, 

Kris Strecker, Walter Wong.

Run began: Fri Sep 29 15:37:07 2006

Network distribution mode enabled.

Command line used: ./iozone -+m test.txt

Output is in Kbytes/sec

Time Resolution = 0.000001 seconds.

Processor cache size set to 1024 Kbytes.

Processor cache line size set to 32 bytes.

File stride size set to 17 * record size.

random random bkwd record stride KB reclen write 
rewrite read reread read write read rewrite read   
fwrite frewrite fread freread

512 4 194309 406651 728276 792701 715002 498592  
638351 700365 587235 190554 378448 686267 765201

iozone test complete.
17-6 Lustre 2.0 Operations Manual • June 2010



CHAPTER 18

Lustre I/O Kit

This chapter describes the Lustre I/O kit and PIOS performance tool, and includes 
the following sections:

■ Lustre I/O Kit Description and Prerequisites

■ Running I/O Kit Tests

■ PIOS Test Tool

■ LNET Self-Test

18.1 Lustre I/O Kit Description and 
Prerequisites
The Lustre I/O kit is a collection of benchmark tools for a Lustre cluster. The I/O kit 
can be used to validate the performance of the various hardware and software layers 
in the cluster and also as a way to find and troubleshoot I/O issues. 

The I/O kit contains three tests. The first surveys basic performance of the device 
and bypasses the kernel block device layers, buffer cache and file system. The 
subsequent tests survey progressively higher layers of the Lustre stack. Typically 
with these tests, Lustre should deliver 85-90% of the raw device performance.

It is very important to establish performance from the “bottom up” perspective. First, 
the performance of a single raw device should be verified. Once this is complete, 
verify that performance is stable within a larger number of devices. Frequently, while 
troubleshooting such performance issues, we find that array performance with all 
LUNs loaded does not always match the performance of a single LUN when tested in 
isolation. After the raw performance has been established, other software layers can 
be added and tested in an incremental manner.
18-1



18.1.1 Downloading an I/O Kit
You can download the I/O kit from:

http://downloads.lustre.org/public/tools/lustre-iokit/

In this directory, you will find two packages:

■ lustre-iokit consists of a set of developed and supported by the Lustre group.

■ scali-lustre-iokit is a Python tool maintained by Scali team, and is not 
discussed in this manual.

18.1.2 Prerequisites to Using an I/O Kit
The following prerequisites must be met to use the Lustre I/O kit:

■ password-free remote access to nodes in the system (normally obtained via ssh or 
rsh) 

■ Lustre file system software

■ sg3_utils for the sgp_dd utility

18.2 Running I/O Kit Tests
As mentioned above, the I/O kit contains these test tools:

■ sgpdd_survey

■ obdfilter_survey

■ ost_survey 

■ stats-collect
18-2 Lustre 2.0 Operations Manual • June 2010

http://downloads.lustre.org/public/tools/lustre-iokit/


18.2.1 sgpdd_survey
Use the sgpdd_survey tool to test bare metal performance, while bypassing as 
much of the kernel as possible. This script requires the sgp_dd package, although it 
does not require Lustre software. This survey may be used to characterize the 
performance of a SCSI device by simulating an OST serving multiple stripe files. The 
data gathered by this survey can help set expectations for the performance of a 
Lustre OST exporting the device.

The script uses sgp_dd to carry out raw sequential disk I/O. It runs with variable 
numbers of sgp_dd threads to show how performance varies with different request 
queue depths.

The script spawns variable numbers of sgp_dd instances, each reading or writing a 
separate area of the disk to demonstrate performance variance within a number of 
concurrent stripe files.

The device(s) used must meet one of the two tests described below:

SCSI device:

Must appear in the output of sg_map (make sure the kernel module "sg" is loaded)

Raw device:

Must appear in the output of raw -qa

If you need to create raw devices in order to use the sgpdd_survey tool, note that 
raw device 0 cannot be used due to a bug in certain versions of the "raw" utility 
(including that shipped with RHEL4U4.)

You may not mix raw and SCSI devices in the test specification.

Caution – The sgpdd_survey script overwrites the device being tested, which 
results in the LOSS OF ALL DATA on that device. Exercise caution when selecting 
the device to be tested.
Chapter 18 Lustre I/O Kit 18-3



The sgpdd_survey script must be customized according to the particular device 
being tested and also according to the location where it should keep its working files. 
Customization variables are described explicitly at the start of the script.

When the sgpdd_survey script runs, it creates a number of working files and a pair 
of result files. All files start with the prefix given by the script variable ${rslt}.

${rslt}_<date/time>.summary same as stdout

${rslt}_<date/time>_* tmp files

${rslt}_<date/time>.detail collected tmp files for post-mortem

The summary file and stdout should contain lines like this:

total_size 8388608K rsz 1024 thr 1 crg 1 180.45 MB/s 1 x 180.50 \
=/ 180.50 MB/s

The number immediately before the first MB/s is bandwidth, computed by 
measuring total data and elapsed time. The remaining numbers are a check on the 
bandwidths reported by the individual sgp_dd instances.

If there are so many threads that the sgp_dd script is unlikely to be able to allocate 
I/O buffers, then "ENOMEM" is printed.

If one or more sgp_dd instances do not successfully report a bandwidth number, 
then "failed" is printed. 

18.2.1.1 Tuning sgpdd_survey

To get large I/O (1 MB) to disk, it may be necessary to tune several sgpdd_survey 
parameters as specified: 

/sys/block/sdN/queue/max_sectors_kb = 4096

/sys/block/sdN/queue/max_phys_segments = 256

/proc/scsi/sg/allow_dio = 1

/sys/module/ib_srp/parameters/srp_sg_tablesize = 255
18-4 Lustre 2.0 Operations Manual • June 2010



18.2.2 obdfilter_survey
The obdfilter_survey script processes sequential I/O with varying numbers of 
threads and objects (files) by using lctl to drive the echo_client connected to 
local or remote obdfilter instances or remote obdecho instances. It can be used to 
characterize the performance of the following Lustre components:

OSTs

The script exercises one or more instances of obdfilter directly. The script may run on 
one or more nodes, for example, when the nodes are all attached to the same 
multi-ported disk subsystem.

Tell the script the names of all obdfilter instances (which should be up and running 
already). If some instances are on different nodes, specify their hostnames too (for 
example, node1:ost1). Alternately, you can pass parameter case=disk to the 
script. (The script automatically detects the local obdfilter instances.)

All obdfilter instances are driven directly. The script automatically loads the obdecho 
module (if required) and creates one instance of echo_client for each obdfilter 
instance.

Network

The script drives one or more instances of the obdecho server via instances of 
echo_client running on one or more nodes. Pass the parameters case=network 
and target=''<hostname/ip_of_server>'' to the script. For each nework case, 
the script does the required setup.

Striped File System Over the Network

The script drives one or more instances of obdfilter via instances of echo_client 
running on one or more nodes. 

Tell the script the names of the OSCs (which should be up and running). Alternately, 
you can pass the parameter case=netdisk to the script. The script will use all of the 
local OSCs.

Note – The obdfilter_survey script is NOT scalable to 100s of nodes since it is 
only intended to measure individual servers, not the scalability of the entire system.
Chapter 18 Lustre I/O Kit 18-5



Note – The obdfilter_survey script must be customized, depending on the 
components under test and where the script’s working files should be kept. 
Customization variables are clearly described in the script (Customization Variables 
section). In particular, refer to the maximum supported value ranges for 
customization variables.

18.2.2.1 Running obdfilter_survey Against a Local Disk

The obdfilter_survey script supports automatic and manual runs against a local disk. 
Obdfilter-survey profiles the overall throughput of storage hardware1, by sending 
ranges of workloads to the OSTs (varied in thread counts and I/O sizes). 

When the obdfilter_survey script is complete, it provides information on the 
performance abilities of the storage hardware and shows the saturation points. If you 
use plot scripts on the data, this information is shown graphically. 

To run the obdfilter_survey script, create a normal Lustre configuration; no special 
setup is needed.

To perform an automatic run:

1. Set up the Lustre file system. 

2. Verify that the obdecho.ko module is present.

3. Run the obdfilter_survey script with the parameter case=disk. For example:

$ nobjhi=2 thrhi=2 size=1024 case=disk sh obdfilter-survey

To perform a manual run:

1. List all OSTs you want to test. (You do not have to specify an MDS or LOV.)

2. On all OSSs, run:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

Caution – Write tests are destructive. This test should be run before the Lustre file 
system is started. If you do this, you will not need to reformat to restart Lustre 
system. However, if the obdfilter_survey test is terminated before it completes, you 
may have to remove objects from the disk.

1. The sgpdd-survey profiles individual disks. This script is destructive, and should not be run anywhere you 
want to preserve existing data.
18-6 Lustre 2.0 Operations Manual • June 2010



3. Determine the obdfilter instance names on all Lustre clients. The device names 
appear in the fourth column of the lctl dl command output. For example:

$ pdsh -w oss[01-02] lctl dl |grep obdfilter |sort

oss01: 0 UP obdfilter oss01-sdb oss01-sdb_UUID 3

oss01: 2 UP obdfilter oss01-sdd oss01-sdd_UUID 3

oss02: 0 UP obdfilter oss02-sdi oss02-sdi_UUID 3

...

In this example, the obdfilter instance names are oss01-sdb, oss01-sdd, and 
oss02-sdi. Since you are driving obdfilter instances directly, set the shell array 
variable, targets, to the names of the obdfilter instances. For example:

targets='oss01:oss01-sdb oss01:oss01-sdd oss02:oss02-sdi'\
./obdfilter-survey

18.2.2.2 Running obdfilter_survey Against a Network

The obdfilter_survey script can only be run automatically against a network; no 
manual test is supported. 

To run the network test, a specific Lustre setup is needed. Make sure that these 
configuration requirements have been met.

■ Install all Lustre modules, including obdecho.

■ Start lctl and check the device list, which must be empty. 

■ Use a password-less entry between the client and server machines, to avoid 
having to type the password.

To perform an automatic run:

1. Run the obdfilter_survey script with the parameters case=netdisk and targets=
''<hostname/ip_of_server>''. For example:

$ nobjhi=2 thrhi=2 size=1024 targets="<hostname/ip_of_server>" \
case=network sh obdfilter-survey

On the server side, you can see the statistics at:

/proc/fs/lustre/obdecho/<echo_srv>/stats

where 'echo_srv' is the obdecho server created by the script.
Chapter 18 Lustre I/O Kit 18-7



18.2.2.3 Running obdfilter_survey Against a Network Disk

The obdfilter_survey script can be run automatically or manually against a network 
disk. 

To run the network disk test, create a Lustre configuration using normal methods; no 
special setup is needed.

To perform an automatic run:

1. Set up the Lustre file system with the required OSTs. 

2. Verify that the obdecho.ko module is present.

3. Run the obdfilter_survey script with the parameter case=netdisk. For example:

$ nobjhi=2 thrhi=2 size=1024 case=netdisk sh obdfilter-survey

To perform a manual run:

1. Run the obdfilter_survey script and tell the script the names of all echo_client 
instances (which should be up and running already). 

$ nobjhi=2 thrhi=2 size=1024 targets="<osc_name> ..." \ sh 
obdfilter-survey
18-8 Lustre 2.0 Operations Manual • June 2010



18.2.2.4 Output Files

When the obdfilter_survey script runs, it creates a number of working files and a pair 
of result files. All files start with the prefix given by ${rslt}.

The obdfilter_survey script iterates over the given number of threads and objects 
performing the specified tests and checks that all test processes have completed 
successfully.

Note – The obdfilter_survey script may not clean up properly if it is aborted or 
if it encounters an unrecoverable error.  In this case, a manual cleanup may be 
required, possibly including killing any running instances of 'lctl' (local or remote), 
removing echo_client instances created by the script and unloading obdecho.

File Description

${rslt}.summary Same as stdout

${rslt}.script_* Per-host test script files

${rslt}.detail_tmp* Per-OST result files

${rslt}.detail Collected result files for post-mortem
Chapter 18 Lustre I/O Kit 18-9



18.2.2.5 Script Output

The summary file and stdout of the obdfilter_survey script contain lines such as:

ost 8 sz 67108864K rsz 1024 obj 8 thr 8 write 613.54 [ 64.00, 82.00]

Where:

Note – Although the numbers of threads and objects are specified per-OST in the 
customization section of the script, the reported results are aggregated over all OSTs.

18.2.2.6 Visualizing Results

It is useful to import the obdfilter_survey script summary data (it is fixed width) into 
Excel (or any graphing package) and graph the bandwidth versus the number of 
threads for varying numbers of concurrent regions. This shows how the OSS 
performs for a given number of concurrently-accessed objects (files) with varying 
numbers of I/Os in flight.

It is also extremely useful to record average disk I/O sizes during each test. These 
numbers help locate pathologies in the system when the file system block allocator 
and the block device elevator.

The plot-obdfilter script (included) is an example of processing output files to a 
.csv format and plotting a graph using gnuplot.

Variable Supported Type

ost8 Total number of OSTs being tested.

sz 67108864K Total amount of data read or written (in KB).

rsz 1024 Record size (size of each echo_client I/O, in KB).

obj 8 Total number of objects over all OSTs.

thr 8 Total number of threads over all OSTs and objects.

write Test name. If more tests have been specified, they all appear on the same 
line.

613.54 Aggregate bandwidth over all OSTs (measured by dividing the total 
number of MB by the elapsed time).

[64, 82.00] Minimum and maximum instantaneous bandwidths on an individual OST.
18-10 Lustre 2.0 Operations Manual • June 2010



18.2.3 ost_survey
The ost_survey tool is a shell script that uses lfs setstripe to perform I/O 
against a single OST. The script writes a file (currently using dd) to each OST in the 
Lustre file system, and compares read and write speeds. The ost_survey tool is 
used to detect misbehaving disk subsystems. 

Note – We have frequently discovered wide performance variations across all LUNs 
in a cluster.

To run the ost_survey script, supply a file size (in KB) and the Lustre mount point. 
For example, run:

$ ./ost-survey.sh 10 /mnt/lustre

Average read Speed: 6.73

Average write Speed: 5.41

read - Worst OST indx 0 5.84 MB/s

write - Worst OST indx 0 3.77 MB/s

read - Best OST indx 1 7.38 MB/s

write - Best OST indx 1 6.31 MB/s

3 OST devices found

Ost index 0 Read speed 5.84 Write speed 3.77

Ost index 0 Read time 0.17 Write time 0.27

Ost index 1 Read speed 7.38 Write speed 6.31

Ost index 1 Read time 0.14 Write time 0.16

Ost index 2 Read speed 6.98 Write speed 6.16

Ost index 2 Read time 0.14 Write time 0.16 
Chapter 18 Lustre I/O Kit 18-11



18.2.4 stats-collect
The stats-collect utility contains the following scripts used to collect application 
profiling information from Lustre clients and servers: 

■ lstat.sh - script for a single node that is run on each profile node 

■ gather_stats_everywhere.sh - script that collect statistics

■ config.sh - script that contains customized configuration descriptions

The stats-collect utility requires:

■ Lustre to be installed and set up on your cluster 

■ SSH and SCP access to these nodes without requiring a password

Configuring stats-collect

Configuring the stats-collect utility is simple - all of the profiling configuration 
VARs are in the config.sh script. 

XXXX_INTERVAL is the profiling interval where the value of interval means: 

■ 0 - gather statistics at start and stop only 

■ N - gather statistics every N seconds

If XXX_INTERVAL is not specified, then XXX statistics are not collected. XXX can be 
VMSTAT, SERVICE, BRW, SDIO, MBALLOC, IO, JBD, CLIENT 

Running stats-collect

The gather_stats_everywhere.sh script should be run in three phases: 

■ sh gather_stats_everywhere.sh config.sh start 

Starts statistics collection on each node specified in the config.sh script.

■ sh gather_stats_everywhere.sh config.sh stop <log_name.tgz>

Stops collecting statistics on each node. If <log_name.tgz> is provided, it creates a 
profile tarball /tmp/<log_name.tgz>.

■ sh gather_stats_everywhere.sh config.sh analyse 
log_tarball.tgz csv

Analyzes the log_tarball and create a csv tarball for this profiling tarball.
18-12 Lustre 2.0 Operations Manual • June 2010



Examples

To collect profile information: 

1. Start the collect profile daemon on each node. 

sh gather_stats_everywhere.sh config.sh start 

2. Run your test. 

3. Stop the collect profile daemon on each node, clean up the temporary file and 
create a profiling tarball.

sh gather_stats_everywhere.sh config.sh stop log_tarball.tgz

4. Create a csv file according to the profile.

sh gather_stats_everywhere.sh config.sh analyse log_tarball.tgz csv
Chapter 18 Lustre I/O Kit 18-13



18.3 PIOS Test Tool
The PIOS test tool is a parallel I/O simulator for Linux and Solaris. PIOS generates 
I/O on file systems, block devices and zpools similar to what can be expected from a 
large Lustre OSS server when handling the load from many clients. The program 
generates and executes the I/O load in a manner substantially similar to an OSS, that 
is, multiple threads take work items from a simulated request queue. It forks a CPU 
load generator to simulate running on a system with additional load. 

PIOS can read/write data to a single shared file or multiple files (default is a single 
file). To specify multiple files, use the --fpp option. (It is better to measure with both 
single and multiple files.) If the final argument is a file, block device or zpool, PIOS 
writes to RegionCount regions in one file. PIOS issues I/O commands of size 
ChunkSize. The regions are spaced apart Offset bytes (or, in the case of many files, 
the region starts at Offset bytes). In each region, RegionSize bytes are written or 
read, one ChunkSize I/O at a time. Note that:

ChunkSize <= Regionsize <= Offset

Multiple runs can be specified with comma separated lists of values for ChunkSize, 
Offset, RegionCount, ThreadCount, and RegionSize. Multiple runs can also be 
specified by giving a starting (low)  value, increase  (in percent) and high value for 
each of these arguments. If a low value is given, no value list or value may be 
supplied.

Every run is given a timestamp, and the timestamp and offset are written with every 
chunk (to allow verification). Before every run, PIOS executes the pre-run shell 
command. After every run, PIOS executes the post-run command. Typically, this is 
used to clear and collect statistics for the run, or to start and stop statistics gathering 
during the run. The timestamp is passed to both pre-run and post-run.

For convenience, PIOS understands byte specifiers and uses: 

K,k for kilobytes (2<<10)

M,m for megabytes (2<<20)

G,g for gigabytes (2<<30)

T,t for terabytes (2<<40)

Download the PIOS test tool at:

Download the PIOS test tool at: 

http://downloads.lustre.org/public/tools/benchmarks/pios/
18-14 Lustre 2.0 Operations Manual • June 2010

http://downloads.lustre.org/public/tools/benchmarks/pios/


18.3.1 Synopsis
pios 

[--chunksize|-c =values, (--chunksize_low|-a =value 

--chunksize_high|-b =value --chunksize_incr|-g =value)]

[--offset|-o =values, (--offset_low|-m =value --offset_high|-q =value

--offset_incr|-r =value)]

[--regioncount|-n =values, (--regioncount_low|-i =value 

--regioncount_high|-j =value --regioncount_incr|-k =value)]

[--threadcount|-t =values, (--threadcount_low|-l =value

--threadcount_high|-h =value --threadcount_incr|-e =value)]

[--regionsize|-s =values, (--regionsize_low|-A =value 

--regionsize_high|-B =value --regionsize_incr|-C =value)]

[--directio|-d, --posixio|-x, --cowio|-w} [--cleanup|-L 

--threaddelay|-T =ms --regionnoise|-I ==shift 

--chunknoise|-N =bytes -fpp|-F ]

[--verify|-V =values]

[--prerun|-P =pre-command --postrun|-R =post-command]

[--path|-p =output-file-path]
Chapter 18 Lustre I/O Kit 18-15



18.3.2 PIOS I/O Modes
There are several supported PIOS I/O modes:

POSIX I/O: 

This is the default operational mode where I/O is done using standard POSIX calls, 
such as pwrite/pread. This mode is valid on both Linux and Solaris.

DIRECT I/O:

This mode corresponds to the O_DIRECT flag in open(2) system call, and it is 
currently applicable only to Linux. Use this mode when using PIOS on the ldiskfs file 
system on an OSS.

COW I/O: 

This mode corresponds to the copy overwrite operation where file system blocks that 
are being overwritten were copied to shadow files. Only use this mode if you want to 
see overhead of preserving existing data (in case of overwrite). This mode is valid on 
both Linux and Solaris.
18-16 Lustre 2.0 Operations Manual • June 2010



18.3.3 PIOS Parameters
PIOS has five basic parameters to determine the amount of data that is being written.

ChunkSize(c): 

Amount of data that a thread writes in one attempt. ChunkSize should be a multiple 
of file system block size.

RegionSize(s): 

Amount of data required to fill up a region. PIOS writes a chunksize of data 
continuously until it fills the regionsize. RegionSize should be a multiple of 
ChunkSize.

RegionCount(n): 

Number of regions to write in one or multiple files. The total amount of data written 
by PIOS is RegionSize x RegionCount.

ThreadCount(t): 

Number of threads working on regions.
Chapter 18 Lustre I/O Kit 18-17



Offset(o): 

Distance between two successive regions when all threads are writing to the same 
file. In the case of multiple files, threads start writing in files at Offset bytes.

Parameter Description

--chunknoise = N N is a byte specifier. When performing an I/O task, add a 
random signed integer in the range [-N,N] to the chunksize. 
All regions are still fully written. This randomizes the I/O 
size to some extent. 

--chunksize = N[,N2,N3...] N is a byte specifier and performs I/O in chunks of N kilo-, 
mega-, giga- or terabyte. You can give a comma separated 
list of multiple values. This argument is mutually exclusive 
with --chunksize_low. Note that each thread allocates a 
buffer of size chunksize + chunknoise for use during the 
run.

--chunksize_low=L
--chunksize_high=H
--chunksize_incr=F

Performs a sequence of operations starting with a chunksize 
of L, increasing it by F% each time until chunksize exceeds 
H.

--cleanup Removes files that were created during the run. If there is an 
encounter for existing files, they are over-written. 

--directio
--posixio
--cowio

One of these arguments must be passed to indicate if 
DIRECT I/O, POSIX I/O or COW I/O is used.

--offset=O[,O2,O3...] The argument is a byte specifier or a list of specifiers. Each 
run uses regions at offset multiple of O in a single file. If the 
run targets multiple files, then the I/O writes at offset O in 
each file.

--offset_low=OL
--offset_high=OH
--offset_inc=PH

The arguments are byte specifiers. They generate runs with a 
range of offsets starting at OL, increasing P% until the 
region size exceeds OH. Each of these arguments is 
exclusive with the offset argument.

--prerun=”pre-command” Before each run, executes the pre-command as a shell 
command through the system(3) call. The timestamp of the 
run is appended as the last argument to the pre-command 
string. Typically, this is used to clear statistics or start a data 
collection script when the run starts.

--postrun=”post-command” After each run, executes the post-command as a shell 
command through the system(3) call. The timestamp of the 
run is appended as the last argument to the pre-command 
string. Typically, this is used to append statistics for the run 
or close an open data collection script when the run 
completes.
18-18 Lustre 2.0 Operations Manual • June 2010



--regioncount=N[,N2,N3...] PIOS writes to N regions in a single file or block device or to 
N files.

--regioncount_low=RL
--regioncount_high=RH
--regioncount_inc=P

Generate runs with a range of region counts starting at TL, 
increasing P% until the thread count exceeds RH. Each of 
these arguments is exclusive with the regioncount argument.

--regionnoise=k When generating the next I/O task, do not select the next 
chunk in the next stream, but shift a random number with a 
maximum noise of shifting k regions ahead. The run will 
complete when all regions are fully written or read. This 
merely introduces a randomization of the ordering.

--regionsize=S[,S2,S3...] The argument is a byte specifier or a list of byte specifiers. 
During the run(s), write S bytes to each region.

--regionsize_low=RL
--regionsize_high=RH
--regionsize_inc=P

The arguments are byte specifiers. Generate runs with a 
range of region sizes starting at TL, increasing P% until the 
region size exceeds RH. Each argument is exclusive with the 
regionsize argument.

--threadcount=T[,T2,T3...] PIOS runs with T threads performing I/O. A sequence of 
values may be given.

--threadcount_low=TL
--threadcount_high=TH
--threadcount_inc=TP

Generate runs with a range of thread counts starting at TL, 
increasing  TP% until the thread count exceeds TH. Each of 
these arguments is exclusive with the threadcount argument.

--threaddelay=ms A random amount of noise not exceeding ms is inserted 
between the time that a thread identifies as the next chunk it 
needs to read or write and the time it starts the I/O.

--fpp Where threads write to files:
• fpp indicates files per process behavior where threads 

write to multiple files.
• sff indicates single shared files where all threads write to 

the same file.

--verify-V=timestamp 
[,timestamp2,timestamp3]|-
-verify|-V

Verify a written file or set of files. A single timestamp or 
sequence of timestamps can be given for each run, 
respectively. If no argument is passed, the verification is 
done from timestamps read from the first location of files 
previously written in the test. If sequence is given, then each 
run verifies the timestamp accordingly. If a single timestamp 
is given, then it is verified with all files written.

Parameter Description
Chapter 18 Lustre I/O Kit 18-19



18.3.4 PIOS Examples
To create a 1 GB load with a different number of threads:

In one file:

pios -t 1,2,4, 8,16, 32, 64, 128 -n 128 -c 1M -s 8M -o 8M \ 
--load=posixio -p /mnt/lustre

In multiple files:

pios -t 1,2,4, 8,16, 32, 64, 128 -n 128 -c 1M -s 8M -o 8M \ 
--load=posixio,fpp -p /mnt/lustre

To create a 1 GB load with a different number of chunksizes on ldiskfs with direct 
I/O:

In one file:

pios -t 32 -n 128 -c 128K, 256K, 512K, 1M, 2M, 4M -s 8M -o 8M \ 
--load=directio -p /mnt/lustre

In multiple files:

pios -t 32 -n 128 -c 128K, 256K, 512K, 1M, 2M, 4M -s 8M -o 8M \ 
--load=directio,fpp -p /mnt/lustre

To create a 32 MB to 128 MB load with different RegionSizes on a Solaris zpool:

In one file:

pios -t 8 -n 16 -c 1M -A 2M -B 8M -C 100 -o 8M --load=posixio -p \
/myzpool/

In multiple files:

pios -t 8 -n 16 -c 1M -A 2M -B 8M -C 100 -o 8M --load=posixio, \ 
fpp -p /myzpool/

To read and verify timestamps:

Create a load with PIOS:

pios -t 40 -n 1024 -c 256K -s 4M -o 8M --load=posixio -p 
/mnt/lustre

Keep the same parameters to read: 

pios -t 40 -n 1024 -c 256K -s 4M -o 8M --load=posixio -p \
/mnt/lustre --verify
18-20 Lustre 2.0 Operations Manual • June 2010



18.4 LNET Self-Test
LNET self-test helps site administrators confirm that Lustre Networking (LNET) has 
been properly installed and configured, and that underlying network software and 
hardware are performing according to expectations.

LNET self-test is a kernel module that runs over LNET and LNDs. It is designed to:

■ Test the connection ability of the Lustre network

■ Run regression tests of the Lustre network

■ Test performance of the Lustre network

Note – Apart from the performance impact, LNET self-test is invisible to Lustre. 

18.4.1 Basic Concepts of LNET Self-Test
This section describes basic concepts of LNET self-test, utilities and a sample script.

18.4.1.1 Modules

To run LNET self-test, these modules must be loaded: libcfs, lnet, lnet_selftest and 
one of the klnds (i.e, ksocklnd, ko2iblnd...). To load all necessary modules, run 
modprobe lnet_selftest (recursively loads the modules on which LNET self-test 
depends.

The LNET self-test cluster has two types of nodes:

■ Console node - A single node that controls and monitors the test cluster. It can be 
any node in the test cluster.

■ Test nodes - The nodes that run tests. Test nodes are controlled by the user via the 
console node; the user does not need to log into them directly.

The console and test nodes require all previously-listed modules to be loaded. (The 
userspace test node does not require these modules.)
Chapter 18 Lustre I/O Kit 18-21



Note – Test nodes can be in either kernel or userspace. A console user can invite a 
kernel test node to join the test session by running lst add_group NID, but the 
user cannot actively add a userspace test node to the test-session. However, the 
console user can passively accept a test node to the test session while the test node 
runs lstclient to connect to the console.

18.4.1.2 Utilities

LNET self-test has two user utilities, lst and lstclient.

■ lst - The user interface for the self-test console (run on the console node). It 
provides a list of commands to control the entire test system, such as create 
session, create test groups, etc.

■ lstclient - The userspace LNET self-test program (run on a test node). lstclient is 
linked with userspace LNDs and LNET. lstclient is not needed if a user just wants 
to use kernel space LNET and LNDs.

18.4.1.3 Session

In the context of LNET self-test, a session is a test node that can be associated with 
only one session at a time, to ensure that the session has exclusive use. Almost all 
operations should be performed in a session context. From the console node, a user 
can only operate nodes in his own session. If a session ends, the session context in all 
test nodes is destroyed. 

The console node can be used to create, change or destroy a session (new_session, 
end_session, show_session). For more information, see Session.

18.4.1.4 Console

The console node is the user interface of the LNET self-test system, and can be any 
node in the test cluster. All self-test commands are entered from the console node. 
From the console node, a user can control and monitor the status of the entire test 
cluster (session). The console node is exclusive, meaning that a user cannot control 
two different sessions (LNET self-test clusters) on one node.
18-22 Lustre 2.0 Operations Manual • June 2010



18.4.1.5 Group

An LNET self-test group is just a named collection of nodes. There are no restrictions 
on group membership, i.e., a node can be included in any number of groups, and any 
number of groups can exist in a single LNET self-test session. 

Each node in a group has a rank, determined by the order in which it was added to 
the group, which is used to establish test traffic patterns. 

A user can only control nodes in his/her session. To allocate nodes to the session, the 
user needs to add nodes to a group (of the session). All nodes in a group can be 
referenced by group's name. A node can be allocated to multiple groups of a session.

Note – A console user can associate kernel space test nodes with the session by 
running lst add_group NIDs, but a userspace test node cannot be actively added 
to the session. However, the console user can passively "accept" a test node to 
associate with test session while the test node running lstclient connects to the 
console node, i.e: lstclient --sesid CONSOLE_NID --group NAME).

18.4.1.6 Test

A test generates network load between two arbitrary groups of nodes - the test's 
"from" and "to" groups.  When a test is running, each node in the "from" group sends 
requests to nodes in the "to" group, and receive responses in return. This activity is 
designed to mimic Lustre RPC traffic, i.e. the "from" group acts like a set of clients 
and the "to" group acts like a set of servers. 

The traffic pattern and test intensity is determined several properties, including test 
type, distribution of test nodes, concurrency of test, RDMA operation type, etc. 
Several of the available test parameters are described below.

■ Type: The test type determines the message pattern for a single request/response. 
Supported types are:

■ Ping: Small request / small response. Pings only generate small messages. They 
are useful to determine latency and small message overhead, and to simulate 
Lustre metadata traffic.

■ brw: Small request / bulk / small response. Brws include an additional phase 
where bulk data is either fetched from the request sender (brw write) or sent 
back to it (brw read) before the response is returned. The size of the bulk 
transfer is a test parameter. Brw tests are useful to determine network 
bandwidth and to simulate Lustre I/O traffic.
Chapter 18 Lustre I/O Kit 18-23



■ Distribution: Determines which nodes in the "to" group communicate with 
each node in the "from" group. It allows you to specify a wide range of 
topologies, including one-to-one and all-to-all. Distribution divides the "from" 
group into subsets, which are paired with equivalent subsets from the "to" 
group so only nodes in matching subsets communicate. For example: 

--distribute 1:1 This is the default setting. Each "from" node communicates with 
the same rank (modules "to" group size) "to" node. Note that if there are more 
"from" nodes than "to" nodes, some "from" nodes may share the same "to" 
nodes. Also, if there are more "to" nodes than "from" nodes, some 
higher-ranked "to" nodes will be idle. 

--distribute 1:n (where 'n' is the size of the "to" group). Each "from" node 
communicates with every node in the "to" group.  

■ Concurrency: Determines how many requests each "from" node in a test keeps on 
the wire.

18.4.1.7 Batch

A batch is an arbitrary collection of tests which are started and stopped together; 
they run in parallel. Each test should belong to a batch; tests should not exist 
individually. Users can control a test batch (run, stop); they cannot control individual 
tests. Tests in a batch are non-destructive to the file system, and can be run in a 
normal Lustre environment (provided the performance impact is acceptable).

The simplest batch might contain only a single test - running brw to determine 
whether network bandwidth will be an I/O bottleneck. In this example, the "to" 
group is comprised of Lustre OSSes and the "from" group includes the compute 
nodes. Adding an second test to perform pings from a login node to the MDS could 
tell you how much checkpointing would affect the ls -l process. 
18-24 Lustre 2.0 Operations Manual • June 2010



18.4.1.8 Sample Script

These are the steps to run a sample LNET self-test script simulating the traffic pattern 
of a set of Lustre servers on a TCP network, accessed by Lustre clients on an 
InfiniBand network (connected via LNET routers). In this example, half the clients 
are reading and half the clients are writing.

1. Load libcfs.ko, lnet.ko, ksocklnd.ko and lnet_selftest.ko on all test nodes and 
the console node.

2. Run this script on the console node:

#!/bin/bash

export LST_SESSION=$$

lst new_session read/write

lst add_group servers 192.168.10.[8,10,12-16]@tcp

lst add_group readers 192.168.1.[1-253/2]@o2ib

lst add_group writers 192.168.1.[2-254/2]@o2ib

lst add_batch bulk_rw

lst add_test --batch bulk_rw --from readers --to servers \

brw read check=simple size=1M

lst add_test --batch bulk_rw --from writers --to servers \

brw write check=full size=4K

# start running

lst run bulk_rw

# display server stats for 30 seconds

lst stat servers & sleep 30; kill $!

# tear down

lst end_session

Note – This script can be easily adapted to pass the group NIDs by shell variables or 
command line arguments (making it good for general-purpose use).
Chapter 18 Lustre I/O Kit 18-25



18.4.2 LNET Self-Test Commands
The LNET self-test (lst) utility is used to issue LNET self-test commands. The lst 
utility takes a number of command line arguments. The first argument is the 
command name and subsequent arguments are command-specific.

18.4.2.1 Session

This section lists lst session commands.

Process Environment (LST_SESSION)

The lst utility uses the LST_SESSION environmental variable to identify the session 
locally on the self-test console node. This should be a numeric value that uniquely 
identifies all session processes on the node. It is convenient to set this to the process 
ID of the shell both for interactive use and in shell scripts. Almost all lst commands 
require LST_SESSION to be set.

new_session [--timeout SECONDS] [--force] NAME

Creates a new session.

–-timeout SECONDS Console timeout value of the session. The session ends 
automatically if it remains idle (i.e., no commands are issued) for 
this period.

--force Ends conflicting sessions. This determines who “wins” when one 
session conflicts with another. For example, if there is already an 
active session on this node, then this attempt to create a new 
session fails unless the -force flag is specified. However, if the 
-force flag is specified, then the other session is ended. Similarly, 
if this session attempts to add a node that is already “owned” by 
another session, the -force flag allows this session to “steal” the 
node.

name A human-readable string to print when listing sessions or 
reporting session conflicts.

$ export LST_SESSION=$$

$ lst new_session --force liangzhen
18-26 Lustre 2.0 Operations Manual • June 2010



end_session

Stops all operations and tests in the current session and clears the session’s status.

$ lst end_session

show_session

Shows the session information. This command prints information about the current 
session. It does not require LST_SESSION to be defined in the process environment.

$ lst show_session

18.4.2.2 Group

This section lists lst group commands.

add_group NAME NIDs [NIDs...]

Creates the group and adds a list of test nodes to the group.

update_group NAME [--refresh] [--clean STATE] [--remove NIDs]

Updates the state of nodes in a group or adjusts a group’s membership. This 
command is useful if some nodes have crashed and should be excluded from the 
group.

NAME Name of the group.

NIDs A string that may be expanded into one or more LNET NIDs.

$ lst add_group servers 192.168.10.[35,40-45]@tcp
$ lst add_group clients 192.168.1.[10-100]@tcp 192.168.[2,4].\ 
[10-20]@tcp

–-refresh Refreshes the state of all inactive nodes in the group.

–-clean STATUS Removes nodes with a specified status from the group. Status may be:

active The node is in the current session.

busy The node is now owned by another session.

down The node has been marked down.
Chapter 18 Lustre I/O Kit 18-27



list_group [NAME] [--active] [--busy] [--down] [--unknown] [--all]

Prints information about a group or lists all groups in the current session if no group 
is specified.

unknown The node’s status has yet to be determined.

invalid Any state but active.

–-remove NIDs Removes specified nodes from the group.

$ lst update_group clients --refresh
$ lst update_group clients --clean busy
$ lst update_group clients --clean invalid // \ 
invalid == busy || down || unknown
$ lst update_group clients --remove 192.168.1.[10-20]@tcp

NAME The name of the group.

–-active Lists the active nodes.

–-busy Lists the busy nodes.

–-down Lists the down nodes.

–-unknown Lists unknown nodes.

–-all Lists all nodes.

$ lst list_group

1) clients

2) servers

Total 2 groups

$ lst list_group clients

ACTIVE BUSY DOWN UNKNOWN TOTAL

3 1 2 0 6

$ lst list_group clients --all

192.168.1.10@tcp Active

192.168.1.11@tcp Active

192.168.1.12@tcp Busy

192.168.1.13@tcp Active

192.168.1.14@tcp DOWN

192.168.1.15@tcp DOWN

Total 6 nodes

$ lst list_group clients --busy

192.168.1.12@tcp Busy

Total 1 node
18-28 Lustre 2.0 Operations Manual • June 2010



del_group NAME

Removes a group from the session. If the group is referred to by any test, then the 
operation fails. If nodes in the group are referred to only by this group, then they are 
kicked out from the current session; otherwise, they are still in the current session.

$ lst del_group clients

Userland client (lstclient --sesid NID --group NAME)

Use lstclient to run the userland self-test client. lstclient should be executed after 
creating a session on the console. There are only two mandatory options for lstclient:

Also, lstclient has a mandatory option that enforces LNET to behave as a server (start 
acceptor if the underlying NID needs it, use privileged ports, etc.):

--server_mode

For example:

Client1 $ lstclient --sesid 192.168.1.52@tcp |--group clients --server_mode

Note – Only the super user is allowed to use the --server_mode option.

–-sesid NID The first console’s NID.

–-group NAME The test group to join.

Console $ lst new_session testsession
Client1 $ lstclient --sesid 192.168.1.52@tcp --group clients
Chapter 18 Lustre I/O Kit 18-29



18.4.2.3 Batch and Test

This section lists lst batch and test commands.

add_batch NAME

The default batch (named “batch”) is created when the session is started. However, 
the user can specify a batch name by using add_batch:

$ lst add_batch bulkperf

add_test --batch BATCH [--loop #] [--concurrency #] [--distribute #:#] 
from GROUP --to GROUP TEST ...

Adds a test to batch. For now, TEST can be brw and ping:

–-loop # Loop count of the test.

–-concurrency # Concurrency of the test.

–-from GROUP The source group (test client).

–-to GROUP The target group (test server).

–-distribute #:# The distribution of nodes in clients and servers. The first number of 
distribute is a subset of client (count of nodes in the “from” group). The 
second number of distribute is a subset of server (count of nodes in the 
“to” group); only nodes in two correlative subsets will talk. The 
following examples are illustrative:

Clients: (C1, C2, C3, C4, C5, C6)

Server: (S1, S2, S3)

--distribute 1:1

(C1->S1), (C2->S2), (C3->S3), (C4->S1), (C5->S2), (C6->S3) 
\ /* -> means test conversation */ 
--distribute 2:1

(C1,C2->S1), (C3,C4->S2), (C5,C6->S3)

--distribute 3:1

(C1,C2,C3->S1), (C4,C5,C6->S2), (NULL->S3)

--distribute 3:2

(C1,C2,C3->S1,S2), (C4,C5,C6->S3,S1)

--distribute 4:1

(C1,C2,C3,C4->S1), (C5,C6->S2), (NULL->S3)

--distribute 4:2

(C1,C2,C3,C4->S1,S2), (C5, C6->S3, S1)

--distribute 6:3

(C1,C2,C3,C4,C5,C6->S1,S2,S3)
18-30 Lustre 2.0 Operations Manual • June 2010



There are only two test types:

list_batch [NAME] [--test INDEX] [--active] [--invalid] [--server]

Lists batches in the current session or lists client|server nodes in a batch or a test.

–-ping There are no private parameters for the ping test.

–-brw The brw test can have several options:

read | write Read or write. The default is read.

size=# | #K | #M I/O size can be bytes, KB or MB (i.e., size=1024, size=4K, 
size=1M. The default is 4K bytes.

check=full | simple A data validation check (checksum of data). The default is 
no-check. As an example:

$ lst add_group clients 192.168.1.[10-17]@tcp
$ lst add_group servers 192.168.10.[100-103]@tcp
$ lst add_batch bulkperf
$ lst add_test --batch bulkperf --loop 100 \
--concurrency 4 --distribute 4:2 --from clients \
brw WRITE size=16K
// add brw (WRITE, 16 KB) test to batch bulkperf, \
the test will run in 4 workitem, each 
// 192.168.1.[10-13] will write to 
192.168.10.[100,101]
// 192.168.1.[14-17] will write to 
192.168.10.[102,103]

–-test INDEX Lists tests in a batch. If no option is used, all tests in the batch are listed. If 
the option is used, only specified tests in the batch are listed.

$ lst list_batch

bulkperf

$ lst list_batch bulkperf

Batch: bulkperf Tests: 1 State: Idle

ACTIVE BUSY DOWN UNKNOWN TOTAL

client 8 0 0 0 8

server 4 0 0 0 4

Test 1(brw) (loop: 100, concurrency: 4)

ACTIVE BUSY DOWN UNKNOWN TOTAL

client 8 0 0 0 8

server 4 0 0 0 4

$ lst list_batch bulkperf --server --active

192.168.10.100@tcp Active

192.168.10.101@tcp Active

192.168.10.102@tcp Active

192.168.10.103@tcp Active
Chapter 18 Lustre I/O Kit 18-31



run NAME

Runs the batch.

$ lst run bulkperf

stop NAME

Stops the batch.

$ lst stop bulkperf

query NAME [--test INDEX] [--timeout #] [--loop #] [--delay #] [--all]

Queries the batch status.

–-test INDEX Only queries the specified test. The test INDEX starts from 1.

–-timeout # The timeout value to wait for RPC. The default is 5 seconds.

–-loop # The loop count of the query.

–-delay # The interval of each query. The default is 5 seconds.

–-all The list status of all nodes in a batch or a test.

$ lst run bulkperf

$ lst query bulkperf --loop 5 --delay 3

Batch is running

Batch is running

Batch is running

Batch is running

Batch is running

$ lst query bulkperf --all

192.168.1.10@tcp Running

192.168.1.11@tcp Running

192.168.1.12@tcp Running

192.168.1.13@tcp Running

192.168.1.14@tcp Running

192.168.1.15@tcp Running

192.168.1.16@tcp Running

192.168.1.17@tcp Running

$ lst stop bulkperf

$ lst query bulkperf

Batch is idle
18-32 Lustre 2.0 Operations Manual • June 2010



18.4.2.4 Other Commands

This section lists other lst commands.

ping [-session] [--group NAME] [--nodes NIDs] [--batch name] [--server] [--timeout #]

Sends a “hello” query to the nodes.

–-session Pings all nodes in the current session.

–-group NAME Pings all nodes in a specified group.

–-nodes NIDs Pings all specified nodes.

–-batch NAME Pings all client nodes in a batch.

–-server Sends RPC to all server nodes instead of client nodes. This option is only 
used with batch NAME.

–-timeout # The RPC timeout value.

$ lst ping 192.168.10.[15-20]@tcp
192.168.1.15@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.16@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.17@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.18@tcp Busy [session: Isaac id: 192.168.10.10@tcp]
192.168.1.19@tcp Down [session: <NULL> id: LNET_NID_ANY]
192.168.1.20@tcp Down [session: <NULL> id: LNET_NID_ANY]
Chapter 18 Lustre I/O Kit 18-33



stat [--bw] [--rate] [--read] [--write] [--max] [--min] [--avg] " " [--timeout #] [--delay #] 
GROUP|NIDs [GROUP|NIDs]

The collection performance and RPC statistics of one or more nodes. 

Specifying a group name (GROUP) causes statistics to be gathered for all nodes in a 
test group. For example:

$ lst stat servers

where servers is the name of a test group created by lst add_group

Specifying a NID range (NIDs) causes statistics to be gathered for selected nodes. For 
example:

$ lst stat 192.168.0.[1-100/2]@tcp

Currently, only LNET performance statistics are available.2 By default, all statistics 
information is displayed. Users can specify additional information with these 
options.

2. In the future, more statistics will be supported.

–-bw Displays the bandwidth of the specified group/nodes.

–-rate Displays the rate of RPCs of the specified group/nodes.

–-read Displays the read statistics of the specified group/nodes.

–-write Displays the write statistics of the specified group/nodes.

–-max Displays the maximum value of the statistics.

–-min Displays the minimum value of the statistics.

–-avg Displays the average of the statistics.

–-timeout # The timeout of the statistics RPC. The default is 5 seconds.

–-delay # The interval of the statistics (in seconds).

$ lst run bulkperf
$ lst stat clients
[LNet Rates of clients]
[W] Avg: 1108 RPC/s Min: 1060 RPC/s Max: 1155 RPC/s
[R] Avg: 2215 RPC/s Min: 2121 RPC/s Max: 2310 RPC/s
[LNet Bandwidth of clients]
[W] Avg: 16.60 MB/s Min: 16.10 MB/s Max: 17.1 MB/s
[R] Avg: 40.49 MB/s Min: 40.30 MB/s Max: 40.68 MB/s
18-34 Lustre 2.0 Operations Manual • June 2010



show_error [--session] [GROUP]|[NIDs] ...

Lists the number of failed RPCs on test nodes.

–-session Lists errors in the current test session. With this option, historical RPC errors are 
not listed. 
$ lst show_error clients
clients

12345-192.168.1.15@tcp: [Session: 1 brw errors, 0 ping errors] \
[RPC: 20 errors, 0 dropped, 
12345-192.168.1.16@tcp: [Session: 0 brw errors, 0 ping errors] \
[RPC: 1 errors, 0 dropped, Total 2 error nodes in clients

$ lst show_error --session clients

clients

12345-192.168.1.15@tcp: [Session: 1 brw errors, 0 ping errors]

Total 1 error nodes in clients
Chapter 18 Lustre I/O Kit 18-35



18-36 Lustre 2.0 Operations Manual • June 2010



CHAPTER 19

Lustre Recovery

This chapter describes how to recover Lustre, and includes the following sections:

■ Recovery Overview

■ Metadata Replay

■ Reply Reconstruction

■ Version-based Recovery

■ Commit on Share

■ Recovering from Corruption in the Lustre File System
19-1



19.1 Recovery Overview
Lustre's recovery support is responsible for dealing with node or network failure and 
returning the cluster to a consistent, performant state. Because Lustre allows servers 
to perform asynchronous update operations to the on-disk file system (i.e., the server 
can reply without waiting for the update to synchronously commit to disk), the 
clients may have state in memory that is newer than what the server can recover 
from disk after a crash. 

A handful of different types of failures can cause recovery to occur: 

■ Client (compute node) failure 

■ MDS failure (and failover) 

■ OST failure (and failover) 

■ Transient network partition 

Currently, all Lustre failure and recovery operations are based on the concept of 
connection failure; all imports or exports associated with a given connection are 
considered to fail if any of them fail. 

For information on Lustre recovery, see Metadata Replay. For information on 
recovering from a corrupt file system, see Commit on Share. For information on 
resolving orphaned objects, a common issue after recovery, see Working with 
Orphaned Objects.

19.1.1 Client Failure
Lustre's support for recovery from client failure is based on lock revocation and other 
resources, so surviving clients can continue their work uninterrupted. If a client fails 
to timely respond to a blocking lock callback from the Distributed Lock Manager 
(DLM) or fails to communicate with the server in a long period of time (i.e., no 
pings), the client is forcibly removed from the cluster (evicted). This enables other 
clients to acquire locks blocked by the dead client's locks, and also frees resources 
(file handles, export data) associated with that client. Note that this scenario can be 
caused by a network partition, as well as an actual client node system failure. 
Network Partition describes this case in more detail.
19-2 Lustre 2.0 Operations Manual • June 2010



19.1.2 Client Eviction 
If a client is not behaving properly from the server's point of view, it will be evicted. 
This ensures that the whole file system can continue to function in the presence of 
failed or misbehaving clients. An evicted client must invalidate all locks, which in 
turn, results in all cached inodes becoming invalidated and all cached data being 
flushed. 

Reasons why a client might be evicted: 

■ Failure to respond to a server request in a timely manner 

■ Blocking lock callback (i.e., client holds lock that another client/server wants) 

■ Lock completion callback (i.e., client is granted lock previously held by another 
client) 

■ Lock glimpse callback (i.e., client is asked for size of object by another client) 

■ Server shutdown notification (with simplified interoperability) 

■ Failure to ping the server in a timely manner, unless the server is receiving no RPC 
traffic at all (which may indicate a network partition). 

19.1.3 MDS Failure (Failover)
Highly-available (HA) Lustre operation requires that the metadata server have a peer 
configured for failover, including the use of a shared storage device for the MDT 
backing file system. The actual mechanism for detecting peer failure, power off 
(STONITH) of the failed peer (to prevent it from continuing to modify the shared 
disk), and takeover of the Lustre MDS service on the backup node depends on 
external HA software such as Heartbeat. It is also possible to have MDS recovery 
with a single MDS node. In this case, recovery will take as long as is needed for the 
single MDS to be restarted.

When clients detect an MDS failure (either by timeouts of in-flight requests or 
idle-time ping messages), they connect to the new backup MDS and use the Metadata 
Replay protocol. Metadata Replay is responsible for ensuring that the backup MDS 
re-acquires state resulting from transactions whose effects were made visible to 
clients, but which were not committed to the disk.

The reconnection to a new (or restarted) MDS is managed by the file system 
configuration loaded by the client when the file system is first mounted. If a failover 
MDS has been configured (using the --failnode= option to mkfs.lustre or 
tunefs.lustre), the client tries to reconnect to both the primary and backup MDS 
until one of them responds that the failed MDT is again available. At that point, the 
client begins recovery. For more information, see Metadata Replay.
Chapter 19 Lustre Recovery 19-3



Transaction numbers are used to ensure that operations are replayed in the order 
they were originally performed, so that they are guaranteed to succeed and present 
the same filesystem state as before the failure. In addition, clients inform the new 
server of their existing lock state (including locks that have not yet been granted). All 
metadata and lock replay must complete before new, non-recovery operations are 
permitted. In addition, only clients that were connected at the time of MDS failure 
are permitted to reconnect during the recovery window, to avoid the introduction of 
state changes that might conflict with what is being replayed by 
previously-connected clients. 

19.1.4 OST Failure (Failover)
When an OST fails or has communication problems with the client, the default action 
is that the corresponding OSC enters recovery, and I/O requests going to that OST 
are blocked waiting for OST recovery or failover. It is possible to administratively 
mark the OSC as inactive on the client, in which case file operations that involve the 
failed OST will return an IO error (-EIO). Otherwise, the application waits until the 
OST has recovered or the client process is interrupted (e.g. ,with CTRL-C). 

The MDS (via the LOV) detects that an OST is unavailable and skips it when 
assigning objects to new files. When the OST is restarted or re-establishes 
communication with the MDS, the MDS and OST automatically perform orphan 
recovery to destroy any objects that belong to files that were deleted while the OST 
was unavailable. For more information, see Working with Orphaned Objects.

While the OSC to OST operation recovery protocol is the same as that between the 
MDC and MDT using the Metadata Replay protocol, typically the OST commits bulk 
write operations to disk synchronously and each reply indicates that the request is 
already committed and the data does not need to be saved for recovery. In some 
cases, the OST replies to the client before the operation is committed to disk (e.g. 
truncate, destroy, setattr, and I/O operations in very new versions of Lustre), and 
normal replay and resend handling is done, including resending of the bulk writes. 
In this case, the client keeps a copy of the data available in memory until the server 
indicates that the write has committed to disk. 

To force an OST recovery, unmount the OST and then mount it again. If the OST was 
connected to clients before it failed, then a recovery process starts after the remount, 
enabling clients to reconnect to the OST and replay transactions in their queue. When 
the OST is in recovery mode, all new client connections are refused until the recovery 
finishes. The recovery is complete when either all previously-connected clients 
reconnect and their transactions are replayed or a client connection attempt times 
out. If a connection attempt times out, then all clients waiting to reconnect (and their 
transactions) are lost. 
19-4 Lustre 2.0 Operations Manual • June 2010



Note – If you know an OST will not recover a previously-connected client (if, for 
example, the client has crashed), you can manually abort the recovery using this 
command:

lctl --device <OST device number> abort_recovery

To determine an OST’s device number and device name, run the lctl dl command. 
Sample lctl dl command output is shown below:

7 UP obdfilter ddn_data-OST0009 ddn_data-OST0009_UUID 1159

In this example, 7 is the OST device number. The device name is 
ddn_data-OST0009. In most instances, the device name can be used in place of the 
device number.

19.1.5 Network Partition
Network failures may be transient. To avoid invoking recovery, the client tries, 
initially, to re-send any timed out request to the server. If the resend also fails, the 
client tries to re-establish a connection to the server. Clients can detect harmless 
partition upon reconnect if the server has not had any reason to evict the client.

If a request was processed by the server, but the reply was dropped (i.e., did not 
arrive back at the client), the server must reconstruct the reply when the client 
resends the request, rather than performing the same request twice. 

19.1.6 Failed Recovery
In the case of failed recovery, a client is evicted by the server and must reconnect 
after having flushed its saved state related to that server, as described in Client 
Eviction, above. Failed recovery might occur for a number of reasons, including:

■ Failure of recovery 

■ Recovery fails if the operations of one client directly depend on the operations 
of another client that failed to participate in recovery. Otherwise, Version Based 
Recovery (VBR) allows recovery to proceed for all of the connected clients, and 
only missing clients are evicted. 

■ Manual abort of recovery 

■ Manual eviction by the administrator
Chapter 19 Lustre Recovery 19-5



19.2 Metadata Replay
Highly available Lustre operation requires that the MDS have a peer configured for 
failover, including the use of a shared storage device for the MDS backing file 
system. When a client detects an MDS failure, it connects to the new MDS and uses 
the metadata replay protocol to replay its requests. 

Metadata replay ensures that the failover MDS re-accumulates state resulting from 
transactions whose effects were made visible to clients, but which were not 
committed to the disk.

19.2.1 XID Numbers
Each request sent by the client contains an XID number, which is a client-unique, 
monotonically increasing 64-bit integer. The initial value of the XID is chosen so that 
it is highly unlikely that the same client node reconnecting to the same server after a 
reboot would have the same XID sequence. The XID is used by the client to order all 
of the requests that it sends, until such a time that the request is assigned a 
transaction number. The XID is also used in Reply Reconstruction to uniquely 
identify per-client requests at the server.

19.2.2 Transaction Numbers
Each client request processed by the server that involves any state change (metadata 
update, file open, write, etc., depending on server type) is assigned a transaction 
number by the server that is a target-unique, monontonically increasing, server-wide 
64-bit integer. The transaction number for each file system-modifying request is sent 
back to the client along with the reply to that client request. The transaction numbers 
allow the client and server to unambiguously order every modification to the file 
system in case recovery is needed.

Each reply sent to a client (regardless of request type) also contains the last 
committed transaction number that indicates the highest transaction number 
committed to the file system. The backing file systems that Lustre uses (ext3/4, ZFS) 
enforce the requirement that any earlier disk operation will always be committed to 
disk before a later disk operation, so the last committed transaction number also 
reports that any requests with a lower transaction number have been committed to 
disk. 
19-6 Lustre 2.0 Operations Manual • June 2010



19.2.3 Replay and Resend
Lustre recovery can be separated into two distinct types of operations: replay and 
resend. 

Replay operations are those for which the client received a reply from the server that 
the operation had been successfully completed. These operations need to be redone 
in exactly the same manner after a server restart as had been reported before the 
server failed. Replay can only happen if the server failed; otherwise it will not have 
lost any state in memory.

Resend operations are those for which the client never received a reply, so their final 
state is unknown to the client. The client sends unanswered requests to the server 
again in XID order, and again awaits a reply for each one. In some cases, resent 
requests have been handled and committed to disk by the server (possibly also 
having dependent operations committed), in which case, the server performs reply 
reconstruction for the lost reply. In other cases, the server did not receive the lost 
request at all and processing proceeds as with any normal request. These are what 
happen in the case of a network interruption. It is also possible that the server 
received the request, but was unable to reply or commit it to disk before failure.

19.2.4 Client Replay List
All file system-modifying requests have the potential to be required for server state 
recovery (replay) in case of a server failure. Replies that have an assigned transaction 
number that is higher than the last committed transaction number received in any 
reply from each server are preserved for later replay in a per-server replay list. As 
each reply is received from the server, it is checked to see if it has a higher last 
committed transaction number than the previous highest last committed number. 
Most requests that now have a lower transaction number can safely be removed from 
the replay list. One exception to this rule is for open requests, which need to be saved 
for replay until the file is closed so that the MDS can properly reference count 
open-unlinked files. 
Chapter 19 Lustre Recovery 19-7



19.2.5 Server Recovery
A server enters recovery if it was not shut down cleanly. If, upon startup, if any client 
entries are in the last_rcvd file for any previously connected clients, the server enters 
recovery mode and waits for these previously-connected clients to reconnect and 
begin replaying or resending their requests. This allows the server to recreate state 
that was exposed to clients (a request that completed successfully) but was not 
committed to disk before failure.

In the absence of any client connection attempts, the server waits indefinitely for the 
clients to reconnect. This is intended to handle the case where the server has a 
network problem and clients are unable to reconnect and/or if the server needs to be 
restarted repeatedly to resolve some problem with hardware or software. Once the 
server detects client connection attempts - either new clients or previously-connected 
clients - a recovery timer starts and forces recovery to finish in a finite time regardless 
of whether the previously-connected clients are available or not.

If no client entries are present in the last_rcvd file, or if the administrator manually 
aborts recovery, the server does not wait for client reconnection and proceeds to 
allow all clients to connect.

As clients connect, the server gathers information from each one to determine how 
long the recovery needs to take. Each client reports its connection UUID, and the 
server does a lookup for this UUID in the last_rcvd file to determine if this client was 
previously connected. If not, the client is refused connection and it will retry until 
recovery is completed. Each client reports its last seen transaction, so the server 
knows when all transactions have been replayed. The client also reports the amount 
of time that it was previously waiting for request completion so that the server can 
estimate how long some clients might need to detect the server failure and reconnect.

If the client times out during replay, it attempts to reconnect. If the client is unable to 
reconnect, REPLAY fails and it returns to DISCON state. It is possible that clients will 
timeout frequently during REPLAY, so reconnection should not delay an already 
slow process more than necessary. We can mitigate this by increasing the timeout 
during replay. 
19-8 Lustre 2.0 Operations Manual • June 2010



19.2.6 Request Replay
If a client was previously connected, it gets a response from the server telling it that 
the server is in recovery and what the last committed transaction number on disk is. 
The client can then iterate through its replay list and use this last committed 
transaction number to prune any previously-committed requests. It replays any 
newer requests to the server in transaction number order, one at a time, waiting for a 
reply from the server before replaying the next request.

Open requests that are on the replay list may have a transaction number lower than 
the server's last committed transaction number. The server processes those open 
requests immediately. The server then processes replayed requests from all of the 
clients in transaction number order, starting at the last committed transaction 
number to ensure that the state is updated on disk in exactly the same manner as it 
was before the crash. As each replayed request is processed, the last committed 
transaction is incremented. If the server receives a replay request from a client that is 
higher than the current last committed transaction, that request is put aside until 
other clients provide the intervening transactions. In this manner, the server replays 
requests in the same sequence as they were previously executed on the server until 
either all clients are out of requests to replay or there is a gap in a sequence. 

19.2.7 Gaps in the Replay Sequence
In some cases, a gap may occur in the reply sequence. This might be caused by lost 
replies, where the request was processed and committed to disk but the reply was 
not received by the client. It can also be caused by clients missing from recovery due 
to partial network failure or client death.

In the case where all clients have reconnected, but there is a gap in the replay 
sequence the only possibility is that some requests were processed by the server but 
the reply was lost. Since the client must still have these requests in its resend list, 
they are processed after recovery is finished.

In the case where all clients have not reconnected, it is likely that the failed clients 
had requests that will no longer be replayed. The VBR feature is used to determine if 
a request following a transaction gap is safe to be replayed. Each item in the file 
system (MDS inode or OST object) stores on disk the number of the last transaction 
in which it was modified. Each reply from the server contains the previous version 
number of the objects that it affects. During VBR replay, the server matches the 
previous version numbers in the resend request against the current version number. 
If the versions match, the request is the next one that affects the object and can be 
safely replayed. For more information, see Version-based Recovery.
Chapter 19 Lustre Recovery 19-9



19.2.8 Lock Recovery
If all requests were replayed successfully and all clients reconnected, clients then do 
lock replay locks -- that is, every client sends information about every lock it holds 
from this server and its state (whenever it was granted or not, what mode, what 
properties and so on), and then recovery completes successfully. Currently, Lustre 
does not do lock verification and just trusts clients to present an accurate lock state. 
This does not impart any security concerns since Lustre 1.x clients are trusted for 
other information (e.g. user ID) during normal operation also.

After all of the saved requests and locks have been replayed, the client sends an 
MDS_GETSTATUS request with last-replay flag set. The reply to that request is held 
back until all clients have completed replay (sent the same flagged getstatus request), 
so that clients don't send non-recovery requests before recovery is complete. 

19.2.9 Request Resend
Once all of the previously-shared state has been recovered on the server (the target 
file system is up-to-date with client cache and the server has recreated locks 
representing the locks held by the client), the client can resend any requests that did 
not receive an earlier reply. This processing is done like normal request processing, 
and, in some cases, the server may do reply reconstruction. 
19-10 Lustre 2.0 Operations Manual • June 2010



19.3 Reply Reconstruction
When a reply is dropped, the MDS needs to be able to reconstruct the reply when the 
original request is re-sent. This must be done without repeating any non-idempotent 
operations, while preserving the integrity of the locking system. In the event of MDS 
failover, the information used to reconstruct the reply must be serialized on the disk 
in transactions that are joined or nested with those operating on the disk.

19.3.1 Required State
For the majority of requests, it is sufficient for the server to store three pieces of data 
in the last_rcvd file: 

■ XID of the request 

■ Resulting transno (if any) 

■ Result code (req->rq_status) 

For open requests, the "disposition" of the open must also be stored. 

19.3.2 Reconstruction of Open Replies
An open reply consists of up to three pieces of information (in addition to the 
contents of the "request log"): 

■ File handle

■ Lock handle 

■ mds_body with information about the file created (for O_CREAT) 

The disposition, status and request data (re-sent intact by the client) are sufficient to 
determine which type of lock handle was granted, whether an open file handle was 
created, and which resource should be described in the mds_body. 
Chapter 19 Lustre Recovery 19-11



Finding the File Handle

The file handle can be found in the XID of the request and the list of per-export open 
file handles. The file handle contains the resource/FID.

Finding the Resource/fid

The file handle contains the resource/fid.

Finding the Lock Handle

The lock handle can be found by walking the list of granted locks for the resource 
looking for one with the appropriate remote file handle (present in the re-sent 
request). Verify that the lock has the right mode (determined by performing the 
disposition/request/status analysis above) and is granted to the proper client. 
19-12 Lustre 2.0 Operations Manual • June 2010



19.4 Version-based Recovery
The Version-based Recovery (VBR) feature improves Lustre reliability in cases where 
client requests (RPCs) fail to replay during recovery1.

In pre-VBR versions of Lustre, if the MGS or an OST went down and then recovered, 
a recovery process was triggered in which clients attempted to replay their requests. 
Clients were only allowed to replay RPCs in serial order. If a particular client could 
not replay its requests, then those requests were lost as well as the requests of clients 
later in the sequence. The ''downstream'' clients never got to replay their requests 
because of the wait on the earlier client’s RPCs. Eventually, the recovery period 
would time out (so the component could accept new requests), leaving some number 
of clients evicted and their requests and data lost. 

With VBR, the recovery mechanism does not result in the loss of clients or their data, 
because changes in inode versions are tracked, and more clients are able to 
reintegrate into the cluster. With VBR, inode tracking looks like this:

■ Each inode2 stores a version, that is, the number of the last transaction (transno) in 
which the inode was changed.

■ When an inode is about to be changed, a pre-operation version of the inode is 
saved in the client’s data.

■ The client keeps the pre-operation inode version and the post-operation version 
(transaction number) for replay, and sends them in the event of a server failure.

■ If the pre-operation version matches, then the request is replayed. The 
post-operation version is assigned on all inodes modified in the request.

Note – An RPC can contain up to four pre-operation versions, because several 
inodes can be involved in an operation. In the case of a ''rename'' operation, four 
different inodes can be modified.

1. There are two scenarios under which client RPCs are not replayed: 

(1) Non-functioning or isolated clients do not reconnect, and they cannot replay their RPCs, causing a gap in 
the replay sequence. These clients get errors and are evicted. 

(2) Functioning clients connect, but they cannot replay some or all of their RPCs that occurred after the gap 
caused by the non-functioning/isolated clients. These clients get errors (caused by the failed clients). With 
VBR, these requests have a better chance to replay because the "gaps" are only related to specific files that the 
missing client(s) changed.

2. Usually, there are two inodes, a parent and a child.
Chapter 19 Lustre Recovery 19-13



During normal operation, the server:

■ Updates the versions of all inodes involved in a given operation

■ Returns the old and new inode versions to the client with the reply

When the recovery mechanism is underway, VBR follows these steps:

1. VBR only allows clients to replay transactions if the affected inodes have the 
same version as during the original execution of the transactions, even if there 
is gap in transactions due to a missed client.

2. The server attempts to execute every transaction that the client offers, even if it 
encounters a re-integration failure.

3. When the replay is complete, the client and server check if a replay failed on 
any transaction because of inode version mismatch. If the versions match, the 
client gets a successful re-integration message. If the versions do not match, 
then the client is evicted.

VBR recovery is fully transparent to users. It may lead to slightly longer recovery 
times if the cluster loses several clients during server recovery.

19.4.1 VBR Messages
The VBR feature is built into the Lustre recovery functionality. It cannot be disabled. 
These are some VBR messages that may be displayed:

DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");

This message indicates why the client was evicted. No action is needed. 

CWARN("%s: version recovery fails, reconnecting\n");

This message indicates why the recovery failed. No action is needed.

19.4.2 Tips for Using VBR
VBR will be successful for clients which do not share data with other client. 
Therefore, the strategy for reliable use of VBR is to store a client’s data in its own 
directory, where possible. VBR can recover these clients, even if other clients are lost. 
19-14 Lustre 2.0 Operations Manual • June 2010



19.5 Commit on Share
Lustre 2.0 introduces the commit-on-share (COS) feature, which makes Lustre 
recovery more reliable by preventing missing clients from causing cascading 
evictions of other clients. With COS enabled, if some Lustre clients miss the recovery 
window after a reboot or a server failure, the remaining clients are not evicted. 

Note – The commit-on-share feature is enabled, by default.

19.5.1 Working with Commit on Share
To illustrate how COS works, let's first look at the old recovery scenario. After a 
service restart, the MDS would boot and enter recovery mode. Clients began 
reconnecting and replaying their uncommitted transactions. Clients could replay 
transactions independently as long as their transactions did not depend on each 
other (one client's transactions did not depend on a different client's transactions). 
The MDS is able to determine whether one transaction is dependent on another 
transaction via the Version-based Recovery feature. 

If there was a dependency between client transactions (for example, creating and 
deleting the same file), and one or more clients did not reconnect in time, then some 
clients may have been evicted because their transactions depended on transactions 
from the missing clients. Evictions of those clients caused more clients to be evicted 
and so on, resulting in "cascading" client evictions. 

COS addresses the problem of cascading evictions by eliminating dependent 
transactions between clients. It ensures that one transaction is committed to disk if 
another client performs a transaction dependent on the first one. With no dependent, 
uncommitted transactions to apply, the clients replay their requests independently 
without the risk of being evicted. 
Chapter 19 Lustre Recovery 19-15



19.5.2 Tuning Commit On Share
Commit on Share can be enabled or disabled using the mdt.commit_on_sharing 
tunable (0/1). This tunable can be set when the MDS is created (mkfs.lustre) or when 
the Lustre file system is active, using the lctl set/get_param or lctl 
conf_param commands.

To set a default value for COS (disable/enable) when the file system is created, use: 

--param mdt.commit_on_sharing=0/1

To disable or enable COS when the file system is running, use: 

lctl set_param mdt.*.commit_on_sharing=0/1

Note – Enabling COS may cause the MDS to do a large number of synchronous disk 
operations, hurting performance. Placing the ldiskfs journal on a low-latency external 
device may improve file system performance.

19.6 Recovering from Errors or Corruption on 
a Backing File System
When an OSS, MDS, or MGS server crash occurs, it is not necessary to run e2fsck on 
the file system. Ext3 journaling ensures that the file system remains coherent. The 
backing file systems are never accessed directly from the client, so client crashes are 
not relevant.

The only time it is REQUIRED that e2fsck be run on a device is when an event causes 
problems that ext3 journaling is unable to handle, such as a hardware device failure 
or I/O error. If the ext3 kernel code detects corruption on the disk, it mounts the file 
system as read-only to prevent further corruption, but still allows read access to the 
device. This appears as error "-30" (EROFS) in the syslogs on the server, e.g.:

Dec 29 14:11:32 mookie kernel: LDISKFS-fs error (device sdz): 
ldiskfs_lookup: unlinked inode 5384166 in dir #145170469

Dec 29 14:11:32 mookie kernel: Remounting filesystem read-only

In such a situation, it is normally required that e2fsck only be run on the bad device 
before placing the device back into service.

In the vast majority of cases, Lustre can cope with any inconsistencies it finds on the 
disk and between other devices in the file system.
19-16 Lustre 2.0 Operations Manual • June 2010



Note – lfsck is rarely required for Lustre operation.

For problem analysis, it is strongly recommended that e2fsck be run under a logger, 
like script, to record all of the output and changes that are made to the file system in 
case this information is needed later.

If time permits, it is also a good idea to first run e2fsck in non-fixing mode (-n 
option) to assess the type and extent of damage to the file system. The drawback is 
that in this mode, e2fsck does not recover the file system journal, so there may 
appear to be file system corruption when none really exists.

To address concern about whether corruption is real or only due to the journal not 
being replayed, you can briefly mount and unmount the ext3 filesystem directly on 
the node with Lustre stopped (NOT via Lustre), using a command similar to:

mount -t ldiskfs /dev/{ostdev} /mnt/ost; umount /mnt/ost

This causes the journal to be recovered.

The e2fsck utility works well when fixing file system corruption (better than similar 
file system recovery tools and a primary reason why ext3 was chosen over other file 
systems for Lustre). However, it is often useful to identify the type of damage that 
has occurred so an ext3 expert can make intelligent decisions about what needs 
fixing, in place of e2fsck.

root# {stop lustre services for this device, if running} 

root# script /tmp/e2fsck.sda 

Script started, file is /tmp/e2fsck.sda 

root# mount -t ldiskfs /dev/sda /mnt/ost 

root# umount /mnt/ost 

root# e2fsck -fn /dev/sda   # don't fix file system, just check for 
corruption 

: 

[e2fsck output] 

: 

root# e2fsck -fp /dev/sda   # fix filesystem using "prudent" answers 
(usually 'y')

In addition, the e2fsprogs package contains the lfsck tool, which does distributed 
coherency checking for the Lustre file system after e2fsck has been run. Running 
lfsck is NOT required in a large majority of cases, at a small risk of having some 
leaked space in the file system. To avoid a lengthy downtime, it can be run (with 
care) after Lustre is started. 
Chapter 19 Lustre Recovery 19-17



19.7 Recovering from Corruption in the 
Lustre File System
In cases where the MDS or an OST becomes corrupt, you can run a distributed check 
on the file system to determine what sort of problems exist. Use lfsck to correct any 
defects found.

1. Stop the Lustre file system.

2. Run e2fsck -f on the individual MDS / OST that had problems to fix any 
local file system damage. 

We recommend running e2fsck under script, to create a log of changes made to the 
file system in case it is needed later. After e2fsck is run, bring up the file system, if 
necessary, to reduce the outage window. 

3. Run a full e2fsck of the MDS to create a database for lfsck. It is critical to use 
the -n option for a mounted file system, otherwise you will corrupt the file 
system. 

e2fsck -n -v --mdsdb /tmp/mdsdb /dev/{mdsdev}

The mdsdb file can grow fairly large, depending on the number of files in the file 
system (10 GB or more for millions of files, though the actual file size is larger 
because the file is sparse). It is quicker to write the file to a local file system due to 
seeking and small writes. Depending on the number of files, this step can take 
several hours to complete. 

Example

e2fsck -n -v --mdsdb /tmp/mdsdb /dev/sdb

e2fsck 1.39.cfs1 (29-May-2006)

Warning: skipping journal recovery because doing a read-only 
filesystem check.

lustre-MDT0000 contains a file system with errors, check forced.

Pass 1: Checking inodes, blocks, and sizes

MDS: ost_idx 0 max_id 288

MDS: got 8 bytes = 1 entries in lov_objids

MDS: max_files = 13

MDS: num_osts = 1

mds info db file written

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

Free blocks count wrong (656160, counted=656058).
19-18 Lustre 2.0 Operations Manual • June 2010



Fix? no

Free inodes count wrong (786419, counted=786036).

Fix? no

Pass 6: Acquiring information for lfsck

MDS: max_files = 13

MDS: num_osts = 1

MDS: 'lustre-MDT0000_UUID' mdt idx 0: compat 0x4 rocomp 0x1 incomp 
0x4

lustre-MDT0000: ******* WARNING: Filesystem still has errors 
*******

13 inodes used (0%)

2 non-contiguous inodes (15.4%)

# of inodes with ind/dind/tind blocks: 0/0/0

130272 blocks used (16%)

0 bad blocks

1 large file

296 regular files

91 directories

0 character device files

0 block device files

0 fifos

0 links

0 symbolic links (0 fast symbolic links)

0 sockets

--------

387 files

4. Make this file accessible on all OSTs, either by using a shared file system or 
copying the file to the OSTs. The pdcp command is useful here.

The pdcp command (installed with pdsh), can be used to copy files to groups of 
hosts. Pdcp is available here: 

http://sourceforge.net/projects/pdsh

5. Run a similar e2fsck step on the OSTs. The e2fsck --ostdb command can be 
run in parallel on all OSTs.

e2fsck -n -v --mdsdb /tmp/mdsdb --ostdb /tmp/{ostNdb} \
/dev/{ostNdev}

The mdsdb file is read-only in this step; a single copy can be shared by all OSTs. 

Note – If the OSTs do not have shared file system access to the MDS, a stub mdsdb 
file, {mdsdb}.mdshdr, is generated. This can be used instead of the full mdsdb file. 
Chapter 19 Lustre Recovery 19-19

http://sourceforge.net/projects/pdsh


Example:

[root@oss161 ~]# e2fsck -n -v --mdsdb /tmp/mdsdb --ostdb \ 
/tmp/ostdb /dev/sda 

e2fsck 1.39.cfs1 (29-May-2006)

Warning: skipping journal recovery because doing a read-only 
filesystem check.

lustre-OST0000 contains a file system with errors, check forced.

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

Free blocks count wrong (989015, counted=817968).

Fix? no

Free inodes count wrong (262088, counted=261767).

Fix? no

Pass 6: Acquiring information for lfsck

OST: 'lustre-OST0000_UUID' ost idx 0: compat 0x2 rocomp 0 incomp 0x2

OST: num files = 321

OST: last_id = 321

lustre-OST0000: ******* WARNING: Filesystem still has errors 
*******

56 inodes used (0%)

27 non-contiguous inodes (48.2%)

# of inodes with ind/dind/tind blocks: 13/0/0

59561 blocks used (5%)

0 bad blocks

1 large file

329 regular files

39 directories

0 character device files

0 block device files

0 fifos

0 links

0 symbolic links (0 fast symbolic links)

0 sockets

--------

368 files
19-20 Lustre 2.0 Operations Manual • June 2010



6. Make the mdsdb file and all ostdb files available on a mounted client and run 
lfsck to examine the file system. Optionally, correct the defects found by lfsck.

script /root/lfsck.lustre.log 

lfsck -n -v --mdsdb /tmp/mdsdb --ostdb /tmp/{ost1db} /tmp/{ost2db} 
... /lustre/mount/point

Example: 

script /root/lfsck.lustre.log

lfsck -n -v --mdsdb /home/mdsdb --ostdb /home/{ost1db} \
/mnt/lustre/client/

MDSDB: /home/mdsdb

OSTDB[0]: /home/ostdb

MOUNTPOINT: /mnt/lustre/client/

MDS: max_id 288 OST: max_id 321

lfsck: ost_idx 0: pass1: check for duplicate objects

lfsck: ost_idx 0: pass1 OK (287 files total)

lfsck: ost_idx 0: pass2: check for missing inode objects

lfsck: ost_idx 0: pass2 OK (287 objects)

lfsck: ost_idx 0: pass3: check for orphan objects

[0] uuid lustre-OST0000_UUID

[0] last_id 288

[0] zero-length orphan objid 1

lfsck: ost_idx 0: pass3 OK (321 files total)

lfsck: pass4: check for duplicate object references

lfsck: pass4 OK (no duplicates)

lfsck: fixed 0 errors

By default, lfsck reports errors, but it does not repair any inconsistencies found. 
lfsck checks for three kinds of inconsistencies: 

■ Inode exists but has missing objects (dangling inode). This normally happens if 
there was a problem with an OST. 

■ Inode is missing but OST has unreferenced objects (orphan object). Normally, 
this happens if there was a problem with the MDS. 

■ Multiple inodes reference the same objects. This can happen if the MDS is 
corrupted or if the MDS storage is cached and loses some, but not all, writes. 

If the file system is in use and being modified while the --mdsdb and --ostdb 
steps are running, lfsck may report inconsistencies where none exist due to files 
and objects being created/removed after the database files were collected. 
Examine the lfsck results closely. You may want to re-run the test. 
Chapter 19 Lustre Recovery 19-21



19.7.1 Working with Orphaned Objects
The easiest problem to resolve is that of orphaned objects. When the -l option for 
lfsck is used, these objects are linked to new files and put into lost+found in the 
Lustre file system, where they can be examined and saved or deleted as necessary. If 
you are certain the objects are not useful, run lfsck with the -d option to delete 
orphaned objects and free up any space they are using. 

To fix dangling inodes, use lfsck with the -c option to create new, zero-length 
objects on the OSTs. These files read back with binary zeros for stripes that had 
objects re-created. Even without lfsck repair, these files can be read by entering:

dd if=/lustre/bad/file of=/new/file bs=4k conv=sync,noerror

Because it is rarely useful to have files with large holes in them, most users delete 
these files after reading them (if useful) and/or restoring them from backup. 

Note – You cannot write to the holes of such files without having lfsck re-create 
the objects. Generally, it is easier to delete these files and restore them from backup. 

To fix inodes with duplicate objects, use lfsck with the -c option to copy the 
duplicate object to a new object and assign it to a file. One file will be okay and the 
duplicate will likely contain garbage. By itself, lfsck cannot tell which file is the 
usable one. 
19-22 Lustre 2.0 Operations Manual • June 2010



PART III Lustre Tuning, Monitoring and 
Troubleshooting

The part includes chapters describing how to tune, debug and troubleshoot Lustre. 





CHAPTER 20

Lustre Tuning

This chapter contains information to tune Lustre for better performance and includes 
the following sections:

■ Module Options

■ LNET Tunables

■ Options for Formatting the MDT and OSTs

■ Large-Scale Tuning for Cray XT and Equivalents

■ Lockless I/O Tunables

■ Data Checksums
20-1



20.1 Module Options
Many options in Lustre are set by means of kernel module parameters. These 
parameters are contained in the modprobe.conf file (On SuSE, this may be 
modprobe.conf.local).

20.1.1 OSS Service Thread Count
The oss_num_threads parameter enables the number of OST service threads to be 
specified at module load time on the OSS nodes:

options ost oss_num_threads={N}

After startup, the minimum and maximum number of OSS thread counts can be set 
via the {service}.thread_{min,max,started} tunable. To change the tunable 
at runtime, run: 

lctl {get,set}_param {service}.thread_{min,max,started}

For details, see Setting MDS and OSS Thread Counts.

20.1.1.1 Optimizing the Number of Service Threads

An OSS can have a minimum of 2 service threads and a maximum of 512 service 
threads. The number of service threads is a function of how much RAM and how 
many CPUs are on each OSS node (1 thread / 128MB * num_cpus). If the load on the 
OSS node is high, new service threads will be started in order to process more 
requests concurrently, up to 4x the initial number of threads (subject to the maximum 
of 512). For a 2GB 2-CPU system, the default thread count is 32 and the maximum 
thread count is 128.

Increasing the size of the thread pool may help when:

■ Several OSTs are exported from a single OSS

■ Back-end storage is running synchronously

■ I/O completions take excessive time due to slow storage

Decreasing the size of the thread pool may help if:

■ Clients are overwhelming the storage capacity

■ There are lots of "slow I/O" or similar messages 
20-2 Lustre 2.0 Operations Manual • June 2010



Increasing the number of I/O threads allows the kernel and storage to aggregate 
many writes together for more efficient disk I/O. The OSS thread pool is 
shared—each thread allocates approximately 1.5 MB (maximum RPC size + 0.5 MB) 
for internal I/O buffers. 

It is very important to consider memory consumption when increasing the thread 
pool size. Drives are only able to sustain a certain amount of parallel I/O activity 
before performance is degraded, due to the high number of seeks and the OST 
threads just waiting for I/O. In this situation, it may be advisable to decrease the 
load by decreasing the number of OST threads. 

Determining the optimum number of OST threads is a process of trial and error, and 
varies for each particular configuration. Variables include the number of OSTs on 
each OSS, number and speed of disks, RAID configuration, and available RAM. You 
may want to start with a number of OST threads equal to the number of actual disk 
spindles on the node. If you use RAID, subtract any dead spindles not used for 
actual data (e.g., 1 of N of spindles for RAID5, 2 of N spindles for RAID6), and 
monitor the performance of clients during usual workloads. If performance is 
degraded, increase the thread count and see how that works until performance is 
degraded again or you reach satisfactory performance. 

Note – If there are too many threads, the latency for individual I/O requests can 
become very high and should be avoided. Set the desired maximum thread count 
permanently using the method described above.

20.1.2 MDS Service Thread Count
The mds_num_threads parameter enables the number of MDS service threads to be 
specified at module load time on the MDS node:

options mds mds_num_threads={N}

After startup, the minimum and maximum number of MDS thread counts can be set 
via the {service}.thread_{min,max,started} tunable. To change the tunable 
at runtime, run: 

lctl {get,set}_param {service}.thread_{min,max,started}

For details, see Setting MDS and OSS Thread Counts.

At this time, no testing has been done to determine the optimal number of MDS 
threads. The default value varies, based on server size, up to a maximum of 32. The 
maximum number of threads (MDS_MAX_THREADS) is 512. 
Chapter 20 Lustre Tuning 20-3



Note – The OSS and MDS automatically start new service threads dynamically, in 
response to server load within a factor of 4. The default value is calculated the same 
way as before. Setting the _mu_threads module parameter disables automatic 
thread creation behavior.

20.2 LNET Tunables
This section describes LNET tunables.

20.2.0.1 Transmit and receive buffer size:

With Lustre release 1.4.7 and later, ksocklnd now has separate parameters for the 
transmit and receive buffers. 

options ksocklnd tx_buffer_size=0 rx_buffer_size=0

If these parameters are left at the default value (0), the system automatically tunes 
the transmit and receive buffer size. In almost every case, this default produces the 
best performance. Do not attempt to tune these parameters unless you are a network 
expert.

20.2.0.2 irq_affinity

By default, this parameter is on. In the normal case on an SMP system, we would like 
network traffic to remain local to a single CPU. This helps to keep the processor 
cache warm and minimizes the impact of context switches. This is especially helpful 
when an SMP system has more than one network interface and ideal when the 
number of interfaces equals the number of CPUs.

If you have an SMP platform with a single fast interface such as 10GB Ethernet and 
more than two CPUs, you may see performance improve by turning this parameter 
off. As always, you should test to compare the impact. 
20-4 Lustre 2.0 Operations Manual • June 2010



20.3 Options for Formatting the MDT and 
OSTs
The backing file systems on an MDT and OSTs are independent of one another, so the 
formatting parameters for them should not be same. The size of the MDS backing file 
system depends solely on how many inodes you want in the total Lustre file system. 
It is not related to the size of the aggregate OST space. 

20.3.1 Planning for Inodes
Each time you create a file on a Lustre file system, it consumes one inode on the MDS 
and one inode for each OST object that the file is striped over (normally it is based on 
the default stripe count option -c, but this may change on a per-file basis). In 
ext3/ldiskfs file systems, inodes are pre-allocated, so creating a new file does not 
consume any of the free blocks. However, this also means that the format-time 
options should be conservative, as it is not possible to increase the number of inodes 
after the file system is formatted. It is possible to add OSTs with additional space and 
inodes to the file system. 

To be on the safe side, plan for 4 KB per inode on the MDT. This is the default value. 
For the OST, the amount of space taken by each object depends entirely upon the 
usage pattern of the users/applications running on the system. Lustre, by necessity, 
defaults to a very conservative estimate for the object size (16 KB per object). You can 
almost always increase this value for file system installations. Many Lustre file 
systems have average file sizes over 1 MB per object. 

20.3.2 Sizing the MDT
When calculating the MDS size, the only important factor is the average size of files 
to be stored in the file system. If the average file size is, for example, 5 MB and you 
have 100 TB of usable OST space, then you need at least (100 TB * 1024 GB/TB * 1024 
MB/GB / 5 MB/inode) = 20 million inodes. We recommend that you have twice the 
minimum, that is, 40 million inodes in this example. At the default 4 KB per inode, 
this works out to only 160 GB of space for the MDS. 

Conversely, if you have a very small average file size, 4 KB for example, Lustre is not 
very efficient. This is because you consume as much space on the MDS as on the 
OSTs. This is not a very common configuration for Lustre. 
Chapter 20 Lustre Tuning 20-5



20.4 Overriding Default Formatting Options
To override the default formatting options for any of the Lustre backing file systems, 
use the --mkfsoptions='backing fs options' argument to mkfs.lustre to 
pass formatting options to the backing mkfs. For all options to format backing ext3 
and ldiskfs filesystems, see the mke2fs(8) man page; this section only discusses 
several Lustre-specific options.

20.4.1 Number of Inodes for the MDS
The number of inodes on the MDS is determined at format time based on the total 
size of the file system to be created. The default MDS inode ratio is one inode for 
every 4096 bytes of file system space. To override the inode ratio, use the option -i 
<bytes per inode>. For example, use --mkfsoptions="-i 4096" to create one inode per 
4096 bytes of file system space. Alternately, if you are specifying an absolute number 
of inodes, use the -N <number of inodes> option. You should not specify the -i 
option with an inode ratio below one inode per 1024 bytes in order to avoid 
unintentional mistakes. Instead, use the -N option. 

For example, by default, a 2 TB MDS will have 512M inodes. The largest 
currently-supported file system size is 16 TB, which would hold 4B inodes, the 
maximum possible number of inodes with ldiskfs. With an MDS inode ratio of 1024 
bytes per inode, a 2 TB MDS would hold 2B inodes, and a 4 TB MDS would hold 4B 
inodes, which is the maximum number of inodes currently supported by ext3.
20-6 Lustre 2.0 Operations Manual • June 2010



20.4.2 Inode Size for the MDS
Lustre uses "large" inodes on backing file systems to efficiently store Lustre metadata 
with each file. On the MDS, each inode is at least 512 bytes in size (by default), while 
on the OST each inode is 256 bytes in size. Lustre (or more specifically the backing 
ext3 file system), also needs sufficient space left for other metadata like the journal 
(up to 400 MB), bitmaps and directories. There are also a few regular files that Lustre 
uses to maintain cluster consistency.

To specify a larger inode size, use the -I <inodesize> option. We do NOT 
recommend specifying a smaller-than-default inode size, as this can lead to serious 
performance problems; and you cannot change this parameter after formatting the 
file system. The inode ratio must always be larger than the inode size. 

20.4.3 Number of Inodes for an OST
For OST file systems, it is normally advantageous to take local file system usage into 
account. Try to minimize the number of inodes on each OST, while keeping enough 
margin for potential variance in future usage. This helps reduce the format and 
e2fsck time, and makes more space available for data. The current default is to 
create one inode per 16 KB of space in the OST file system, but in many 
environments, this is far too many inodes for the average file size. As a good rule of 
thumb, the OSTs should have at least:

num_ost_inodes = 4 * <num_mds_inodes> * <default_stripe_count> / <number_osts>

You can specify the number of inodes on the OST file systems via the 
-N<num_inodes> option to --mkfs options. Alternately, if you know the average 
file size, then you can also specify the OST inode count for the OST file systems via 
-i <average_file_size / (number_of_stripes * 4)>. For example, if the 
average file size is 16 MB and there are, by default 4 stripes per file, then 
--mkfsoptions='-i 1048576' would be appropriate. 

Note – In addition to the number of inodes, e2fsck runtime on OSTs is affected by 
a number of other variables: size of the file system, number of allocated blocks, 
distribution of allocated blocks on the disk, disk speed, CPU speed, and amount of 
RAM on the server. Reasonable e2fsck runtimes (without serious file system 
problems), are expected to take five minutes to two hours.

For more details on formatting MDT and OST file systems, see Formatting Options 
for RAID Devices. 
Chapter 20 Lustre Tuning 20-7



20.5 Large-Scale Tuning for Cray XT and 
Equivalents
This section only applies to Cray XT3 Catamount nodes, and explains parameters 
used with the kptllnd module. If it does not apply to your setup, ignore it.

20.5.1 Network Tunables
With a large number of clients and servers possible on these systems, tuning various 
request pools becomes important. We are making changes to the ptllnd module. 

Parameter Description

max_nodes max_nodes is the maximum number of queue pairs, and, therefore, 
the maximum number of peers with which the LND instance can 
communicate. Set max_nodes to a value higher than the product of 
the total number of nodes and maximum processes per node.
Max nodes > (Total # Nodes) * (max_procs_per_node)
Setting max_nodes to a lower value than described causes Lustre to 
throw an error. Setting max_nodes to a higher value, causes excess 
memory to be consumed.

max_procs_per_node max_procs_per_node is the maximum number of cores (CPUs), on a 
single Catamount node. Portals must know this value to properly 
clean up various queues. LNET is not notified directly when a 
Catamount process aborts. The first information LNET receives is 
when a new Catamount process with the same Cray portals NID 
starts and sends a connection request. If the number of processes 
with that Cray portals NID exceeds the max_procs_per_node 
value, LNET removes the oldest one to make space for the new one.
20-8 Lustre 2.0 Operations Manual • June 2010



20.6 Lockless I/O Tunables
The lockless I/O tunable feature allows servers to ask clients to do lockless I/O 
(liblustre-style where the server does the locking) on contended files.

The lockless I/O patch introduces these tunables:

■ OST-side:

/proc/fs/lustre/ldlm/namespaces/filter-lustre-*

contended_locks - If the number of lock conflicts in the scan of granted and 
waiting queues at contended_locks is exceeded, the resource is considered to 
be contended.

contention_seconds - The resource keeps itself in a contended state as set in 
the parameter.

max_nolock_bytes - Server-side locking set only for requests less than the 
blocks set in the max_nolock_bytes parameter. If this tunable is set to zero (0), it 
disables server-side locking for read/write requests.

■ Client-side:

/proc/fs/lustre/llite/lustre-*

contention_seconds - llite inode remembers its contended state for the time 
specified in this parameter. 

These two tunables combine to set the size of the ptllnd request buffer pool. The buffer pool 
must never drop an incoming message, so proper sizing is very important.

Ntx Ntx helps to size the transmit (tx) descriptor pool. A tx descriptor is 
used for each send and each passive RDMA. The max number of 
concurrent sends == 'credits'. Passive RDMA is a response to a PUT 
or GET of a payload that is too big to fit in a small message buffer. 
For servers, this only happens on large RPCs (for instance, where a 
long file name is included), so the MDS could be under pressure in 
a large cluster. For routers, this is bounded by the number of 
servers. If the tx pool is exhausted, a console error message appears.

Credits Credits determine how many sends are in-flight at once on ptllnd. 
Optimally, there are 8 requests in-flight per server. The default 
value is 128, which should be adequate for most applications.

Parameter Description
Chapter 20 Lustre Tuning 20-9



■ Client-side statistics:

The /proc/fs/lustre/llite/lustre-*/stats file has new rows for lockless 
I/O statistics.

lockless_read_bytes and lockless_write_bytes - To count the total bytes 
read or written, the client makes its own decisions based on the request size. The 
client does not communicate with the server if the request size is smaller than the 
min_nolock_size, without acquiring locks by the client.

20.7 Data Checksums
To avoid the risk of data corruption on the network, a Lustre client can perform 
end-to-end data checksums1. Be aware that at high data rates, checksumming can 
impact Lustre performance.

1. This feature computes a 32-bit checksum of data read or written on both the client and server, and ensures that 
the data has not been corrupted in transit over the network.
20-10 Lustre 2.0 Operations Manual • June 2010



CHAPTER 21

LustreProc

This chapter describes Lustre /proc entries and includes the following sections:

■ Proc Entries for Lustre

■ Lustre I/O Tunables

■ Debug Support

The proc file system acts as an interface to internal data structures in the kernel. Proc 
variables can be used to control aspects of Lustre performance and provide 
information. 
21-1



21.1 Proc Entries for Lustre
This section describes /proc entries for Lustre.

21.1.1 Locating Lustre File Systems and Servers
Use the proc files on the MGS to locate the following:

■ All known file systems

# cat /proc/fs/lustre/mgs/MGS/filesystems

spfs

lustre

■ The server names participating in a file system (for each file system that has at 
least one server running)

# cat /proc/fs/lustre/mgs/MGS/live/spfs

fsname: spfs

flags: 0x0 gen: 7

spfs-MDT0000

spfs-OST0000

All servers are named according to this convention: <fsname>-<MDT|OST><XXXX> 
This can be shown for live servers under /proc/fs/lustre/devices:

# cat /proc/fs/lustre/devices 

0 UP mgs MGS MGS 11

1 UP mgc MGC192.168.10.34@tcp 1f45bb57-d9be-2ddb-c0b0-5431a49226705

2 UP mdt MDS MDS_uuid 3

3 UP lov lustre-mdtlov lustre-mdtlov_UUID 4

4 UP mds lustre-MDT0000 lustre-MDT0000_UUID 7

5 UP osc lustre-OST0000-osc lustre-mdtlov_UUID 5

6 UP osc lustre-OST0001-osc lustre-mdtlov_UUID 5

7 UP lov lustre-clilov-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa04

8 UP mdc lustre-MDT0000-mdc-ce63ca00 
08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05

9 UP osc lustre-OST0000-osc-ce63ca00 
08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05

10 UP osc lustre-OST0001-osc-ce63ca00 
08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05
21-2 Lustre 2.0 Operations Manual • June 2010



Or from the device label at any time:

# e2label /dev/sda

lustre-MDT0000

21.1.2 Lustre Timeouts
Lustre uses two types of timeouts.

■ LND timeouts that ensure point-to-point communications complete in finite time 
in the presence of failures. These timeouts are logged with the S_LND flag set. 
They may not be printed as console messages, so you should check the Lustre log 
for D_NETERROR messages, or enable printing of D_NETERROR messages to the 
console (echo + neterror > /proc/sys/lnet/printk).

Congested routers can be a source of spurious LND timeouts. To avoid this, 
increase the number of LNET router buffers to reduce back-pressure and/or 
increase LND timeouts on all nodes on all connected networks. You should also 
consider increasing the total number of LNET router nodes in the system so that 
the aggregate router bandwidth matches the aggregate server bandwidth.

■ Lustre timeouts that ensure Lustre RPCs complete in finite time in the presence of 
failures. These timeouts should always be printed as console messages.  If Lustre 
timeouts are not accompanied by LNET timeouts, then you need to increase the 
lustre timeout on both servers and clients.

Specific Lustre timeouts are described below.

/proc/sys/lustre/timeout 

This is the time period that a client waits for a server to complete an RPC (default is 
100s). Servers wait half of this time for a normal client RPC to complete and a quarter 
of this time for a single bulk request (read or write of up to 1 MB) to complete. The 
client pings recoverable targets (MDS and OSTs) at one quarter of the timeout, and 
the server waits one and a half times the timeout before evicting a client for being 
"stale."

Note – Lustre sends periodic ‘PING’ messages to servers with which it had no 
communication for a specified period of time. Any network activity on the file 
system that triggers network traffic toward servers also works as a health check.

/proc/sys/lustre/ldlm_timeout 

This is the time period for which a server will wait for a client to reply to an initial 
AST (lock cancellation request) where default is 20s for an OST and 6s for an MDS. If 
the client replies to the AST, the server will give it a normal timeout (half of the client 
timeout) to flush any dirty data and release the lock.
Chapter 21 LustreProc 21-3



/proc/sys/lustre/fail_loc 

This is the internal debugging failure hook.

See lustre/include/linux/obd_support.h for the definitions of individual 
failure locations. The default value is 0 (zero).

sysctl -w lustre.fail_loc=0x80000122 # drop a single reply

/proc/sys/lustre/dump_on_timeout

This triggers dumps of the Lustre debug log when timeouts occur. The default value 
is 0 (zero).

/proc/sys/lustre/dump_on_eviction

This triggers dumps of the Lustre debug log when an eviction occurs. The default 
value is 0 (zero). By default, debug logs are dumped to the /tmp folder; this location 
can be changed via /proc.
21-4 Lustre 2.0 Operations Manual • June 2010



21.1.3 Adaptive Timeouts
Lustre offers an adaptive mechanism to set RPC timeouts. The adaptive timeouts 
feature (enabled, by default) causes servers to track actual RPC completion times, 
and to report estimated completion times for future RPCs back to clients. The clients 
use these estimates to set their future RPC timeout values. If server request 
processing slows down for any reason, the RPC completion estimates increase, and 
the clients allow more time for RPC completion. 

If RPCs queued on the server approach their timeouts, then the server sends an early 
reply to the client, telling the client to allow more time. In this manner, clients avoid 
RPC timeouts and disconnect/reconnect cycles. Conversely, as a server speeds up, 
RPC timeout values decrease, allowing faster detection of non-responsive servers and 
faster attempts to reconnect to a server's failover partner.

In previous Lustre versions, the static obd_timeout (/proc/sys/lustre/timeout) 
value was used as the maximum completion time for all RPCs; this value also 
affected the client-server ping interval and initial recovery timer. Now, with adaptive 
timeouts, obd_timeout is only used for the ping interval and initial recovery 
estimate. When a client reconnects during recovery, the server uses the client's 
timeout value to reset the recovery wait period; i.e., the server learns how long the 
client had been willing to wait, and takes this into account when adjusting the 
recovery period.
Chapter 21 LustreProc 21-5



21.1.3.1 Configuring Adaptive Timeouts

One of the goals of adaptive timeouts is to relieve users from having to tune the 
obd_timeout value. In general, obd_timeout should no longer need to be 
changed. However, there are several parameters related to adaptive timeouts that 
users can set. In most situations, the default values should be used. 

The following parameters can be set persistently system-wide using lctl 
conf_param on the MGS. For example, lctl conf_param work1.sys.at_max=
1500 sets the at_max value for all servers and clients using the work1 file system. 

Note – Nodes using multiple Lustre file systems must use the same at_* values for 
all file systems.)

Parameter Description

at_min Sets the minimum adaptive timeout (in seconds). Default value is 0. 
The at_min parameter is the minimum processing time that a server 
will report. Clients base their timeouts on this value, but they do not 
use this value directly. If you experience cases in which, for unknown 
reasons, the adaptive timeout value is too short and clients time out 
their RPCs (usually due to temporary network outages), then you 
can increase the at_min value to compensate for this. Ideally, users 
should leave at_min set to its default.

at_max Sets the maximum adaptive timeout (in seconds). The at_max 
parameter is an upper-limit on the service time estimate, and is used 
as a 'failsafe' in case of rogue/bad/buggy code that would lead to 
never-ending estimate increases. If at_max is reached, an RPC 
request is considered 'broken' and should time out.
Setting at_max to 0 causes adaptive timeouts to be disabled and the 
old fixed-timeout method (obd_timeout) to be used. This is the 
default value in Lustre 1.6.5.

NOTE: It is possible that slow hardware might validly cause the 
service estimate to increase beyond the default value of at_max. In 
this case, you should increase at_max to the maximum time you are 
willing to wait for an RPC completion.

at_history Sets a time period (in seconds) within which adaptive timeouts 
remember the slowest event that occurred. Default value is 600.
21-6 Lustre 2.0 Operations Manual • June 2010



Adaptive timeouts are enabled, by default. To disable adaptive timeouts, at run time, 
set at_max to 0. On the MGS, run:

$ lctl conf_param <fsname>.sys.at_max=0

Note – Changing adaptive timeouts status at runtime may cause transient timeout, 
reconnect, recovery, etc.

at_early_margin Sets how far before the deadline Lustre sends an early reply. Default 
value is 5*.

at_extra Sets the incremental amount of time that a server asks for, with each 
early reply. The server does not know how much time the RPC will 
take, so it asks for a fixed value. Default value is 30†. When a server 
finds a queued request about to time out (and needs to send an early 
reply out), the server adds the at_extra value. If the time expires, 
the Lustre client enters recovery status and reconnects to restore it to 
normal status.
If you see multiple early replies for the same RPC asking for multiple 
30-second increases, change the at_extra value to a larger number 
to cut down on early replies sent and, therefore, network load.

ldlm_enqueue_min Sets the minimum lock enqueue time. Default value is 100. The 
ldlm_enqueue time is the maximum of the measured enqueue 
estimate (influenced by at_min and at_max parameters), multiplied 
by a weighting factor, and the ldlm_enqueue_min setting. LDLM 
lock enqueues were based on the obd_timeout value; now they 
have a dedicated minimum value. Lock enqueues increase as the 
measured enqueue times increase (similar to adaptive timeouts).

* This default was chosen as a reasonable time in which to send a reply from the point at which it was sent.

† This default was chosen as a balance between sending too many early replies for the same RPC and overesti-
mating the actual completion time.

Parameter Description
Chapter 21 LustreProc 21-7



21.1.3.2 Interpreting Adaptive Timeouts Information

Adaptive timeouts information can be read from /proc/fs/lustre/*/timeouts 
files (for each service and client) or with the lctl command.

This is an example from the /proc/fs/lustre/*/timeouts files:

cfs21:~# cat /proc/fs/lustre/ost/OSS/ost_io/timeouts

This is an example using the lctl command:

$ lctl get_param -n ost.*.ost_io.timeouts

This is the sample output:

service : cur 33  worst 34 (at 1193427052, 0d0h26m40s ago) 1 1 33 2

The ost_io service on this node is currently reporting an estimate of 33 seconds. 
The worst RPC service time was 34 seconds, and it happened 26 minutes ago. 

The output also provides a history of service times. In the example, there are 4 "bins" 
of adaptive_timeout_history, with the maximum RPC time in each bin 
reported. In 0-150 seconds, the maximum RPC time was 1, with the same result in 
150-300 seconds. From 300-450 seconds, the worst (maximum) RPC time was 33 
seconds, and from 450-600s the worst time was 2 seconds. The current estimated 
service time is the maximum value of the 4 bins (33 seconds in this example). 

Service times (as reported by the servers) are also tracked in the client OBDs:

cfs21:# lctl get_param osc.*.timeouts
last reply : 1193428639, 0d0h00m00s ago
network    : cur   1  worst   2 (at 1193427053, 0d0h26m26s ago)   1   1   1   1
portal 6   : cur  33  worst  34 (at 1193427052, 0d0h26m27s ago)  33  33  33   2
portal 28  : cur   1  worst   1 (at 1193426141, 0d0h41m38s ago)   1   1   1   1
portal 7   : cur   1  worst   1 (at 1193426141, 0d0h41m38s ago)   1   0   1   1
portal 17  : cur   1  worst   1 (at 1193426177, 0d0h41m02s ago)   1   0   0   1

In this case, RPCs to portal 6, the OST_IO_PORTAL (see 
lustre/include/lustre/lustre_idl.h), shows the history of what the ost_io 
portal has reported as the service estimate.
21-8 Lustre 2.0 Operations Manual • June 2010



Server statistic files also show the range of estimates in the normal 
min/max/sum/sumsq manner.

cfs21:~# lctl get_param mdt.*.mdt.stats

...

req_timeout               6 samples [sec] 1 10 15 105

...

21.1.4 LNET Information
This section describes /proc entries for LNET information.

/proc/sys/lnet/peers 

Shows all NIDs known to this node and also gives information on the queue state.

# cat /proc/sys/lnet/peers

nid refs state max rtr min tx min queue

0@lo 1 ~rtr 0 0 0 0 0 0

192.168.10.35@tcp1 ~rtr 8 8 8 8 6 0

192.168.10.36@tcp1 ~rtr 8 8 8 8 6 0

192.168.10.37@tcp1 ~rtr 8 8 8 8 6 0

The fields are explained below:

Field Description

refs A reference count (principally used for debugging)

state Only valid to refer to routers. Possible values:
• ~ rtr (indicates this node is not a router)
• up/down (indicates this node is a router)
• auto_fail must be enabled

max Maximum number of concurrent sends from this peer

rtr Routing buffer credits.

min Minimum routing buffer credits seen.

tx Send credits.

min Minimum send credits seen.

queue Total bytes in active/queued sends.
Chapter 21 LustreProc 21-9



Credits work like a semaphore. At start they are initialized to allow a certain number 
of operations (8 in this example). LNET keeps a track of the minimum value so that 
you can see how congested a resource was.

If rtr/tx is less than max, there are operations in progress. The number of 
operations is equal to rtr or tx subtracted from max. 

If rtr/tx is greater that max, there are operations blocking. 

LNET also limits concurrent sends and router buffers allocated to a single peer so 
that no peer can occupy all these resources.

/proc/sys/lnet/nis

# cat /proc/sys/lnet/nis

nid refs peer max tx min

0@lo 3 0 0 0 0

192.168.10.34@tcp 4 8 256 256 252

Shows the current queue health on this node. The fields are explained below:

Subtracting max – tx yields the number of sends currently active. A large or 
increasing number of active sends may indicate a problem.

# cat /proc/sys/lnet/nis

nid refs peer max tx min

0@lo 2 0 0 0 0

10.67.73.173@tcp 4 8 256 256 253

Field Description

nid Network interface

refs Internal reference counter

peer Number of peer-to-peer send credits on this NID. Credits are used to 
size buffer pools

max Total number of send credits on this NID.

tx Current number of send credits available on this NID.

min Lowest number of send credits available on this NID.

queue Total bytes in active/queued sends.
21-10 Lustre 2.0 Operations Manual • June 2010



21.1.5 Free Space Distribution
Free-space stripe weighting, as set, gives a priority of "0" to free space (versus trying 
to place the stripes "widely" -- nicely distributed across OSSs and OSTs to maximize 
network balancing). To adjust this priority (as a percentage), use the 
qos_prio_free proc tunable:

$ cat /proc/fs/lustre/lov/<fsname>-mdtlov/qos_prio_free

Currently, the default is 90%. You can permanently set this value by running this 
command on the MGS:

$ lctl conf_param <fsname>-MDT0000.lov.qos_prio_free=90

Setting the priority to 100% means that OSS distribution does not count in the 
weighting, but the stripe assignment is still done via weighting. If OST 2 has twice as 
much free space as OST 1, it is twice as likely to be used, but it is NOT guaranteed to 
be used.

Also note that free-space stripe weighting does not activate until two OSTs are 
imbalanced by more than 20%. Until then, a faster round-robin stripe allocator is 
used. (The new round-robin order also maximizes network balancing.) 

21.1.5.1 Managing Stripe Allocation

The MDS uses two methods to manage stripe allocation and determine which OSTs 
to use for file object storage:

■ QOS

Quality of Service (QOS) considers an OST’s available blocks, speed, and the 
number of existing objects, etc. Using these criteria, the MDS selects OSTs with 
more free space more often than OSTs with less free space.

■ RR

Round-Robin (RR) allocates objects evenly across all OSTs. The RR stripe allocator 
is faster than QOS, and used often because it distributes space usage/load best in 
most situations, maximizing network balancing and improving performance.

Whether QOS or RR is used depends on the setting of the qos_threshold_rr proc 
tunable. The qos_threshold_rr variable specifies a percentage threshold where 
the use of QOS or RR becomes more/less likely. The qos_threshold_rr tunable 
can be set as an integer, from 0 to 100, and results in this stripe allocation behavior:

■ If qos_threshold_rr is set to 0, then QOS is always used

■ If qos_threshold_rr is set to 100, then RR is always used

■ The larger the qos_threshold_rr setting, the greater the possibility that RR 
is used instead of QOS
Chapter 21 LustreProc 21-11



21.2 Lustre I/O Tunables
The section describes I/O tunables.

/proc/fs/lustre/llite/<fsname>-<uid>/max_cache_mb

# cat /proc/fs/lustre/llite/lustre-ce63ca00/max_cached_mb 128

This tunable is the maximum amount of inactive data cached by the client (default is 
3/4 of RAM).

21.2.1 Client I/O RPC Stream Tunables
The Lustre engine always attempts to pack an optimal amount of data into each I/O 
RPC and attempts to keep a consistent number of issued RPCs in progress at a time. 
Lustre exposes several tuning variables to adjust behavior according to network 
conditions and cluster size. Each OSC has its own tree of these tunables. For example:

$ ls -d /proc/fs/lustre/osc/OSC_client_ost1_MNT_client_2 /localhost

/proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost

/proc/fs/lustre/osc/OSC_uml0_ost2_MNT_localhost

/proc/fs/lustre/osc/OSC_uml0_ost3_MNT_localhost

$ ls /proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost

blocksizefilesfreemax_dirty_mb ost_server_uuid stats

... and so on.

RPC stream tunables are described below.

/proc/fs/lustre/osc/<object name>/max_dirty_mb

This tunable controls how many MBs of dirty data can be written and queued up in 
the OSC. POSIX file writes that are cached contribute to this count. When the limit is 
reached, additional writes stall until previously-cached writes are written to the 
server. This may be changed by writing a single ASCII integer to the file. Only values 
between 0 and 512 are allowable. If 0 is given, no writes are cached. Performance 
suffers noticeably unless you use large writes (1 MB or more).

/proc/fs/lustre/osc/<object name>/cur_dirty_bytes

This tunable is a read-only value that returns the current amount of bytes written 
and cached on this OSC.
21-12 Lustre 2.0 Operations Manual • June 2010



/proc/fs/lustre/osc/<object name>/max_pages_per_rpc

This tunable is the maximum number of pages that will undergo I/O in a single RPC 
to the OST. The minimum is a single page and the maximum for this setting is 
platform dependent (256 for i386/x86_64, possibly less for ia64/PPC with larger 
PAGE_SIZE), though generally amounts to a total of 1 MB in the RPC.

/proc/fs/lustre/osc/<object name>/max_rpcs_in_flight

This tunable is the maximum number of concurrent RPCs in flight from an OSC to its 
OST. If the OSC tries to initiate an RPC but finds that it already has the same number 
of RPCs outstanding, it will wait to issue further RPCs until some complete. The 
minimum setting is 1 and maximum setting is 32. If you are looking to improve small 
file I/O performance, increase the max_rpcs_in_flight value.

To maximize performance, the value for max_dirty_mb is recommended to be 4 * 
max_pages_per_rpc * max_rpcs_in_flight.

Note – The <object name> varies depending on the specific Lustre configuration. 
For <object name> examples, refer to the sample command output.
Chapter 21 LustreProc 21-13



21.2.2 Watching the Client RPC Stream
The same directory contains a rpc_stats file with a histogram showing the 
composition of previous RPCs. The histogram can be cleared by writing any value 
into the rpc_stats file.

# cat /proc/fs/lustre/osc/spfs-OST0000-osc-c45f9c00/rpc_stats

snapshot_time: 1174867307.156604 (secs.usecs)

read RPCs in flight: 0

write RPCs in flight: 0

pending write pages: 0

pending read pages: 0

read write

pages per rpc rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

rpcs in flight rpcs % cum % | rpcs % cum %

0: 0 0 0 | 0 0 0

read write

offset rpcs % cum % | rpcs % cum %

0: 0 0 0 | 0 0 0

Where: 

Field Description

{read,write} RPCs in flight Number of read/write RPCs issued by the OSC, but not 
complete at the time of the snapshot. This value should 
always be less than or equal to max_rpcs_in_flight.

pending {read,write} pages Number of pending read/write pages that have been queued 
for I/O in the OSC.
21-14 Lustre 2.0 Operations Manual • June 2010



21.2.3 Client Read-Write Offset Survey
The offset_stats parameter maintains statistics for occurrences where a series of 
read or write calls from a process did not access the next sequential location. The 
offset field is reset to 0 (zero) whenever a different file is read/written. 

Read/write offset statistics are off, by default. The statistics can be activated by 
writing anything into the offset_stats file. 

Example:

# cat /proc/fs/lustre/llite/lustre-f57dee00/rw_offset_stats

snapshot_time: 1155748884.591028 (secs.usecs)

R/W PID RANGE STARTRANGE ENDSMALLEST EXTENTLARGEST EXTENTOFFSET

R 8385 0 128 128 128 0

R 8385 0 224 224 224 -128

W 8385 0 250 50 100 0

W 8385 100 1110 10 500 -150

W 8384 0 5233 5233 5233 0

R 8385 500 600 100 100 -610

pages per RPC When an RPC is sent, the number of pages it consists of is 
recorded (in order). A single page RPC increments the 0: row.

RPCs in flight When an RPC is sent, the number of other RPCs that are 
pending is recorded. When the first RPC is sent, the 0: row is 
incremented. If the first RPC is sent while another is pending, 
the 1: row is incremented and so on. As each RPC 
*completes*, the number of pending RPCs is not tabulated. 

This table is a good way to visualize the concurrency of the 
RPC stream. Ideally, you will see a large clump around the 
max_rpcs_in_flight value, which shows that the network 
is being kept busy. 

offset

Field Description
Chapter 21 LustreProc 21-15



Where:

Field Description

R/W Whether the non-sequential call was a read or write

PID Process ID which made the read/write call.

Range Start/Range End Range in which the read/write calls were sequential.

Smallest Extent Smallest extent (single read/write) in the corresponding range.

Largest Extent Largest extent (single read/write) in the corresponding range.

Offset Difference from the previous range end to the current range start.
For example, Smallest-Extent indicates that the writes in the 
range 100 to 1110 were sequential, with a minimum write of 10 
and a maximum write of 500. This range was started with an 
offset of -150. That means this is the difference between the last 
entry’s range-end and this entry’s range-start for the same file. 
The rw_offset_stats file can be cleared by writing to it:

echo > 
/proc/fs/lustre/llite/lustre-f57dee00/rw_offset_stats
21-16 Lustre 2.0 Operations Manual • June 2010



21.2.4 Client Read-Write Extents Survey
Client-Based I/O Extent Size Survey

The rw_extent_stats histogram in the llite directory shows you the statistics for 
the sizes of the read-write I/O extents. This file does not maintain the per-process 
statistics.

Example:

$ cat /proc/fs/lustre/llite/lustre-ee5af200/extents_stats

snapshot_time: 1213828728.348516 (secs.usecs)

read | write

extents calls % cum% | calls % cum%

0K - 4K : 0 0 0 | 2 2 2

4K - 8K : 0 0 0 | 0 0 2

8K - 16K : 0 0 0 | 0 0 2

16K - 32K : 0 0 0 | 20 23 26

32K - 64K : 0 0 0 | 0 0 26

64K - 128K : 0 0 0 | 51 60 86

128K - 256K : 0 0 0 | 0 0 86

256K - 512K : 0 0 0 | 0 0 86

512K - 1024K : 0 0 0 | 0 0 86

1M - 2M : 0 0 0 | 11 13 100

The file can be cleared by issuing the following command:

$ echo > cat /proc/fs/lustre/llite/lustre-ee5af200/extents_stats
Chapter 21 LustreProc 21-17



Per-Process Client I/O Statistics

The extents_stats_per_process file maintains the I/O extent size statistics on a 
per-process basis. So you can track the per-process statistics for the last 
MAX_PER_PROCESS_HIST processes.

Example:

$ cat /proc/fs/lustre/llite/lustre-ee5af200/extents_stats_per_process

snapshot_time: 1213828762.204440 (secs.usecs)

read | write

extents calls % cum% | calls % cum%

PID: 11488

0K - 4K : 0 0  0 | 0 0 0

4K - 8K : 0 0  0 | 0 0 0

8K - 16K : 0 0  0 | 0 0 0

16K - 32K : 0 0  0 | 0 0 0

32K - 64K : 0 0  0 | 0 0 0

64K - 128K : 0 0  0 | 0 0 0

128K - 256K : 0 0  0 | 0 0 0

256K - 512K : 0 0  0 | 0 0 0

512K - 1024K :0 0  0 | 0 0 0

1M - 2M : 0 0  0 | 10 100 100

PID: 11491

0K - 4K : 0 0  0 | 0 0 0

4K - 8K : 0 0  0 | 0 0 0

8K - 16K : 0 0  0 | 0 0 0

16K - 32K : 0 0  0 | 20 100 100

PID: 11424

0K - 4K : 0 0  0 | 0 0 0

4K - 8K : 0 0  0 | 0 0 0

8K - 16K : 0 0  0 | 0 0 0

16K - 32K : 0 0  0 | 0 0 0

32K - 64K : 0 0  0 | 0 0 0

64K - 128K : 0 0  0 | 16 100 100

PID: 11426

0K - 4K : 0 0  0 | 1 100 100

PID: 11429

0K - 4K : 0 0  0 | 1 100 100
21-18 Lustre 2.0 Operations Manual • June 2010



21.2.5 Watching the OST Block I/O Stream
Similarly, there is a brw_stats histogram in the obdfilter directory which shows you 
the statistics for number of I/O requests sent to the disk, their size and whether they 
are contiguous on the disk or not.

cat /proc/fs/lustre/obdfilter/lustre-OST0000/brw_stats 

snapshot_time: 1174875636.764630 (secs:usecs)

read write

pages per brw brws % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

discont pages rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

discont blocks rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

dio frags rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

disk ios in flight rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

io time (1/1000s) rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

disk io size rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

The fields are explained below: 

Field Description

pages per brw Number of pages per RPC request, which should match aggregate client 
rpc_stats.

discont pages Number of discontinuities in the logical file offset of each page in a 
single RPC.

discont blocks Number of discontinuities in the physical block allocation in the file 
system for a single RPC.
Chapter 21 LustreProc 21-19



For each Lustre service, the following information is provided:

■ Number of requests 

■ Request wait time (avg, min, max and std dev) 

■ Service idle time (% of elapsed time)

Additionally, data on each Lustre service is provided by service type:

■ Number of requests of this type 

■ Request service time (avg, min, max and std dev) 

21.2.6 Using File Readahead and Directory Statahead
Lustre 1.6.5.1 introduced file readahead and directory statahead functionality that 
read data into memory in anticipation of a process actually requesting the data. File 
readahead functionality reads file content data into memory. Directory statahead 
functionality reads metadata into memory. When readahead and/or statahead work 
well, a data-consuming process finds that the information it needs is available when 
requested, and it is unnecessary to wait for network I/O.

21.2.6.1 Tuning File Readahead

File readahead is triggered when two or more sequential reads by an application fail 
to be satisfied by the Linux buffer cache. The size of the initial readahead is 1 MB. 
Additional readaheads grow linearly, and increment until the readahead cache on the 
client is full at 40 MB.

/proc/fs/lustre/llite/<fsname>-<uid>/max_read_ahead_mb

This tunable controls the maximum amount of data readahead on a file. Files are read 
ahead in RPC-sized chunks (1 MB or the size of read() call, if larger) after the second 
sequential read on a file descriptor. Random reads are done at the size of the read() 
call only (no readahead). Reads to non-contiguous regions of the file reset the 
readahead algorithm, and readahead is not triggered again until there are sequential 
reads again. To disable readahead, set this tunable to 0. The default value is 40 MB.

/proc/fs/lustre/llite/<fsname>-<uid>/max_read_ahead_whole_mb

This tunable controls the maximum size of a file that is read in its entirety, regardless 
of the size of the read().
21-20 Lustre 2.0 Operations Manual • June 2010



21.2.6.2 Tuning Directory Statahead

When the ls -l process opens a directory, its process ID is recorded. When the first 
directory entry is ''stated'' with this recorded process ID, a statahead thread is 
triggered which stats ahead all of the directory entries, in order. The ls -l process 
can use the stated directory entries directly, improving performance.

/proc/fs/lustre/llite/*/statahead_max

This tunable controls whether directory statahead is enabled and the maximum 
statahead count. By default, statahead is active. 

To disable statahead, set this tunable to:

echo 0 > /proc/fs/lustre/llite/*/statahead_max

To set the maximum statahead count (n), set this tunable to:

echo n > /proc/fs/lustre/llite/*/statahead_max

The maximum value of n is 8192. 

/proc/fs/lustre/llite/*/statahead_status

This is a read-only interface that indicates the current statahead status.
Chapter 21 LustreProc 21-21



21.2.7 OSS Read Cache
The OSS read cache feature provides read-only caching of data on an OSS. This 
functionality uses the regular Linux page cache to store the data. Just like caching 
from a regular filesytem in Linux, OSS read cache uses as much physical memory as 
is allocated. 

OSS read cache improves Lustre performance in these situations:

■ Many clients are accessing the same data set (as in HPC applications and when 
diskless clients boot from Lustre)

■ One client is storing data while another client is reading it (essentially exchanging 
data via the OST)

■ A client has very limited caching of its own

OSS read cache offers these benefits: 

■ Allows OSTs to cache read data more frequently

■ Improves repeated reads to match network speeds instead of disk speeds

■ Provides the building blocks for OST write cache (small-write aggregation)

21.2.7.1 Using OSS Read Cache

OSS read cache is implemented on the OSS, and does not require any special support 
on the client side. Since OSS read cache uses the memory available in the Linux page 
cache, you should use I/O patterns to determine the appropriate amount of memory 
for the cache; if the data is mostly reads, then more cache is required than for writes. 

OSS read cache is enabled, by default, and managed by the following tunables: 

■ read_cache_enable controls whether data read from disk during a read request 
is kept in memory and available for later read requests for the same data, without 
having to re-read it from disk. By default, read cache is enabled 
(read_cache_enable = 1).

When the OSS receives a read request from a client, it reads data from disk into its 
memory and sends the data as a reply to the requests. If read cache is enabled, this 
data stays in memory after the client’s request is finished, and the OSS skips 
reading data from disk when subsequent read requests for the same are received. 
The read cache is managed by the Linux kernel globally across all OSTs on that 
OSS, and the least recently used cache pages will be dropped from memory when 
the amount of free memory is running low.

If read cache is disabled (read_cache_enable = 0), then the OSS will discard the 
data after the client’s read requests are serviced and, for subsequent read requests, 
the OSS must read the data from disk. 
21-22 Lustre 2.0 Operations Manual • June 2010



To disable read cache on all OSTs of an OSS, run: 

root@oss1# lctl set_param obdfilter.*.read_cache_enable=0

To re-enable read cache on one OST, run: 

root@oss1# lctl set_param obdfilter.{OST_name}.read_cache_enable=1

To check if read cache is enabled on all OSTs on an OSS, run:

root@oss1# lctl get_param obdfilter.*.read_cache_enable

■ writethrough_cache_enable controls whether data sent to the OSS as a write 
request is kept in the read cache and available for later reads, or if it is discarded 
from cache when the write is completed. By default, writethrough cache is enabled 
(writethrough_cache_enable = 1). 

When the OSS receives write requests from a client, it receives data from the client 
into its memory and writes the data to disk. If writethrough cache is enabled, this 
data stays in memory after the write request is completed, allowing the OSS to 
skip reading this data from disk if a later read request, or partial-page write 
request, for the same data is received. 

If writethrough cache is disabled (writethrough_cache_enabled = 0), then the 
OSS discards the data after the client’s write request is completed, and for 
subsequent read request, or partial-page write request, the OSS must re-read the 
data from disk. 

Enabling writethrough cache is advisable if clients are doing small or unaligned 
writes that would cause partial-page updates, or if the files written by one node 
are immediately being accessed by other nodes. Some examples where this might 
be useful include producer-consumer I/O models or shared-file writes with a 
different node doing I/O not aligned on 4096-byte boundaries. Disabling 
writethrough cache is advisable in the case where files are mostly written to the 
file system but are not re-read within a short time period, or files are only written 
and re-read by the same node, regardless of whether the I/O is aligned or not.

To disable writethrough cache on all OSTs of an OSS, run:

root@oss1# lctl set_param obdfilter.*.writethrough_cache_enable=0

To re-enable writethrough cache on one OST, run:

root@oss1# lctl set_param \
obdfilter.{OST_name}.writethrough_cache_enable=1

To check if writethrough cache is

root@oss1# lctl set_param obdfilter.*.writethrough_cache_enable=1
Chapter 21 LustreProc 21-23



■ readcache_max_filesize controls the maximum size of a file that both the 
read cache and writethrough cache will try to keep in memory. Files larger than 
readcache_max_filesize will not be kept in cache for either reads or writes. 

This can be very useful for workloads where relatively small files are repeatedly 
accessed by many clients, such as job startup files, executables, log files, etc., but 
large files are read or written only once. By not putting the larger files into the 
cache, it is much more likely that more of the smaller files will remain in cache for 
a longer time. 

When setting readcache_max_filesize, the input value can be specified in 
bytes, or can have a suffix to indicate other binary units such as Kilobytes, 
Megabytes, Gigabytes, Terabytes, or Petabytes.

To limit the maximum cached file size to 32MB on all OSTs of an OSS, run:

root@oss1# lctl set_param obdfilter.*.readcache_max_filesize=32M

To disable the maximum cached file size on an OST, run:

root@oss1# lctl set_param \
obdfilter.{OST_name}.readcache_max_filesize=-1

To check the current maximum cached file size on all OSTs of an OSS, run:

root@oss1# lctl get_param obdfilter.*.readcache_max_filesize
21-24 Lustre 2.0 Operations Manual • June 2010



21.2.8 mballoc History
/proc/fs/ldiskfs/sda/mb_history

Multi-Block-Allocate (mballoc), enables Lustre to ask ext3 to allocate multiple blocks 
with a single request to the block allocator. Typically, an ext3 file system allocates 
only one block per time. Each mballoc-enabled partition has this file. This is sample 
output:

pid inode goal result found grpscr \ merge tailbroken
2838 139267 17/12288/1 17/12288/1 1 0 0 \ M 1 8192
2838 139267 17/12289/1 17/12289/1 1 0 0 \ M 0 0
2838 139267 17/12290/1 17/12290/1 1 0 0 \ M 1 2
2838 24577 3/12288/1 3/12288/1 1 0 0 \ M 1 8192
2838 24578 3/12288/1 3/771/1 1 1 1 \ 0 0
2838 32769 4/12288/1 4/12288/1 1 0 0 \ M 1 8192
2838 32770 4/12288/1 4/12289/1 13 1 1 \ 0 0
2838 32771 4/12288/1 5/771/1 26 2 1 \ 0 0
2838 32772 4/12288/1 5/896/1 31 2 1 \ 1 128
2838 32773 4/12288/1 5/897/1 31 2 1 \ 0 0
2828 32774 4/12288/1 5/898/1 31 2 1 \ 1 2
2838 32775 4/12288/1 5/899/1 31 2 1 \ 0 0
2838 32776 4/12288/1 5/900/1 31 2 1 \ 1 4
2838 32777 4/12288/1 5/901/1 31 2 1 \ 0 0
2838 32778 4/12288/1 5/902/1 31 2 1 \ 1 2

The parameters are described below:

Parameter Description

pid Process that made the allocation.

inode inode number allocated blocks

goal Initial request that came to mballoc (group/block-in-group/number-of-blocks)

result What mballoc actually found for this request.

found Number of free chunks mballoc found and measured before the final decision.

grps Number of groups mballoc scanned to satisfy the request.

cr Stage at which mballoc found the result:
0 - best in terms of resource allocation. The request was 1MB or larger and was 
satisfied directly via the kernel buddy allocator.
1 - regular stage (good at resource consumption)
2 - fs is quite fragmented (not that bad at resource consumption)
3 - fs is very fragmented (worst at resource consumption)

queue Total bytes in active/queued sends.
Chapter 21 LustreProc 21-25



Most customers are probably interested in found/cr. If cr is 0 1 and found is less 
than 100, then mballoc is doing quite well.

Also, number-of-blocks-in-request (third number in the goal triple) can tell the 
number of blocks requested by the obdfilter. If the obdfilter is doing a lot of small 
requests (just few blocks), then either the client is processing input/output to a lot of 
small files, or something may be wrong with the client (because it is better if client 
sends large input/output requests). This can be investigated with the OSC 
rpc_stats or OST brw_stats mentioned above.

Number of groups scanned (grps column) should be small. If it reaches a few dozen 
often, then either your disk file system is pretty fragmented or mballoc is doing 
something wrong in the group selection part.

merge Whether the request hit the goal. This is good as extents code can now merge 
new blocks to existing extent, eliminating the need for extents tree growth.

tail Number of blocks left free after the allocation breaks large free chunks.

broken How large the broken chunk was.

Parameter Description
21-26 Lustre 2.0 Operations Manual • June 2010



21.2.9 mballoc3 Tunables
Lustre version 1.6.1 and later includes mballoc3, which was built on top of mballoc2. 
By default, mballoc3 is enabled, and adds these features:

■ Pre-allocation for single files (helps to resist fragmentation)

■ Pre-allocation for a group of files (helps to pack small files into large, contiguous 
chunks) 

■ Stream allocation (helps to decrease the seek rate)

The following mballoc3 tunables are available:

Field Description

stats Enables/disables the collection of statistics. Collected statistics can be found
in /proc/fs/ldiskfs2/<dev>/mb_history.

max_to_scan Maximum number of free chunks that mballoc finds before a final decision 
to avoid livelock.

min_to_scan Minimum number of free chunks that mballoc finds before a final decision. 
This is useful for a very small request, to resist fragmentation of big free 
chunks.

order2_req For requests equal to 2^N (where N >= order2_req), a very fast search via 
buddy structures is used.

stream_req Requests smaller or equal to this value are packed together to form large 
write I/Os.
Chapter 21 LustreProc 21-27



The following tunables, providing more control over allocation policy, will be 
available in the next version:

Field Description

stats Enables/disables the collection of statistics. Collected statistics can be 
found in /proc/fs/ldiskfs2/<dev>/mb_history.

max_to_scan Maximum number of free chunks that mballoc finds before a final 
decision to avoid livelock.

min_to_scan Minimum number of free chunks that mballoc finds before a final 
decision. This is useful for a very small request, to resist fragmentation of 
big free chunks.

order2_req For requests equal to 2^N (where N >= order2_req), a very fast search via 
buddy structures is used.

small_req All requests are divided into 3 categories:
< small_req (packed together to form large, aggregated requests)
< large_req (allocated mostly in linearly)
> large_req (very large requests so the arm seek does not matter)

The idea is that we try to pack small requests to form large requests, and 
then place all large requests (including compound from the small ones) 
close to one another, causing as few arm seeks as possible.

large_req

prealloc_table The amount of space to preallocate depends on the current file size. The 
idea is that for small files we do not need 1 MB preallocations and for 
large files, 1 MB preallocations are not large enough; it is better to 
preallocate 4 MB.

group_prealloc The amount of space preallocated for small requests to be grouped.
21-28 Lustre 2.0 Operations Manual • June 2010



21.2.10 Locking
/proc/fs/lustre/ldlm/ldlm/namespaces/<OSC name|MDCname>/lru_size

The lru_size parameter is used to control the number of client-side locks in an 
LRU queue. LRU size is dynamic, based on load. This optimizes the number of locks 
available to nodes that have different workloads (e.g., login/build nodes vs. compute 
nodes vs. backup nodes).

The total number of locks available is a function of the server’s RAM. The default 
limit is 50 locks/1 MB of RAM. If there is too much memory pressure, then the LRU 
size is shrunk. The number of locks on the server is limited to {number of OST/MDT 
on node} * {number of clients} * {client lru_size}.

■ To enable automatic LRU sizing, set the lru_size parameter to 0. In this case, the 
lru_size parameter shows the current number of locks being used on the export. 
(In Lustre 1.6.5.1 and later, LRU sizing is enabled, by default.) 

■ To specify a maximum number of locks, set the lru_size parameter to a value > 
0 (former numbers are okay, 100 * CPU_NR). We recommend that you only 
increase the LRU size on a few login nodes where users access the file system 
interactively.

To clear the LRU on a single client, and as a result flush client cache, without 
changing the lru_size value:

$ lctl set_param ldlm.namespaces.<osc_name|mdc_name>.lru_size=clear

If you shrink the LRU size below the number of existing unused locks, then the 
unused locks are canceled immediately. Use echo clear to cancel all locks without 
changing the value.

Note – Currently, the lru_size parameter can only be set temporarily with lctl 
set_param; it cannot be set permanently. 

To disable LRU sizing, run this command on the Lustre clients:

$ lctl set_param ldlm.namespaces.*osc*.lru_size=$((NR_CPU*100))

Replace NR_CPU value with the number of CPUs on the node. 

To determine the number of locks being granted:

$ lctl get_param ldlm.namespaces.*.pool.limit
Chapter 21 LustreProc 21-29



21.2.11 Setting MDS and OSS Thread Counts
MDS and OSS thread counts (minimum and maximum) can be set via the 
{min,max}_thread_count tunable. For each service, a new 
/proc/fs/lustre/{service}/*/thread_{min,max,started} entry is created. 
The tunable, {service}.thread_{min,max,started}, can be used to set the 
minimum and maximum thread counts or get the current number of running threads 
for the following services.

■ To temporarily set this tunable, run: 

# lctl {get,set}_param {service}.thread_{min,max,started} 

■ To permanently set this tunable, run: 

# lctl conf_param {service}.thread_{min,max,started} 

The following examples show how to set thread counts and get the number of 
running threads for the ost_io service.

■ To get the number of running threads, run:

# lctl get_param ost.OSS.ost_io.threads_started

The command output will be similar to this:

ost.OSS.ost_io.threads_started=128

■ To set the maximum number of threads (512), run:

# lctl get_param ost.OSS.ost_io.threads_max

The command output will be:

ost.OSS.ost_io.threads_max=512

Service Description

mdt.MDS.mds normal metadata ops

mdt.MDS.mds_readpage metadata readdir

mdt.MDS.mds_setattr metadata setattr

ost.OSS.ost normal data

ost.OSS.ost_io bulk data IO

ost.OSS.ost_create OST object pre-creation service

ldlm.services.ldlm_canceld DLM lock cancel

ldlm.services.ldlm_cbd DLM lock grant
21-30 Lustre 2.0 Operations Manual • June 2010



■ To set the maximum thread count to 256 instead of 512 (to avoid overloading the 
storage or for an array with requests), run:

# lctl set_param ost.OSS.ost_io.threads_max=256

The command output will be:

ost.OSS.ost_io.threads_max=256

■ To check if the new threads_max setting is active, run: 

# lctl get_param ost.OSS.ost_io.threads_max

The command output will be similar to this:

ost.OSS.ost_io.threads_max=256

Note – Currently, the maximum thread count setting is advisory because Lustre does 
not reduce the number of service threads in use, even if that number exceeds the 
threads_max value. Lustre does not stop service threads once they are started. 
Chapter 21 LustreProc 21-31



21.3 Debug Support
/proc/sys/lnet/debug 

By default, Lustre generates a detailed log of all operations to aid in debugging. The 
level of debugging can affect the performance or speed you achieve with Lustre. 
Therefore, it is useful to reduce this overhead by turning down the debug level1 to 
improve performance. Raise the debug level when you need to collect the logs for 
debugging problems. The debugging mask can be set with "symbolic names" instead 
of the numerical values that were used in prior releases. The new symbolic format is 
shown in the examples below. 

Note – All of the commands below must be run as root; note the # nomenclature.

To verify the debug level used by examining the sysctl that controls debugging, run:

# sysctl lnet.debug 

lnet.debug = ioctl neterror warning error emerg ha config console

To turn off debugging (except for network error debugging), run this command on all 
concerned nodes:

# sysctl -w lnet.debug="neterror" 

lnet.debug = neterror

To turn off debugging completely, run this command on all concerned nodes:

# sysctl -w lnet.debug=0 

lnet.debug = 0

To set an appropriate debug level for a production environment, run:

# sysctl -w lnet.debug="warning dlmtrace error emerg ha rpctrace 
vfstrace" 

lnet.debug = warning dlmtrace error emerg ha rpctrace vfstrace

The flags above collect enough high-level information to aid debugging, but they do 
not cause any serious performance impact. 

To clear all flags and set new ones, run:

# sysctl -w lnet.debug="warning" 

lnet.debug = warning

1. This controls the level of Lustre debugging kept in the internal log buffer. It does not alter the level of 
debugging that goes to syslog. 
21-32 Lustre 2.0 Operations Manual • June 2010



To add new flags to existing ones, prefix them with a "+":

# sysctl -w lnet.debug="+neterror +ha" 

lnet.debug = +neterror +ha

# sysctl lnet.debug 

lnet.debug = neterror warning ha

To remove flags, prefix them with a "-":

# sysctl -w lnet.debug="-ha" 

lnet.debug = -ha

# sysctl lnet.debug 

lnet.debug = neterror warning

You can verify and change the debug level using the /proc interface in Lustre. To use 
the flags with /proc, run:

# cat /proc/sys/lnet/debug 

neterror warning

# echo "+ha" > /proc/sys/lnet/debug 

# cat /proc/sys/lnet/debug 

neterror warning ha

# echo "-warning" > /proc/sys/lnet/debug

# cat /proc/sys/lnet/debug 

neterror ha
Chapter 21 LustreProc 21-33



/proc/sys/lnet/subsystem_debug

This controls the debug logs3 for subsystems (see S_* definitions).

/proc/sys/lnet/debug_path

This indicates the location where debugging symbols should be stored for gdb. The 
default is set to /r/tmp/lustre-log-localhost.localdomain.

These values can also be set via sysctl -w lnet.debug={value}

Note – The above entries only exist when Lustre has already been loaded.

/proc/sys/lnet/panic_on_lbug

This causes Lustre to call ''panic'' when it detects an internal problem (an LBUG); 
panic crashes the node. This is particularly useful when a kernel crash dump utility 
is configured. The crash dump is triggered when the internal inconsistency is 
detected by Lustre.

/proc/sys/lnet/upcall

This allows you to specify the path to the binary which will be invoked when an 
LBUG is encountered. This binary is called with four parameters. The first one is the 
string ''LBUG''. The second one is the file where the LBUG occurred. The third one is 
the function name. The fourth one is the line number in the file.
21-34 Lustre 2.0 Operations Manual • June 2010



21.3.1 RPC Information for Other OBD Devices
Some OBD devices maintain a count of the number of RPC events that they process. 
Sometimes these events are more specific to operations of the device, like llite, than 
actual raw RPC counts.

$ find /proc/fs/lustre/ -name stats

/proc/fs/lustre/osc/lustre-OST0001-osc-ce63ca00/stats

/proc/fs/lustre/osc/lustre-OST0000-osc-ce63ca00/stats

/proc/fs/lustre/osc/lustre-OST0001-osc/stats

/proc/fs/lustre/osc/lustre-OST0000-osc/stats

/proc/fs/lustre/mdt/MDS/mds_readpage/stats

/proc/fs/lustre/mdt/MDS/mds_setattr/stats

/proc/fs/lustre/mdt/MDS/mds/stats

/proc/fs/lustre/mds/lustre-MDT0000/exports/ab206805-0630-6647-8543-d
24265c91a3d/stats

/proc/fs/lustre/mds/lustre-MDT0000/exports/08ac6584-6c4a-3536-2c6d-b
36cf9cbdaa0/stats

/proc/fs/lustre/mds/lustre-MDT0000/stats

/proc/fs/lustre/ldlm/services/ldlm_canceld/stats

/proc/fs/lustre/ldlm/services/ldlm_cbd/stats

/proc/fs/lustre/llite/lustre-ce63ca00/stats
Chapter 21 LustreProc 21-35



21.3.1.1 Interpreting OST Statistics

The OST .../stats files can be used to track client statistics (client activity) for 
each OST. It is possible to get a periodic dump of values from these file (for example, 
every 10 seconds), that show the RPC rates (similar to iostat) by using the 
llstat.pl tool:

# llstat /proc/fs/lustre/osc/lustre-OST0000-osc/stats 

/usr/bin/llstat: STATS on 09/14/07 
/proc/fs/lustre/osc/lustre-OST0000-osc/stats on 192.168.10.34@tcp

snapshot_time 1189732762.835363

ost_create 1

ost_get_info 1

ost_connect 1

ost_set_info 1

obd_ping 212

To clear the statistics, give the -c option to llstat.pl. To specify how frequently 
the statistics should be cleared (in seconds), use an integer for the -i option. This is 
sample output with -c and -i10 options used, providing statistics every 10s):

$ llstat -c -i10 /proc/fs/lustre/ost/OSS/ost_io/stats

/usr/bin/llstat: STATS on 06/06/07 /proc/fs/lustre/ost/OSS/ost_io/ stats on 
192.168.16.35@tcp
snapshot_time 1181074093.276072

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074103.284895
Name Cur.CountCur.Rate#EventsUnit\ last min avg max stddev
req_waittime8 0 8 [usec] 2078\ 34 259.75 868 317.49
req_qdepth 8 0 8 [reqs] 1\ 0 0.12 1 0.35
req_active 8 0 8 [reqs] 11\ 1 1.38 2 0.52
reqbuf_avail8 0 8 [bufs] 511\ 63 63.88 64 0.35
ost_write 8 0 8 [bytes]1697677\72914212209.6238757991874.29

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074113.290180
Name Cur.CountCur.Rate#EventsUnit \ lastmin avg max stddev
req_waittime31 3 39 [usec] 30011\ 34 822.79 12245 2047.71
req_qdepth 31 3 39 [reqs] 0\ 0 0.03 1 0.16
req_active 31 3 39 [reqs] 58\ 1 1.77 3 0.74
reqbuf_avail31 3 39 [bufs] 1977\ 63 63.79 64 0.41
ost_write 30 3 38 [bytes]10284679\15019315325.16910694197776.51

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074123.325560
Name Cur.CountCur.Rate#Events Unit \ last minavgmax stddev
req_waittime21 2 60 [usec] 14970\ 34784.32122451878.66
req_qdepth 21 2 60 [reqs] 0\ 0 0.02 1 0.13
req_active 21 2 60 [reqs] 33\ 1 1.70 3 0.70
reqbuf_avail21 2 60 [bufs] 1341\ 6363.82 64 0.39
ost_write 21 2 59 [bytes]7648424\ 15019332725.08910694 
180397.87
21-36 Lustre 2.0 Operations Manual • June 2010



Where:

The events common to all services are:

Some service-specific events of interest are:

Parameter Description

Cur. Count Number of events of each type sent in the last interval (in this example, 
10s)

Cur. Rate Number of events per second in the last interval

#Events Total number of such events since the system started

Unit Unit of measurement for that statistic (microseconds, requests, buffers)

last Average rate of these events (in units/event) for the last interval during 
which they arrived. For instance, in the above mentioned case of 
ost_destroy it took an average of 736 microseconds per destroy for the 400 
object destroys in the previous 10 seconds.

min Minimum rate (in units/events) since the service started

avg Average rate

max Maximum rate

stddev Standard deviation (not measured in all cases)

Parameter Description

req_waittime Amount of time a request waited in the queue before being handled by an 
available server thread.

req_qdepth Number of requests waiting to be handled in the queue for this service.

req_active Number of requests currently being handled.

reqbuf_avail Number of unsolicited lnet request buffers for this service.

Parameter Description

ldlm_enqueue Time it takes to enqueue a lock (this includes file open on the MDS)

mds_reint Time it takes to process an MDS modification record (includes create, 
mkdir, unlink, rename and setattr)
Chapter 21 LustreProc 21-37



21.3.1.2 llobdstat

The llobdstat utility displays statistics for the activity of a specific OST on an OSS:

/proc/fs/lustre/<ost_name>/stats

Use llobdstat to monitor changes in statistics over time, and I/O rates for all OSTs 
on a server. the llobdstat utility provides utilization graphs for selectable 
time-scales.

Usage:

#llobdstat <ost_name> [<interval>]

Example: 

llobdstat lustre-OST0000 2

21.3.1.3 Interpreting MDT Statistics

The MDT .../stats files can be used to track MDT statistics for the MDS. Here is 
sample output for an MDT stats file:

# cat /proc/fs/lustre/mds/*-MDT0000/stats 

snapshot_time 1244832003.676892 secs.usecs 

open 2 samples [reqs] 

close 1 samples [reqs] 

getxattr 3 samples [reqs] 

process_config 1 samples [reqs] 

connect 2 samples [reqs] 

disconnect 2 samples [reqs] 

statfs 3 samples [reqs] 

setattr 1 samples [reqs] 

getattr 3 samples [reqs] 

llog_init 6 samples [reqs] 

notify 16 samples [reqs]

Parameter Description

ost_name The OST name under /proc/fs/lustre/obdfilter

interval Sample interval (in seconds)
21-38 Lustre 2.0 Operations Manual • June 2010



CHAPTER 22

Lustre Monitoring

This chapter provides information on monitoring Lustre and includes the following 
sections:

■ Lustre Changelogs

■ Lustre Monitoring Tool

■ Red Hat Cluster Manager

■ SNMP Monitoring

■ CollectL
22-1



22.1 Lustre Changelogs 
Lustre 2.0 introduces the changelogs feature which records events that change the file 
system namespace or file metadata. Changes such as file creation, deletion, renaming, 
attribute changes, etc. are recorded with the target and parent file identifiers (FIDs), 
the name of the target, and a timestamp. These records can be used for a variety of 
purposes: 

■ Capture recent changes to feed into an archiving system.

■ Use changelog entries to exactly replicate changes in a file system mirror.

■ Set up "watch scripts" that take action on certain events or directories.

■ Maintain a rough audit trail (file/directory changes with timestamps, but no user 
information).

Changelogs record types are: 

FID-to-full-pathname and pathname-to-FID functions are also included to map target 
and parent FIDs into the file system namespace. 

Value Description

MARK Internal recordkeeping

CREAT Regular file creation

MKDIR Directory creation

HLINK Hard link

SLINK Soft link

MKNOD Other file creation

UNLNK Regular file removal

RMDIR Directory removal

RNMFM Rename, original

RNMTO Rename, final

IOCTL ioctl on file or directory

TRUNC Regular file truncated

SATTR Attribute change

XATTR Extended attribute change

UNKNW Unknown operation
22-2 Lustre 2.0 Operations Manual • June 2010



22.1.1 Working with Changelogs
Several commands are available to work with changelogs. 

lctl changelog_register

Because changelog records take up space on the MDT, the system administration 
must register changelog users.  The registrants specify which records they are "done 
with", and the system purges up to the greatest common record.

To register a new changelog user, run:

lctl --device <mdt_device> changelog_register

Changelog entries are not purged beyond a registered user’s set point (see lfs 
changelog_clear). 

lfs changelog 

To display the metadata changes on an MDT (the changelog records), run:

lfs changelog <MDT name> [startrec [endrec]] 

It is optional whether to specify the start and end records.

These are sample changelog records:

2 02MKDIR 4298396676 0x0 t=[0x200000405:0x15f9:0x0] p=
[0x13:0x15e5a7a3:0x0] pics 

3 01CREAT 4298402264 0x0 t=[0x200000405:0x15fa:0x0] p=
[0x200000405:0x15f9:0x0] chloe.jpg 

4 06UNLNK 4298404466 0x0 t=[0x200000405:0x15fa:0x0] p=
[0x200000405:0x15f9:0x0] chloe.jpg 

5 07RMDIR 4298405394 0x0 t=[0x200000405:0x15f9:0x0] p=
[0x13:0x15e5a7a3:0x0] pics 
Chapter 22 Lustre Monitoring 22-3



lfs changelog_clear

To clear old changelog records for a specific user (records that the user no longer 
needs), run:

lfs changelog_clear <MDT name> <user ID> <endrec>

The changelog_clear command indicates that changelog records previous to 
<endrec> are no longer of interest to a particular user <user ID>, potentially 
allowing the MDT to free up disk space. An <endrec> value of 0 indicates the 
current last record. To run changelog_clear, the changelog user must be registered 
on the MDT node using lctl.

When all changelog users are done with records < X, the records are deleted. 

lctl changelog_deregister

To deregister (unregister) a changelog user, run:

lctl --device <mdt_device> changelog_deregister <user ID>

Changelog_deregister cl1 effectively does a changelog_clear cl1 0 as it 
deregisters.

22.1.2 Changelog Examples 
This section provides examples of different changelog commands.

Registering a Changelog User

To register a new changelog user for a device (lustre-MDT0000):

# lctl --device lustre-MDT0000 changelog_register

lustre-MDT0000: Registered changelog userid 'cl1'
22-4 Lustre 2.0 Operations Manual • June 2010



Displaying Changelog Records

To display changelog records on an MDT (lustre-MDT0000):

$ lfs changelog lustre-MDT0000

1 00MARK  19:08:20.890432813 2010.03.24 0x0 t=[0x10001:0x0:0x0] p=
[0:0x0:0x0] mdd_obd-lustre-MDT0000-0 

2 02MKDIR 19:10:21.509659173 2010.03.24 0x0 t=[0x200000420:0x3:0x0] 
p=[0x61b4:0xca2c7dde:0x0] mydir 

3 14SATTR 19:10:27.329356533 2010.03.24 0x0 t=[0x200000420:0x3:0x0] 

4 01CREAT 19:10:37.113847713 2010.03.24 0x0 t=[0x200000420:0x4:0x0] 
p=[0x200000420:0x3:0x0] hosts 

Changelog records include this information:

rec# 

operation_type(numerical/text) 

timestamp 

datestamp 

flags 

t=target_FID 

p=parent_FID 

target_name

Displayed in this format: 

rec# operation_type(numerical/text) timestamp datestamp flags t=
target_FID p=parent_FID target_name

For example:

4 01CREAT 19:10:37.113847713 2010.03.24 0x0 t=[0x200000420:0x4:0x0] 
p=[0x200000420:0x3:0x0] hosts

Clearing Changelog Records

To notify a device that a specific user (cl1) no longer needs records (up to and 
including 3):

$ lfs changelog_clear  lustre-MDT0000 cl1 3

To confirm that the changelog_clear operation was successful, run lfs 
changelog; only records after id-3 are listed:

$ lfs changelog lustre-MDT0000

4 01CREAT 19:10:37.113847713 2010.03.24 0x0 t=[0x200000420:0x4:0x0] 
p=[0x200000420:0x3:0x0] hosts
Chapter 22 Lustre Monitoring 22-5



Deregistering a Changelog User

To deregister a changelog user (cl1) for a specific device (lustre-MDT0000):

# lctl --device lustre-MDT0000 changelog_deregister cl1

lustre-MDT0000: Deregistered changelog user 'cl1'

The deregistration operation clears all changelog records for the specified user (cli). 

$ lfs changelog lustre-MDT0000

5 00MARK  19:13:40.858292517 2010.03.24 0x0 t=[0x40001:0x0:0x0] p=
[0:0x0:0x0] mdd_obd-lustre-MDT0000-0 

Note – MARK records typically indicate changelog recording status changes.

Displaying the Changelog Index and Registered Users

To display the current, maximum changelog index and registered changelog users for 
a specific device (lustre-MDT0000):

# lctl get_param  mdd.lustre-MDT0000.changelog_users 

mdd.lustre-MDT0000.changelog_users=current index: 8 

ID    index 

cl2   8

Displaying the Changelog Mask

To show the current changelog mask on a specific device (lustre-MDT0000):

# lctl get_param  mdd.lustre-MDT0000.changelog_mask 

mdd.lustre-MDT0000.changelog_mask= 

MARK CREAT MKDIR HLINK SLINK MKNOD UNLNK RMDIR RNMFM RNMTO OPEN CLOSE 
IOCTL TRUNC SATTR XATTR HSM 
22-6 Lustre 2.0 Operations Manual • June 2010



Setting the Changelog Mask

To set the current changelog mask on a specific device (lustre-MDT0000):

# lctl set_param mdd.lustre-MDT0000.changelog_mask=HLINK 

mdd.lustre-MDT0000.changelog_mask=HLINK 

$ lfs changelog_clear lustre-MDT0000 cl1 0 

$ mkdir /mnt/lustre/mydir/foo

$ cp /etc/hosts /mnt/lustre/mydir/foo/file

$ ln /mnt/lustre/mydir/foo/file /mnt/lustre/mydir/myhardlink

Only item types that are in the mask show up in the changelog.

$ lfs changelog lustre-MDT0000

9 03HLINK 19:19:35.171867477 2010.03.24 0x0 t=[0x200000420:0x6:0x0] 
p=[0x200000420:0x3:0x0] myhardlink
Chapter 22 Lustre Monitoring 22-7



22.2 Lustre Monitoring Tool
The Lustre Monitoring Tool (LMT1) is a Python-based, distributed system that 
provides a ''top'' like display of activity on server-side nodes2 (MDS, OSS and portals 
routers) on one or more Lustre file systems. For more information on LMT, including 
the setup procedure, see: 

http://code.google.com/p/lmt/

LMT questions can be directed to: 

lmt-discuss@googlegroups.com

22.3 Red Hat Cluster Manager
The Red Hat Cluster Manager provides high availability features that are essential 
for data integrity, application availability and uninterrupted service under various 
failure conditions. You can use the Cluster Manager to test MDS/OST failure in 
Lustre clusters.

To use Cluster Manager to test MDS failover, specific hardware is required - a 
compute node, OSTs and two machines (to act as the active and failover MDSs). The 
MDS nodes need to be able to see the same shared storage, so you need to prepare a 
shared disk for the Cluster Manager and the MDSs. Several RPM packages are also 
required3, along with certain configuration changes.

For more information on the Cluster Manager (bundled in the Red Hat Cluster Suite), 
see the Red Hat Cluster Suite. Supporting documentation is available to the Red Hat 
Cluster Suite Overview. 

For more information on installing and configuring Cluster Manager for Lustre 
failover, and testing MDS failover, see Cluster Manager.

1. LMT was developed by Lawrence Livermore National Lab (LLNL) and continues to be maintained by LLNL.

2. Lustre client monitoring is not supported. 

3. The Lustre Group has made several scripts available for MDS failover testing. 
22-8 Lustre 2.0 Operations Manual • June 2010

http://code.google.com/p/lmt/
mailto:lmt-discuss@googlegroups.com
http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.2/html/Cluster_Suite_Overview/index.html
http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.2/html/Cluster_Suite_Overview/index.html
http://wiki.lustre.org/index.php?title=Clu_Manager
http://www.redhat.com/cluster_suite/


22.4 SNMP Monitoring
Lustre has a native SNMP module, which enables you to use various standard SNMP 
monitoring packages (anything using RRDTool as a backend) to track performance. 
For more information in installing, building and using the SNMP module, see Lustre 
SNMP Module.

22.5 CollectL
CollectL is another tool that can be used to monitor Lustre. You can run CollectL on 
a Lustre system that has any combination of MDSs, OSTs and clients. The collected 
data can be written to a file for continuous logging and played back at a later time. It 
can also be converted to a format suitable for plotting. 

For more information about CollectL, see: 

http://collectl.sourceforge.net

Lustre-specific documentation is also available. See:

http://collectl.sourceforge.net/Tutorial-Lustre.html

Other Monitoring Options

Another option is to script a simple monitoring solution which looks at various 
reports from ipconfig, as well as the procfs files generated by Lustre. 
Chapter 22 Lustre Monitoring 22-9

http://collectl.sourceforge.net
http://collectl.sourceforge.net/Tutorial-Lustre.html


22-10 Lustre 2.0 Operations Manual • June 2010



CHAPTER 23

Lustre Troubleshooting

This chapter provides information to troubleshoot Lustre, submit a Lustre bug, and 
Lustre performance tips. It includes the following sections:

■ Troubleshooting Lustre

■ Reporting a Lustre Bug

■ Common Lustre Problems and Performance Tips
23-1



23.1 Troubleshooting Lustre
Several resources are available to help use troubleshoot Lustre. This section describes 
error numbers, error messages and logs.

23.1.1 Error Numbers
Error numbers for Lustre come from the Linux errno.h, and are located in 
/usr/include/asm/errno.h. Lustre does not use all of the available Linux error 
numbers. The exact meaning of an error number depends on where it is used. Here is 
a summary of the basic errors that Lustre users may encounter.

Error Number Error Name Description

-1 -EPERM Permission is denied.

-2 -ENOENT The requested file or directory does not exist.

-4 -EINTR The operation was interrupted (usually CTRL-C or a killing 
process).

-5 -EIO The operation failed with a read or write error.

-19 -ENODEV No such device is available. The server stopped or failed 
over.

-22 -EINVAL The parameter contains an invalid value.

-28 -ENOSPC The file system is out-of-space or out of inodes. Use lfs df 
(query the amount of file system space) or lfs df -i 
(query the number of inodes). 

-30 -EROFS The file system is read-only, likely due to a detected error.

-43 -EIDRM The UID/GID does not match any known UID/GID on the 
MDS. Update etc/hosts and etc/group on the MDS to add 
the missing user or group.

-107 -ENOTCONN The client is not connected to this server.

-110 -ETIMEDOUT The operation took too long and timed out.
23-2 Lustre 2.0 Operations Manual • June 2010



23.1.2 Error Messages
As Lustre code runs on the kernel, single-digit error codes display to the application; 
these error codes are an indication of the problem. Refer to the kernel console log 
(dmesg) for all recent kernel messages from that node. On the node, 
/var/log/messages holds a log of all messages for at least the past day.

23.1.3 Lustre Logs
The error message initiates with "LustreError" in the console log and provides a short 
description of: 

■ What the problem is

■ Which process ID had trouble

■ Which server node it was communicating with, and so on. 

Lustre logs are dumped to /proc/sys/lnet/debug_path.

Collect the first group of messages related to a problem, and any messages that 
precede "LBUG" or "assertion failure" errors. Messages that mention server nodes 
(OST or MDS) are specific to that server; you must collect similar messages from the 
relevant server console logs.

Another Lustre debug log holds information for Lustre action for a short period of 
time which, in turn, depends on the processes on the node to use Lustre. Use the 
following command to extract debug logs on each of the nodes, run

$ lctl dk <filename>

Note – LBUG freezes the thread to allow capture of the panic stack. A system reboot 
is needed to clear the thread. 
Chapter 23 Lustre Troubleshooting 23-3



23.2 Reporting a Lustre Bug
If, after troubleshooting your Lustre system, you cannot resolve the problem, 
consider reporting a Lustre bug. To do this, you will need an account on Bugzilla 
(defect tracking system used for Lustre), and download the Lustre diagnostics tool to 
run and capture the diagnostics output.

Note – Create a Lustre Bugzilla account. Download the Lustre diagnostics tool and 
install it on the affected nodes. Make sure you are using the most recent version of 
the diagnostics tool.

1. Once you have a Lustre Bugzilla account, open a new bug and describe the 
problem you having.

2. Run the Lustre diagnostics tool, using one of the following commands:

# lustre-diagnostics -t <bugzilla bug #>

# lustre-diagnostics.

In case you need to use it later, the output of the bug is sent directly to the terminal. 
Normal file redirection can be used to send the output to a file which you can 
manually attach to this bug, if necessary.
23-4 Lustre 2.0 Operations Manual • June 2010

https://bugzilla.lustre.org/createaccount.cgi
http://downloads.lustre.org/public/tools/lustre-diagnostics/


23.3 Common Lustre Problems and 
Performance Tips
This section describes common issues encountered with Lustre, as well as tips to 
improve Lustre performance.

23.3.1 Recovering from an Unavailable OST
One of the most common problems encountered in a Lustre environment is when an 
OST becomes unavailable, because of a network partition, OSS node crash, etc. When 
this happens, the OST’s clients pause and wait for the OST to become available again, 
either on the primary OSS or a failover OSS. When the OST comes back online, 
Lustre starts a recovery process to enable clients to reconnect to the OST. Lustre 
servers put a limit on the time they will wait in recovery for clients to reconnect1. 

During recovery, clients reconnect and replay their requests, serially, in the same 
order they were done originally.2 Periodically, a progress message prints to the log, 
stating how_many/expected clients have reconnected. If the recovery is aborted, this 
log shows how many clients managed to reconnect. When all clients have completed 
recovery, or if the recovery timeout is reached, the recovery period ends and the OST 
resumes normal request processing.

If some clients fail to replay their requests during the recovery period, this will not 
stop the recovery from completing. You may have a situation where the OST 
recovers, but some clients are not able to participate in recovery (e.g. network 
problems or client failure), so they are evicted and their requests are not replayed. 
This would result in any operations on the evicted clients failing, including 
in-progress writes, which would cause cached writes to be lost. This is a normal 
outcome; the recovery cannot wait indefinitely, or the file system would be hung any 
time a client failed. The lost transactions are an unfortunate result of the recovery 
process. 

1. The timeout length is determined by the obd_timeout parameter.

2. Until a client receives a confirmation that a given transaction has been written to stable storage, the client 
holds on to the transaction, in case it needs to be replayed.
Chapter 23 Lustre Troubleshooting 23-5



Note – The version-based recovery (VBR) feature enables a failed client to be 
''skipped'', so remaining clients can replay their requests, resulting in a more 
successful recovery from a downed OST. For more information about the VBR 
feature, see Version-based Recovery.

In Lustre 1.6 and earlier, the success of the recovery process was limited by 
uncommitted client requests that are unable to be replayed. Because clients 
attempted to replay their requests to the OST and MDT in serial order, a client that 
could not replay its requests causes the recovery stream to stop, and left the 
remaining clients without an opportunity to reconnect and replay their requests.

23.3.2 Write Performance Better Than Read Performance
Typically, the performance of write operations on a Lustre cluster is better than read 
operations. When doing writes, all clients are sending write RPCs asynchronously. 
The RPCs are allocated, and written to disk in the order they arrive. In many cases, 
this allows the back-end storage to aggregate writes efficiently.

In the case of read operations, the reads from clients may come in a different order 
and need a lot of seeking to get read from the disk. This noticeably hampers the read 
throughput.

Currently, there is no readahead on the OSTs themselves, though the clients do 
readahead. If there are lots of clients doing reads it would not be possible to do any 
readahead in any case because of memory consumption (consider that even a single 
RPC (1 MB) readahead for 1000 clients would consume 1 GB of RAM).

For file systems that use socklnd (TCP, Ethernet) as interconnect, there is also 
additional CPU overhead because the client cannot receive data without copying it 
from the network buffers. In the write case, the client CAN send data without the 
additional data copy. This means that the client is more likely to become CPU-bound 
during reads than writes.
23-6 Lustre 2.0 Operations Manual • June 2010



23.3.3 OST Object is Missing or Damaged
If the OSS fails to find an object or finds a damaged object, this message appears:

OST object missing or damaged (OST "ost1", object 98148, error -2)

If the reported error is -2 (-ENOENT, or "No such file or directory"), then the object is 
missing. This can occur either because the MDS and OST are out of sync, or because 
an OST object was corrupted and deleted.

If you have recovered the file system from a disk failure by using e2fsck, then 
unrecoverable objects may have been deleted or moved to /lost+found on the raw 
OST partition. Because files on the MDS still reference these objects, attempts to 
access them produce this error.

If you have recovered a backup of the raw MDS or OST partition, then the restored 
partition is very likely to be out of sync with the rest of your cluster. No matter 
which server partition you restored from backup, files on the MDS may reference 
objects which no longer exist (or did not exist when the backup was taken); accessing 
those files produces this error.

If neither of those descriptions is applicable to your situation, then it is possible that 
you have discovered a programming error that allowed the servers to get out of sync. 
Please report this condition to the Lustre group, and we will investigate.

If the reported error is anything else (such as -5, "I/O error"), it likely indicates a 
storage failure. The low-level file system returns this error if it is unable to read from 
the storage device.

Suggested Action

If the reported error is -2, you can consider checking in /lost+found on your raw 
OST device, to see if the missing object is there. However, it is likely that this object 
is lost forever, and that the file that references the object is now partially or 
completely lost. Restore this file from backup, or salvage what you can and delete it.

If the reported error is anything else, then you should immediately inspect this 
server for storage problems.
Chapter 23 Lustre Troubleshooting 23-7



23.3.4 OSTs Become Read-Only
If the SCSI devices are inaccessible to Lustre at the block device level, then ext3 
remounts the device read-only to prevent file system corruption. This is a normal 
behavior. The status in /proc/fs/lustre/healthcheck also shows "not healthy" 
on the affected nodes.

To determine what caused the "not healthy" condition:

■ Examine the consoles of all servers for any error indications

■ Examine the syslogs of all servers for any LustreErrors or LBUG

■ Check the health of your system hardware and network. (Are the disks working as 
expected, is the network dropping packets?)

■ Consider what was happening on the cluster at the time. Does this relate to a 
specific user workload or a system load condition? Is the condition reproducible? 
Does it happen at a specific time (day, week or month)?

To recover from this problem, you must restart Lustre services using these file 
systems. There is no other way to know that the I/O made it to disk, and the state of 
the cache may be inconsistent with what is on disk.

23.3.5 Identifying a Missing OST
If an OST is missing for any reason, you may need to know what files are affected. 
Although an OST is missing, the files system should be operational. From any 
mounted client node, generate a list of files that reside on the affected OST. It is 
advisable to mark the missing OST as ’unavailable’ so clients and the MDS do not 
time out trying to contact it. 

1. Generate a list of devices and determine the OST’s device number. Run:

$ lctl dl 

The lctl dl command output lists the device name and number, along with the 
device UUID and the number of references on the device.

2. Deactivate the OST (on the OSS at the MDS). Run:

$ lctl --device <OST device name or number> deactivate 

The OST device number or device name is generated by the lctl dl command.

The deactivate command prevents clients from creating new objects on the 
specified OST, although you can still access the OST for reading.
23-8 Lustre 2.0 Operations Manual • June 2010



Note – If the OST later becomes available it needs to be reactivated, run: 

# lctl --device <OST device name or number> activate

3. Determine all the files that are striped over the missing OST, run:

# lfs find -R -o {OST_UUID} /mountpoint

This returns a simple list of filenames from the affected file system.

4. If necessary, you can read the valid parts of a striped file, run:

# dd if=filename of=new_filename bs=4k conv=sync,noerror

5. You can delete these files with the unlink or munlink command.

# unlink|munlink filename {filename ...} 

Note – There is no functional difference between the unlink and munlink 
commands. The unlink command is for newer Linux distributions. You can run 
munlink if unlink is not available. 

When you run the unlink or munlink command, the file on the MDS is 
permanently removed.

6. If you need to know, specifically, which parts of the file are missing data, then 
you first need to determine the file layout (striping pattern), which includes the 
index of the missing OST). Run:

# lfs getstripe -v {filename}

7. Use this computation is to determine which offsets in the file are affected: [(C*N 
+ X)*S, (C*N + X)*S + S - 1], N = { 0, 1, 2, ...}

where:

C = stripe count

S = stripe size

X = index of bad OST for this file

For example, for a 2 stripe file, stripe size = 1M, the bad OST is at index 0, and you 
have holes in the file at: [(2*N + 0)*1M, (2*N + 0)*1M + 1M - 1], N = { 0, 1, 2, ...} 

If the file system cannot be mounted, currently there is no way that parses metadata 
directly from an MDS. If the bad OST does not start, options to mount the file system 
are to provide a loop device OST in its place or replace it with a newly-formatted 
OST. In that case, the missing objects are created and are read as zero-filled. 
Chapter 23 Lustre Troubleshooting 23-9



23.3.6 Improving Lustre Performance When Working 
with Small Files
A Lustre environment where an application writes small file chunks from many 
clients to a single file will result in bad I/O performance. To improve Lustre’s 
performance with small files:

■ Have the application aggregate writes some amount before submitting them to 
Lustre. By default, Lustre enforces POSIX coherency semantics, so it results in lock 
ping-pong between client nodes if they are all writing to the same file at one time. 

■ Have the application do 4kB O_DIRECT sized I/O to the file and disable locking 
on the output file. This avoids partial-page IO submissions and, by disabling 
locking, you avoid contention between clients. 

■ Have the application write contiguous data.

■ Add more disks or use SSD disks for the OSTs. This dramatically improves the 
IOPS rate. Consider creating larger OSTs rather than many smaller OSTs due to 
less overhead (journal, connections, etc). 

■ Use RAID-1+0 OSTs instead of RAID-5/6. There is RAID parity overhead for 
writing small chunks of data to disk.

23.3.7 Default Striping
These are the default striping settings:

lov.stripesize=<bytes> 

lov.stripecount=<count> 

lov.stripeoffset=<offset> 

To change the default striping information.

■ On the MGS:

$ lctl conf_param testfs-MDT0000.lov.stripesize=4M

■ On the MDT and clients:

$ mdt/cli> cat /proc/fs/lustre/lov/testfs-{mdt|cli}lov/stripe*
23-10 Lustre 2.0 Operations Manual • June 2010



23.3.8 Erasing a File System
If you want to erase a file system, run this command on your targets:

$ "mkfs.lustre –reformat"

If you are using a separate MGS and want to keep other file systems defined on that 
MGS, then set the writeconf flag on the MDT for that file system. The writeconf 
flag causes the configuration logs to be erased; they are regenerated the next time the 
servers start.

To set the writeconf flag on the MDT:

1. Unmount all clients/servers using this file system, run:

$ umount /mnt/lustre

2. Erase the file system and, presumably, replace it with another file system, run:

$ mkfs.lustre –reformat --fsname spfs --mdt --mgs /dev/sda

3. If you have a separate MGS (that you do not want to reformat), then add the 
"writeconf" flag to mkfs.lustre on the MDT, run:

$ mkfs.lustre --reformat --writeconf –fsname spfs --mdt \ 
--mgs /dev/sda

Note – If you have a combined MGS/MDT, reformatting the MDT reformats the 
MGS as well, causing all configuration information to be lost; you can start building 
your new file system. Nothing needs to be done with old disks that will not be part 
of the new file system, just do not mount them.
Chapter 23 Lustre Troubleshooting 23-11



23.3.9 How to Fix a Bad LAST_ID on an OST
Each OST contains a LAST_ID file, which holds the last object (pre-)created by the 
MDS3. The MDT contains a lov_objid file, with values that represent the last object 
the MDS has allocated to a file. 

During normal operation, the MDT keeps some pre-created (but unallocated) objects 
on the OST, and the relationship between LAST_ID and lov_objid should be 
LAST_ID <= lov_objid. Any difference in the file values results in objects being 
created on the OST when it next connects to the MDS. These objects are never 
actually allocated to a file, since they are of 0 length (empty), but they do no harm. 
Creating empty objects enables the OST to catch up to the MDS, so normal operations 
resume. 

However, in the case where lov_objid < LAST_ID, bad things can happen as the MDS 
is not aware of objects that have already been allocated on the OST, and it reallocates 
them to new files, overwriting their existing contents.

Here is the rule to avoid this scenario:

LAST_ID >= lov_objid and LAST_ID == last_physical_object and lov_objid >= 
last_used_object

Although the lov_objid value should be equal to the last_used_object value, the 
above rule suffices to keep Lustre happy at the expense of a few leaked objects. 

In situations where there is on-disk corruption of the OST, for example caused by 
running with write cache enabled on the disks, the LAST_ID value may become 
inconsistent and result in a message similar to: 

"filter_precreate()) HOME-OST0003: Serious error: 

objid 3478673 already exists; is this filesystem corrupt?"

A related situation may happen if there is a significant discrepancy between the 
record of previously-created objects on the OST and the previously-allocated objects 
on the MDS, for example if the MDS has been corrupted, or restored from backup, 
which may cause significant data loss if left unchecked.  This produces a message 
like:

"HOME-OST0003: ignoring bogus orphan destroy request: 

obdid 3438673 last_id 3478673"

3. The contents of the LAST_ID file must be accurate regarding the actual objects that exist on the OST. 
23-12 Lustre 2.0 Operations Manual • June 2010



To recover from this situation, determine and set a reasonable LAST_ID value. 

Note – The file system must be stopped on all servers before performing this 
procedure. 

For hex <–> decimal translations:

Use GDB:

(gdb) p /x 15028

$2 = 0x3ab4

Or bc:

echo "obase=16; 15028" | bc

1. Determine a reasonable value for the LAST_ID file. Check on the MDS:

# mount -t ldiskfs /dev/<mdsdev> /mnt/mds

# od -Ax -td8 /mnt/mds/lov_objid

There is one entry for each OST, in OST index order. This is what the MDS thinks is 
the last in-use object.

2. Determine the OST index for this OST.

# od -Ax -td4 /mnt/ost/last_rcvd

It will have it at offset 0x8c.

3. Check on the OST. Use debugfs to check the LAST_ID value:

debugfs -c -R 'dump /O/0/LAST_ID /tmp/LAST_ID' /dev/XXX ; od -Ax -td8 
/tmp/LAST_ID"

4. Check the objects on the OST:

mount -rt ldiskfs /dev/{ostdev} /mnt/ost

# note the ls below is a number one and not a letter L

ls -1s /mnt/ost/O/0/d* | grep -v [a-z] |

sort -k2 -n > /tmp/objects.{diskname}

tail -30 /tmp/objects.{diskname}

This shows you the OST state. There may be some pre-created orphans. Check for 
zero-length objects. Any zero-length objects with IDs higher than LAST_ID should be 
deleted. New objects will be pre-created. 
Chapter 23 Lustre Troubleshooting 23-13



If the OST LAST_ID value matches that for the objects existing on the OST, then it is 
possible the lov_objid file on the MDS is incorrect. Delete the lov_objid file on the 
MDS and it will be re-created from the LAST_ID on the OSTs.

If you determine the LAST_ID file on the OST is incorrect (that is, it does not match 
what objects exist, does not match the MDS lov_objid value), then you have decided 
on a proper value for LAST_ID.

Once you have decided on a proper value for LAST_ID, use this repair procedure.

1. Access:

mount -t ldiskfs /dev/{ostdev} /mnt/ost

2. Check the current:

od -Ax -td8 /mnt/ost/O/0/LAST_ID

3. Be very safe, only work on backups:

cp /mnt/ost/O/0/LAST_ID /tmp/LAST_ID

4. Convert binary to text:

xxd /tmp/LAST_ID /tmp/LAST_ID.asc

5. Fix:

vi /tmp/LAST_ID.asc

6. Convert to binary:

xxd -r /tmp/LAST_ID.asc /tmp/LAST_ID.new

7. Verify:

od -Ax -td8 /tmp/LAST_ID.new

8. Replace:

cp /tmp/LAST_ID.new /mnt/ost/O/0/LAST_ID

9. Clean up:

umount /mnt/ost
23-14 Lustre 2.0 Operations Manual • June 2010



23.3.10 Reclaiming Reserved Disk Space 
All current Lustre installations run the ext3 file system internally on service nodes. 
By default, the ext3 reserves 5% of the disk space for the root user. In order to reclaim 
this space, run the following command on your OSSs:

tune2fs [-m reserved_blocks_percent] [device]

You do not need to shut down Lustre before running this command or restart it 
afterwards.

23.3.11 Considerations in Connecting a SAN with Lustre
Depending on your cluster size and workload, you may want to connect a SAN with 
Lustre. Before making this connection, consider the following:

■ In many SAN file systems without Lustre, clients allocate and lock blocks or 
inodes individually as they are updated. The Lustre design avoids the high 
contention that some of these blocks and inodes may have.

■ Lustre is highly scalable and can have a very large number of clients. SAN 
switches do not scale to a large number of nodes, and the cost per port of a SAN 
is generally higher than other networking.

■ File systems that allow direct-to-SAN access from the clients have a security risk 
because clients can potentially read any data on the SAN disks, and misbehaving 
clients can corrupt the file system for many reasons like improper file system, 
network, or other kernel software, bad cabling, bad memory, and so on. The risk 
increases with increase in the number of clients directly accessing the storage.
Chapter 23 Lustre Troubleshooting 23-15



23.3.12 Handling/Debugging "Bind: Address already in 
use" Error
During startup, Lustre may report a bind: Address already in use error and 
reject to start the operation. This is caused by a portmap service (often NFS locking) 
which starts before Lustre and binds to the default port 988. You must have port 988 
open from firewall or IP tables for incoming connections on the client, OSS, and MDS 
nodes. LNET will create three outgoing connections on available, reserved ports to 
each client-server pair, starting with 1023, 1022 and 1021.

Unfortunately, you cannot set sunprc to avoid port 988. If you receive this error, do 
the following:

■ Start Lustre before starting any service that uses sunrpc.

■ Use a port other than 988 for Lustre. This is configured in /etc/modprobe.conf 
as an option to the LNET module. For example:

options lnet accept_port=988

■ Add modprobe ptlrpc to your system startup scripts before the service that 
uses sunrpc. This causes Lustre to bind to port 988 and sunrpc to select a different 
port.

Note – You can also use the sysctl command to mitigate the NFS client from 
grabbing the Lustre service port. However, this is a partial workaround as other 
user-space RPC servers still have the ability to grab the port.
23-16 Lustre 2.0 Operations Manual • June 2010



23.3.13 Replacing An Existing OST or MDS
The OST file system is an ldiskfs file system, which is simply a normal ext3 file 
system plus some performance enhancements—making if very close, in fact, to ext4. 
To copy the contents of an existing OST to a new OST (or an old MDS to a new 
MDS), use one of these methods:

■ Connect the old OST disk and new OST disk to a single machine, mount both, and 
use rsync to copy all data between the OST file systems.

For example:

mount -t ldiskfs /dev/old /mnt/ost_old

mount -t ldiskfs /dev/new /mnt/ost_new

rsync -aSv /mnt/ost_old/ /mnt/ost_new

# note trailing slash on ost_old/

■ If you are unable to connect both sets of disk to the same computer, use rsync to 
copy over the network using rsh (or ssh with -e ssh):

rsync -aSvz /mnt/ost_old/ new_ost_node:/mnt/ost_new

■ Use the same procedure for the MDS, with one additional step:

cd /mnt/mds_old; getfattr -R -e base64 -d . > /tmp/mdsea; \
<copy all MDS files as above>; cd /mnt/mds_new; setfattr \
--restore=/tmp/mdsea

23.3.14 Handling/Debugging Error "- 28"
Linux error -28 is -ENOSPC and indicates that the file system has run out of space. 
You need to create larger file systems for the OSTs. Normally, Lustre reports this to 
your application. If the application is checking the return code from its function calls, 
then it decodes it into a textual error message like "No space left on device." It also 
appears in the system log messages.

During a "write" or "sync" operation, the file in question resides on an OST which is 
already full. New files that are created do not use full OSTs, but existing files 
continue to use the same OST. You need to expand the specific OST or copy/stripe 
the file over to an OST with more space available. You encounter this situation 
occasionally when creating files, which may indicate that your MDS has run out of 
inodes and needs to be enlarged. To check this, use df -i
Chapter 23 Lustre Troubleshooting 23-17



You may also receive this error if the MDS runs out of free blocks. Since the output of 
df is an aggregate of the data from the MDS and all of the OSTs, it may not show 
that the file system is full when one of the OSTs has run out of space. To determine 
which OST or MDS is running out of space, check the free space and inodes on a 
client:

grep '[0-9]' /proc/fs/lustre/osc/*/kbytes{free,avail,total}

grep '[0-9]' /proc/fs/lustre/osc/*/files{free,total}

grep '[0-9]' /proc/fs/lustre/mdc/*/kbytes{free,avail,total}

grep '[0-9]' /proc/fs/lustre/mdc/*/files{free,total}

You can find other numeric error codes in /usr/include/asm/errno.h along with 
their short name and text description.

23.3.15 Triggering Watchdog for PID NNN
In some cases, a server node triggers a watchdog timer and this causes a process 
stack to be dumped to the console along with a Lustre kernel debug log being 
dumped into /tmp (by default). The presence of a watchdog timer does NOT mean 
that the thread OOPSed, but rather that it is taking longer time than expected to 
complete a given operation. In some cases, this situation is expected.

For example, if a RAID rebuild is really slowing down I/O on an OST, it might 
trigger watchdog timers to trip. But another message follows shortly thereafter, 
indicating that the thread in question has completed processing (after some number 
of seconds). Generally, this indicates a transient problem. In other cases, it may 
legitimately signal that a thread is stuck because of a software error (lock inversion, 
for example).

Lustre: 0:0:(watchdog.c:122:lcw_cb()) 

The above message indicates that the watchdog is active for pid 933:

It was inactive for 100000ms:

Lustre: 0:0:(linux-debug.c:132:portals_debug_dumpstack()) 

Showing stack for process:

933 ll_ost_25     D F896071A     0   933      1    934   932 (L-TLB)
f6d87c60 00000046 00000000 f896071a f8def7cc 00002710 00001822 2da48cae
0008cf1a f6d7c220 f6d7c3d0 f6d86000 f3529648 f6d87cc4 f3529640 f8961d3d
00000010 f6d87c9c ca65a13c 00001fff 00000001 00000001 00000000 00000001
23-18 Lustre 2.0 Operations Manual • June 2010



Call trace:

filter_do_bio+0x3dd/0xb90 [obdfilter]

default_wake_function+0x0/0x20

filter_direct_io+0x2fb/0x990 [obdfilter]

filter_preprw_read+0x5c5/0xe00 [obdfilter]

lustre_swab_niobuf_remote+0x0/0x30 [ptlrpc]

ost_brw_read+0x18df/0x2400 [ost]

ost_handle+0x14c2/0x42d0 [ost]

ptlrpc_server_handle_request+0x870/0x10b0 [ptlrpc]

ptlrpc_main+0x42e/0x7c0 [ptlrpc]

23.3.16 Handling Timeouts on Initial Lustre Setup
If you come across timeouts or hangs on the initial setup of your Lustre system, 
verify that name resolution for servers and clients is working correctly. Some 
distributions configure /etc/hosts sts so the name of the local machine (as 
reported by the 'hostname' command) is mapped to local host (127.0.0.1) instead of a 
proper IP address.

This might produce this error:

LustreError:(ldlm_handle_cancel()) received cancel for unknown lock cookie
0xe74021a4b41b954e from nid 0x7f000001 (0:127.0.0.1)
Chapter 23 Lustre Troubleshooting 23-19



23.3.17 Handling/Debugging "LustreError: xxx went back 
in time" 
Each time Lustre changes the state of the disk file system, it records a unique 
transaction number. Occasionally, when committing these transactions to the disk, 
the last committed transaction number displays to other nodes in the cluster to assist 
the recovery. Therefore, the promised transactions remain absolutely safe on the 
disappeared disk.

This situation arises when:

■ You are using a disk device that claims to have data written to disk before it 
actually does, as in case of a device with a large cache. If that disk device crashes 
or loses power in a way that causes the loss of the cache, there can be a loss of 
transactions that you believe are committed. This is a very serious event, and you 
should run e2fsck against that storage before restarting Lustre.

■ As per the Lustre requirement, the shared storage used for failover is completely 
cache-coherent. This ensures that if one server takes over for another, it sees the 
most up-to-date and accurate copy of the data. In case of the failover of the server, 
if the shared storage does not provide cache coherency between all of its ports, 
then Lustre can produce an error.

If you know the exact reason for the error, then it is safe to proceed with no further 
action. If you do not know the reason, then this is a serious issue and you should 
explore it with your disk vendor.

If the error occurs during failover, examine your disk cache settings. If it occurs after 
a restart without failover, try to determine how the disk can report that a write 
succeeded, then lose the Data Device corruption or Disk Errors.

23.3.18 Lustre Error: "Slow Start_Page_Write" 
The slow start_page_write message appears when the operation takes an 
extremely long time to allocate a batch of memory pages. Use these pages to receive 
network traffic first, and then write to disk.
23-20 Lustre 2.0 Operations Manual • June 2010



23.3.19 Drawbacks in Doing Multi-client O_APPEND 
Writes
It is possible to do multi-client O_APPEND writes to a single file, but there are few 
drawbacks that may make this a sub-optimal solution. These drawbacks are:

■ Each client needs to take an EOF lock on all the OSTs, as it is difficult to know 
which OST holds the end of the file until you check all the OSTs. As all the clients 
are using the same O_APPEND, there is significant locking overhead.

■ The second client cannot get all locks until the end of the writing of the first client, 
as the taking serializes all writes from the clients.

■ To avoid deadlocks, the taking of these locks occurs in a known, consistent order. 
As a client cannot know which OST holds the next piece of the file until the client 
has locks on all OSTS, there is a need of these locks in case of a striped file.

23.3.20 Slowdown Occurs During Lustre Startup
When Lustre starts, the Lustre file system needs to read in data from the disk. For the 
very first mdsrate run after the reboot, the MDS needs to wait on all the OSTs for 
object pre-creation. This causes a slowdown to occur when Lustre starts up.

After the file system has been running for some time, it contains more data in cache 
and hence, the variability caused by reading critical metadata from disk is mostly 
eliminated. The file system now reads data from the cache.

23.3.21 Log Message ‘Out of Memory’ on OST
When planning the hardware for an OSS node, consider the memory usage of several 
components in the Lustre system. If insufficient memory is available, an ‘out of 
memory’ message can be logged. 

During normal operation, several conditions indicate insufficient RAM on a server 
node:

■ kernel "Out of memory" and/or "oom-killer" messages

■ Lustre "kmalloc of 'mmm' (NNNN bytes) failed..." messages

■ Lustre or kernel stack traces showing processes stuck in "try_to_free_pages"

For information on determining the MDS memory and OSS memory requirements, 
see Memory Requirements. 
Chapter 23 Lustre Troubleshooting 23-21



23.3.22 Number of OSTs Needed for Sustained 
Throughput
The number of OSTs required for sustained throughput depends on your hardware 
configuration. If you are adding an OST that is identical to an existing OST, you can 
use the speed of the existing OST to determine how many more OSTs to add.

Keep in mind that adding OSTs affects resource limitations, such as bus bandwidth 
in the OSS and network bandwidth of the OSS interconnect. You need to understand 
the performance capability of all system components to develop an overall design 
that meets your performance goals and scales to future system requirements.

Note – For best performance, put the MGS and MDT on separate devices.

23.3.23 Setting SCSI I/O Sizes
Some SCSI drivers default to a maximum I/O size that is too small for good Lustre 
performance. we have fixed quite a few drivers, but you may still find that some 
drivers give unsatisfactory performance with Lustre. As the default value is 
hard-coded, you need to recompile the drivers to change their default. On the other 
hand, some drivers may have a wrong default set. 

If you suspect bad I/O performance and an analysis of Lustre statistics indicates that 
I/O is not 1 MB, check /sys/block/<device>/queue/max_sectors_kb. If the 
max_sectors_kb value is less than 1024, set it to at least 1024 to improve 
performance. If changing max_sectors_kb does not change the I/O size as 
reported by Lustre, you may want to examine the SCSI driver code.
23-22 Lustre 2.0 Operations Manual • June 2010



23.3.24 Identifying Which Lustre File an OST Object 
Belongs To
Use this procedure to identify the file containing a given object on a given OST.

1. On the OST (as root), run debugfs to display the FID4 of the file associated with 
the object.

For example, if the object is 34976 on /dev/lustre/ost_test2, the debug command 
is: 

# debugfs -c -R "stat /O/0/d$((34976 %32))/34976" /dev/lustre/ost_test2 

The command output is:

debugfs 1.41.5.sun2 (23-Apr-2009)

/dev/lustre/ost_test2: catastrophic mode - not reading inode or 
group bitmaps 

Inode: 352365   Type: regular    Mode:  0666   Flags: 0x80000

Generation: 1574463214    Version: 0xea020000:00000000

User:   500   Group:   500   Size: 260096

File ACL: 0    Directory ACL: 0

Links: 1   Blockcount: 512

Fragment:  Address: 0    Number: 0    Size: 0

ctime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009

atime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009

mtime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009

crtime: 0x4a216b3c:975870dc -- Sat May 30 13:22:04 2009

Size of extra inode fields: 24

Extended attributes stored in inode body: 

fid = "e2 00 11 00 00 00 00 00 25 43 c1 87 00 00 00 00 a0 88 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 " (32)

BLOCKS:

(0-63):47968-48031

TOTAL: 64

4. The FID is the file identifier. 
Chapter 23 Lustre Troubleshooting 23-23



2. Note the FID’s EA and apply it to the osd_inode_id mapping.

In this example, the FID’s EA is:

e2001100000000002543c18700000000a0880000000000000000000000000000

struct osd_inode_id { 

__u64 oii_ino; /* inode number */ 

__u32 oii_gen; /* inode generation */ 

__u32 oii_pad; /* alignment padding */ 

};

After swapping, you get an inode number of 0x001100e2 and generation of 0.

3. On the MDT (as root), use debugfs to find the file associated with the inode.

# debugfs -c -R "ncheck 0x001100e2" /dev/lustre/mdt_test 

Here is the command output:

debugfs 1.41.5.sun2 (23-Apr-2009)
/dev/lustre/mdt_test: catastrophic mode - not reading inode or group bitmaps
Inode Pathname
1114338 /ROOT/brian-laptop-guest/clients/client11/~dmtmp/PWRPNT/ZD16.BMP

The command lists the inode and pathname associated with the object. 

Note – Debugfs' ''ncheck'' is a brute-force search that may take a long time to 
complete.

Note – To find the Lustre file from a disk LBA, follow the steps listed in the 
document at this URL: http://smartmontools.sourceforge.net/badblockhowto.html.
Then, follow the steps above to resolve the Lustre filename.
23-24 Lustre 2.0 Operations Manual • June 2010



CHAPTER 24

Lustre Debugging

This chapter describes tips and information to debug Lustre, and includes the 
following sections:

■ Lustre Debug Messages

■ Tools for Lustre Debugging

■ Troubleshooting with strace

■ Looking at Disk Content

■ Ptlrpc Request History

Lustre is a complex system that requires a rich debugging environment to help locate 
problems. 
24-1



24.1 Lustre Debug Messages
Each Lustre debug message has the tag of the subsystem it originated in, the message 
type, and the location in the source code. The subsystems and debug types used in 
Lustre are as follows:

■ Standard Subsystems: 

mdc, mds, osc, ost, obdclass, obdfilter, llite, ptlrpc, portals, lnd, ldlm, lov 

■ Debug Types: 

Types Description

trace Entry/Exit markers

dlmtrace Locking-related information

inode

super

ext2 Anything from the ext2_debug

malloc Print malloc or free information

cache Cache-related information

info General information

ioctl IOCTL-related information

blocks Ext2 block allocation information

net Networking

warning

buffs

other

dentry

portals Entry/Exit markers

page Bulk page handling

error Error messages

emerg

rpctrace For distributed debugging

ha Failover and recovery-related information
24-2 Lustre 2.0 Operations Manual • June 2010



24.1.1 Format of Lustre Debug Messages 
Lustre uses the CDEBUG and CERROR macros to print the debug or error messages. 
To print the message, the CDEBUG macro uses portals_debug_msg 
(portals/linux/oslib/debug.c). The message format is described below, along 
with an example. 

24.1.2 Lustre Debug Messages Buffer
Lustre debug messages are maintained in a buffer, with the maximum buffer size 
specified (in MBs) by the debug_mb parameter (/proc/sys/lnet/debug_mb). The 
buffer is circular, so debug messages are kept until the allocated buffer limit is 
reached, and then the first messages are overwritten.

Parameter Description

subsystem 800000

debug mask 000010

smp_processor_id 0

sec.used 10818808
47.677302

stack size 1204:

pid 2973:

host pid (if uml) or zero 31070:

(file:line #:functional()) (as_dev.c:144:create_write_buffers())

debug message kmalloced '*obj': 24 at a375571c (tot 17447717)
Chapter 24 Lustre Debugging 24-3



24.2 Tools for Lustre Debugging 
A variety of diagnostic and analysis tools are available to debug issues with the 
Lustre software. Some of these are provided in Linux distributions, while others have 
been developed and are made available by the Lustre project.

Lustre Debugging Tools

The following in-kernel debug mechanisms are incorporated into the Lustre software:

■ Debug logs: A circular debug buffer to which Lustre internal debug messages are 
written (in contrast to error messages, which are printed to the syslog or console). 
Entries to the Lustre debug log are controlled by the mask set by 
/proc/sys/lnet/debug. The log size defaults to 5 MB per CPU but can be 
increased as a busy system will quickly overwrite 5 MB. When the buffer fills, the 
oldest information is discarded.

■ Debug daemon: The debug daemon controls logging of debug messages.

■ /proc/sys/lnet/debug: This file contains a mask that can be used to delimit the 
debugging information written out to the kernel debug logs. 

The following tools are also provided with the Lustre software:

■ lctl: This tool is used with the debug_kernel option to manually dump the 
Lustre debugging log or post-process debugging logs that are dumped 
automatically. 

■ Lustre subsystem asserts: A panic-style assertion (LBUG) in the kernel causes 
Lustre to dump the debug log to the file /tmp/lustre-log.<timestamp> where it 
can be retrieved after a reboot. 

■ lfs: This utility provides access to the extended attributes (EAs) of a Lustre file 
(along with other information). 
24-4 Lustre 2.0 Operations Manual • June 2010



External Debugging Tools

The tools described in this section are provided in the Linux kernel or are available at 
an external website. 

Some general debugging tools provided as a part of the standard Linux distro are: 

■ strace. This tool allows a system call to be traced. 

■ /var/log/messages. syslogd prints fatal or serious messages at this log. 

■ Crash dumps. On crash-dump enabled kernels, sysrq c produces a crash dump. 
Lustre enhances this crash dump with a log dump (the last 64 KB of the log) to the 
console. 

■ debugfs. Interactive file system debugger. 

The following logging and data collection tools can be used to collect information for 
debugging Lustre kernel issues: 

■ kdump. A Linux kernel crash utility useful for debugging a system running Red 
Hat Enterprise Linux. For more information about kdump, see the Red Hat 
knowledge base article How do I configure kexec/kdump on Red Hat Enterprise 
Linux 5?. To download kdump, go to the Fedora Project Download site. 

■ netconsole. Supports kernel-level network logging over UDP. A system requires 
(SysRq) allows users to collect relevant data through netconsole. 

■ netdump. A crash dump utility from Red Hat that allows memory images to be 
dumped over a network to a central server for analysis. The netdump utility was 
replaced by kdump in RHEL 5. For more information about netdump, see Red 
Hat, Inc.'s Network Console and Crash Dump Facility. 

The tools described in this section may be useful for debugging Lustre in a 
development environment. 

Of general interest is: 

■ leak_finder.pl. This program provided with Lustre is useful for finding memory 
leaks in the code. 

A virtual machine is often used to create an isolated development and test 
environment. Some commonly-used virtual machines are: 

■ VirtualBox Open Source Edition. Provides enterprise-class virtualization 
capability for all major platforms and is available free at Get Sun VirtualBox. 

■ VMware Server. Virtualization platform available as free introductory software at 
Download VMware Server. 

■ Xen. A para-virtualized environment with virtualization capabilities similar to 
VMware Server and Virtual Box. However, Xen allows the use of modified kernels 
to provide near-native performance and the ability to emulate shared storage. For 
more information, go to xen.org. 

A variety of debuggers and analysis tools are available including: 
Chapter 24 Lustre Debugging 24-5

http://kbase.redhat.com/faq/docs/DOC-6039
http://kbase.redhat.com/faq/docs/DOC-6039
http://fedoraproject.org/wiki/SystemConfig/kdump#Download
http://www.redhat.com/support/wpapers/redhat/netdump/
http://www.redhat.com/support/wpapers/redhat/netdump/
http://www.sun.com/software/products/virtualbox/get.jsp?intcmp=2945
http://downloads.vmware.com/d/info/datacenter_downloads/vmware_server/2_0
http://xen.org/


■ kgdb. The Linux Kernel Source Level Debugger kgdb is used in conjunction with 
the GNU Debugger gdb for debugging the Linux kernel. For more information 
about using kgdb with gdb, see Chapter 6. Running Programs Under gdb in the 
Red Hat Linux 4 Debugging with GDB guide. 

■ crash. Used to analyze saved crash dump data when a system had panicked or 
locked up or appears unresponsive. For more information about using crash to 
analyze a crash dump, see: 

■ Red Hat Magazine article: A quick overview of Linux kernel crash dump 
analysis

■ Crash Usage: A Case Study from the white paper Red Hat Crash Utility by 
David Anderson

■ Kernel Trap forum entry: Linux: Kernel Crash Dumps

■ White paper: A Quick Overview of Linux Kernel Crash Dump Analysis

24.2.1 Debug Daemon Option to lctl
The debug_daemon allows users to control the Lustre kernel debug daemon to 
dump the debug_kernel buffer to a user-specified file. This functionality uses a 
kernel thread on top of debug_kernel. debug_kernel, another sub-command of 
lctl, continues to work in parallel with debug_daemon command. 

Debug_daemon is highly dependent on file system write speed. File system writes 
operation may not be fast enough to flush out all the debug_buffer if Lustre file 
system is under heavy system load and continue to CDEBUG to the debug_buffer. 
Debug_daemon put ’DEBUG MARKER: Trace buffer full’ into the debug_buffer to 
indicate debug_buffer is overlapping itself before debug_daemon flush data to a file. 

Users can use lctl control to start or stop Lustre daemon from dumping the 
debug_buffer to a file. Users can also temporarily hold daemon from dumping the 
file. Use of the debug_daemon sub-command to lctl can provide the same 
function. 
24-6 Lustre 2.0 Operations Manual • June 2010

http://www.linuxtopia.org/online_books/redhat_linux_debugging_with_gdb/running.html
http://magazine.redhat.com/2007/08/15/a-quick-overview-of-linux-kernel-crash-dump-analysis/
http://magazine.redhat.com/2007/08/15/a-quick-overview-of-linux-kernel-crash-dump-analysis/
http://people.redhat.com/anderson/crash_whitepaper/#EXAMPLES
http://kerneltrap.org/node/5758
http://www.google.com/url?sa=t&source=web&ct=res&cd=8&ved=0CCUQFjAH&url=http%3A%2F%2Fwww.kernel.sg%2Fpapers%2Fcrash-dump-analysis.pdf&rct=j&q=redhat+crash+dump&ei=6aQBS-ifK4T8tAPcjdiHCw&usg=AFQjCNEk03E3GDtAsawG3gfpwc1gGNELAg


24.2.1.1 lctl Debug Daemon Commands

This section describes lctl daemon debug commands.

$ lctl debug_daemon start [{file} {megabytes}]

Initiates the debug_daemon to start dumping debug_buffer into a file. The file can be 
a system default file, as shown in /proc/sys/lnet/debug_path. After Lustre 
starts, the default path is /tmp/lustre-log-$HOSTNAME. Users can specify a new 
filename for debug_daemon to output debug_buffer. The new file name shows up 
in /proc/sys/lnet/debug_path. Megabytes is the limitation of the file size in 
MBs. The daemon wraps around and dumps data to the beginning of the file when 
the output file size is over the limit of the user-specified file size. To decode the 
dumped file to ASCII and order the log entries by time, run: 

lctl debug_file {file} > {newfile}

The output is internally sorted by the lctl command using quicksort.

debug_daemon stop

Completely shuts down the debug_daemon operation and flushes the file output. 
Otherwise, debug_daemon is shut down as part of Lustre file system shutdown 
process. Users can restart debug_daemon by using start command after each stop 
command issued.

This is an example using debug_daemon with the interactive mode of lctl to dump 
debug logs to a 10 MB file. 

#~/utils/lctl

To start daemon to dump debug_buffer into a 40 MB /tmp/dump file.

lctl > debug_daemon start /trace/log 40 

To completely shut down the daemon.

lctl > debug_daemon stop 

To start another daemon with an unlimited file size.

lctl > debug_daemon start /tmp/unlimited 

The text message *** End of debug_daemon trace log *** appears at the 
end of each output file. 
Chapter 24 Lustre Debugging 24-7



24.2.2 Controlling the Kernel Debug Log 
The amount of information printed to the kernel debug logs can be controlled by 
masks in /proc/sys/lnet/subsystem_debug and /proc/sys/lnet/debug. The 
subsystem_debug mask controls subsystems (e.g., obdfilter, net, portals, OSC, etc.) 
and the debug mask controls debug types written to the log (e.g., info, error, trace, 
alloc, etc.). 

To turn off Lustre debugging completely:

sysctl -w lnet.debug=0 

To turn on full Lustre debugging:

sysctl -w lnet.debug=-1 

To turn on logging of messages related to network communications:

sysctl -w lnet.debug=net 

To turn on logging of messages related to network communications and existing 
debug flags: 

sysctl -w lnet.debug=+net 

To turn off network logging with changing existing flags:

sysctl -w lnet.debug=-net 

The various options available to print to kernel debug logs are listed in 
lnet/include/libcfs/libcfs.h 

24.2.3 The lctl Tool 
Lustre’s source code includes debug messages which are very useful for 
troubleshooting. As described above, debug messages are subdivided into a number 
of subsystems and types. This subdivision allows messages to be filtered, so that only 
messages of interest to the user are displayed. The lctl tool is useful to enable this 
filtering and manipulate the logs to extract the useful information from it. Use lctl 
to obtain the necessary debug messages:

1. To obtain a list of all the types and subsystems: 

lctl > debug_list <subs | types> 

2. To filter the debug log:

lctl > filter <subsystem name | debug type>
24-8 Lustre 2.0 Operations Manual • June 2010



Note – When lctl filters, it removes unwanted lines from the displayed output. 
This does not affect the contents of the debug log in the kernel's memory. As a result, 
you can print the log many times with different filtering levels without worrying 
about losing data. 

3. To show debug messages belonging to certain subsystem or type: 

lctl > show <subsystem name | debug type> 

debug_kernel pulls the data from the kernel logs, filters it appropriately, and 
displays or saves it as per the specified options

lctl > debug_kernel [output filename] 

If the debugging is being done on User Mode Linux (UML), it might be useful to 
save the logs on the host machine so that they can be used at a later time. 

4. If you already have a debug log saved to disk (likely from a crash), to filter a log 
on disk: 

lctl > debug_file <input filename> [output filename] 

During the debug session, you can add markers or breaks to the log for any 
reason: 

lctl > mark [marker text] 

The marker text defaults to the current date and time in the debug log (similar to 
the example shown below):

DEBUG MARKER: Tue Mar 5 16:06:44 EST 2002 

5. To completely flush the kernel debug buffer: 

lctl > clear

Note – Debug messages displayed with lctl are also subject to the kernel debug 
masks; the filters are additive. 
Chapter 24 Lustre Debugging 24-9



24.2.4 Finding Memory Leaks 
Memory leaks can occur in a code where you allocate a memory, but forget to free it 
when it becomes non-essential. You can use the leak_finder.pl tool to find 
memory leaks. Before running this program, you must turn on the debugging to 
collect all malloc and free entries. Run:

sysctl -w lnet.debug=+malloc 

Dump the log into a user-specified log file using lctl (as shown in The lctl Tool). Run 
the leak finder on the newly-created log dump: 

perl leak_finder.pl <ascii-logname>

The output is:

malloced 8bytes at a3116744 (called pathcopy) 

(lprocfs_status.c:lprocfs_add_vars:80) 

freed 8bytes at a3116744 (called pathcopy) 

(lprocfs_status.c:lprocfs_add_vars:80) 

The tool displays the following output to show the leaks found: 

Leak:32bytes allocated at a23a8fc
(service.c:ptlrpc_init_svc:144,debug file line 241)

24.2.5 Printing to /var/log/messages
To dump debug messages to the console, set the corresponding debug mask in the 
printk flag: 

sysctl -w lnet.printk=-1 

This slows down the system dramatically. It is also possible to selectively enable or 
disable this for particular flags using: 

sysctl -w lnet.printk=+vfstrace 

sysctl -w lnet.printk=-vfstrace 

24.2.6 Tracing Lock Traffic 
Lustre has a specific debug type category for tracing lock traffic. Use:

lctl> filter all_types 

lctl> show dlmtrace 

lctl> debug_kernel [filename] 
24-10 Lustre 2.0 Operations Manual • June 2010



24.2.7 Sample lctl Run
bash-2.04# ./lctl 

lctl > debug_kernel /tmp/lustre_logs/log_all 

Debug log: 324 lines, 324 kept, 0 dropped. 

lctl > filter trace 

Disabling output of type "trace" 

lctl > debug_kernel /tmp/lustre_logs/log_notrace 

Debug log: 324 lines, 282 kept, 42 dropped. 

lctl > show trace 

Enabling output of type "trace" 

lctl > filter portals 

Disabling output from subsystem "portals" 

lctl > debug_kernel /tmp/lustre_logs/log_noportals 

Debug log: 324 lines, 258 kept, 66 dropped. 

24.2.8 Adding Debugging to the Lustre Source Code 
In the Lustre source code, the debug infrastructure provides a number of macros 
which aid in debugging or reporting serious errors. All of these macros depend on 
having the DEBUG_SUBSYSTEM variable set at the top of the file: 

#define DEBUG_SUBSYSTEM S_PORTALS 

Macro Description

LBUG A panic-style assertion in the kernel which causes Lustre to 
dump its circular log to the /tmp/lustre-log file. This file can 
be retrieved after a reboot. LBUG freezes the thread to allow 
capture of the panic stack. A system reboot is needed to clear 
the thread. 

LASSERT Validates a given expression as true, otherwise calls LBUG. 
The failed expression is printed on the console, although the 
values that make up the expression are not printed.

LASSERTF Similar to LASSERT but allows a free-format message to be 
printed, like printf/printk.
Chapter 24 Lustre Debugging 24-11



CDEBUG The basic, most commonly used debug macro that takes just 
one more argument than standard printf - the debug type. 
This message adds to the debug log with the debug mask set 
accordingly. Later, when a user retrieves the log for 
troubleshooting, they can filter based on this type. 
CDEBUG(D_INFO, "This is my debug message: the number is 
%d\n", number).

CERROR Behaves similarly to CDEBUG, but unconditionally prints the 
message in the debug log and to the console. This is 
appropriate for serious errors or fatal conditions: 
CERROR("Something very bad has happened, and the return 
code is %d.\n", rc); 

ENTRY and EXIT Add messages to aid in call tracing (takes no arguments). 
When using these macros, cover all exit conditions to avoid 
confusion when the debug log reports that a function was 
entered, but never exited. 

LDLM_DEBUG and 
LDLM_DEBUG_NOLOCK

Used when tracing MDS and VFS operations for locking. 
These macros build a thin trace that shows the protocol 
exchanges between nodes.

DEBUG_REQ Prints information about the given ptlrpc_request structure.

OBD_FAIL_CHECK Allows insertion of failure points into the Lustre code. This is 
useful to generate regression tests that can hit a very specific 
sequence of events. This works in conjunction with "sysctl -w 
lustre.fail_loc={fail_loc}" to set a specific failure point for 
which a given OBD_FAIL_CHECK will test.

OBD_FAIL_TIMEOUT Similar to OBD_FAIL_CHECK. Useful to simulate 
hung, blocked or busy processes or network devices. If 
the given fail_loc is hit, OBD_FAIL_TIMEOUT waits 
for the specified number of seconds.

OBD_RACE Similar to OBD_FAIL_CHECK. Useful to have multiple 
processes execute the same code concurrently to 
provoke locking races. The first process to hit 
OBD_RACE sleeps until a second process hits 
OBD_RACE, then both processes continue. 

OBD_FAIL_ONCE A flag set on a lustre.fail_loc breakpoint to cause the 
OBD_FAIL_CHECK condition to be hit only one time. 
Otherwise, a fail_loc is permanent until it is cleared 
with "sysctl -w lustre.fail_loc=0".

Macro Description
24-12 Lustre 2.0 Operations Manual • June 2010



OBD_FAIL_RAND Has OBD_FAIL_CHECK fail randomly; on average 
every (1 / lustre.fail_val) times.

OBD_FAIL_SKIP Has OBD_FAIL_CHECK succeed lustre.fail_val times, 
and then fail permanently or once with 
OBD_FAIL_ONCE.

OBD_FAIL_SOME Has OBD_FAIL_CHECK fail lustre.fail_val times, and then 
succeed.

Macro Description
Chapter 24 Lustre Debugging 24-13



24.3 Troubleshooting with strace
The operating system makes strace (program trace utility) available. Use strace 
to trace program execution. The strace utility pauses programs made by a process 
and records the system call, arguments, and return values. This is a very useful tool, 
especially when you try to troubleshoot a failed system call. 

To invoke strace on a program:

$ strace <program> <args> 

Sometimes, a system call may fork child processes. In this situation, use the -f 
option of strace to trace the child processes: 

$ strace -f <program> <args> 

To redirect the strace output to a file (to review at a later time): 

$ strace -o <filename> <program> <args> 

Use the -ff option, along with -o, to save the trace output in filename.pid, where 
pid is the process ID of the process being traced. Use the -ttt option to timestamp 
all lines in the strace output, so they can be correlated to operations in the lustre 
kernel debug log. 

If the debugging is done in UML, save the traces on the host machine. In this 
example, hostfs is mounted on /r: 

$ strace -o /r/tmp/vi.strace 
24-14 Lustre 2.0 Operations Manual • June 2010



24.4 Looking at Disk Content 
In Lustre, the inodes on the metadata server contain extended attributes (EAs) that 
store information about file striping. EAs contain a list of all object IDs and their 
locations (that is, the OST that stores them). The lfs tool can be used to obtain this 
information for a given file via the getstripe sub-command. Use a corresponding 
lfs setstripe command to specify striping attributes for a new file or directory.

The lfs getstripe utility is written in C; it takes a Lustre filename as input and 
lists all the objects that form a part of this file. To obtain this information for the file 
/mnt/lustre/frog in Lustre file system, run:

$ lfs getstripe /mnt/lustre/frog

$

OBDs:

0 : OSC_localhost_UUID

1: OSC_localhost_2_UUID

2: OSC_localhost_3_UUID

obdix objid

0 17

1 4

The debugfs tool is provided by the e2fsprogs package. It can be used for interactive 
debugging of an ext3/ldiskfs file system. The debugfs tool can either be used to 
check status or modify information in the file system. In Lustre, all objects that 
belong to a file are stored in an underlying ldiskfs file system on the OST's. The file 
system uses the object IDs as the file names. Once the object IDs are known, use the 
debugfs tool to obtain the attributes of all objects from different OST's. A sample run 
for the /mnt/lustre/frog file used in the above example is shown here:

$ debugfs -c /tmp/ost1

debugfs: cd O

debugfs: cd 0 /* for files in group 0 */

debugfs: cd d<objid % 32>

debugfs: stat <objid> /* for getattr on object */

debugfs: quit

## Suppose object id is 36, then follow the steps below:

$ debugfs /tmp/ost1

debugfs: cd O

debugfs: cd 0

debugfs: cd d4 /* objid % 32 */

debugfs: stat 36 /* for getattr on obj 4*/

debugfs: dump 36 /tmp/obj.36 /* dump contents of obj 4 */

debugfs: quit
Chapter 24 Lustre Debugging 24-15



24.4.1 Determine the Lustre UUID of an OST 
To determine the Lustre UUID of an obdfilter disk (for example, if you mix up the 
cables on your OST devices or the SCSI bus numbering suddenly changes and the 
SCSI devices get new names), use debugfs to get the last_rcvd file. 

24.4.2 Tcpdump 
Lustre provides a modified version of tcpdump which helps to decode the complete 
Lustre message packet. This tool has more support to read packets from clients to 
OSTs, than to decode packets between clients and MDSs. The tcpdump module is 
available from Lustre CVS at www.sourceforge.net

It can be checked out as: 

cvs co -d :ext:<username>@cvs.lustre.org:/cvsroot/lustre tcpdump 

24.5 Ptlrpc Request History 
Each service always maintains request history, which is useful for first occurrence 
troubleshooting. Ptlrpc history works as follows:

1. Request_in_callback() adds the new request to the service's request history. 

2. When a request buffer becomes idle, add it to the service's request buffer 
history list.

3. Cull buffers from the service's request buffer history if it has grown above 

"req_buffer_history_max" and remove its reqs from the service's request history.

Request history is accessed/controlled via the following /proc files under the 
service directory.

■ req_buffer_history_len

Number of request buffers currently in the history 

■ req_buffer_history_max 

Maximum number of request buffers to keep 

■ req_history

The request history 
24-16 Lustre 2.0 Operations Manual • June 2010

www.sourceforge.net


Requests in the history include "live" requests that are actually being handled. Each 
line in "req_history" looks like:

<seq>:<target NID>:<client ID>:<xid>:<length>:<phase> <svc specific> 

24.6 Using LWT Tracing
Lustre offers a very lightweight tracing facility called LWT. It prints fixed size 
requests into a buffer and is much faster than LDEBUG. The LWT tracking facility is 
very successful to debug difficult problems.

LWT trace-based records that are dumped contain:

■ Current CPU

■ Process counter

■ Pointer to file

■ Pointer to line in the file

■ 4 void * pointers 

An lctl command dumps the logs to files.

Parameter Description

seq Request sequence number

target NID Destination NID of the incoming request

client ID Client PID and NID

xid rq_xid

length Size of the request message

phase • New (waiting to be handled or could not be unpacked)
• Interpret (unpacked or being handled)
• Complete (handled)

svc specific Service-specific request printout. Currently, the only service that does this is 
the OST (which prints the opcode if the message has been unpacked 
successfully
Chapter 24 Lustre Debugging 24-17



24-18 Lustre 2.0 Operations Manual • June 2010



PART IV Lustre for Users

This part includes chapters on Lustre striping and I/O options, security and 
operating tips.





CHAPTER 25

Striping and I/O Options

This chapter describes file striping and I/O options, and includes the following 
sections:

■ Lustre File Striping

■ Setting and Retrieving Striping Information

■ Managing Free Space

■ Creating and Managing OST Pools

■ Performing Direct I/O

■ Other I/O Options

■ Striping Using llapi
25-1



25.1 Lustre File Striping
One of the main factors leading to the high performance of Lustre file systems is the 
ability to stripe data across multiple OSTs in a round-robin fashion. Users can 
configure the number of stripes, the size of each stripe, and the servers that are used.

A frequently-asked Lustre question is “How should I stripe my files, and what is a good 
default?” The short answer is that it depends on your needs. A good rule of thumb is 
to stripe over as few objects as will meet those needs and no more.

25.1.1 Advantages of Striping
There are two reasons to create files of multiple stripes: bandwidth and size.

25.1.1.1 Bandwidth

There are many applications which require high-bandwidth access to a single file – 
more bandwidth than can be provided by a single OSS. For example, scientific 
applications which write to a single file from hundreds of nodes or a binary 
executable which is loaded by many nodes when an application starts.

In cases like these, stripe your file over as many OSSs as it takes to achieve the 
required peak aggregate bandwidth for that file. This strategy is known as 'large 
striping', the ability to stripe across a larger number of OSSs. Large striping should 
only be used when the file size is very large and/or is accessed by many nodes at a 
time. Currently, Lustre files can be striped across up to 160 OSSs, the maximum 
stripe count for an ext3 file system. 

Large striping can improve performance if the aggregate client bandwidth exceeds 
the server bandwidth, and the application reads/writes data fast enough to take 
advantage of the additional OSS bandwidth. The largest useful stripe count is 
bounded by the I/O rate of your clients/jobs divided by the performance per OSS. 

The second reason to stripe is when a single OST does not have enough free space to 
hold the entire file.

There is never an exact, one-to-one mapping between clients and OSTs. Lustre uses a 
round-robin algorithm for OST stripe selection until free space on OSTs differ by 
more than 20%. However, depending on actual file sizes, some stripes may be mostly 
empty, while others are more full. For a more detailed description of stripe 
assignments, see Managing Free Space.
25-2 Lustre 2.0 Operations Manual • June 2010



After every ostcount+1 objects, Lustre skips an OST. This causes Lustre’s "starting 
point" to precess around, eliminating some degenerated cases where applications 
that create very regular file layouts (striping patterns) would have preferentially used 
a particular OST in the sequence. 

25.1.2 Disadvantages of Striping
There are two disadvantages to striping which should deter you from choosing a 
default policy that stripes over all OSTs unless you really need it: increased overhead 
and increased risk.

25.1.2.1 Increased Overhead

Increased overhead comes in the form of extra network operations during common 
operations such as stat and unlink, and more locks. Even when these operations are 
performed in parallel, there is a big difference between doing 1 network operation 
and 100 operations. 

Increased overhead also comes in the form of server contention. Consider a cluster 
with 100 clients and 100 OSSs, each with one OST. If each file has exactly one object 
and the load is distributed evenly, there is no contention and the disks on each server 
can manage sequential I/O. If each file has 100 objects, then the clients all compete 
with one another for the attention of the servers, and the disks on each node seek in 
100 different directions. In this case, there is needless contention.

25.1.2.2 Increased Risk

Increased risk is evident when you consider the example of striping each file across 
all servers. In this case, if any one OSS catches on-fire, a small part of every file is 
lost. By comparison, if each file has exactly one stripe, you lose fewer files, but you 
lose them in their entirety. Most users would rather lose some of their files entirely 
than all of their files partially.
Chapter 25 Striping and I/O Options 25-3



25.1.3 Stripe Size
Choosing a stripe size is a small balancing act, but there are reasonable defaults. The 
stripe size must be a multiple of the page size. For safety, Lustre’s tools enforce a 
multiple of 64 KB (the maximum page size on ia64 and PPC64 nodes), so users on 
platforms with smaller pages do not accidentally create files which might cause 
problems for ia64 clients.

Although you can create files with a stripe size of 64 KB, this is a poor choice. 
Practically, the smallest recommended stripe size is 512 KB because Lustre sends 1 
MB chunks over the network. This is a good amount of data to transfer at one time. 
Choosing a smaller stripe size may hinder the batching.

Generally, a good stripe size for sequential I/O using high-speed networks is 
between 1 MB and 4 MB. In most situations, stripe sizes larger than 4 MB do not 
parallelize as effectively because Lustre tries to keep the amount of dirty cached data 
below 32 MB per server (with the default configuration).

In an upcoming release, the 'wide striping' feature will be introduced, supporting 
stripe sizes up to 4 GB. Wide striping can be used to improve performance with very 
large files although, depending on the configuration, it can be counterproductive 
after a certain stripe size. 

Writes which cross an object boundary are slightly less efficient than writes which go 
entirely to one server. Depending on your application's write patterns, you can assist 
it by choosing a stripe size with that in mind. If the file is written in a very consistent 
and aligned way, make the stripe size a multiple of the write() size.

The choice of stripe size has no effect on a single-stripe file.
25-4 Lustre 2.0 Operations Manual • June 2010



25.2 Setting and Retrieving Striping 
Information
The lfs getstripe command can be used to display information that shows over 
which OSTs a file is distributed. For each OST, the index and UUID is displayed, 
along with the OST index and object ID for each stripe in the file. For directories, the 
default settings for files created in that directory are printed.

To see the current stripe size, use the lfs getstripe [file, dir, fs] 
command. This command produces output similar to this:

root@LustreClient01 lustre]# lfs getstripe /mnt/lustre 

OBDS: 

0: lustre-OST0000_UUID ACTIVE 

1: lustre-OST0001_UUID ACTIVE 

2: lustre-OST0002_UUID ACTIVE 

3: lustre-OST0003_UUID ACTIVE 

4: lustre-OST0004_UUID ACTIVE 

5: lustre-OST0005_UUID ACTIVE 

/mnt/lustre 

(Default) stripe_count: 2 stripe_size: 4M stripe_offset: 0

In this example, the default stripe count is 2 (that is, data blocks are striped over two 
OSTs), the default stripe size is 4 MB (the stripe size can be set in K, M or G), and all 
writes start from the first OST.

Note – When setting the stripe, the offset is set before the stripe count.

The command to set a new stripe pattern on the file system may look like this:

[root@LustreClient01 lustre]# lfs setstripe -s 4M -c 0 -i 1 
/mnt/lustre

This example command sets the stripe of /mnt/lustre to 4 MB blocks starting at 
OST0 and spanning over one OST. If a new file is created with these settings, the 
following results are seen: 

[root@LustreClient01 lustre]# dd if=/dev/zero of=/mnt/lustre/test1 bs=10M 
count=100 
Chapter 25 Striping and I/O Options 25-5



root@LustreClient01 lustre]# lfs df -h 
UUID  bytes  Used  Available  Use% Mounted on 
lustre-MDT0000_UUID    4.4G   214.5M       3.9G     4%   /mnt/lustre[MDT:0] 
lustre-OST0000_UUID    2.0G     1.1G     830.1M    53%   /mnt/lustre[OST:0] 
lustre-OST0001_UUID    2.0G    83.3M       1.8G     4%   /mnt/lustre[OST:1] 
lustre-OST0002_UUID    2.0G    83.3M       1.8G     4%   /mnt/lustre[OST:2] 
lustre-OST0003_UUID    2.0G    83.3M       1.8G     4%   /mnt/lustre[OST:3] 
lustre-OST0004_UUID    2.0G    83.3M       1.8G     4%   /mnt/lustre[OST:4] 
lustre-OST0005_UUID    2.0G    83.3M       1.8G     4%   /mnt/lustre[OST:5] 

filesystem summary:   11.8G     1.5G       9.7G    12%   /mnt/lustre

In this example, the entire file was written to the first OST with a very uneven 
distribution of data blocks.

Continuing with this example, the file is removed and the stripe count is changed to 
a value of -1 to specify striping over all available OSTs:

[root@LustreClient01 lustre]# lfs setstripe -s 4M -c 0 -i -1 
/mnt/lustre

Now, when a file is created, the new stripe setting evenly distributes the data over all 
the available OSTs:

[root@LustreClient01 lustre]# dd if=/dev/zero of=/mnt/lustre/test1 
bs=10M count=100 

100+0 records in 

100+0 records out 

1048576000 bytes (1.0 GB) copied, 20.2589 seconds, 51.8 MB/s

[root@LustreClient01 lustre]# lfs df -h 

UUID                  bytes     Used  Available   Use%   Mounted on 

lustre-MDT0000_UUID    4.4G   214.5M       3.9G     4%  
/mnt/lustre[MDT:0] 

lustre-OST0000_UUID    2.0G   251.3M       1.6G    12%  
/mnt/lustre[OST:0] 

lustre-OST0001_UUID    2.0G   251.3M       1.6G    12%  
/mnt/lustre[OST:1] 

lustre-OST0002_UUID    2.0G   251.3M       1.6G    12%  
/mnt/lustre[OST:2] 

lustre-OST0003_UUID    2.0G   251.3M       1.6G    12%  
/mnt/lustre[OST:3] 

lustre-OST0004_UUID    2.0G   247.3M       1.6G    12%  
/mnt/lustre[OST:4] 

lustre-OST0005_UUID    2.0G   247.3M       1.6G    12%  
/mnt/lustre[OST:5] 

filesystem summary:   11.8G     1.5G       9.7G    12%  /mnt/lustre
25-6 Lustre 2.0 Operations Manual • June 2010



Here is another lfs getstripe example (showing multiple obdidx entries) 
indicates that the file test1 is striped over all six active OSTs in the configuration: 

[root@LustreClient01 ~]# lfs getstripe /mnt/lustre/test1 

OBDS: 

0: lustre-OST0000_UUID ACTIVE 

1: lustre-OST0001_UUID ACTIVE 

2: lustre-OST0002_UUID ACTIVE 

3: lustre-OST0003_UUID ACTIVE 

4: lustre-OST0004_UUID ACTIVE 

5: lustre-OST0005_UUID ACTIVE 

/mnt/lustre/test1 

obdidx objid objid group

0 8 0x8 0

1 4 0x4 0

2 5 0x5 0

3 5 0x5 0

4 4 0x4 0

5 2 0x2 0

In contrast, the output from the following command, which lists just a single obdidx 
entry, indicates that the file test2 is contained on a single OST:

[root@LustreClient01 ~]# lfs getstripe /mnt/lustre/test_2 

OBDS: 

0: lustre-OST0000_UUID ACTIVE 

1: lustre-OST0001_UUID ACTIVE 

2: lustre-OST0002_UUID ACTIVE 

3: lustre-OST0003_UUID ACTIVE 

4: lustre-OST0004_UUID ACTIVE 

5: lustre-OST0005_UUID ACTIVE 

/mnt/lustre/test_2 

obdidx objid objid group 

2 8 0x8 0
Chapter 25 Striping and I/O Options 25-7



To inspect an entire tree of files, use the lfs find command: 

lfs find [--recursive | -r] <file or directory> ...

You can also use ls -l /proc/<pid>/fd/ to find open files using Lustre. For 
example:

$ lfs getstripe $(readlink /proc/$(pidof cat)/fd/1)

OBDS:
0: databarn-ost1_UUID ACTIVE

1: databarn-ost2_UUID ACTIVE

2: databarn-ost3_UUID ACTIVE

3: databarn-ost4_UUID ACTIVE

/barn/users/jacob/tmp/foo

obdidx objid objid group

2 835487 0xcbf9f 0

In this example, the file lives on obdidx 2, which is databarn-ost3. To see which node 
is serving that OST, run:

$ cat /proc/fs/lustre/osc/*databarn-ost3*/ost_conn_uuid

NID_oss1.databarn.87k.net_UUID

The above condition/operation also works with connections to the MDS. For that, 
replace osc with mdc and ost with mds in the above commands.
25-8 Lustre 2.0 Operations Manual • June 2010



25.2.1 Setting File Layouts
Use the lfs setstripe command to create new files with a specific file layout 
(stripe pattern) configuration.

lfs setstripe [--size|-s stripe-size] [--count|-c stripe-cnt] 

[--index|-i start-ost] <filename|dirname>

stripe-size

Stripe size is how much data to write to one OST before moving to the next OST. The 
default stripe-size is 1 MB, and passing a stripe-size of 0 causes the default stripe size 
to be used. Otherwise, the stripe-size must be a multiple of 64 KB. 

stripe-count

Stripe count is how many OSTs to use. The default stripe-count value is 1. Setting 
stripe-count to 0 causes the default stripe count to be used. Setting stripe-count to -1 
means stripe over all available OSTs (full OSTs are skipped). 

start-ost

Start ost is the first OST to which files are written. The default start-ost is -1, and 
passing a start-ost of -1 allows the MDS to choose the starting index. This setting is 
strongly recommended, as it allows space and load balancing to be done by the MDS 
as needed. Otherwise, the file starts on the specified OST index, starting at zero (0).

Note – If you pass a start-ost of 0 and a stripe-count of 1, all files are written to OST 
#0, until space is exhausted. This is probably not what you meant to do. If you only 
want to adjust the stripe-count and keep the other parameters at their default 
settings, do not specify any of the other parameters: 

lfs setstripe -c <stripe-count> <file>

25.2.2 Changing Striping for a Subdirectory
In a directory, the lfs setstripe command sets a default striping configuration 
for files created in the directory. The usage is the same as lfs setstripe for a 
regular file, except that the directory must exist prior to setting the default striping 
configuration. If a file is created in a directory with a default stripe configuration 
(without otherwise specifying striping), Lustre uses those striping parameters instead 
of the file system default for the new file.
Chapter 25 Striping and I/O Options 25-9



To change the striping pattern (file layout) for a sub-directory, create a directory with 
desired file layout as described above. Sub-directories inherit the file layout of the 
root/parent directory.

Note – Striping of new files and sub-directories is done per the striping parameter 
settings of the root directory. Once you set striping on the root directory, then, by 
default, it applies to any new child directories created in that root directory (unless 
they have their own striping settings).

25.2.3 Using a Specific Striping Pattern/File Layout for a 
Single File
To use a specific striping pattern (file layout) for a specific file:

lfs setstripe creates a file with a given stripe pattern (file layout)

lfs setstripe fails if the file already exists

25.2.4 Creating a File on a Specific OST
You can use lfs setstripe to create a file on a specific OST. In the following 
example, the file "bob" will be created on the first OST (id 0).

$ lfs setstripe --count 1 --index 0 bob

$ dd if=/dev/zero of=bob count=1 bs=100M

1+0 records in

1+0 records out

$ lfs getstripe bob

OBDS:

0: home-OST0000_UUID ACTIVE

[...]

bob

obdidx objid objid group

0 33459243 0x1fe8c2b 0
25-10 Lustre 2.0 Operations Manual • June 2010



25.3 Managing Free Space
In Lustre 1.6, the MDT assigns file stripes to OSTs based on location (which OSS) and 
size considerations (free space) to optimize file system performance. Emptier OSTs 
are preferentially selected for stripes, and stripes are preferentially spread out 
between OSSs to increase network bandwidth utilization. The weighting factor 
between these two optimizations can be adjusted by the user.

25.3.1 Checking File System Free Space 
Free space is an important consideration in assigning file stripes. The lfs df 
command shows available disk space on the mounted Lustre file system and space 
consumption per OST. If multiple Lustre file systems are mounted, a path may be 
specified, but is not required.

Note – The df -i and lfs df -i commands show the minimum number of inodes 
that can be created in the file system. Depending on the configuration, it may be 
possible to create more inodes than initially reported by df -i. Later, df -i 
operations will show the current, estimated free inode count. 

If the underlying file system has fewer free blocks than inodes, then the total inode 
count for the file system reports only as many inodes as there are free blocks. This is 
done because Lustre may need to store an external attribute for each new inode, and 
it is better to report a free inode count that is the guaranteed, minimum number of 
inodes that can be created.

Option Description

-h Human-readable print sizes in human readable format (for example: 
1K, 234M, 5G).

-i, --inodes Lists inodes instead of block usage.
Chapter 25 Striping and I/O Options 25-11



Examples

[lin-cli1] $ lfs df
UUID 1K-blockS Used Available Use% Mounted on
mds-lustre-0_UUID 9174328 1020024 8154304 11% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 94181368 56330708 37850660 59% /mnt/lustre[OST:0]
ost-lustre-1_UUID 94181368 56385748 37795620 59% /mnt/lustre[OST:1]
ost-lustre-2_UUID 94181368 54352012 39829356 57% /mnt/lustre[OST:2]
filesystem summary:282544104167068468 39829356 57% /mnt/lustre

[lin-cli1] $ lfs df -h
UUID bytes Used Available Use% Mounted on
mds-lustre-0_UUID 8.7G 996.1M 7.8G 11% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 89.8G 53.7G 36.1G 59% /mnt/lustre[OST:0]
ost-lustre-1_UUID 89.8G 53.8G 36.0G 59% /mnt/lustre[OST:1]
ost-lustre-2_UUID 89.8G 51.8G 38.0G 57% /mnt/lustre[OST:2]
filesystem summary: 269.5G 159.3G 110.1G 59% /mnt/lustre

[lin-cli1] $ lfs df -i 
UUID Inodes IUsed IFree IUse% Mounted on
mds-lustre-0_UUID 2211572 41924 2169648 1% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 737280 12183 725097 1% /mnt/lustre[OST:0]
ost-lustre-1_UUID 737280 12232 725048 1% /mnt/lustre[OST:1]
ost-lustre-2_UUID 737280 12214 725066 1% /mnt/lustre[OST:2]
filesystem summary: 2211572 41924 2169648 1% /mnt/lustre[OST:2]
25-12 Lustre 2.0 Operations Manual • June 2010



25.3.2 Using Stripe Allocations
Two stripe allocation methods are provided: round-robin and weighted. By default, 
the allocation method is determined by the amount of free-space imbalance on the 
OSTs. The weighted allocator is used when any two OSTs are imbalanced by more 
than 20%. Otherwise, the faster round-robin allocator is used. (The round-robin order 
maximizes network balancing.) 

25.3.3 Round-Robin Allocator 
When OSTs have approximately the same amount of free space (within 20%), an 
efficient round-robin allocator is used. The round-robin allocator alternates stripes 
between OSTs on different OSSs, so the OST used for stripe 0 of each file is evenly 
distributed among OSTs, regardless of the stripe count. Here are several sample 
round-robin stripe orders (each letter represents a different OST on a single OSS):

25.3.4 Weighted Allocator
When the free space difference between the OSTs is significant, then a weighting 
algorithm is used to influence OST ordering based on size and location. Note that 
these are weightings for a random algorithm, so the OST with the most free space is 
not necessarily chosen each time. On average, the weighted allocator fills the emptier 
OSTs faster. 

3: AAA one 3-OST OSS

3x3: ABABAB two 3-OST OSSs

3x4: BBABABA one 3-OST OSS (A) and one 4-OST OSS (B)

3x5: BBABBABA

3x5x1: BBABABABC

3x5x2: BABABCBABC

4x6x2: BABABCBABABC
Chapter 25 Striping and I/O Options 25-13



25.3.5 Adjusting the Weighting Between Free Space and 
Location 
The weighting priority can be adjusted in the proc file 
/proc/fs/lustre/lov/lustre-mdtlov/qos_prio_free proc. The default 
value is 90%. Use this command on the MGS to permanently change this weighting: 

lctl conf_param <fsname>-MDT0000.lov.qos_prio_free=90

Increasing this value puts more weighting on free space. When the free space priority 
is set to 100%, then location is no longer used in stripe-ordering calculations and 
weighting is based entirely on free space. 

Note – Setting the priority to 100% means that OSS distribution does not count in 
the weighting, but the stripe assignment is still done via a weighting. For example, if 
OST2 has twice as much free space as OST1, then OST2 is twice as likely to be used, 
but it is not guaranteed to be used. 

25.4 Handling Full OSTs
Sometimes a Lustre file system becomes unbalanced, often due to changed stripe 
settings. If an OST is full and an attempt is made to write more information to the file 
system, an error occurs. The procedures below describe how to handle a full OST.

25.4.1 Checking File System Usage
The example below shows an unbalanced file system:

root@LustreClient01 ~]# lfs df -h

UUID                 bytes   Used  Available Use%  Mounted on

lustre-MDT0000_UUID  4.4G   214.5M   3.9G     4%   /mnt/lustre[MDT:0]

lustre-OST0000_UUID  2.0G   751.3M   1.1G    37%   /mnt/lustre[OST:0]

lustre-OST0001_UUID  2.0G   755.3M   1.1G    37%   /mnt/lustre[OST:1]

lustre-OST0002_UUID  2.0G     1.7G 155.1M    86%   /mnt/lustre[OST:2] <-

lustre-OST0003_UUID  2.0G   751.3M   1.1G    37%   /mnt/lustre[OST:3]

lustre-OST0004_UUID  2.0G   747.3M   1.1G    37%   /mnt/lustre[OST:4]

lustre-OST0005_UUID  2.0G   743.3M   1.1G    36%   /mnt/lustre[OST:5]

filesystem summary: 11.8G     5.4G    5.8G    45%  /mnt/lustre
25-14 Lustre 2.0 Operations Manual • June 2010



In this case, OST:2 is almost full and when an attempt is made to write additional 
information to the file system (even with uniform striping over all the OSTs), the 
write command fails as follows:

[root@LustreClient01 ~]# lfs setstripe /mnt/lustre 4M 0 -1

[root@LustreClient01 ~]# dd if=/dev/zero of=/mnt/lustre/test_3 \ 
bs=10M count=100

dd: writing `/mnt/lustre/test_3': No space left on device

98+0 records in

97+0 records out

1017192448 bytes (1.0 GB) copied, 23.2411 seconds, 43.8 MB/s

25.4.2 Taking a Full OST Offline
To enable continued use of the file system, the full OST has to be taken offline or, 
more specifically, rendered read-only using the lctl command. This is done on the 
MDS, since the MSD allocates space for writing.

1. Log into the MDS server:

[root@LustreClient01 ~]# ssh root@192.168.0.10 

root@192.168.0.10's password: 

Last login: Wed Nov 26 13:35:12 2008 from 192.168.0.6

2. Use the lctl dl command to show the status of all file system components:

[root@mds ~]# lctl dl 

0 UP mgs MGS MGS 9 

1 UP mgc MGC192.168.0.10@tcp e384bb0e-680b-ce25-7bc9-81655dd1e813 5

2 UP mdt MDS MDS_uuid 3

3 UP lov lustre-mdtlov lustre-mdtlov_UUID 4

4 UP mds lustre-MDT0000 lustre-MDT0000_UUID 5

5 UP osc lustre-OST0000-osc lustre-mdtlov_UUID 5

6 UP osc lustre-OST0001-osc lustre-mdtlov_UUID 5

7 UP osc lustre-OST0002-osc lustre-mdtlov_UUID 5

8 UP osc lustre-OST0003-osc lustre-mdtlov_UUID 5

9 UP osc lustre-OST0004-osc lustre-mdtlov_UUID 5

10 UP osc lustre-OST0005-osc lustre-mdtlov_UUID 5

3. Use lctl deactivate to take the full OST offline:

[root@mds ~]# lctl --device 7 deactivate
Chapter 25 Striping and I/O Options 25-15



4. Display the status of the file system components:

[root@mds ~]# lctl dl 

0 UP mgs MGS MGS 9

1 UP mgc MGC192.168.0.10@tcp e384bb0e-680b-ce25-7bc9-81655dd1e813 5

2 UP mdt MDS MDS_uuid 3

3 UP lov lustre-mdtlov lustre-mdtlov_UUID 4

4 UP mds lustre-MDT0000 lustre-MDT0000_UUID 5

5 UP osc lustre-OST0000-osc lustre-mdtlov_UUID 5

6 UP osc lustre-OST0001-osc lustre-mdtlov_UUID 5

7 IN osc lustre-OST0002-osc lustre-mdtlov_UUID 5

8 UP osc lustre-OST0003-osc lustre-mdtlov_UUID 5

9 UP osc lustre-OST0004-osc lustre-mdtlov_UUID 5

10 UP osc lustre-OST0005-osc lustre-mdtlov_UUID 5

The device list shows that OST2 is now inactive. If a new file is now written to the 
file system, the write will be successful as the stripes are allocated across the 
remaining active OSTs.

25.4.3 Migrating Data within a File System
As stripes cannot be moved within the file system, data must be migrated manually 
by copying and renaming the file, removing the original file, and renaming the new 
file with the original file name.

1. Identify the file(s) to be moved. In the example below, output from the getstripe 
command indicates that the file test_2 is located entirely on OST2:

[root@LustreClient01 ~]# lfs getstripe /mnt/lustre/test_2

OBDS:

0: lustre-OST0000_UUID ACTIVE

1: lustre-OST0001_UUID ACTIVE

2: lustre-OST0002_UUID ACTIVE

3: lustre-OST0003_UUID ACTIVE

4: lustre-OST0004_UUID ACTIVE

5: lustre-OST0005_UUID ACTIVE

/mnt/lustre/test_2

obdidx      objid     objid     group

     2          8       0x8         0

2. Move the file(s).

[root@LustreClient01 ~]# cp /mnt/lustre/test_2 /mnt/lustre/test_2.tmp
[root@LustreClient01 ~]# rm /mnt/lustre/test_2
rm: remove regular file `/mnt/lustre/test_2'? Y
25-16 Lustre 2.0 Operations Manual • June 2010



3. Check the file system balance. The df output in the example below shows a 
more balanced system compared to the df output in the example in Performing 
Direct I/O.

[root@LustreClient01 ~]# lfs df -h

UUID                  bytes   Used Available Use% Mounted on

lustre-MDT0000_UUID   4.4G  214.5M      3.9G   4% /mnt/lustre[MDT:0]

lustre-OST0000_UUID   2.0G    1.3G    598.1M  65% /mnt/lustre[OST:0]

lustre-OST0001_UUID   2.0G    1.3G    594.1M  65% /mnt/lustre[OST:1]

lustre-OST0002_UUID   2.0G  913.4M   1000.0M  45% /mnt/lustre[OST:2]

lustre-OST0003_UUID   2.0G    1.3G    602.1M  65% /mnt/lustre[OST:3]

lustre-OST0004_UUID   2.0G    1.3G    606.1M  64% /mnt/lustre[OST:4]

lustre-OST0005_UUID   2.0G    1.3G    610.1M  64% /mnt/lustre[OST:5]

filesystem summary:  11.8G    7.3G      3.9G  61% /mnt/lustre

4. Change the name of the file back to the original filename so it can be found by 
clients.

[root@LustreClient01 ~]# mv test2.tmp test2

[root@LustreClient01 ~]# ls /mnt/lustre

test1 test_2 test3 test_3 test4 test_4 test_x

5. Reactivate the OST from the MDS for further writes:

[root@mds ~]# lctl --device 7 activate

[root@mds ~]# lctl dl

  0 UP mgs MGS MGS 9

  1 UP mgc MGC192.168.0.10@tcp e384bb0e-680b-ce25-7bc9-816dd1e813 5

  2 UP mdt MDS MDS_uuid 3

  3 UP lov lustre-mdtlov lustre-mdtlov_UUID 4

  4 UP mds lustre-MDT0000 lustre-MDT0000_UUID 5

  5 UP osc lustre-OST0000-osc lustre-mdtlov_UUID 5

  6 UP osc lustre-OST0001-osc lustre-mdtlov_UUID 5

  7 UP osc lustre-OST0002-osc lustre-mdtlov_UUID 5

  8 UP osc lustre-OST0003-osc lustre-mdtlov_UUID 5

  9 UP osc lustre-OST0004-osc lustre-mdtlov_UUID 5

 10 UP osc lustre-OST0005-osc lustre-mdtlov_UUID
Chapter 25 Striping and I/O Options 25-17



24.5 Creating and Managing OST Pools
The OST pools feature enables users to group OSTs together to make object 
placement more flexible. A 'pool' is the name associated with an arbitrary subset of 
OSTs in a Lustre cluster.

OST pools follow these rules:

■ An OST can be a member of multiple pools.

■ No ordering of OSTs in a pool is defined or implied. 

■ Stripe allocation within a pool follows the same rules as the normal stripe 
allocator.

■ OST membership in a pool is flexible, and can change over time.

When an OST pool is defined, it can be used to allocate files. When file or directory 
striping is set to a pool, only OSTs in the pool are candidates for striping. If a 
stripe_index is specified which refers to an OST that is not a member of the pool, 
an error is returned. 

OST pools are used only at file creation. If the definition of a pool changes (an OST is 
added or removed or the pool is destroyed), already-created files are not affected.

Note – An error (EINVAL) results if you create a file using an empty pool.

Note – If a directory has pool striping set and the pool is subsequently removed, the 
new files created in this directory have the (non-pool) default striping pattern for that 
directory applied and no error is returned. 
25-18 Lustre 2.0 Operations Manual • June 2010



25.5.1 Working with OST Pools
OST pools are defined in the configuration log on the MGS. Use the lctl command 
to: 

■ Create/destroy a pool

■ Add/remove OSTs in a pool

■ List pools and OSTs in a specific pool

The lctl command MUST be run on the MGS. Another requirement for managing 
OST pools is to either have the MDT and MGS on the same node or have a Lustre 
client mounted on the MGS node, if it is separate from the MDS. This is needed to 
validate the pool commands being run are correct.

Caution – Running the writeconf command on the MDS erases all pools 
information (as well as any other parameters set using lctl conf_param). We 
recommend that the pools definitions (and conf_param settings) be executed using 
a script, so they can be reproduced easily after a writeconf is performed.

To create a new pool, run:

lctl pool_new <fsname>.<poolname>

Note – The pool name is an ASCII string up to 16 characters.

To add the named OST to a pool, run:

lctl pool_add <fsname>.<poolname> <ost_list>

Where:
■ <ost_list> is <fsname->OST<index_range>[_UUID] 

■ <index_range> is <ost_index_start>-<ost_index_end>[,<index_range>] 
or <ost_index_start>-<ost_index_end>/<step>

If the leading <fsname> and/or ending _UUID are missing, they are automatically 
added.

For example, to add even-numbered OSTs to pool1 on file system lustre, run a 
single command (add) to add many OSTs to the pool at one time:

lctl pool_add lustre.pool1 OST[0-10/2]

Note – Each time an OST is added to a pool, a new llog configuration record is 
created. For convenience, you can run a single command.
Chapter 25 Striping and I/O Options 25-19



To remove a named OST from a pool, run:

lctl pool_remove <fsname>.<poolname> <ost_list>

To destroy a pool, run:

lctl pool_destroy <fsname>.<poolname>

Note – All OSTs must be removed from a pool before it can be destroyed.

To list pools in the named file system, run:

lctl pool_list <fsname> | <pathname>

To list OSTs in a named pool, run:

lctl pool_list <fsname>.<poolname>

25.5.1.1 Using the lfs Command with OST Pools

Several lfs commands can be run with OST pools. Use the lfs setstripe 
command to associate a directory with an OST pool. This causes all new regular files 
and directories in the directory to be created in the pool. The lfs command can be 
used to list pools in a file system and OSTs in a named pool.

To associate a directory with a pool, so all new files and directories will be created in 
the pool, run:

lfs setstripe <filename|dirname> --pool|-p pool-name

To set striping patterns, run:

lfs setstripe [--size|-s stripe_size] [--offset|-o start_ost]

[--count|-c stripe_count] [--pool|-p pool_name]

<dir|filename>

Note – If you specify striping with an invalid pool name, because the pool does not 
exist or the pool name was mistyped, lfs setstripe returns an error. Run lfs 
pool_list to make sure the pool exists and the pool name is entered correctly.

Note – The --pool option for lfs setstripe is compatible with other modifiers. 
For example, you can set striping on a directory to use an explicit starting index.
25-20 Lustre 2.0 Operations Manual • June 2010



25.5.2 Tips for Using OST Pools
Here are several suggestions for using OST pools.

■ A directory or file can be given an extended attribute (EA), that restricts striping 
to a pool.

■ Pools can be used to group OSTs with the same technology or performance 
(slower or faster), or that are preferred for certain jobs. Examples are SATA OSTs 
versus SAS OSTs or remote OSTs versus local OSTs.

■ A file created in an OST pool tracks the pool by keeping the pool name in the file 
LOV EA.

25.6 Performing Direct I/O
Starting with 1.4.7, Lustre supports the O_DIRECT flag to open.

Applications using the read() and write() calls must supply buffers aligned on a page 
boundary (usually 4 K). If the alignment is not correct, the call returns -EINVAL. 
Direct I/O may help performance in cases where the client is doing a large amount of 
I/O and is CPU-bound (CPU utilization 100%).

25.6.1 Making File System Objects Immutable
An immutable file or directory is one that cannot be modified, renamed or removed. 
To do this:

chattr +i <file>

To remove this flag, use chattr –i
Chapter 25 Striping and I/O Options 25-21



25.7 Other I/O Options
This section describes other I/O options, including checksums.

25.7.1 Lustre Checksums
To guard against network data corruption, a Lustre client can perform two types of 
data checksums: in-memory (for data in client memory) and wire (for data sent over 
the network). For each checksum type, a 32-bit checksum of the data read or written 
on both the client and server is computed, to ensure that the data has not been 
corrupted in transit over the network. The ldiskfs backing file system does NOT do 
any persistent checksumming, so it does not detect corruption of data in the OST file 
system.

In Lustre 1.6.5 and later, the checksumming feature is enabled, by default, on 
individual client nodes. If the client or OST detects a checksum mismatch, then an 
error is logged in the syslog of the form:

LustreError: BAD WRITE CHECKSUM: changed in transit before arrival at 
OST: from 192.168.1.1@tcp inum 8991479/2386814769 object 1127239/0 
extent [102400-106495]

If this happens, the client will re-read or re-write the affected data up to five times to 
get a good copy of the data over the network. If it is still not possible, then an I/O 
error is returned to the application.

To enable both types of checksums (in-memory and wire), run:

echo 1 > /proc/fs/lustre/llite/<fsname>/checksum_pages

To disable both types of checksums (in-memory and wire), run:

echo 0 > /proc/fs/lustre/llite/<fsname>/checksum_pages

To check the status of a wire checksum, run:

lctl get_param osc.*.checksums
25-22 Lustre 2.0 Operations Manual • June 2010



25.7.1.1 Changing Checksum Algorithms

By default, Lustre uses the adler32 checksum algorithm, because it is robust and has 
a lower impact on performance than crc32. The Lustre administrator can change the 
checksum algorithm via /proc, depending on what is supported in the kernel.

To check which checksum algorithm is being used by Lustre, run:

$ cat /proc/fs/lustre/osc/<fsname>-OST<index>-osc-*/checksum_type

To change the wire checksum algorithm used by Lustre, run:

$ echo <algorithm name> /proc/fs/lustre/osc/<fsname>-OST<index>- \
osc-*/checksum_type

Note – The in-memory checksum always uses the adler32 algorithm, if available, 
and only falls back to crc32 if adler32 cannot be used.

In the following example, the cat command is used to determine that Lustre is using 
the adler32 checksum algorithm. Then the echo command is used to change the 
checksum algorithm to crc32. A second cat command confirms that the crc32 
checksum algorithm is now in use.

$ cat /proc/fs/lustre/osc/lustre-OST0000-osc- \
ffff81012b2c48e0/checksum_type

crc32 [adler]

$ echo crc32 > /proc/fs/lustre/osc/lustre-OST0000-osc- \
ffff81012b2c48e0/checksum_type

$ cat /proc/fs/lustre/osc/lustre-OST0000-osc- \
ffff81012b2c48e0/checksum_type

[crc32] adler
Chapter 25 Striping and I/O Options 25-23



25.8 Striping Using llapi
Use llapi_file_create to set Lustre properties for a new file. For a synopsis and 
description of llapi_file_create and examples of how to use it, see Setting 
Lustre Properties (man3).

You can set striping from inside programs like ioctl. To compile the sample program, 
you need to download libtest.c and liblustreapi.c files from the Lustre 
source tree.

A simple C program to demonstrate striping API – libtest.c

/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
 * vim:expandtab:shiftwidth=8:tabstop=8:
 *
 * lustredemo - simple code examples of liblustreapi functions
 */

#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <dirent.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <lustre/liblustreapi.h>
#include <lustre/lustre_user.h>
#define MAX_OSTS 1024
#define LOV_EA_SIZE(lum, num) (sizeof(*lum) + num * sizeof(*lum->lmm_objects))
#define LOV_EA_MAX(lum) LOV_EA_SIZE(lum, MAX_OSTS)

/* 
This program provides crude examples of using the liblustre API functions 
*/

/* Change these definitions to suit */

#define TESTDIR "/tmp" /* Results directory */
#define TESTFILE "lustre_dummy" /* Name for the file we create/destroy */
#define FILESIZE 262144 /* Size of the file in words */
#define DUMWORD "DEADBEEF" /* Dummy word used to fill files */
#define MY_STRIPE_WIDTH 2 /* Set this to the number of OST required */
#define MY_LUSTRE_DIR "/mnt/lustre/ftest"

int close_file(int fd)
{      

if (close(fd) < 0) {
25-24 Lustre 2.0 Operations Manual • June 2010



fprintf(stderr, "File close failed: %d (%s)\n", errno, 
strerror(errno));

return -1;
}
return 0;

}

int write_file(int fd)
{

char *stng =  DUMWORD;
int cnt = 0;

for( cnt = 0; cnt < FILESIZE; cnt++) {
                write(fd, stng, sizeof(stng));

}
return 0;

}
/* Open a file, set a specific stripe count, size and starting OST
   Adjust the parameters to suit */
  
int open_stripe_file()
{

char *tfile = TESTFILE;
int stripe_size = 65536; /* System default is 4M */
int stripe_offset = -1; /* Start at default */
int stripe_count = MY_STRIPE_WIDTH; /*Single stripe for this 

demo*/
int stripe_pattern = 0; /* only RAID 0 at this time 

*/
int rc, fd;
/* 
*/
rc = llapi_file_create(tfile,

stripe_size,stripe_offset,stripe_count,stripe_pattern);
/* result code is inverted, we may return -EINVAL or an ioctl error.
We borrow an error message from sanity.c 
*/
if (rc) {

                fprintf(stderr,"llapi_file_create failed: %d (%s) \n", rc, 
strerror(-rc));
                return -1;
        }
        /* llapi_file_create closes the file descriptor, we must re-open */
        fd = open(tfile, O_CREAT | O_RDWR | O_LOV_DELAY_CREATE, 0644);
        if (fd < 0) {
                fprintf(stderr, "Can't open %s file: %d (%s)\n", tfile, errno, 
strerror(errno));

return -1;
        }
        return fd;
}

/* output a list of uuids for this file */
int get_my_uuids(int fd)
Chapter 25 Striping and I/O Options 25-25



{
struct obd_uuid uuids[1024], *uuidp; /* Output var */
int obdcount = 1024;    
int rc,i;

rc = llapi_lov_get_uuids(fd, uuids, &obdcount);
if (rc != 0) {

fprintf(stderr, "get uuids failed: %d (%s)\n",errno, 
strerror(errno));
        }
        printf("This file system has %d obds\n", obdcount);
        for (i = 0, uuidp = uuids; i < obdcount; i++, uuidp++) {

printf("UUID %d is %s\n",i, uuidp->uuid);
        }
        return 0;
}

/* Print out some LOV attributes. List our objects */
int get_file_info(char *path)
{

struct lov_user_md *lump;
int rc;
int i;

     
lump = malloc(LOV_EA_MAX(lump));
if (lump == NULL) {

return -1;
        }

        rc = llapi_file_get_stripe(path, lump);
        
        if (rc != 0) {

fprintf(stderr, "get_stripe failed: %d (%s)\n",errno, 
strerror(errno));

return -1;
        }

printf("Lov magic %u\n", lump->lmm_magic);
printf("Lov pattern %u\n", lump->lmm_pattern);
printf("Lov object id %llu\n", lump->lmm_object_id);
printf("Lov object group %llu\n", lump->lmm_object_gr);
printf("Lov stripe size %u\n", lump->lmm_stripe_size);
printf("Lov stripe count %hu\n", lump->lmm_stripe_count);
printf("Lov stripe offset %u\n", lump->lmm_stripe_offset);
for (i = 0; i < lump->lmm_stripe_count; i++) {

printf("Object index %d Objid %llu\n", 
lump->lmm_objects[i].l_ost_idx, lump->lmm_objects[i].l_object_id);
        }
    

free(lump);
return rc;

   
25-26 Lustre 2.0 Operations Manual • June 2010



}
/* Ping all OSTs that belong to this filesysem */

int ping_osts()
{

DIR *dir;
struct dirent *d;
char osc_dir[100];
int rc;

sprintf(osc_dir, "/proc/fs/lustre/osc");
dir = opendir(osc_dir);
if (dir == NULL) {

printf("Can't open dir\n");
return -1;

}
while((d = readdir(dir)) != NULL) {

if ( d->d_type == DT_DIR ) {
if (! strncmp(d->d_name, "OSC", 3)) {

printf("Pinging OSC %s ", d->d_name);
rc = llapi_ping("osc", d->d_name);
if (rc) {

printf("  bad\n");
} else {

printf("  good\n");
}

}
}

}
return 0;

}

int main()
{

int file;
int rc;
char filename[100];
char sys_cmd[100];

sprintf(filename, "%s/%s",MY_LUSTRE_DIR, TESTFILE);
    

printf("Open a file with striping\n");
file = open_stripe_file();
if ( file < 0 ) {

printf("Exiting\n");
exit(1);

}
printf("Getting uuid list\n");
rc = get_my_uuids(file);
Chapter 25 Striping and I/O Options 25-27



rintf("Write to the file\n");
rc = write_file(file);
rc = close_file(file);
printf("Listing LOV data\n");
rc = get_file_info(filename);
printf("Ping our OSTs\n");
rc = ping_osts();

/* the results should match lfs getstripe */
printf("Confirming our results with lfs getsrtipe\n");
sprintf(sys_cmd, "/usr/bin/lfs getstripe %s/%s", MY_LUSTRE_DIR, 

TESTFILE);
system(sys_cmd);

printf("All done\n");
exit(rc);

}

Makefile for sample application:

gcc -g -O2 -Wall -o lustredemo libtest.c -llustreapi
clean:
rm -f core lustredemo *.o
run: 
make
rm -f /mnt/lustre/ftest/lustredemo
rm -f /mnt/lustre/ftest/lustre_dummy
cp lustredemo /mnt/lustre/ftest/
25-28 Lustre 2.0 Operations Manual • June 2010



CHAPTER 26

Lustre Security

This chapter describes Lustre security and includes the following sections:

■ Using ACLs

■ Using Root Squash

26.1 Using ACLs
An access control list (ACL), is a set of data that informs an operating system about 
permissions or access rights that each user or group has to specific system objects, 
such as directories or files. Each object has a unique security attribute that identifies 
users who have access to it. The ACL lists each object and user access privileges such 
as read, write or execute.

26.1.1 How ACLs Work
Implementing ACLs varies between operating systems. Systems that support the 
Portable Operating System Interface (POSIX) family of standards share a simple yet 
powerful file system permission model, which should be well-known to the 
Linux/Unix administrator. ACLs add finer-grained permissions to this model, 
allowing for more complicated permission schemes. For a detailed explanation of 
ACLs on Linux, refer to the SuSE Labs article, Posix Access Control Lists on Linux: 

http://www.suse.de/~agruen/acl/linux-acls/online/

We have implemented ACLs according to this model. Lustre supports the standard 
Linux ACL tools, setfacl, getfacl, and the historical chacl, normally installed with the 
ACL package. 
26-1

http://www.suse.de/~agruen/acl/linux-acls/online/


Note – ACL support is a system-range feature, meaning that all clients have ACL 
enabled or not. You cannot specify which clients should enable ACL. 

26.1.2 Using ACLs with Lustre
Lustre supports POSIX Access Control Lists (ACLs). An ACL consists of file entries 
representing permissions based on standard POSIX file system object permissions 
that define three classes of user (owner, group and other). Each class is associated 
with a set of permissions [read (r), write (w) and execute (x)]. 

■ Owner class permissions define access privileges of the file owner. 

■ Group class permissions define access privileges of the owning group. 

■ Other class permissions define access privileges of all users not in the owner or 
group class. 

The ls -l command displays the owner, group, and other class permissions in the 
first column of its output (for example, -rw-r- -- for a regular file with read and 
write access for the owner class, read access for the group class, and no access for 
others).

Minimal ACLs have three entries. Extended ACLs have more than the three entries. 
Extended ACLs also contain a mask entry and may contain any number of named 
user and named group entries.

Lustre ACL support depends on the MDS, which needs to be configured to enable 
ACLs. Use --mountfsoptions to enable ACL support when creating your 
configuration:

$ mkfs.lustre --fsname spfs --mountfsoptions=acl --mdt –mgs /dev/sda

Alternately, you can enable ACLs at run time by using the --acl option with 
mkfs.lustre:

$ mount -t lustre -o acl /dev/sda /mnt/mdt

To check ACLs on the MDS:

$ lctl get_param -n mdc.home-MDT0000-mdc-*.connect_flags | grep acl 
acl

To mount the client with no ACLs:

$ mount -t lustre -o noacl ibmds2@o2ib:/home /home
26-2 Lustre 2.0 Operations Manual • June 2010



Lustre ACL support is a system-wide feature; either all clients enable ACLs or none 
do. Activating ACLs is controlled by MDS mount options acl / noacl 
(enable/disableACLs). Client-side mount options acl/noacl are ignored. You do 
not need to change the client configuration, and the “acl” string will not appear in 
the client /etc/mtab. The client acl mount option is no longer needed. If a client is 
mounted with that option, then this message appears in the MDS syslog:

...MDS requires ACL support but client does not

The message is harmless but indicates a configuration issue, which should be 
corrected.

If ACLs are not enabled on the MDS, then any attempts to reference an ACL on a 
client return an Operation not supported error.

26.1.3 Examples
These examples are taken directly from the POSIX paper referenced above. ACLs on 
a Lustre file system work exactly like ACLs on any Linux file system. They are 
manipulated with the standard tools in the standard manner. Below, we create a 
directory and allow a specific user access.

[root@client lustre]# umask 027

[root@client lustre]# mkdir rain

[root@client lustre]# ls -ld rain

drwxr-x---  2 root root 4096 Feb 20 06:50 rain

[root@client lustre]# getfacl rain

# file: rain

# owner: root

# group: root

user::rwx

group::r-x

other::---

[root@client lustre]# setfacl -m user:chirag:rwx rain

[root@client lustre]# ls -ld rain

drwxrwx---+ 2 root root 4096 Feb 20 06:50 rain

[root@client lustre]# getfacl --omit-heade rain

user::rwx

user:chirag:rwx

group::r-x

mask::rwx

other::---
Chapter 26 Lustre Security 26-3



26.2 Using Root Squash
Lustre 1.6 introduced root squash functionality, a security feature which controls 
super user access rights to an Lustre file system. Before the root squash feature was 
added, Lustre users could run rm -rf * as root, and remove data which should not 
be deleted. Using the root squash feature prevents this outcome.

The root squash feature works by re-mapping the user ID (UID) and group ID (GID) 
of the root user to a UID and GID specified by the system administrator, via the 
Lustre configuration management server (MGS). The root squash feature also enables 
the Lustre administrator to specify a set of client for which UID/GID re-mapping 
does not apply.

26.2.1 Configuring Root Squash
Root squash functionality is managed by two configuration parameters, 
root_squash and nosquash_nids.

■ The root_squash parameter specifies the UID and GID with which the root user 
accesses the Lustre file system.

■ The nosquash_nids parameter specifies the set of clients to which root squash 
does not apply. LNET NID range syntax is used for this parameter (see the NID 
range syntax rules described in Enabling and Tuning Root Squash). For example:

nosquash_nids=172.16.245.[0-255/2]@tcp

In this example, root squash does not apply to TCP clients on subnet 172.16.245.0 
that have an even number as the last component of their IP address.

26.2.2 Enabling and Tuning Root Squash
The default value for nosquash_nids is NULL, which means that root squashing 
applies to all clients. Setting the root squash UID and GID to 0 turns root squash off.

Root squash parameters can be set when the MDT is created (mkfs.lustre --mdt). 
For example:

mkfs.lustre--reformat --fsname=Lustre --mdt --mgs \
--param "mds.root_squash=500:501" \
--param "mds.nosquash_nids='0@elan1 192.168.1.[10,11]'" /dev/sda1
26-4 Lustre 2.0 Operations Manual • June 2010



Root squash parameters can also be changed on an unmounted device with 
tunefs.lustre. For example: 

tunefs.lustre --param "mds.root_squash=65534:65534"  \
--param "mds.nosquash_nids=192.168.0.13@tcp0" /dev/sda1

Root squash parameters can also be changed with the lctl conf_param command. 
For example: 

lctl conf_param Lustre.mds.root_squash="1000:100"

lctl conf_param Lustre.mds.nosquash_nids="*@tcp"

Note – When using the lctl conf_param command, keep in mind: 

* lctl conf_param must be run on a live MGS
* lctl conf_param causes the parameter to change on all MDSs
* lctl conf_param is to be used once per a parameter

The nosquash_nids list can be cleared with:

lctl conf_param Lustre.mds.nosquash_nids="NONE"

- OR - 

lctl conf_param Lustre.mds.nosquash_nids="clear"

If the nosquash_nids value consists of several NID ranges (e.g. 0@elan, 1@elan1), 
the list of NID ranges must be quoted with single (') or double ('') quotation marks. 
List elements must be separated with a space. For example:

mkfs.lustre ... --param "mds.nosquash_nids='0@elan1 1@elan2'" /dev/sda1
lctl conf_param Lustre.mds.nosquash_nids="24@elan 15@elan1"

These are examples of incorrect syntax:

mkfs.lustre ... --param "mds.nosquash_nids=0@elan1 1@elan2" /dev/sda1
lctl conf_param Lustre.mds.nosquash_nids=24@elan 15@elan1

To check root squash parameters, use the lctl get_param command:

lctl get_param mds.Lustre-MDT0000.root_squash

lctl get_param mds.Lustre-MDT000*.nosquash_nids

Note – An empty nosquash_nids list is reported as NONE.
Chapter 26 Lustre Security 26-5



26.2.3 Tips on Using Root Squash
Lustre configuration management limits root squash in several ways.

■ The lctl conf_param value overwrites the parameter’s previous value. If the 
new value uses an incorrect syntax, then the system continues with the old 
parameters and the previously-correct value is lost on remount. That is, be careful 
doing root squash tuning. 

■ mkfs.lustre and tunefs.lustre do not perform syntax checking. If the root 
squash parameters are incorrect, they are ignored on mount and the default values 
are used instead. 

■ Root squash parameters are parsed with rigorous syntax checking. The 
root_squash parameter should be specified as <decnum>':'<decnum>. The 
nosquash_nids parameter should follow LNET NID range list syntax.

LNET NID range syntax:

<nidlist> :== <nidrange> [ ' ' <nidrange> ]

<nidrange> :== <addrrange> '@' <net>

<addrrange>:== '*' |

<ipaddr_range> |

<numaddr_range>

<ipaddr_range>:==

<numaddr_range>.<numaddr_range>.<numaddr_range>.<numaddr_range>

<numaddr_range>:== <number> |

<expr_list>

<expr_list>:== '[' <range_expr> [ ',' <range_expr>] ']'

<range_expr>:== <number> |

<number> '-' <number> |

<number> '-' <number> '/' <number>

<net> :== <netname> | <netname><number>

<netname> :== "lo" | "tcp" | "o2ib" | "cib" | "openib" | "iib" | 

"vib" | "ra" | "elan" | "gm" | "mx" | "ptl"

<number> :== <nonnegative decimal> | <hexadecimal>

Note – For networks using numeric addresses (e.g. elan), the address range must be 
specified in the <numaddr_range> syntax. For networks using IP addresses, the 
address range must be in the <ipaddr_range>. For example, if elan is using numeric 
addresses, 1.2.3.4@elan is incorrect. 
26-6 Lustre 2.0 Operations Manual • June 2010



CHAPTER 27

Lustre Operating Tips

This chapter describes tips to improve Lustre operations and includes the following 
sections:

■ Adding an OST to a Lustre File System

■ A Simple Data Migration Script

■ Adding Multiple SCSI LUNs on Single HBA

■ Failures Running a Client and OST on the Same Machine

■ Improving Lustre Metadata Performance While Using Large Directories
27-1



27.1 Adding an OST to a Lustre File System
To add an OST to existing Lustre file system:

1. Add a new OST by passing on the following commands, run:

$ mkfs.lustre --fsname=spfs --ost --mgsnode=mds16@tcp0 /dev/sda

$ mkdir -p /mnt/test/ost0

$ mount -t lustre /dev/sda /mnt/test/ost0

2. Migrate the data (possibly).

The file system is quite unbalanced when new empty OSTs are added. New file 
creations are automatically balanced. If this is a scratch file system or files are 
pruned at a regular interval, then no further work may be needed. Files existing 
prior to the expansion can be rebalanced with an in-place copy, which can be done 
with a simple script.

The basic method is to copy existing files to a temporary file, then move the temp 
file over the old one. This should not be attempted with files which are currently 
being written to by users or applications. This operation redistributes the stripes 
over the entire set of OSTs. For a sample data migration script, see A Simple Data 
Migration Script.

A very clever migration script would do the following:

■ Examine the current distribution of data.

■ Calculate how much data should move from each full OST to the empty ones.

■ Search for files on a given full OST (using lfs getstripe).

■ Force the new destination OST (using lfs setstripe).

■ Copy only enough files to address the imbalance.

If a Lustre administrator wants to explore this approach further, per-OST 
disk-usage statistics can be found under /proc/fs/lustre/osc/*/rpc_stats
27-2 Lustre 2.0 Operations Manual • June 2010



27.2 A Simple Data Migration Script
#!/bin/bash

# set -x

 

# A script to copy and check files.

# To avoid allocating objects on one or more OSTs, they should be

# deactivated on the MDS via "lctl --device {device_number} 
deactivate",

# where {device_number} is from the output of "lctl dl" on the MDS.

# To guard against corruption, the file is chksum'd 

# before and after the operation.

# 

 

CKSUM=${CKSUM:-md5sum}

usage() {

    echo "usage: $0 [-O <OST_UUID-to-empty>] <dir>" 1>&2

    echo "    -O can be specified multiple times" 1>&2

    exit 1

}

while getopts "O:" opt $*; do

    case $opt in

        O) OST_PARAM="$OST_PARAM -O $OPTARG";;

        \?) usage;;

    esac

done

shift $((OPTIND - 1))

MVDIR=$1

if [ $# -ne 1 -o ! -d $MVDIR ]; then

    usage

fi

lfs find -type f $OST_PARAM $MVDIR | while read OLDNAME; do

    echo -n "$OLDNAME: "

    if [ ! -w "$OLDNAME" ]; then

        echo "No write permission, skipping"

        continue

    fi
Chapter 27 Lustre Operating Tips 27-3



    OLDCHK=$($CKSUM "$OLDNAME" | awk '{print $1}')

    if [ -z "$OLDCHK" ]; then

        echo "checksum error - exiting" 1>&2

exit 1

    fi

    NEWNAME=$(mktemp "$OLDNAME.tmp.XXXXXX")

    if [ $? -ne 0 -o -z "$NEWNAME" ]; then

        echo "unable to create temp file - exiting" 1>&2

exit 2

    fi

    

    cp -a "$OLDNAME" "$NEWNAME"

    if [ $? -ne 0 ]; then 

        echo "copy error - exiting" 1>&2

        rm -f "$NEWNAME"

        exit 4

    fi

    NEWCHK=$($CKSUM "$NEWNAME" | awk '{print $1}') 

    if [ -z "$NEWCHK" ]; then

        echo "'$NEWNAME' checksum error - exiting" 1>&2

exit 6

    fi

    if [ $OLDCHK != $NEWCHK ]; then

        echo "'$NEWNAME' bad checksum - "$OLDNAME" not moved, exiting" 
1>&2

        rm -f "$NEWNAME"

        exit 8

    else

        mv "$NEWNAME" "$OLDNAME"

        if [ $? -ne 0 ]; then 

            echo "rename error - exiting" 1>&2

            rm -f "$NEWNAME"

            exit 12

        fi

    fi

    echo "done"

done
27-4 Lustre 2.0 Operations Manual • June 2010



27.3 Adding Multiple SCSI LUNs on Single 
HBA 
The configuration of the kernels packaged by the Lustre group is similar to that of 
the upstream RedHat and SuSE packages. Currently, RHEL does not enable 
CONFIG_SCSI_MULTI_LUN because it can cause problems with SCSI hardware.

To enable this, set the scsi_mod max_scsi_luns=xx option (typically, xx is 128) in 
either modprobe.conf (2.6 kernel) or modules.conf (2.4 kernel).

To pass this option as a kernel boot argument (in grub.conf or lilo.conf), 
compile the kernel with CONFIG_SCSI_MULT_LUN=y

27.4 Failures Running a Client and OST on the 
Same Machine
There are inherent problems if a client and OST share the same machine (and the 
same memory pool). An effort to relieve memory pressure (by the client), requires 
memory to be available to the OST. If the client is experiencing memory pressure, 
then the OST is as well. The OST may not get the memory it needs to help the client 
get the memory it needs because it is all one memory pool; this results in deadlock.

Running a client and an OST on the same machine can cause these failures:

■ If the client contains a dirty file system in memory and memory pressure, a kernel 
thread flushes dirty pages to the file system, and it writes to a local OST. To 
complete the write, the OST needs to do an allocation. Then the blocking of 
allocation occurs while waiting for the above kernel thread to complete the write 
process and free up some memory. This is a deadlock condition.

■ If the node with both a client and OST crashes, then the OST waits for the 
mounted client on that node to recover. However, since the client is now in 
crashed state, the OST considers it to be a new client and blocks it from mounting 
until the recovery completes.  

As a result, running OST and client on same machine can cause a double failure and 
prevent a complete recovery.
Chapter 27 Lustre Operating Tips 27-5



27.5 Improving Lustre Metadata Performance 
While Using Large Directories 
To improve metadata performance while using large directories, follow these tips:

■ Increase RAM on the MDS – On the MDS, more memory translates into bigger 
caches, thereby increasing the metadata performance. 

■ Patch the core kernel on the MDS with the 3G/1G patch (if not running a 64-bit 
kernel), which increases the available kernel address space. This translates into 
support for bigger caches on the MDS.
27-6 Lustre 2.0 Operations Manual • June 2010



PART V Reference

This part includes reference information on Lustre user utilities, configuration files 
and module parameters, programming interfaces, system configuration utilities, and 
system limits.





CHAPTER 27

User Utilities (man1)

This chapter describes user utilities and includes the following sections:

■ lfs

■ lfsck

■ Filefrag

■ Mount

■ Handling Timeouts
27-1



28.1 lfs
The lfs utility can be used for user configuration routines and monitoring. With lfs 
you can create a new file with a specific striping pattern, determine the striping 
pattern of existing files, and gather the extended attributes (object numbers and 
location) of a specific file.

Synopsis

lfs

lfs check <mds|osts|servers>

lfs df [-i] [-h] [path]

lfs find [[!] --atime|-A [-+]N] [[!] --mtime|-M [-+]N] 

[[!] --ctime|-C [-+]N] [--maxdepth|-D N] [--name|-n <pattern>]

[--print|-p] [--print0|-P] [[!] --obd|-O <uuid[s]>] 

[[!] --size|-S [+-]N[kMGTPE]] --type |-t {bcdflpsD}]

[[!] --gid|-g|--group|-G <gname>|<gid>]

[[!] --uid|-u|--user|-U <uname>|<uid>]

<dirname|filename>

lfs osts

lfs getstripe [--obd|-O <uuid>] [--quiet|-q] [--verbose|-v]

[--count|-c] [--size|-s] [--index|-i]

[--offset|-o] [--pool|-p] [--directory|-d]

[--recursive|-r] <dirname|filename>

lfs setstripe [--size|-s stripe-size] [--count|-c stripe-cnt] 

[--offset|-o start-ost] [--pool|-p <pool>]

<dirname|filename>

lfs setstripe -d <dirname>

lfs poollist <filename[.<pool>] | <pathname>

lfs quota [-q] [-v] [-o obd_uuid|-I ost_idx|-i mdt_idx] [-u|-g 
<uname>|uid|gname|gid>] <filesystem>

lfs quota -t <-u|-g> <filesystem>

lfs quotacheck [-ugf] <filesystem>

lfs quotachown [-i] <filesystem>

lfs quotaon [-ugf] <filesystem>

lfs quotaoff [-ug] <filesystem>

lfs quotainv [-ug] [-f] <filesystem>
27-2 Lustre 2.0 Operations Manual • April 2010



lfs setquota <-u|--user|-g|--group> <uname|uid|gname|gid>

[--block-softlimit <block-softlimit>]

[--block-hardlimit <block-hardlimit>]

[--inode-softlimit <inode-softlimit>]

[--inode-hardlimit <inode-hardlimit>]

<filesystem>

lfs setquota <-u|--user|-g|--group> <uname|uid|gname|gid>

[-b <block-softlimit>] [-B <block-hardlimit>]

[-i <inode-softlimit>] [-I <inode-hardlimit>] 

<filesystem>

lfs setquota -t <-u|-g>

[--block-grace <block-grace>]

[--inode-grace <inode-grace>]

<filesystem>

lfs setquota -t <-u|-g>

[-b <block-grace>] [-i <inode-grace>]

<filesystem>

lfs help

Note – In the above example, the <filesystem> parameter refers to the mount 
point of the Lustre file system. The default mount point is /mnt/lustre.

Note – The old lfs quota output was very detailed and contained cluster-wide 
quota statistics (including cluster-wide limits for a user/group and cluster-wide 
usage for a user/group), as well as statistics for each MDS/OST. Now, lfs quota 
has been updated to provide only cluster-wide statistics, by default. To obtain the full 
report of cluster-wide limits, usage and statistics, use the -v option with lfs quota.

Description

The lfs utility is used to create a new file with a specific striping pattern, determine 
the default striping pattern, gather the extended attributes (object numbers and 
location) for a specific file, find files with specific attributes, list OST information, or 
set quota limits. It can be invoked interactively without any  arguments or in a 
non-interactive mode with one of the supported arguments.
Chapter 27 User Utilities (man1) 27-3



Options

The various lfs options are listed and described below. For a complete list of 
available options, type help at the lfs prompt.

Option Description

check

Displays the status of the MDS or OSTs (as specified in the 
command) or all servers (MDS and OSTs).

df

Reports file system disk space usage or inode usage of each 
MDT/OST. Can limit the scope to a specific OST pool.

find

Searches the directory tree rooted at the given 
directory/filename for files that match the given parameters. 
The --maxdepth option limits find to decend at most N levels  
of  directory tree. The --print  and --print0 options print the full 
filename, followed by a new line or NUL character 
correspondingly. Using ! before an option negates its meaning 
(files NOT matching the parameter). Using + before a numeric 
value means files with the parameter OR MORE. Using - before 
a numeric value means files with the parameter OR LESS. 

--atime

File was last accessed N*24 hours ago. (There is no guarantee 
that atime is kept coherent across the cluster.)

OSTs store a transient atime that is updated when clients do 
read requests. Permanent atime is written to the MDS when the 
file is closed. However, on-disk atime is only updated if it is 
more than 60 seconds old 
(/proc/fs/lustre/mds/*/max_atime_diff). Lustre considers the 
latest atime from all OSTs. If a setattr is set by user, then it is 
updated on both the MDS and OST, allowing the atime to go 
backward. 

--ctime

File status was last changed N*24 hours ago. 

--mtime

File status was last modified N*24 hours ago. 

--obd

File has an object on a specific OST(s).
27-4 Lustre 2.0 Operations Manual • April 2010



--size

File has a size in bytes or kilo-, Mega-, Giga-, Tera-, Peta- or 
Exabytes if a suffix is given.

--type

File has a type (block, character, directory, pipe, file, symlink, 
socket or Door [for Solaris]).

--uid

File has a specific numeric user ID.

--user

File is owned by a specific user (numeric user ID is allowed).

--gid

File has a specific group ID.

--group

File belongs to a specific group (numeric group ID allowed).

osts

Lists all OSTs for the file system.

getstripe

Lists the striping information for a given filename or directory. 
By default, the stripe count, stripe size and offset are returned. 

If you only want specific striping information, then the options  
of --count,--size,--index or --offset, plus various combinations 
of these options can be used to retrieve specific information.

--obd <uuid>

Lists files that have an object on a specific OST.

--quiet

Lists only information about a file’s object ID.

--verbose

Prints additional striping information.

--count

Lists the stripe count (how many OSTs to use). 

--size

Lists the stripe size (how much data to write to one OST before 
moving to the next OST).

Option Description
Chapter 27 User Utilities (man1) 27-5



--index

Lists the index for each OST in the file system.

--offset

Lists the OST index on which file striping starts.

--pool

Lists the pools to which a file belongs.

--directory

Lists entries about a specified directory instead of its contents 
(in the same manner as ls -d). 

--recursive

Recurses into sub-directories.

setstripe

Creates a new file or sets the directory default with specific 
striping parameters.†

--size stripe-size*

Number of bytes to store on an OST before moving to the next 
OST. A stripe size of 0 uses the file system’s default stripe size, 
1MB. Can be specified with k (KB), m (MB), or g (GB), 
respectively.

--count stripe-cnt

Number of OSTs over which to stripe a file. A stripe count of 0 
uses the file system-wide default stripe count (1). A stripe 
count of -1 stripes over all available OSTs, and normally results 
in a file with 80 stripes.

--offset start-ost *

The OST index (base 10, starting at 0) on which to start striping 
for this file. A start-ost value of -1 allows the MDS to choose 
the starting index. This is the default, and it means that the 
MDS selects the starting OST as it wants. It has no relevance on 
whether the MDS will use round-robin or QoS weighted 
allocation for the remaining stripes in the file. We strongly 
recommend selecting this default value, as it allows space and 
load balancing to be done by the MDS as needed.

Option Description
27-6 Lustre 2.0 Operations Manual • April 2010



--pool pool-name

Name of the pre-defined pool of OSTs (see lctl) that will be 
used for striping. The stripe-cnt, stripe-size and start-ost 
values are used as well. The start-ost value must be part of the 
pool or an error is returned.

setstripe -d <dirname>

Deletes default striping on the specified directory.

poollist <filesystem>[.<pool>] | <pathname>

Lists pools in the file system or pathname or OSTs in the file 
system’s pool.

quota [-q] [-v] [-o obd_uuid|-i mdt_idx|-I ost_idx] [-u|-g <uname|uid|gname|gid>] 
<filesystem>

Displays disk usage and limits, either for the full file system or 
for objects on a specific OBD. A user or group name or an ID 
can be specified. If both user and group are omitted, quotas for 
the current UID/GID are shown. The -q option provides more 
quiet output by suppressing the printing of the header. It also 
fills in blank spaces in the ''grace'' column with zeros (when 
there is no grace period set), to ensure that the number of 
columns is consistent. The -v option provides more verbose 
(with per-OBD statistics) output.

quota -t <-u|-g> <filesystem>

Displays block and inode grace times for user (-u) or group (-g) 
quotas.

quotacheck [-ugf] <filesystem>

Scans the specified file system for disk usage, and creates or 
updates quota files. Options specify quota for users (-u), 
groups (-g), and force (-f).

quotachown [-i] <filesystem>

Changes the file’s owner and group on OSTs of the specified 
file system.

quotaon [-ugf] <filesystem>

Turns on file system quotas. Options specify quota for users 
(-u), groups (-g), and force (-f).

quotaoff [-ugf] <filesystem>

Turns off file system quotas. Options specify quota for users 
(-u), groups (-g), and force (-f).

Option Description
Chapter 27 User Utilities (man1) 27-7



quotainv [-ug] [-f] <filesystem>

Clears quota files (administrative quota files if used without -f, 
operational quota files otherwise), all of their quota entries for 
users (-u) or groups (-g). After running quotainv, you must run 
quotacheck before using quotas.
CAUTION: Use extreme caution when using this command; its 
results cannot be undone.

setquota  <-u|-g> <uname>|<uid>|<gname>|<gid> [--block-softlimit <block-softlimit>] 
[--block-hardlimit <block-hardlimit>] [--inode-softlimit <inode-softlimit>] 
[--inode-hardlimit <inode-hardlimit>] <filesystem>

Sets file system quotas for users or groups. Limits can be 
specified with --{block|inode}-{softlimit|hardlimit} or their 
short equivalents -b, -B, -i, -I. Users can set 1, 2, 3 or 4 limits.‡ 
Also, limits can be specified with special suffixes, -b, -k, -m, -g, 
-t, and -p to indicate units of 1, 2^10, 2^20, 2^30, 2^40 and 2^50, 
respectively. By default, the block limits unit is 1 kilobyte (1,024), 
and block limits are always kilobyte-grained (even if specified in 
bytes). See Examples.

setquota -t <-u|-g> [--block-grace <block-grace>] [--inode-grace <inode-grace>] 
<filesystem>

Sets file system quota grace times for users or groups. Grace 
time is specified in “XXwXXdXXhXXmXXs” format or as an 
integer seconds value. See Examples.

help

Provides brief help on various lfs arguments.

exit/quit

Quits the interactive lfs session.

* The default stripe-size is 0. The default stripe-start is -1. Do NOT confuse them! If you set stripe-start to 0, all 
new file creations occur on OST 0 (seldom a good idea).

† The file cannot exist prior to using setstripe. A directory must exist prior to using setstripe.

‡ The old setquota interface is supported, but it may be removed in a future Lustre release.

Option Description
27-8 Lustre 2.0 Operations Manual • April 2010



Examples

$ lfs setstripe -s 128k -c 2 /mnt/lustre/file1

Creates a file striped on two OSTs with 128 KB on each stripe.

$ lfs setstripe -d /mnt/lustre/dir

Deletes a default stripe pattern on a given directory. New files use the default 
striping pattern.

$ lfs getstripe -v /mnt/lustre/file1

Lists the detailed object allocation of a given file.

$ lfs setstripe --pool my_pool -c 2 /mnt/lustre/file

Creates a file striped on two OSTs from the pool my_pool

$ lfs poollist /mnt/lustre/

Lists the pools defined for the mounted Lustre file system /mnt/lustre

$ lfs poollist my_fs.my_pool

Lists the OSTs which are members of the pool my_pool in file system my_fs

$ lfs getstripe -v /mnt/lustre/file1

Lists the detailed object allocation of a given file.

$ lfs find /mnt/lustre

Efficiently lists all files in a given directory and its subdirectories.

$ lfs find /mnt/lustre -mtime +30 -type f -print

Recursively lists all regular files in a given directory more than 30 days old.
Chapter 27 User Utilities (man1) 27-9



$ lfs find --obd OST2-UUID /mnt/lustre/

Recursively lists all files in a given directory that have objects on OST2-UUID. The 
lfs check servers command checks the status of all servers (MDT and OSTs).

$ lfs find /mnt/lustre --pool poolA

Finds all directories/files associated with poolA. 

$ lfs find /mnt//lustre --pool ""

Finds all directories/files not associated with a pool. 

$ lfs find /mnt/lustre ! --pool ""

Finds all directories/files associated with pool. 

$ lfs check servers

Checks the status of all servers (MDT, OST)

$ lfs osts

Lists all OSTs in the file system.

$ lfs df -h

Lists space usage per OST and MDT in human-readable format.

$ lfs df -i

Lists inode usage per OST and MDT.

$ lfs df --pool <filesystem>[.<pool>] | <pathname>

List space or inode usage for a specific OST pool.

$ lfs quotachown -i /mnt/lustre

Changes file owner and group.
27-10 Lustre 2.0 Operations Manual • April 2010



$ lfs quotacheck -ug /mnt/lustre

Checks quotas for user and group. Turns on quotas after making the check.

$ lfs quotaon -ug /mnt/lustre

Turns on quotas of user and group.

$ lfs quotaoff -ug /mnt/lustre

Turns off quotas of user and group.

$ lfs setquota -u bob --block-softlimit 2000000 --block-hardlimit 
1000000 /mnt/lustre

Sets quotas of user ‘bob’, with a 1 GB block quota hardlimit and a 2 GB block 
quota softlimit.

$ lfs setquota -t -u --block-grace 1000 --inode-grace 1w4d /mnt/lustre

Sets grace times for user quotas: 1000 seconds for block quotas, 1 week and 4 days 
for inode quotas.

$ lfs quota -u bob /mnt/lustre

List quotas of user ‘bob’.

$ lfs quota -t -u /mnt/lustre

Show grace times for user quotas on /mnt/lustre.

$ lfs setstripe --pool my_pool /mnt/lustre/dir

Associates a directory with the pool my_pool, so all new files and directories are 
created in the pool.

$ lfs find /mnt/lustre --pool poolA

Finds all directories/files associated with poolA.
Chapter 27 User Utilities (man1) 27-11



$ lfs find /mnt//lustre --pool ""

Finds all directories/files not associated with a pool.

$ lfs find /mnt/lustre ! --pool ""

Finds all directories/files associated with pool.
27-12 Lustre 2.0 Operations Manual • April 2010



28.2 lfsck
Lfsck ensures that objects are not referenced by multiple MDS files, that there are no 
orphan objects on the OSTs (objects that do not have any file on the MDS which 
references them), and that all of the objects referenced by the MDS exist. Under 
normal circumstances, Lustre maintains such coherency by distributed logging 
mechanisms, but under exceptional circumstances that may fail (e.g. disk failure, file 
system corruption leading to e2fsck repair). To avoid lengthy downtime, you can also 
run lfsck once Lustre is already started. 

The e2fsck utility is run on each of the local MDS and OST device file systems and 
verifies that the underlying ldiskfs is consistent. After e2fsck is run, lfsck does 
distributed coherency checking for the Lustre file system. In most cases, e2fsck is 
sufficient to repair any file system issues and lfsck is not required. 

Synopsis

lfsck [-c|--create] [-d|--delete] [-f|--force] [-h|--help] 
[-l|--lostfound] [-n|--nofix] [-v|--verbose] --mdsdb 
mds_database_file --ostdb ost1_database_file [ost2_database_file...] 
<filesystem>

Note – As shown, the <filesystem> parameter refers to the Lustre file system mount 
point. The default mount point is /mnt/lustre.

Note – For lfsck, database filenames must be provided as absolute pathnames. 
Relative paths do not work, the databases cannot be properly opened.
Chapter 27 User Utilities (man1) 27-13



Options

The options and descriptions for the lfsck command are listed below.

Description

The lfsck utility is used to check and repair the distributed coherency of a Lustre file 
system. If an MDS or an OST becomes corrupt, run a distributed check on the file 
system to determine what sort of problems exist. Use lfsck to correct any defects 
found.

For more information on using e2fsck and lfsck, including examples, see Commit 
on Share. For information on resolving orphaned objects, see Working with 
Orphaned Objects.

Option Description

-c

Creates (empty) missing OST objects referenced by MDS inodes.

-d

Deletes orphaned objects from the file system. Since objects on the OST are often 
only one of several stripes of a file, it can be difficult to compile multiple objects 
together in a single, usable file.

-h

Prints a brief help message.

-l

Puts orphaned objects into a lost+found directory in the root of the file system.

-n

Performs a read-only check; does not repair the file system.

-v

Verbose operation - more verbosity by specifying the option multiple times.

--mdsdb mds_database_file

MDS database file created by running e2fsck --mdsdb mds_database_file <device> 
on the MDS backing device. This is required.

--ostdb ost1_database_file [ost2_database_file...]

OST database files created by running e2fsck --ostdb ost_database_file <device> on 
each of the OST backing devices. These are required unless an OST is unavailable, 
in which case all objects thereon are considered missing.
27-14 Lustre 2.0 Operations Manual • April 2010



28.3 Filefrag
The e2fsprogs package contains the filefrag tool which reports the extent of file 
fragmentation.

Synopsis

filefrag [ -belsv ] [ files...  ]

Description

The filefrag utility reports the extent of fragmentation in a given file. Initially, filefrag 
attempts to obtain extent information using FIEMAP ioctl, which is efficient and fast. 
If FIEMAP is not supported, then filefrag uses FIBMAP. 

Note – Lustre only supports FIEMAP ioctl. FIBMAP ioctl is not supported.

In default mode1, filefrag returns the number of physically discontiguous extents in 
the file. In extent or verbose mode, each extent is printed with details. For Lustre, the 
extents are printed in device offset order, not logical offset order. 

1. The default mode is faster than the verbose/extent mode.
Chapter 27 User Utilities (man1) 27-15



Options

The options and descriptions for the filefrag utility are listed below.

Examples

Lists default output.

$ filefrag /mnt/lustre/foo

/mnt/lustre/foo: 6 extents found

Lists verbose output in extent format.

$ filefrag  -ve /mnt/lustre/foo 
Checking /mnt/lustre/foo
Filesystem type is: bd00bd0
Filesystem cylinder groups is approximately 5
File size of /mnt/lustre/foo is 157286400 (153600 blocks)
ext:device_logical:start..end physical: start..end:length: device:flags:
0: 0.. 49151: 212992.. 262144: 49152: 0: remote
1: 49152.. 73727: 270336.. 294912: 24576: 0: remote
2: 73728.. 76799: 24576.. 27648: 3072: 0: remote
3: 0.. 57343: 196608.. 253952: 57344: 1: remote
4: 57344.. 65535: 139264.. 147456: 8192: 1: remote
5: 65536.. 76799: 163840.. 175104: 11264: 1: remote
/mnt/lustre/foo: 6 extents found

Option Description

-b

Uses the 1024-byte blocksize for the output. By default, this blocksize is used by 
Lustre, since OSTs may use different block sizes. 

-e

Uses the extent mode when printing the output.

-l

Displays extents in LUN offset order.

-s

Synchronizes the file before requesting the mapping.

--v

Uses the verbose mode when checking file fragmentation.
27-16 Lustre 2.0 Operations Manual • April 2010



28.4 Mount
Lustre uses the standard mount(8) Linux command. When mounting a Lustre file 
system, mount(8) executes the /sbin/mount.lustre command to complete the 
mount. The mount command supports these Lustre-specific options:

28.5 Handling Timeouts
Timeouts are the most common cause of hung applications. After a timeout involving 
an MDS or failover OST, applications attempting to access the disconnected resource 
wait until the connection gets established.

When a client performs any remote operation, it gives the server a reasonable 
amount of time to respond. If a server does not reply either due to a down network, 
hung server, or any other reason, a timeout occurs which requires a recovery.

If a timeout occurs, a message (similar to this one), appears on the console of the 
client, and in /var/log/messages:

LustreError: 26597:(client.c:810:ptlrpc_expire_one_request()) @@@ timeout

req@a2d45200 x5886/t0 o38->mds_svc_UUID@NID_mds_UUID:12 lens 168/64 ref 1 fl

RPC:/0/0 rc 0

Server options Description

abort_recov Aborts recovery when starting a target

nosvc Starts only MGS/MGC servers

exclude Starts with a dead OST

Client options Description

flock Enables/disables flock support

user_xattr/nouser_xattr Enables/disables user-extended attributes

retry= Number of times a client will retry to mount the file system
Chapter 27 User Utilities (man1) 27-17



27-18 Lustre 2.0 Operations Manual • April 2010



CHAPTER 29

Lustre Programming Interfaces 
(man2)

This chapter describes public programming interfaces to control various aspects of 
Lustre from userspace. These interfaces are generally not guaranteed to remain 
unchanged over time, although we will make an effort to notify the user community 
well in advance of major changes. This chapter includes the following section:

■ User/Group Cache Upcall

29.1 User/Group Cache Upcall
This section describes user and group upcall. 

Note – For information on a universal UID/GID, see Environmental Requirements.

29.1.1 Name
Use /proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_upcall to look 
up a given user’s group membership.
29-1



29.1.2 Description
The group upcall file contains the path to an executable that, when installed, is 
invoked to resolve a numeric UID to a group membership list. This utility should 
complete the mds_grp_downcall_data data structure (see Data Structures) and 
write it to the /proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_info 
pseudo-file.

For a sample upcall program, see lustre/utils/l_getgroups.c in the Lustre 
source distribution.

29.1.2.1 Primary and Secondary Groups

The mechanism for the primary/secondary group is as follows:

■ The MDS issues an upcall (set per MDS) to map the numeric UID to the 
supplementary group(s).

■ If there is no upcall or if there is an upcall and it fails, supplementary groups will 
be added as supplied by the client (as they are now).

■ The default upcall is /usr/sbin/l_getidentity, which can interact with the 
user/group database to obtain UID/GID/suppgid. The user/group database 
depends on authentication configuration, and can be local /etc/passwd, NIS, 
LDAP, etc. If necessary, the administrator can use a parse utility to set 
/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_upcall. If the 
upcall interface is set to NONE, then upcall is disabled. The MDS uses the 
UID/GID/suppgid supplied by the client. 

■ The default group upcall is set by mkfs.lustre. Use tunefs.lustre --param or echo 
{path} > /proc/fs/lustre/mds/{mdsname}/group_upcall

■ The Lustre administrator can specify permissions for a specific UID by configuring 
/etc/lustre/perm.conf on the MDS. As commented in 
lustre/utils/l_getidentity.c 

/*
* permission file format is like this: 
* {nid} {uid} {perms} 
* 
* '*' nid means any nid
* '*' uid means any uid
* the valid values for perms are:
* setuid/setgid/setgrp/rmtacl           -- enable corresponding perm
* nosetuid/nosetgid/nosetgrp/normtacl   -- disable corresponding 
perm
* they can be listed together, seperated by ',',
* when perm and noperm are in the same line (item), noperm is 
preferential,
* when they are in different lines (items), the latter is 
29-2 Lustre 2.0 Operations Manual • June 2010



preferential,
* '*' nid is as default perm, and is not preferential.
*/

Currently, rmtacl/normtacl can be ignored, which are part of security stuff, and 
used for remote client. The /usr/sbin/l_getidentity utility can parse 
/etc/lustre/perm.conf to obtain permission mask for specified UID. 

■ To avoid repeated upcalls, the MDS caches supplemental group information. Use 
/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_expire to set the 
cache time (default is 600 seconds). The kernel waits for the upcall to complete (at 
most, 5 seconds) and takes the "failure" behavior as described. Set the wait time in 
/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_acquire_expir
e (default is 15 seconds). Cached entries are flushed by writing to 
/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_flush. 

29.1.3 Parameters
■ Name of the MDS service

■ Numeric UID

29.1.4 Data Structures
struct identity_downcall_data {

__u32 idd_magic;

__u32 idd_err;

__u32 idd_uid;

__u32 idd_gid;

__u32 idd_nperms;

struct perm_downcall_data idd_perms[N_PERMS_MAX];

__u32 idd_ngroups;

__u32 idd_groups[0];

};
Chapter 29 Lustre Programming Interfaces (man2) 29-3



29-4 Lustre 2.0 Operations Manual • June 2010



CHAPTER 30

Setting Lustre Properties (man3)

This chapter describes how to use llapi to set Lustre file properties.

30.1 Using llapi
Several llapi commands are available to set Lustre properties, llapi_file_create, 
llapi_file_get_stripe, and llapi_file_open. These commands are 
described in the following sections:

llapi_file_create

llapi_file_get_stripe

llapi_file_open

llapi_quotactl

30.1.1 llapi_file_create
Use llapi_file_create to set Lustre properties for a new file.

Synopsis

#include <lustre/liblustreapi.h>
#include <lustre/lustre_user.h>

int llapi_file_create(char *name, long stripe_size, 
int stripe_offset, int stripe_count, int stripe_pattern);
30-1



Description

The llapi_file_create() function sets a file descriptor’s Lustre striping 
information. The file descriptor is then accessed with open ().

Note – Currently, only RAID 0 is supported. To use the system defaults, set these 
values: stripe_size = 0, stripe_offset = -1, stripe_count = 0, stripe_pattern = 0

Option Description

llapi_file_create()

If the file already exists, this parameter returns to ‘EEXIST’.
If the stripe parameters are invalid, this parameter returns to ‘EINVAL’.

stripe_size

This value must be an even multiple of system page size, as shown by getpagesize 
(). The default Lustre stripe size is 4MB.

stripe_offset

Indicates the starting OST for this file.

stripe_count

Indicates the number of OSTs that this file will be striped across.

stripe_pattern

Indicates the RAID pattern.
30-2 Lustre 2.0 Operations Manual • March 2010



Examples

System default size is 4 MB.

char *tfile = TESTFILE;

int stripe_size = 65536

To start at default, run:

int stripe_offset = -1

To start at the default, run:
int stripe_count = 1

To set a single stripe for this example, run:

int stripe_pattern = 0

Currently, only RAID 0 is supported.

int stripe_pattern = 0; 

int rc, fd; 

rc = llapi_file_create(tfile, 
stripe_size,stripe_offset, stripe_count,stripe_pattern);

Result code is inverted, you may return with ’EINVAL’ or an ioctl error.

if (rc) {

fprintf(stderr,"llapi_file_create failed: %d (%s) 0, rc, 
strerror(-rc));
return -1; 
}

llapi_file_create closes the file descriptor. You must re-open the descriptor. To 
do this, run:

fd = open(tfile, O_CREAT | O_RDWR | O_LOV_DELAY_CREATE, 0644); 
if (fd < 0) \ { 
fprintf(stderr, "Can’t open %s file: %s0, tfile,

str-

error(errno));

return -1;

}

Chapter 30 Setting Lustre Properties (man3) 30-3



30.1.2 llapi_file_get_stripe
Use llapi_file_get_stripe to get striping information.

Synopsis

int llapi_file_get_stripe(const char *path, struct lov_user_md *lum)

Description

The llapi_file_get_stripe function returns the striping information to the 
caller. If it returns a zero (0), the operation was successful; a negative number means 
there was a failure.

Option Description

path

The path of the file.

lum

The returned striping information. 

return

A value of zero (0) mean the operation was successful.
A value of a negative number means there was a failure.

stripe_count

Indicates the number of OSTs that this file will be striped across.

stripe_pattern

Indicates the RAID pattern.
30-4 Lustre 2.0 Operations Manual • March 2010



30.1.3 llapi_file_open
The llapi_file_open command opens or creates a file with the specified striping 
parameters.

Synopsis

int llapi_file_open(const char *name, int flags, int mode, unsigned 
long stripe_size, int stripe_offset, int stripe_count, int 
stripe_pattern)

Description

The llapi_file_open function opens or creates a file with the specified striping 
parameters. If it returns a zero (0), the operation was successful; a negative number 
means there was a failure.

Option Description

name

The name of the file.

flags

This opens flags.

mode

This opens modes.

stripe_size

The stripe size of the file.

stripe_offset

The stripe offset (stripe_index) of the file.

stripe_count

The stripe count of the file.

stripe_pattern

The stripe pattern of the file.
Chapter 30 Setting Lustre Properties (man3) 30-5



30.1.4 llapi_quotactl
Use llapi_quotactl to manipulate disk quotas on a Lustre file system.

Synopsis

#include <liblustre.h>

#include <lustre/lustre_idl.h>

#include <lustre/liblustreapi.h>

#include <lustre/lustre_user.h>

int llapi_quotactl(char" " *mnt," " struct if_quotactl" " *qctl)

struct if_quotactl {

        __u32                   qc_cmd;

        __u32                   qc_type;

        __u32                   qc_id;

        __u32                   qc_stat;

        struct obd_dqinfo       qc_dqinfo;

        struct obd_dqblk        qc_dqblk;

        char                    obd_type[16];

        struct obd_uuid         obd_uuid;

};

struct obd_dqblk {

        __u64 dqb_bhardlimit;

        __u64 dqb_bsoftlimit;

        __u64 dqb_curspace;

        __u64 dqb_ihardlimit;

        __u64 dqb_isoftlimit;

        __u64 dqb_curinodes;

        __u64 dqb_btime;

        __u64 dqb_itime;

        __u32 dqb_valid;

        __u32 padding;

};

struct obd_dqinfo {

        __u64 dqi_bgrace;

        __u64 dqi_igrace;

        __u32 dqi_flags;

        __u32 dqi_valid;

};

struct obd_uuid {

        char uuid[40];

};
30-6 Lustre 2.0 Operations Manual • March 2010



Description

The llapi_quotactl() command manipulates disk quotas on a Lustre file system 
mount. qc_cmd indicates a command to be applied to UID qc_id or GID qc_id.

Option Description

LUSTRE_Q_QUOTAON

Turns on  quotas  for  a  Lustre file system. qc_type is USRQUOTA, GRPQUOTA or 
UGQUOTA (both user and group quota). The quota files must exist. They are 
normally created with the llapi_quotacheck(3) call. This call is restricted to the 
super user privilege.

LUSTRE_Q_QUOTAOFF

Turns off quotas for a Lustre file system. qc_type  is USRQUOTA, GRPQUOTA or 
UGQUOTA (both user and group quota). This call is restricted to the super user 
privilege.

LUSTRE_Q_GETQUOTA

Gets disk quota limits and current usage for user or group qc_id. qc_type is 
USRQUOTA or GRPQUOTA. UUID may be filled with OBD UUID string to query 
quota information from a specific node. dqb_valid may be set nonzero to query 
information only from MDS. If UUID is an empty string and dqb_valid is zero then 
cluster-wide limits and usage are returned. On return, obd_dqblk contains the 
requested information (block limits unit is kilobyte). Quotas must be turned on 
before using this command.

LUSTRE_Q_SETQUOTA

Sets disk quota limits for user or group qc_id. qc_type is USRQUOTA  or 
GRPQUOTA. dqb_valid must be set to QIF_ILIMITS,  QIF_BLIMITS or 
QIF_LIMITS (both inode limits and block limits) dependent on updating limits. 
obd_dqblk must be filled with limits values (as set in dqb_valid, block limits unit is 
kilobyte). Quotas must be turned on before using this command.

LUSTRE_Q_GETINFO

Gets information about quotas. qc_type is either USRQUOTA or GRPQUOTA. On 
return, dqi_igrace is inode grace time (in seconds), dqi_bgrace is block grace time 
(in seconds), dqi_flags is not used by the current Lustre version.

LUSTRE_Q_SETINFO

Sets quota information (like grace times). qc_type is either USRQUOTA or 
GRPQUOTA. dqi_igrace is inode grace time (in seconds), dqi_bgrace is block grace  
time (in seconds),  dqi_flags is not used by the current Lustre version and must be 
zeroed.
Chapter 30 Setting Lustre Properties (man3) 30-7



Return Values

llapi_quotactl() returns:

0      on success

-1     on failure and sets error number to indicate the error

llapi Errors

llapi errors are described below.

Errors Description

EFAULT qctl is invalid.

ENOSYS Kernel or Lustre modules have not been compiled with the QUOTA option.

ENOMEM Insufficient memory to complete operation.

ENOTTY qc_cmd is invalid.

EBUSY Cannot process during quotacheck.

ENOENT UUID does not correspond to OBD or mnt does not exist.

EPERM The call is privileged and the caller is not the super user.

ESRCH  No disk quota is found for the indicated user. Quotas have not been turned 
on for this file system.
30-8 Lustre 2.0 Operations Manual • March 2010



30.1.5 llapi_path2fid
Use llapi_path2fid to get the FID from the pathname.

Synopsis

#include <lustre/liblustreapi.h>

#include <lustre/lustre_user.h>

int llapi_path2fid(const char *path, unsigned long long *seq, unsigned 
long *oid, unsigned long *ver)

Description

The llapi_path2fid function returns the FID (sequence : object ID : version) for 
the pathname.

Return Values

llapi_path2fid returns:

0 on success

non-zero value on failure
Chapter 30 Setting Lustre Properties (man3) 30-9



30-10 Lustre 2.0 Operations Manual • March 2010



CHAPTER 31

Configuration Files and Module 
Parameters (man5)

This section describes configuration files and module parameters and includes the 
following sections:

■ Introduction

■ Module Options

31.1 Introduction
LNET network hardware and routing are now configured via module parameters. 
Parameters should be specified in the /etc/modprobe.conf file, for example:

alias lustre llite

options lnet networks=tcp0,elan0

The above option specifies that this node should use all the available TCP and Elan 
interfaces.

Module parameters are read when the module is first loaded. Type-specific LND 
modules (for instance, ksocklnd) are loaded automatically by the LNET module 
when LNET starts (typically upon modprobe ptlrpc).

Under Linux 2.6, LNET configuration parameters can be viewed under 
/sys/module/; generic and acceptor parameters under LNET, and LND-specific 
parameters under the name of the corresponding LND.

Under Linux 2.4, sysfs is not available, but the LND-specific parameters are 
accessible via equivalent paths under /proc.
31-1



Important: All old (pre v.1.4.6) Lustre configuration lines should be removed from 
the module configuration files and replaced with the following. Make sure that 
CONFIG_KMOD is set in your linux.config so LNET can load the following modules 
it needs. The basic module files are:

modprobe.conf (for Linux 2.6)

alias lustre llite

options lnet networks=tcp0,elan0

modules.conf (for Linux 2.4)

alias lustre llite

options lnet networks=tcp0,elan0

For the following parameters, default option settings are shown in parenthesis. 
Changes to parameters marked with a W affect running systems. (Unmarked 
parameters can only be set when LNET loads for the first time.) Changes to 
parameters marked with Wc only have effect when connections are established 
(existing connections are not affected by these changes.)

31.2 Module Options
■ With routed or other multi-network configurations, use ip2nets rather than 

networks, so all nodes can use the same configuration.

■ For a routed network, use the same “routes” configuration everywhere. Nodes 
specified as routers automatically enable forwarding and any routes that are not 
relevant to a particular node are ignored. Keep a common configuration to 
guarantee that all nodes have consistent routing tables.

■ A separate modprobe.conf.lnet included from modprobe.conf makes distributing 
the configuration much easier.

■ If you set config_on_load=1, LNET starts at modprobe time rather than waiting 
for Lustre to start. This ensures routers start working at module load time.

# lctl 

# lctl> net down

■ Remember the lctl ping {nid} command - it is a handy way to check your 
LNET configuration.
31-2 Lustre 2.0 Operations Manual • June 2010



31.2.1 LNET Options
This section describes LNET options.

31.2.1.1 Network Topology

Network topology module parameters determine which networks a node should 
join, whether it should route between these networks, and how it communicates with 
non-local networks.

Here is a list of various networks and the supported software stacks:

Note – Lustre ignores the loopback interface (lo0), but Lustre use any IP addresses 
aliased to the loopback (by default). When in doubt, explicitly specify networks.

Network Software Stack

openib OpenIB gen1/Mellanox Gold

iib Silverstorm (Infinicon)

vib Voltaire

o2ib OpenIB gen2

cib Cisco

mx Myrinet MX

gm Myrinet GM-2

elan Quadrics QSNet
Chapter 31 Configuration Files and Module Parameters (man5) 31-3



ip2nets ("") is a string that lists globally-available networks, each with a set of IP 
address ranges. LNET determines the locally-available networks from this list by 
matching the IP address ranges with the local IPs of a node. The purpose of this 
option is to be able to use the same modules.conf file across a variety of nodes on 
different networks. The string has the following syntax.

<ip2nets> :== <net-match> [ <comment> ] { <net-sep> <net-match> }

<net-match> :== [ <w> ] <net-spec> <w> <ip-range> { <w> <ip-range> }

[ <w> ]

<net-spec> :== <network> [ "(" <interface-list> ")" ]

<network> :== <nettype> [ <number> ]

<nettype> :== "tcp" | "elan" | "openib" | ...

<iface-list> :== <interface> [ "," <iface-list> ]

<ip-range> :== <r-expr> "." <r-expr> "." <r-expr> "." <r-expr>

<r-expr> :== <number> | "*" | "[" <r-list> "]"

<r-list> :== <range> [ "," <r-list> ]

<range> :== <number> [ "-" <number> [ "/" <number> ] ]

<comment :== "#" { <non-net-sep-chars> }

<net-sep> :== ";" | "\n"

<w> :== <whitespace-chars> { <whitespace-chars> }

<net-spec> contains enough information to uniquely identify the network and load 
an appropriate LND. The LND determines the missing "address-within-network" 
part of the NID based on the interfaces it can use.

<iface-list> specifies which hardware interface the network can use. If omitted, all 
interfaces are used. LNDs that do not support the <iface-list> syntax cannot be 
configured to use particular interfaces and just use what is there. Only a single 
instance of these LNDs can exist on a node at any time, and <iface-list> must be 
omitted.

<net-match> entries are scanned in the order declared to see if one of the node's IP 
addresses matches one of the <ip-range> expressions. If there is a match, <net-spec> 
specifies the network to instantiate. Note that it is the first match for a particular 
network that counts. This can be used to simplify the match expression for the 
general case by placing it after the special cases. For example:

ip2nets="tcp(eth1,eth2) 134.32.1.[4-10/2]; tcp(eth1) *.*.*.*"

4 nodes on the 134.32.1.* network have 2 interfaces (134.32.1.{4,6,8,10}) but all the rest 
have 1.

ip2nets="vib 192.168.0.*; tcp(eth2) 192.168.0.[1,7,4,12]" 

This describes an IB cluster on 192.168.0.*. Four of these nodes also have IP 
interfaces; these four could be used as routers.

Note that match-all expressions (For instance, *.*.*.*) effectively mask all other 
<net-match> entries specified after them. They should be used with caution.
31-4 Lustre 2.0 Operations Manual • June 2010



Here is a more complicated situation, the route parameter is explained below. We 
have:

■ Two TCP subnets

■ One Elan subnet

■ One machine set up as a router, with both TCP and Elan interfaces

■ IP over Elan configured, but only IP will be used to label the nodes.

options lnet ip2nets=”tcp198.129.135.* 192.128.88.98; \ 
elan  198.128.88.98 198.129.135.3;” \ 
routes=”tcp  1022@elan# Elan NID of router;\ 
elan  198.128.88.98@tcp # TCP NID of router  “

31.2.1.2 networks ("tcp") 

This is an alternative to "ip2nets" which can be used to specify the networks to be 
instantiated explicitly. The syntax is a simple comma separated list of <net-spec>s 
(see above). The default is only used if neither “ip2nets” nor “networks” is specified.

31.2.1.3 routes (“”)

This is a string that lists networks and the NIDs of routers that forward to them.

It has the following syntax (<w> is one or more whitespace characters): 

<routes> :== <route>{ ; <route> }

<route> :== [<net>[<w><hopcount>]<w><nid>{<w><nid>}

So a node on the network tcp1 that needs to go through a router to get to the Elan 
network:

options lnet networks=tcp1 routes="elan 1 192.168.2.2@tcp1”

The hopcount is used to help choose the best path between multiply-routed 
configurations.

A simple but powerful expansion syntax is provided, both for target networks and 
router NIDs as follows.

<expansion> :== "[" <entry> { "," <entry> } "]"

<entry> :== <numeric range> | <non-numeric item>

<numeric range> :== <number> [ "-" <number> [ "/" <number> ] ]
Chapter 31 Configuration Files and Module Parameters (man5) 31-5



The expansion is a list enclosed in square brackets. Numeric items in the list may be 
a single number, a contiguous range of numbers, or a strided range of numbers. For 
example, routes="elan 192.168.1.[22-24]@tcp" says that network elan0 is adjacent 
(hopcount defaults to 1); and is accessible via 3 routers on the tcp0 network 
(192.168.1.22@tcp, 192.168.1.23@tcp and 192.168.1.24@tcp).

routes="[tcp,vib] 2 [8-14/2]@elan" says that 2 networks (tcp0 and vib0) are accessible 
through 4 routers (8@elan, 10@elan, 12@elan and 14@elan). The hopcount of 2 means 
that traffic to both these networks will be traversed 2 routers - first one of the routers 
specified in this entry, then one more.

Duplicate entries, entries that route to a local network, and entries that specify 
routers on a non-local network are ignored.

Equivalent entries are resolved in favor of the route with the shorter hopcount. The 
hopcount, if omitted, defaults to 1 (the remote network is adjacent).

It is an error to specify routes to the same destination with routers on different local 
networks. 

If the target network string contains no expansions, then the hopcount defaults to 1 
and may be omitted (that is, the remote network is adjacent). In practice, this is true 
for most multi-network configurations. It is an error to specify an inconsistent hop 
count for a given target network. This is why an explicit hopcount is required if the 
target network string specifies more than one network.
31-6 Lustre 2.0 Operations Manual • June 2010



31.2.1.4 forwarding ("") 

This is a string that can be set either to "enabled" or "disabled" for explicit control of 
whether this node should act as a router, forwarding communications between all 
local networks.

A standalone router can be started by simply starting LNET (“modprobe ptlrpc”) 
with appropriate network topology options.

Variable Description

acceptor The acceptor is a TCP/IP service that some LNDs use to establish 
communications. If a local network requires it and it has not been 
disabled, the acceptor listens on a single port for connection 
requests that it redirects to the appropriate local network. The 
acceptor is part of the LNET module and configured by the 
following options:
• secure - Accept connections only from reserved TCP ports (< 

1023).
• all - Accept connections from any TCP port. NOTE: this is 

required for liblustre clients to allow connections on 
non-privileged ports.

• none - Do not run the acceptor.

accept_port
(988)

Port number on which the acceptor should listen for connection 
requests. All nodes in a site configuration that require an acceptor 
must use the same port.

accept_backlog
(127)

Maximum length that the queue of pending connections may grow 
to (see listen(2)).

accept_timeout
(5, W)

Maximum time in seconds the acceptor is allowed to block while 
communicating with a peer.

accept_proto_version Version of the acceptor protocol that should be used by outgoing 
connection requests. It defaults to the most recent acceptor protocol 
version, but it may be set to the previous version to allow the node 
to initiate connections with nodes that only understand that 
version of the acceptor protocol. The acceptor can, with some 
restrictions, handle either version (that is, it can accept connections 
from both 'old' and 'new' peers). For the current version of the 
acceptor protocol (version 1), the acceptor is compatible with old 
peers if it is only required by a single local network.
Chapter 31 Configuration Files and Module Parameters (man5) 31-7



31.2.2 SOCKLND Kernel TCP/IP LND
The SOCKLND kernel TCP/IP LND (socklnd) is connection-based and uses the 
acceptor to establish communications via sockets with its peers.

It supports multiple instances and load balances dynamically over multiple 
interfaces. If no interfaces are specified by the ip2nets or networks module 
parameter, all non-loopback IP interfaces are used. The address-within-network is 
determined by the address of the first IP interface an instance of the socklnd 
encounters.

Consider a node on the “edge” of an InfiniBand network, with a low-bandwidth 
management Ethernet (eth0), IP over IB configured (ipoib0), and a pair of GigE NICs 
(eth1,eth2) providing off-cluster connectivity. This node should be configured with 
"networks=vib,tcp(eth1,eth2)” to ensure that the socklnd ignores the management 
Ethernet and IPoIB.

Variable Description

timeout
(50,W)

Time (in seconds) that communications may be stalled before the 
LND completes them with failure.

nconnds
(4)

Sets the number of connection daemons.

min_reconnectms
(1000,W)

Minimum connection retry interval (in milliseconds). After a failed 
connection attempt, this is the time that must elapse before the first 
retry. As connections attempts fail, this time is doubled on each 
successive retry up to a maximum of 'max_reconnectms'.

max_reconnectms
(6000,W)

Maximum connection retry interval (in milliseconds).

eager_ack
(0 on linux, 
1 on darwin,W)

Boolean that determines whether the socklnd should attempt to 
flush sends on message boundaries.

typed_conns
(1,Wc)

Boolean that determines whether the socklnd should use different 
sockets for different types of messages. When clear, all 
communication with a particular peer takes place on the same 
socket. Otherwise, separate sockets are used for bulk sends, bulk 
receives and everything else. 

min_bulk
(1024,W)

Determines when a message is considered "bulk".

tx_buffer_size, 
rx_buffer_size
(8388608,Wc)

Socket buffer sizes. Setting this option to zero (0), allows the 
system to auto-tune buffer sizes. WARNING: Be very careful 
changing this value as improper sizing can harm performance.

nagle
(0,Wc)

Boolean that determines if nagle should be enabled. It should never 
be set in production systems.
31-8 Lustre 2.0 Operations Manual • June 2010



keepalive_idle
(30,Wc)

Time (in seconds) that a socket can remain idle before a keepalive 
probe is sent. Setting this value to zero (0) disables keepalives.

keepalive_intvl
(2,Wc)

Time (in seconds) to repeat unanswered keepalive probes. Setting 
this value to zero (0) disables keepalives.

keepalive_count
(10,Wc)

Number of unanswered keepalive probes before pronouncing 
socket (hence peer) death.

enable_irq_affinity
(0,Wc)

Boolean that determines whether to enable IRQ affinity. The 
default is zero (0). 
When set, socklnd attempts to maximize performance by handling 
device interrupts and data movement for particular (hardware) 
interfaces on particular CPUs. This option is not available on all 
platforms. This option requires an SMP system to exist and 
produces best performance with multiple NICs. Systems with 
multiple CPUs and a single NIC may see increase in the 
performance with this parameter disabled.

zc_min_frag
(2048,W)

Determines the minimum message fragment that should be 
considered for zero-copy sends. Increasing it above the platform's 
PAGE_SIZE disables all zero copy sends. This option is not 
available on all platforms.

Variable Description
Chapter 31 Configuration Files and Module Parameters (man5) 31-9



31.2.3 QSW LND
The QSW LND (qswlnd) is connection-less and, therefore, does not need the acceptor. 
It is limited to a single instance, which uses all Elan "rails" that are present and 
dynamically load balances over them.

The address-with-network is the node's Elan ID. A specific interface cannot be 
selected in the "networks" module parameter.

Variable Description

tx_maxcontig
(1024)

Integer that specifies the maximum message payload (in bytes) to 
copy into a pre-mapped transmit buffer

mtxmsgs
(8)

Number of "normal" message descriptors for locally-initiated 
communications that may block for memory (callers block when 
this pool is exhausted).

nnblk_txmsg
(512 with a 4K page 
size, 256 otherwise)

Number of "reserved" message descriptors for communications 
that may not block for memory. This pool must be sized large 
enough so it is never exhausted.

nrxmsg_small
(256)

Number of "small" receive buffers to post (typically everything 
apart from bulk data). 

ep_envelopes_small
(2048)

Number of message envelopes to reserve for the "small" receive 
buffer queue. This determines a breakpoint in the number of 
concurrent senders. Below this number, communication attempts 
are queued, but above this number, the pre-allocated envelope 
queue will fill, causing senders to back off and retry. This can have 
the unfortunate side effect of starving arbitrary senders, who 
continually find the envelope queue is full when they retry. This 
parameter should therefore be increased if envelope queue 
overflow is suspected.

nrxmsg_large
(64)

Number of "large" receive buffers to post (typically for routed bulk 
data).

ep_envelopes_large
(256)

Number of message envelopes to reserve for the "large" receive 
buffer queue. For more information on message envelopes, see the 
ep_envelopes_small option (above).

optimized_puts
(32768,W)

Smallest non-routed PUT that will be RDMA’d.

optimized_gets
(1,W)

Smallest non-routed GET that will be RDMA’d.
31-10 Lustre 2.0 Operations Manual • June 2010



31.2.4 RapidArray LND
The RapidArray LND (ralnd) is connection-based and uses the acceptor to establish 
connections with its peers. It is limited to a single instance, which uses all (both) 
RapidArray devices present. It load balances over them using the XOR of the source 
and destination NIDs to determine which device to use for communication.

The address-within-network is determined by the address of the single IP interface 
that may be specified by the "networks" module parameter. If this is omitted, then the 
first non-loopback IP interface that is up is used instead.

Variable Description

n_connd
(4)

Sets the number of connection daemons.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed 
connection attempt, this sets the time that must elapse before the 
first retry. As connections attempts fail, this time is doubled on 
each successive retry, up to a maximum of the 
max_reconnect_interval option.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(30,W)

Time (in seconds) that communications may be stalled before the 
LND completes them with failure.

ntx
(64)

Number of "normal" message descriptors for locally-initiated 
communications that may block for memory (callers block when 
this pool is exhausted).

ntx_nblk
(256)

Number of "reserved" message descriptors for communications 
that may not block for memory. This pool must be sized large 
enough so it is never exhausted.

fma_cq_size
(8192)

Number of entries in the RapidArray FMA completion queue to 
allocate. It should be increased if the ralnd starts to issue 
warnings that the FMA CQ has overflowed. This is only a 
performance issue.

max_immediate
(2048,W)

Size (in bytes) of the smallest message that will be RDMA’d, 
rather than being included as immediate data in an FMA. All 
messages greater than 6912 bytes must be RDMA’d (FMA limit).
Chapter 31 Configuration Files and Module Parameters (man5) 31-11



31.2.5 VIB LND
The VIB LND is connection-based, establishing reliable queue-pairs over InfiniBand 
with its peers. It does not use the acceptor. It is limited to a single instance, using a 
single HCA that can be specified via the "networks" module parameter. If this is 
omitted, it uses the first HCA in numerical order it can open. The 
address-within-network is determined by the IPoIB interface corresponding to the 
HCA used.

Variable Description

service_number
(0x11b9a2)

Fixed IB service number on which the LND listens for incoming 
connection requests. NOTE: All instances of the viblnd on the 
same network must have the same setting for this parameter.

arp_retries
(3,W)

Number of times the LND will retry ARP while it establishes 
communications with a peer.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed 
connection attempt, this sets the time that must elapse before the 
first retry. As connections attempts fail, this time is doubled on 
each successive retry, up to a maximum of the 
max_reconnect_interval option.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(50,W)

Time (in seconds) that communications may be stalled before the 
LND completes them with failure.

ntx
(32)

Number of "normal" message descriptors for locally-initiated 
communications that may block for memory (callers block when 
this pool is exhausted). 

ntx_nblk
(256

Number of "reserved" message descriptors for communications 
that may not block for memory. This pool must be sized large 
enough so it is never exhausted.

concurrent_peers
(1152)

Maximum number of queue pairs and, therefore, the maximum 
number of peers that the instance of the LND may communicate 
with.

hca_basename
("InfiniHost")

Used to construct HCA device names by appending the device 
number.

ipif_basename
("ipoib")

Used to construct IPoIB interface names by appending the same 
device number as is used to generate the HCA device name.

local_ack_timeout
(0x12,Wc)

Used to construct IPoIB interface names by appending the same 
device number as is used to generate the HCA device name.

retry_cnt
(7,Wc)

Low-level QP parameter. Only change it from the default value if 
so advised.
31-12 Lustre 2.0 Operations Manual • June 2010



rnr_cnt
(6,Wc)

Low-level QP parameter. Only change it from the default value if 
so advised.

rnr_nak_timer
(0x10,Wc)

Low-level QP parameter. Only change it from the default value if 
so advised.

fmr_remaps
(1000)

Controls how often FMR mappings may be reused before they 
must be unmapped. Only change it from the default value if so 
advised

cksum
(0,W)

Boolean that determines if messages (NB not RDMAs) should be 
check-summed. This is a diagnostic feature that should not 
normally be enabled.

Variable Description
Chapter 31 Configuration Files and Module Parameters (man5) 31-13



31.2.6 OpenIB LND
The OpenIB LND is connection-based and uses the acceptor to establish reliable 
queue-pairs over InfiniBand with its peers. It is limited to a single instance that uses 
only IB device '0'.

The address-within-network is determined by the address of the single IP interface 
that may be specified by the "networks" module parameter. If this is omitted, the first 
non-loopback IP interface that is up, is used instead. It uses the acceptor to establish 
connections with its peers.

Variable Description

n_connd
(4)

Sets the number of connection daemons. The default value is 4.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed 
connection attempt, this sets the time that must elapse before the 
first retry. As connections attempts fail, this time is doubled on 
each successive retry, up to a maximum of 
'max_reconnect_interval'.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(50,W)

Time (in seconds) that communications may be stalled before the 
LND completes them with failure.

ntx
(64)

Number of "normal" message descriptors for locally-initiated 
communications that may block for memory (callers block when 
this pool is exhausted). 

ntx_nblk
(256)

Number of "reserved" message descriptors for communications 
that may not block for memory. This pool must be sized large 
enough so it is never exhausted.

concurrent_peers
(1024)

Maximum number of queue pairs and, therefore, the maximum 
number of peers that the instance of the LND may communicate 
with.

cksum
(0,W)

Boolean that determines whether messages (NB not RDMAs) 
should be check-summed. This is a diagnostic feature that should 
not normally be enabled.
31-14 Lustre 2.0 Operations Manual • June 2010



31.2.7 Portals LND (Linux)
The Portals LND Linux (ptllnd) can be used as a interface layer to communicate with 
Sandia Portals networking devices. This version is intended to work on Cray XT3 
Linux nodes that use Cray Portals as a network transport.

Message Buffers

When ptllnd starts up, it allocates and posts sufficient message buffers to allow all 
expected peers (set by concurrent_peers) to send one unsolicited message. The 
first message that a peer actually sends is a 

(so-called) "HELLO" message, used to negotiate how much additional buffering to 
setup (typically 8 messages). If 10000 peers actually exist, then enough buffers are 
posted for 80000 messages.

The maximum message size is set by the max_msg_size module parameter (default 
value is 512). This parameter sets the bulk transfer breakpoint. Below this breakpoint, 
payload data is sent in the message itself. Above this breakpoint, a buffer descriptor 
is sent and the receiver gets the actual payload.

The buffer size is set by the rxb_npages module parameter (default value is 1). The 
default conservatively avoids allocation problems due to kernel memory 
fragmentation. However, increasing this value to 2 is probably not risky.

The ptllnd also keeps an additional rxb_nspare buffers (default value is 8) posted to 
account for full buffers being handled.

Assuming a 4K page size with 10000 peers, 1258 buffers can be expected to be posted 
at startup, increasing to a maximum of 10008 as peers that are actually connected. By 
doubling rxb_npages halving max_msg_size, this number can be reduced by a 
factor of 4.
Chapter 31 Configuration Files and Module Parameters (man5) 31-15



ME/MD Queue Length

The ptllnd uses a single portal set by the portal module parameter (default value of 
9) for both message and bulk buffers. Message buffers are always attached with 
PTL_INS_AFTER and match anything sent with "message" matchbits. Bulk buffers 
are always attached with PTL_INS_BEFORE and match only specific matchbits for 
that particular bulk transfer.

This scheme assumes that the majority of ME / MDs posted are for "message" 
buffers, and that the overhead of searching through the preceding "bulk" buffers is 
acceptable. Since the number of "bulk" buffers posted at any time is also dependent 
on the bulk transfer breakpoint set by max_msg_size, this seems like an issue worth 
measuring at scale.

TX Descriptors

The ptllnd has a pool of so-called "tx descriptors", which it uses not only for outgoing 
messages, but also to hold state for bulk transfers requested by incoming messages. 
This pool should scale with the total number of peers.

To enable the building of the Portals LND (ptllnd.ko) configure with this option:

./configure --with-portals=<path-to-portals-headers>

Variable Description

ntx
(256)

Total number of messaging descriptors.

concurrent_peers
(1152)

Maximum number of concurrent peers. Peers that attempt to 
connect beyond the maximum are not allowed. 

peer_hash_table_size
(101)

Number of hash table slots for the peers. This number should scale 
with concurrent_peers. The size of the peer hash table is set by the 
module parameter peer_hash_table_size which defaults to a value 
of 101. This number should be prime to ensure the peer hash table 
is populated evenly. It is advisable to increase this value to 1001 for 
~10000 peers. 

cksum
(0)

Set to non-zero to enable message (not RDMA) checksums for 
outgoing packets. Incoming packets are always check-summed if 
necessary, independent of this value.

timeout
(50)

Amount of time (in seconds) that a request can linger in a 
peers-active queue before the peer is considered dead.

portal
(9)

Portal ID to use for the ptllnd traffic.

rxb_npages
(64 * #cpus)

Number of pages in an RX buffer.
31-16 Lustre 2.0 Operations Manual • June 2010



31.2.8 Portals LND (Catamount)
The Portals LND Catamount (ptllnd) can be used as a interface layer to communicate 
with Sandia Portals networking devices. This version is intended to work on the 
Cray XT3 Catamount nodes using Cray Portals as a network transport.

To enable the building of the Portals LND configure with this option:

./configure --with-portals=<path-to-portals-headers>

The following PTLLND tunables are currently available:

credits
(128)

Maximum total number of concurrent sends that are outstanding to 
a single peer at a given time.

peercredits
(8)

Maximum number of concurrent sends that are outstanding to a 
single peer at a given time.

max_msg_size
(512)

Maximum immediate message size. This MUST be the same on all 
nodes in a cluster. A peer that connects with a different 
max_msg_size value will be rejected.

Variable Description

PTLLND_DEBUG
(boolean, dflt 0)

Enables or disables debug features.

PTLLND_TX_HISTORY
(int, dflt debug?1024:0)

Sets the size of the history buffer.

PTLLND_ABORT_ON_PROT
OCOL_MISMATCH
(boolean, dflt 1)

Calls abort action on connecting to a peer running a 
different version of the ptllnd protocol.

PTLLND_ABORT_ON_NAK
(boolean, dflt 0)

Calls abort action when a peer sends a NAK. (Example: 
When it has timed out this node.)

PTLLND_DUMP_ON_NAK
(boolean, dflt debug?1:0)

Dumps peer debug and the history on receiving a NAK.

Variable Description
Chapter 31 Configuration Files and Module Parameters (man5) 31-17



The following environment variables can be set to configure the PTLLND’s behavior.

PTLLND_WATCHDOG_INTE
RVAL
(int, dflt 1)

Sets intervals to check some peers for timed out 
communications while the application blocks for 
communications to complete.

PTLLND_TIMEOUT
(int, dflt 50)

The communications timeout (in seconds).

PTLLND_LONG_WAIT
(int, dflt 
debug?5:PTLLND_TIMEOUT)

The time (in seconds) after which the ptllnd prints a 
warning if it blocks for a longer time during connection 
establishment, cleanup after an error, or cleanup during 
shutdown.

Variable Description

PTLLND_PORTAL
(9)

The portal ID (PID) to use for the ptllnd traffic.

PTLLND_PID
(9)

The virtual PID on which to contact servers.

PTLLND_PEERCREDITS
(8)

The maximum number of concurrent sends that are 
outstanding to a single peer at any given instant.

PTLLND_MAX_MESSAGE_SIZE
(512)

The maximum messages size. This MUST be the 
same on all nodes in a cluster. 

PTLLND_MAX_MSGS_PER_BUFFER
(64)

The number of messages in a receive buffer. 
Receive buffer will be allocated of size 
PTLLND_MAX_MSGS_PER_BUFFER times 
PTLLND_MAX_MESSAGE_SIZE.

PTLLND_MSG_SPARE
(256)

Additional receive buffers posted to portals.

PTLLND_PEER_HASH_SIZE
(101)

Number of hash table slots for the peers. 

PTLLND_EQ_SIZE
(1024)

Size of the Portals event queue (that is, maximum 
number of events in the queue).

Variable Description
31-18 Lustre 2.0 Operations Manual • June 2010



31.2.9 MX LND
MXLND supports a number of load-time parameters using Linux's module 
parameter system. The following variables are available:

Of the described variables, only hosts is required. It must be the absolute path to the 
MXLND hosts file. 

For example:

options kmxlnd hosts=/etc/hosts.mxlnd

The file format for the hosts file is:

IP  HOST  BOARD   EP_ID

The values must be space and/or tab separated where:

IP is a valid IPv4 address

HOST is the name returned by `hostname` on that machine

BOARD is the index of the Myricom NIC (0 for the first card, etc.)

EP_ID is the MX endpoint ID

Variable Description

n_waitd Number of completion daemons.

max_peers Maximum number of peers that may connect.

cksum Enables small message (< 4 KB) checksums if set to a non-zero value.

ntx Number of total tx message descriptors.

credits Number of concurrent sends to a single peer.

board Index value of the Myrinet board (NIC).

ep_id MX endpoint ID.

polling Use zero (0) to block (wait). A value > 0 will poll that many times 
before blocking.

hosts IP-to-hostname resolution file.
Chapter 31 Configuration Files and Module Parameters (man5) 31-19



To obtain the optimal performance for your platform, you may want to vary the 
remaining options.

n_waitd (1) sets the number of threads that process completed MX requests (sends 
and receives).

max_peers (1024) tells MXLND the upper limit of machines that it will need to 
communicate with. This affects how many receives it will pre-post and each receive 
will use one page of memory. Ideally, on clients, this value will be equal to the total 
number of Lustre servers (MDS and OSS). On servers, it needs to equal the total 
number of machines in the storage system. cksum (0) turns on small message 
checksums. It can be used to aid in troubleshooting. MX also provides an optional 
checksumming feature which can check all messages (large and small). For details, 
see the MX README.

ntx (256) is the number of total sends in flight from this machine. In actuality, 
MXLND reserves half of them for connect messages so make this value twice as large 
as you want for the total number of sends in flight.

credits (8) is the number of in-flight messages for a specific peer. This is part of the 
flow-control system in Lustre. Increasing this value may improve performance but it 
requires more memory because each message requires at least one page.

board (0) is the index of the Myricom NIC. Hosts can have multiple Myricom NICs 
and this identifies which one MXLND should use. This value must match the board 
value in your MXLND hosts file for this host.

ep_id (3) is the MX endpoint ID. Each process that uses MX is required to have at 
least one MX endpoint to access the MX library and NIC. The ID is a simple index 
starting at zero (0). This value must match the endpoint ID value in your MXLND 
hosts file for this host.

polling (0) determines whether this host will poll or block for MX request 
completions. A value of 0 blocks and any positive value will poll that many times 
before blocking. Since polling increases CPU usage, we suggest that you set this to 
zero (0) on the client and experiment with different values for servers.
31-20 Lustre 2.0 Operations Manual • June 2010



CHAPTER 32

System Configuration Utilities 
(man8)

This chapter includes system configuration utilities and includes the following 
sections:

■ mkfs.lustre

■ tunefs.lustre

■ lctl

■ mount.lustre

■ lustre_rsync

■ Additional System Configuration Utilities
32-1



32.1 mkfs.lustre
The mkfs.lustre utility formats a disk for a Lustre service.

Synopsis

mkfs.lustre <target_type> [options] device

where <target_type> is one of the following:

Description

mkfs.lustre is used to format a disk device for use as part of a Lustre file system. 
After formatting, a disk can be mounted to start the Lustre service defined by this 
command.

When the file system is created, parameters can simply be added as a --param 
option to the mkfs.lustre command. See Setting Parameters with mkfs.lustre.

Option Description

--ost

Object Storage Target (OST)

--mdt

Metadata Storage Target (MDT)

--mgs

Configuration Management Service (MGS), one per site. This service can be 
combined with one --mdt service by specifying both types.

Option Description

--backfstype=fstype

Forces a particular format for the backing file system (such as ext3, 
ldiskfs).

--comment=comment

Sets a user comment about this disk, ignored by Lustre.

--device-size=KB

Sets the device size for loop and non-loop devices.
32-2 Lustre 2.0 Operations Manual • April 2010



--dryrun

Only prints what would be done; it does not affect the disk.

--failnode=nid,...

Sets the NID(s) of a failover partner. This option can be repeated as 
needed.

--fsname=filesystem_name

The Lustre file system of which this service/node will be a part. The 
default file system name is “lustre”.

NOTE: The file system name is limited to 8 characters.

--index=index

Forces a particular OST or MDT index.

--mkfsoptions=opts

Formats options for the backing file system. For example, ext3 options 
could be set here.

--mountfsoptions=opts

Sets permanent mount options. This is equivalent to the setting in 
/etc/fstab.

--mgsnode=nid,...

Sets the NIDs of the MGS node, required for all targets other than the 
MGS.

--param key=value

Sets the permanent parameter key to value. This option can be 
repeated as desired. Typical options might include:

--param sys.timeout=40

System obd timeout.

--param lov.stripesize=2M

Default stripe size.

--param lov.stripecount=2

Default stripe count.

--param failover.mode=failout

Returns errors instead of waiting for recovery.

--quiet

Prints less information.

Option Description
Chapter 32 System Configuration Utilities (man8) 32-3



Examples

Creates a combined MGS and MDT for file system testfs on node cfs21:

mkfs.lustre --fsname=testfs --mdt --mgs /dev/sda1

Creates an OST for file system testfs on any node (using the above MGS):

mkfs.lustre --fsname=testfs --ost --mgsnode=cfs21@tcp0 /dev/sdb

Creates a standalone MGS on, e.g., node cfs22:

mkfs.lustre --mgs /dev/sda1

Creates an MDT for file system myfs1 on any node (using the above MGS):

mkfs.lustre --fsname=myfs1 --mdt --mgsnode=cfs22@tcp0 /dev/sda2

--reformat

Reformats an existing Lustre disk.

--stripe-count-hint=stripes

Used to optimize the MDT’s inode size.

--verbose

Prints more information.

Option Description
32-4 Lustre 2.0 Operations Manual • April 2010



32.2 tunefs.lustre
The tunefs.lustre utility modifies configuration information on a Lustre target disk.

Synopsis

tunefs.lustre [options] device

Description

tunefs.lustre is used to modify configuration information on a Lustre target disk. 
This includes upgrading old (pre-Lustre 1.8) disks. This does not reformat the disk or 
erase the target information, but modifying the configuration information can result 
in an unusable file system.

Caution – Changes made here affect a file system when the target is mounted the 
next time.

With tunefs.lustre, parameters are "additive" -- new parameters are specified in 
addition to old parameters, they do not replace them. To erase all old 
tunefs.lustre parameters and just use newly-specified parameters, run: 

$ tunefs.lustre --erase-params --param=<new parameters> 

The tunefs.lustre command can be used to set any parameter settable in a 
/proc/fs/lustre file and that has its own OBD device, so it can be specified as 
<obd|fsname>.<obdtype>.<proc_file_name>=<value>. For example: 

$ tunefs.lustre --param mdt.group_upcall=NONE /dev/sda1
Chapter 32 System Configuration Utilities (man8) 32-5



Options

The tunefs.lustre options are listed and explained below.

Option Description

--comment=comment

Sets a user comment about this disk, ignored by Lustre.

--dryrun

Only prints what would be done; does not affect the disk.

--erase-params

Removes all previous parameter information.

--failnode=nid,...

Sets the NID(s) of a failover partner. This option can be repeated as needed.

--fsname=filesystem_name

The Lustre file system of which this service will be a part. The default file system 
name is “lustre”.

--index=index

Forces a particular OST or MDT index.

--mountfsoptions=opts

Sets permanent mount options; equivalent to the setting in /etc/fstab.

--mgs

Adds a configuration management service to this target.

--msgnode=nid,...

Sets the NID(s) of the MGS node; required for all targets other than the MGS.

--nomgs

Removes a configuration management service to this target.

--quiet

Prints less information.
32-6 Lustre 2.0 Operations Manual • April 2010



Examples

Changing the MGS’s NID address. (This should be done on each target disk, since 
they should all contact the same MGS.)

tunefs.lustre --erase-param --mgsnode=<new_nid> --writeconf /dev/sda

Adding a failover NID location for this target.

tunefs.lustre --param="failover.node=192.168.0.13@tcp0" /dev/sda

--verbose

Prints more information.

--writeconf

Erases all configuration logs for the file system to which this MDT belongs, and 
regenerates them. This is very dangerous. All clients and servers should be 
stopped. All targets must then be restarted to regenerate the logs. No clients 
should be started until all targets have restarted. In general, this command should 
only be executed on the MDT, not the OSTs.

Option Description
Chapter 32 System Configuration Utilities (man8) 32-7



32.3 lctl
The lctl utility is used for root control and configuration. With lctl you can 
directly control Lustre via an ioctl interface, allowing various configuration, 
maintenance and debugging features to be accessed. 

Synopsis

lctl

lctl --device <OST device number> <command [args]>

Description

The lctl utility can be invoked in interactive mode by issuing the lctl command. After 
that, commands are issued as shown below. The most common lctl commands are:

dl

device

network <up/down>

list_nids

ping {nid}

help

quit

For a complete list of available commands, type help at the lctl prompt. To get 
basic help on command meaning and syntax, type help command

For non-interactive use, use the second invocation, which runs the command after 
connecting to the device. 
32-8 Lustre 2.0 Operations Manual • April 2010



Setting Parameters with lctl

Lustre parameters are not always accessible using the procfs interface, as it is 
platform-specific. As a solution, lctl {get,set}_param has been introduced as a 
platform-independent interface to the Lustre tunables. Avoid direct references to 
/proc/{fs,sys}/{lustre,lnet}. For future portability, use lctl {get,set}_param .

When the file system is running, temporary parameters can be set using the lctl 
set_param command. These parameters map to items in 
/proc/{fs,sys}/{lnet,lustre}. The lctl set_param command uses this 
syntax:

lctl set_param [-n] <obdtype>.<obdname>.<proc_file_name>=<value>

For example:

$ lctl set_param ldlm.namespaces.*osc*.lru_size=$((NR_CPU*100))

Many permanent parameters can be set with the lctl conf_param command. In 
general, the lctl conf_param command can be used to specify any parameter 
settable in a /proc/fs/lustre file, with its own OBD device. The lctl conf_param 
command uses this syntax:

<obd|fsname>.<obdtype>.<proc_file_name>=<value>) 

For example:

$ lctl conf_param testfs-MDT0000.mdt.group_upcall=NONE 

$ lctl conf_param testfs.llite.max_read_ahead_mb=16 

Caution – The lctl conf_param command permanently sets parameters in the 
file system configuration. 

To get current Lustre parameter settings, use the lctl get_param command with 
this syntax: 

lctl get_param [-n] <obdtype>.<obdname>.<proc_file_name>

For example:

$ lctl get_param -n ost.*.ost_io.timeouts 

To list Lustre parameters that are available to set, use the lctl list_param 
command, with this syntax: 

lctl list_param [-n] <obdtype>.<obdname>

For example:

$ lctl list_param obdfilter.lustre-OST0000
Chapter 32 System Configuration Utilities (man8) 32-9



Network Configuration

Option Description

dl

Specifies Lustre devices, by device name and number. 

The command output also lists the device UUID. On server devices, the UUID will 
be different for each one. On clients, the UUID will be the same for all devices that 
are part of a single file system mount point. 

The command output also lists the number of references on the device. On server 
devices, this is roughly the number of connected clients (plus a small number, like 
3 or 4). The accurate number of clients can be found in the num_exports file in 
/proc for each device.

network <up/down>|<tcp/elan/myrinet>

Starts or stops LNET. Or, select a network type for other lctl LNET commands.

list_nids

Prints all NIDs on the local node. LNET must be running.

which_nid <nidlist>

From a list of NIDs for a remote node, identifies the NID on which interface 
communication will occur.

ping {nid}

Check’s LNET connectivity via an LNET ping. This uses the fabric appropriate to 
the specified NID.

interface_list

Prints the network interface information for a given network type.

peer_list

Prints the known peers for a given network type.

conn_list

Prints all the connected remote NIDs for a given network type.

active_tx

This command prints active transmits. It is only used for the Elan network type.

route_list

Prints the complete routing table.
32-10 Lustre 2.0 Operations Manual • April 2010



Device Selection

Device Operations

Option Description

device <devname>

This selects the specified OBD device. All other commands depend on the device 
being set.

device_list

Shows all of the local Lustre OBDs.

Option Description

lctl get_param [-n] <path_name>

Gets the Lustre or LNET parameters from the specified <path_name>. Use the -n 
option to get only the parameter value and skip the pathname in the output.
NOTE: Lustre tunables are not always accessible using procfs interface, as it is 
platform-specific. As a solution, lctl {get,set}_param has been introduced as a 
platform-independent interface to the Lustre tunables. Avoid direct references to 
/proc/{fs,sys}/{lustre,lnet}. For future portability, use lctl {get,set}_param instead.

lctl set_param [-n] <path_name>

Sets the specified value to the Lustre or LNET parameter indicated by the 
pathname. Use the -n option to skip the pathname in the output.
NOTE: Lustre tunables are not always accessible using procfs interface, as it is 
platform-specific. As a solution, lctl {get,set}_param has been introduced as a 
platform-independent interface to the Lustre tunables. Avoid direct references to 
/proc/{fs,sys}/{lustre,lnet}. For future portability, use lctl {get,set}_param instead.

conf_param <device> <parameter>

Sets a permanent configuration parameter for any device via the MGS. This 
command must be run on the MGS node.

activate

Re-activates an import after the de-activate operation. 

deactivate

Running lctl deactivate on the MDS stops new objects from being allocated 
on the OST. Running lctl deactivate on Lustre clients causes them to return 
-EIO when accessing objects on the OST instead of waiting for recovery.

abort_recovery

Aborts the recovery process on a re-starting MDT or OST device.
Chapter 32 System Configuration Utilities (man8) 32-11



Note – Lustre tunables are not always accessible using the procfs interface, as it is 
platform-specific. As a solution, lctl {get,set}_param has been introduced as a 
platform-independent interface to the Lustre tunables. Avoid direct references to 
/proc/{fs,sys}/{lustre,lnet}. For future portability, use lctl {get,set}_param 
instead.

Virtual Block Device Operations

Lustre can emulate a virtual block device upon a regular file. This emulation is 
needed when you are trying to set up a swap space via the file. 

Changelogs 

Option Description

blockdev_attach <file name> <device node>

Attaches a regular Lustre file to a block device. If the device node is non-existent, 
lctl creates it. We recommend that you create the device node by lctl since the 
emulator uses a dynamic major number.

blockdev_detach <device node>

Detaches the virtual block device.

blockdev_info <device node>

Provides information on which Lustre file is attached to the device node. 

Option Description

changelog_register

Registers a new changelog user for a particular device. Changelog entries are not 
purged beyond a registered user’s set point (see lfs changelog_clear). 

changelog_deregister <id>

Unregisters an existing changelog user. If the user’s "clear" record number is the 
minimum for the device, changelog records are purged until the next minimum.
32-12 Lustre 2.0 Operations Manual • April 2010



Debug

Options

Use the following options to invoke lctl.

Option Description

debug_daemon

Starts and stops the debug daemon, and controls the output filename and size.

debug_kernel [file] [raw]

Dumps the kernel debug buffer to stdout or a file.

debug_file <input> [output]

Converts the kernel-dumped debug log from binary to plain text format.

clear

Clears the kernel debug buffer.

mark <text>

Inserts marker text in the kernel debug buffer.

Option Description

--device

Device to be used for the operation (specified by name or number). See device_list.

--ignore_errors | ignore_errors

Ignores errors during script processing.
Chapter 32 System Configuration Utilities (man8) 32-13



Examples

lctl

$ lctl

lctl > dl

0 UP mgc MGC192.168.0.20@tcp bfbb24e3-7deb-2ffa-

eab0-44dffe00f692 5

1 UP ost OSS OSS_uuid 3

2 UP obdfilter testfs-OST0000 testfs-OST0000_UUID 3

lctl > dk /tmp/log Debug log: 87 lines, 87 kept, 0 dropped.

lctl > quit

$ lctl conf_param testfs-MDT0000 sys.timeout=40

$ lctl conf_param testfs-MDT0000.lov.stripesize=2M 

$ lctl conf_param testfs-OST0000.osc.max_dirty_mb=29.15 

$ lctl conf_param testfs-OST0000.ost.client_cache_seconds=15 

get_param

$ lctl

lctl > get_param obdfilter.lustre-OST0000.kbytesavail

obdfilter.lustre-OST0000.kbytesavail=249364

lctl > get_param -n obdfilter.lustre-OST0000.kbytesavail

249364

lctl > get_param timeout

timeout=20

lctl > get_param -n timeout

20

lctl > get_param obdfilter.*.kbytesavail

obdfilter.lustre-OST0000.kbytesavail=249364

obdfilter.lustre-OST0001.kbytesavail=249364

lctl >

set_param

$ lctl > set_param obdfilter.*.kbytesavail=0

obdfilter.lustre-OST0000.kbytesavail=0

obdfilter.lustre-OST0001.kbytesavail=0

lctl > set_param -n obdfilter.*.kbytesavail=0

lctl > set_param fail_loc=0

fail_loc=0
32-14 Lustre 2.0 Operations Manual • April 2010



32.4 mount.lustre
The mount.lustre utility starts a Lustre client or target service.

Synopsis

mount -t lustre [-o options] directory

Description

The mount.lustre utility starts a Lustre client or target service. This program 
should not be called directly; rather, it is a helper program invoked through 
mount(8), as shown above. Use the umount(8) command to stop Lustre clients and 
targets.

There are two forms for the device option, depending on whether a client or a target 
service is started:

Option Description

<mgsspec>:/<fsname>

This mounts the Lustre file system, <fsname>, by contacting the Management 
Service at <mgsspec> on the pathname given by <directory>. The format for 
<mgsspec> is defined below. A mounted file system appears in fstab(5) and is 
usable, like any local file system, providing a full POSIX-compliant interface.

<disk_device>

This starts the target service defined by the mkfs.lustre command on the 
physical disk <disk_device>. A mounted target service file system is only useful 
for df(1) operations and appears in fstab(5) to show the device is in use.
Chapter 32 System Configuration Utilities (man8) 32-15



Options

In addition to the standard mount options, Lustre understands the following 
client-specific options:

Option Description

<mgsspec>:=<mgsnode>[:<mgsnode>]

The MGS specification may be a colon-separated list of nodes.

<mgsnode>:=<mgsnid>[,<mgsnid>]

Each node may be specified by a comma-separated list of NIDs.

Option Description

flock

Enables flock support (slower, performance impact for use, coherent between 
nodes).

localflock

Enables local flock support using only client-local flock (faster, for applications that 
require flock, but do not run on multiple nodes).

noflock

Disables flock support entirely. Applications calling flock get an error. It is up to 
the administrator to choose either localflock (fastest, low impact, not coherent 
between nodes) or flock (slower, performance impact for use, coherent between 
nodes).

user_xattr

Enables get/set of extended attributes by regular users.

nouser_xattr

Disables use of extended attributes by regular users. Root and system processes 
can still use extended attributes.

acl

Enables ACL support.

noacl

Disables ACL support.
32-16 Lustre 2.0 Operations Manual • April 2010



In addition to the standard mount options and backing disk type (e.g. ext3) options, 
Lustre understands the following server-specific options:

Examples

Starts a client for the Lustre file system testfs at mount point 
/mnt/myfilesystem. The Management Service is running on a node reachable 
from this client via the cfs21@tcp0 NID.

mount -t lustre cfs21@tcp0:/testfs /mnt/myfilesystem

Starts the Lustre target service on /dev/sda1.

mount -t lustre /dev/sda1 /mnt/test/mdt

Starts the testfs-MDT0000 service (using the disk label), but aborts the recovery 
process.

mount -t lustre -L testfs-MDT0000 -o abort_recov /mnt/test/mdt

Option Description

nosvc

Starts only the MGC (and MGS, if co-located) for a target service, not the actual 
service.

nomgs

Starts only the MDT (with a co-located MGS), without starting the MGS.

exclude=<ostlist>

Starts a client or MDT with a colon-separated list of known inactive OSTs.

abort_recov

Aborts client recovery and immediately starts the target service. 

md_stripe_cache_size

Sets the stripe cache size for server-side disk with a striped RAID configuration.

recovery_time_soft=<timeout>

Allows <timeout> seconds for clients to reconnect for recovery after a server crash. 
This timeout is incrementally extended if it is about to expire and the server is still 
handling new connections from recoverable clients. The default soft recovery 
timeout is 300 seconds (5 minutes).

recovery_time_hard=<timeout>

The server is allowed to incrementally extend its timeout, up to a hard maximum 
of <timeout> seconds. The default hard recovery timeout is 900 seconds (15 
minutes).
Chapter 32 System Configuration Utilities (man8) 32-17



Note – If the Service Tags tool (from the sun-servicetag package) can be found in 
/opt/sun/servicetag/bin/stclient, an inventory service tag is created reflecting the 
Lustre service being provided. If this tool cannot be found, mount.lustre silently 
ignores it and no service tag is created. The stclient(1) tool only creates the local 
service tag. No information is sent to the asset management system until you run the 
Registration Client to collect the tags and then upload them to the inventory system 
using your inventory system account. For more information, see Service Tags.

32.5 lustre_rsync
The lustre_rsync utility synchronizes (replicates) a Lustre file system to a target 
file system.

Synopsis

lustre_rsync --source|-s <src> --target|-t <tgt> 

--mdt|-m <mdt> [--user|-u <user id>]

[--xattr|-x <yes|no>] [--verbose|-v]

[--statuslog|-l <log>] [--dry-run] [--abort-on-err] 

lustre_rsync --statuslog|-l <log>

lustre_rsync --statuslog|-l <log> --source|-s <source>

--target|-t <tgt> --mdt|-m <mdt>

Description

The lustre_rsync utility is designed to synchronize a Lustre file system (source) to 
another file system (target). The target can be a Lustre system or (any other type), 
and is a normal, usable file system. The synchronization operation is efficient and 
does not require directory walking, as lustre_rsync uses Lustre MDT changelogs 
to identify changes in the Lustre file system. 
32-18 Lustre 2.0 Operations Manual • April 2010



Before using lustre_rsync:

■ A changelog user must be registered (see lctl (8) changelog_register) 

- AND - 

■ Verify that the Lustre file system (source) and the replica file system (target) are 
identical before the changelog user is registered. If the file systems are discrepant, 
use a utility, e.g. regular rsync (not lustre_rsync) to make them identical.
Chapter 32 System Configuration Utilities (man8) 32-19



Options

Option Description

--source=<src>

The path to the root of the Lustre file system (source) which will be 
synchronized. This is a mandatory option if a valid status log created 
during a previous synchronization operation (--statuslog) is not 
specified.

--target=<tgt

The path to the root where the source file system will be synchronized 
(target). This is a mandatory option if the status log created during a 
previous synchronization operation (--statuslog) is not specified. 
This option can be repeated if multiple synchronization targets are 
desired.

--mdt=<mdt>

The metadata device to be synchronized. A changelog user must be 
registered for this device. This is a mandatory option if a valid status 
log created during a previous synchronization operation 
(--statuslog) is not specified. 

--user=<user id>

The changelog user ID for the specified MDT. To use lustre_rsync, 
the changelog user must be registered. For details, see the 
changelog_register parameter in the lctl man page. This is a 
mandatory option if a valid status log created during a previous 
synchronization operation (--statuslog) is not specified. 

--statuslog=<log>

A log file to which synchronization status is saved. When the 
lustre_rsync utility starts, if the status log from a previous 
synchronization operation is specified, then the state is read from the 
log and otherwise mandatory --source, --target and --mdt 
options can be skipped. Specifying the --source, --target and/or 
--mdt options, in addition to the --statuslog option, causes the 
specified parameters in the status log to be overriden. Command line 
options take precedence over options in the status log.

--xattr <yes|no>

Specifies whether extended attributes (xattrs) are synchronized or not. 
The default is to synchronize extended attributes. 
NOTE: Disabling xattrs causes Lustre striping information not to be 
synchronized. 

--verbose

Produces verbose output.
32-20 Lustre 2.0 Operations Manual • April 2010



Examples

Sample lustre_rsync commands are listed below.

Register a changelog user for an MDT (e.g., MDT lustre-MDT0000). 

# lctl --device lustre-MDT0000 changelog_register lustre-MDT0000 
Registered changelog userid 'cl1'

Synchronize a Lustre file system (/mnt/lustre) to a target file system (/mnt/target).

$ lustre_rsync --source=/mnt/lustre --target=/mnt/target \ 

--mdt=lustre-MDT0000 --user=cl1 \ 

--statuslog sync.log  --verbose 

Lustre filesystem: lustre 

MDT device: lustre-MDT0000 

Source: /mnt/lustre 

Target: /mnt/target 

Statuslog: sync.log 

Changelog registration: cl1 

Starting changelog record: 0 

Errors: 0 

lustre_rsync took 1 seconds 

Changelog records consumed: 22

--dry-run

Shows the output of lustre_rsync commands (copy, mkdir, etc.) on 
the target file system without actually executing them.

--abort-on-err

Stops processing the lustre_rsync operation if an error occurs. The 
default is to continue the operation.

Option Description
Chapter 32 System Configuration Utilities (man8) 32-21



After the file system undergoes changes, synchronize the changes onto the target file 
system. Only the statuslog name needs to be specified, as it has all the parameters 
passed earlier.

$ lustre_rsync --statuslog sync.log --verbose 

Replicating Lustre filesystem: lustre 

MDT device: lustre-MDT0000 

Source: /mnt/lustre 

Target: /mnt/target 

Statuslog: sync.log 

Changelog registration: cl1 

Starting changelog record: 22 

Errors: 0 

lustre_rsync took 2 seconds 

Changelog records consumed: 42

To synchronize a Lustre file system (/mnt/lustre) to two target file systems 
(/mnt/target1 and /mnt/target2).

$ lustre_rsync --source=/mnt/lustre \ 

--target=/mnt/target1 --target=/mnt/target2 \ 

--mdt=lustre-MDT0000 --user=cl1 

--statuslog sync.log 

32.6 Additional System Configuration 
Utilities
This section describes additional system configuration utilities that were added in 
Lustre 1.6.

32.6.1 lustre_rmmod.sh
The lustre_rmmod.sh utility removes all Lustre and LNET modules (assuming no 
Lustre services are running). It is located in /usr/bin.

Note – The lustre_rmmod.sh utility does not work if Lustre modules are being 
used or if you have manually run the lctl network up command.
32-22 Lustre 2.0 Operations Manual • April 2010



32.6.2 e2scan
The e2scan utility is an ext2 file system-modified inode scan program. The e2scan 
program uses libext2fs to find inodes with ctime or mtime newer than a given time 
and prints out their pathname. Use e2scan to efficiently generate lists of files that 
have been modified. The e2scan tool is included in the e2fsprogs package, located at:

http://downloads.lustre.org/public/tools/e2fsprogs/

Synopsis

e2scan [options] [-f file] block_device

Description

When invoked, the e2scan utility iterates all inodes on the block device, finds 
modified inodes, and prints their inode numbers. A similar iterator, using 
libext2fs(5), builds a table (called parent database) which lists the parent node for 
each inode. With a lookup function, you can reconstruct modified pathnames from 
root.

Options

Option Description

-b inode buffer blocks

Sets the readahead inode blocks to get excellent performance when scanning the 
block device.

-o output file

If an output file is specified, modified pathnames are written to this file. Otherwise, 
modified parameters are written to stdout. 

-t inode | pathname

Sets the e2scan type if type is inode. The e2scan utility prints modified inode 
numbers to  stdout. By  default, the type is set as pathname. 
The e2scan utility lists modified pathnames based on modified inode numbers.

-u

Rebuilds the parent database from scratch. Otherwise, the current parent database 
is used.
Chapter 32 System Configuration Utilities (man8) 32-23

http://downloads.lustre.org/public/tools/e2fsprogs/


32.6.3 Application Profiling Utilities
The following utilities are located in /usr/bin.

lustre_req_history.sh

The lustre_req_history.sh utility (run from a client), assembles as much Lustre 
RPC request history as possible from the local node and from the servers that were 
contacted, providing a better picture of the coordinated network activity.

llstat.sh

The llstat.sh utility (improved in Lustre 1.6), handles a wider range of /proc 
files, and has command line switches to produce more graphable output.

plot-llstat.sh

The plot-llstat.sh utility plots the output from llstat.sh using gnuplot.

32.6.4 More /proc Statistics for Application Profiling
The following utilities provide additional statistics.

vfs_ops_stats

The client vfs_ops_stats utility tracks Linux VFS operation calls into Lustre for a 
single PID, PPID, GID or everything.

/proc/fs/lustre/llite/*/vfs_ops_stats

/proc/fs/lustre/llite/*/vfs_track_[pid|ppid|gid]

extents_stats

The client extents_stats utility shows the size distribution of I/O calls from the 
client (cumulative and by process).

/proc/fs/lustre/llite/*/extents_stats, extents_stats_per_process

offset_stats

The client offset_stats utility shows the read/write seek activity of a client by 
offsets and ranges.

/proc/fs/lustre/llite/*/offset_stats
32-24 Lustre 2.0 Operations Manual • April 2010



Lustre 1.6 included per-client and improved MDT statistics:

■ Per-client statistics tracked on the servers

Each MDT and OST now tracks LDLM and operations statistics for every 
connected client, for comparisons and simpler collection of distributed job 
statistics.

/proc/fs/lustre/mds|obdfilter/*/exports/

■ Improved MDT statistics

More detailed MDT operations statistics are collected for better profiling.

/proc/fs/lustre/mds/*/stats

32.6.5 Testing / Debugging Utilities
Lustre offers the following test and debugging utilities. 

loadgen

The Load Generator (loadgen) is a test program designed to simulate large numbers 
of Lustre clients connecting and writing to an OST. The loadgen utility is located at 
lustre/utils/loadgen (in a build directory) or at /usr/sbin/loadgen (from an 
RPM). 

Loadgen offers the ability to run this test:

1. Start an arbitrary number of (echo) clients.

2. Start and connect to an echo server, instead of a real OST.

3. Create/bulk_write/delete objects on any number of echo clients simultaneously.

Currently, the maximum number of clients is limited by MAX_OBD_DEVICES and 
the amount of memory available.
Chapter 32 System Configuration Utilities (man8) 32-25



Usage

The loadgen utility can be run locally on the OST server machine or remotely from 
any LNET host. The device command can take an optional NID as a parameter; if 
unspecified, the first local NID found is used. 

The obdecho module must be loaded by hand before running loadgen. 

# cd lustre/utils/ 

# insmod ../obdecho/obdecho.ko 

# ./loadgen 

loadgen> h 

This is a test program used to simulate large numbers of clients. The 
echo obds are used, so the obdecho module must be loaded. 

Typical usage would be: 

loadgen> dev lustre-OST0000       set the target device 

loadgen> start 20                 start 20 echo clients 

loadgen> wr 10 5                  have 10 clients do simultaneous 
brw_write tests 5 times each 

Available commands are: 

device 

dl 

echosrv 

start 

verbose 

wait 

write 

help 

exit 

quit 

For more help type: help command-name 

loadgen> 

loadgen> device lustre-OST0000 192.168.0.21@tcp 

Added uuid OSS_UUID: 192.168.0.21@tcp 

Target OST name is 'lustre-OST0000' 

loadgen> 

loadgen> st 4 

start 0 to 4 

./loadgen: running thread #1 

./loadgen: running thread #2 

./loadgen: running thread #3 

./loadgen: running thread #4 

loadgen> wr 4 5 
32-26 Lustre 2.0 Operations Manual • April 2010



Estimate 76 clients before we run out of grant space (155872K / 
2097152) 

1: i0 

2: i0 

4: i0 

3: i0 

1: done (0) 

2: done (0) 

4: done (0) 

3: done (0) 

wrote 25MB in 1.419s (17.623 MB/s) 

loadgen> 

The loadgen utility prints periodic status messages; message output can be 
controlled with the verbose command. 

To insure a file can be written to (a write cache requirement), OSTs reserve ("grants"), 
chunks of space for each newly-created file. A grant may cause an OST to report it is 
out of space, even though there is enough space on the disk, because the space is 
"reserved" by other files. Loadgen estimates the number of simultaneous open files 
as disk size divided by grant size and reports that number when write tests start.

Echo Server

The loadgen utility can start an echo server. On another node, loadgen can specify 
the echo server as the device, thus creating a network-only test environment. 

loadgen> echosrv 

loadgen> dl 

0 UP obdecho echosrv echosrv 3 

1 UP ost OSS OSS 3 

On another node:

loadgen> device echosrv cfs21@tcp 

Added uuid OSS_UUID: 192.168.0.21@tcp 

Target OST name is 'echosrv' 

loadgen> st 1 

start 0 to 1 

./loadgen: running thread #1 

loadgen> wr 1 

start a test_brw write test on X clients for Y iterations 

usage: write <num_clients> <num_iter> [<delay>] 

loadgen> wr 1 1 

loadgen> 

1: i0 

1: done (0) 

wrote 1MB in 0.029s (34.023 MB/s)
Chapter 32 System Configuration Utilities (man8) 32-27



Scripting

The threads all perform their actions in non-blocking mode; use the wait command 
to block for the idle state. For example:

#!/bin/bash 

./loadgen << EOF 

device lustre-OST0000 

st 1 

wr 1 10 

wait 

quit 

EOF 

Feature Requests

The loadgen utility is intended to grow into a more comprehensive test tool; feature 
requests are encouraged. The current feature requests include:

■ Locking simulation 

■ Many (echo) clients cache locks for the specified resource at the same time. 

■ Many (echo) clients enqueue locks for the specified resource simultaneously. 

■ obdsurvey functionality 

■ Fold the Lustre I/O kit’s obdsurvey script functionality into loadgen 

llog_reader

The llog_reader utility translates a Lustre configuration log into human-readable 
form.

lr_reader

The lr_reader utility translates a last received (last_rcvd) file into 
human-readable form. 
32-28 Lustre 2.0 Operations Manual • April 2010



The following utilites are part of the Lustre I/O kit. For more information, see Lustre 
I/O Kit.

sgpdd_survey

The sgpdd_survey utility tests 'bare metal' performance, bypassing as much of the 
kernel as possible. The sgpdd_survey tool does not require Lustre, but it does 
require the sgp_dd package.  

Caution – The sgpdd_survey utility erases all data on the device. 

obdfilter_survey

The obdfilter_survey utility is a shell script that tests performance of isolated 
OSTS, the network via echo clients, and an end-to-end test. 

ior-survey

The ior-survey utility is a script used to run the IOR benchmark. Lustre includes 
IOR version 2.8.6.

ost_survey

The ost_survey utility is an OST performance survey that tests client-to-disk 
performance of the individual OSTs in a Lustre file system. 

stats-collect

The stats-collect utility contains scripts used to collect application profiling 
information from Lustre clients and servers.
Chapter 32 System Configuration Utilities (man8) 32-29



32.6.6 Flock Feature
Lustre now includes the flock feature, which provides file locking support. Flock 
describes classes of file locks known as ‘flocks’. Flock can apply or remove a lock on 
an open file as specified by the user. However, a single file may not, simultaneously, 
have both shared and exclusive locks.

By default, the flock utility is disabled on Lustre. Two modes are available.

A call to use flock may be blocked if another process is holding an incompatible lock. 
Locks created using flock are applicable for an open file table entry. Therefore, a 
single process may hold only one type of lock (shared or exclusive) on a single file. 
Subsequent flock calls on a file that is already locked converts the existing lock to the 
new lock mode.

32.6.6.1 Example

$ mount -t lustre –o flock mds@tcp0:/lustre /mnt/client

You can check it in /etc/mtab. It should look like,

mds@tcp0:/lustre /mnt/client lustre rw,flock 00

local mode In this mode, locks are coherent on one node (a single-node flock), but not 
across all clients. To enable it, use -o localflock. 
This is a client-mount option. 

NOTE: This mode does not impact performance and is appropriate for 
single-node databases.

consistent mode In this mode, locks are coherent across all clients. 
To enable it, use the -o flock. This is a client-mount option.

CAUTION: This mode affects the performance of the file being flocked 
and may affect stability, depending on the Lustre version used. Consider 
using a newer Lustre version which is more stable. If the consistent mode 
is enabled and no applications are using flock, then it has no effect. 
32-30 Lustre 2.0 Operations Manual • April 2010



32.6.7 l_getidentity
The l_getidentity utility handles Lustre user / group cache upcall.

Synopsis

l_getidentity {mdtname} {uid}

Options

Description

The group upcall file contains the path to an executable file that, when properly 
installed, is invoked to resolve a numeric UID to a group membership list. This 
utility should complete the mds_grp_downcall_data structure and write it to the 
/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_info pseudo-file.

The l_getidentity utility is the reference implementation of the user or group 
cache upcall.

Files

The l_getidentity files are located at:

/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_upcall

Option Description

mdtname

Metadata server target name

uid

User identifier
Chapter 32 System Configuration Utilities (man8) 32-31



32.6.8 llobdstat 
The llobdstat utility displays OST statistics.

Synopsis

llobdstat ost_name [interval]

Description

The llobdstat utility displays a line of OST statistics for a given OST at specified 
intervals (in seconds).

Example
# llobdstat liane-OST0002 1
/usr/bin/llobdstat on /proc/fs/lustre/obdfilter/liane-OST0002/stats
Processor counters run at 2800.189 MHz
Read: 1.21431e+07, Write: 9.93363e+08, create/destroy: 24/1499, stat: 34, 
punch: 18
[NOTE: cx: create, dx: destroy, st: statfs, pu: punch ]
Timestamp   Read-delta  ReadRate  Write-delta  WriteRate
--------------------------------------------------------
1217026053    0.00MB    0.00MB/s     0.00MB    0.00MB/s
1217026054    0.00MB    0.00MB/s     0.00MB    0.00MB/s
1217026055    0.00MB    0.00MB/s     0.00MB    0.00MB/s
1217026056    0.00MB    0.00MB/s     0.00MB    0.00MB/s
1217026057    0.00MB    0.00MB/s     0.00MB    0.00MB/s
1217026058    0.00MB    0.00MB/s     0.00MB    0.00MB/s
1217026059    0.00MB    0.00MB/s     0.00MB    0.00MB/s st:1

Files

The llobdstat files are located at:

/proc/fs/lustre/obdfilter/<ostname>/stats

Option Description

ost_name

Name of the OBD for which statistics are requested.

interval

Time interval (in seconds) after which statistics are refreshed.
32-32 Lustre 2.0 Operations Manual • April 2010



32.6.9 llstat 
The llstat utility displays Lustre statistics.

Synopsis

llstat [-c] [-g] [-i interval] stats_file

Description

The llstat utility displays statistics from any of the Lustre statistics files that share 
a common format and are updated at a specified interval (in seconds). To stop 
statistics printing, type CTRL-C.h

Options

Option Description

-c

Clears the statistics file.

-i

Specifies the interval polling period (in seconds).

-g

Specifies graphable output format.

-h

Displays help information.

stats_file

Specifies either the full path to a statistics file or a shorthand reference, mds or ost
Chapter 32 System Configuration Utilities (man8) 32-33



Example

To monitor /proc/fs/lustre/ost/OSS/ost/stats at 1 second intervals, run;

llstat -i 1 ost

Files

The llstat files are located at:

/proc/fs/lustre/mdt/MDS/*/stats

/proc/fs/lustre/mds/*/exports/*/stats

/proc/fs/lustre/mdc/*/stats

/proc/fs/lustre/ldlm/services/*/stats

/proc/fs/lustre/ldlm/namespaces/*/pool/stats

/proc/fs/lustre/mgs/MGS/exports/*/stats

/proc/fs/lustre/ost/OSS/*/stats

/proc/fs/lustre/osc/*/stats

/proc/fs/lustre/obdfilter/*/exports/*/stats

/proc/fs/lustre/obdfilter/*/stats

/proc/fs/lustre/llite/*/stats
32-34 Lustre 2.0 Operations Manual • April 2010



32.6.10 lst 
The lst utility starts LNET self-test.

Synopsis

lst

Description

LNET self-test helps site administrators confirm that Lustre Networking (LNET) has 
been correctly installed and configured. The self-test also confirms that LNET, the 
network software and the underlying hardware are performing as expected.

Each LNET self-test runs in the context of a session. A node can be associated with 
only  one session at a time, to ensure that the session has exclusive use of the nodes 
on which it is running. A single node creates, controls and monitors a single session. 
This node is referred to as the self-test console.

Any node may act as the self-test console. Nodes are named and allocated to a 
self-test session in groups. This allows all nodes in a group to be referenced by a 
single name.

Test configurations are built by describing and running test batches. A test batch is a 
named collection of tests, with each test composed of a number of individual 
point-to-point tests running in parallel. These individual point-to-point tests are 
instantiated according to the test type, source group, target group and distribution 
specified when the test is added to the test batch.

Modules

To run LNET self-test, load following modules: libcfs, lnet, lnet_selftest and any one 
of the klnds (ksocklnd,  ko2iblnd...). To load all necessary modules, run modprobe 
lnet_selftest, which recursively loads the modules on which lnet_selftest depends.

There are two types of nodes for LNET self-test: console and test. Both node types 
require all previously-specified modules to be loaded. (The userspace test node does 
not require these modules).

Test nodes can either be in kernel or in userspace. A console user can invite a kernel 
test node to join the test session by running lst add_group NID, but the user cannot 
actively add a userspace test node to the test-session. However, the console user can 
passively accept a test node to the test session while the test node runs lst client to 
connect to the console. 
Chapter 32 System Configuration Utilities (man8) 32-35



Utilities

LNET self-test includes two user utilities, lst and lstclient. 

lst is the user interface for the self-test console (run on console node). It provides a 
list of commands to control the entire test system, such as create session, create test 
groups, etc.

lstclient is the userspace self-test program which is linked with userspace LNDs and 
LNET. A user can invoke lstclient to join a self-test session: 

lstclient -sesid CONSOLE_NID group NAME

Example 

This is an example of an LNET self-test script which simulates the traffic pattern of a 
set of Lustre servers on a TCP network, accessed by Lustre clients on an IB network 
(connected via LNET routers), with half the clients reading and half the clients 
writing.

#!/bin/bash

export LST_SESSION=$$

lst new_session read/write

lst add_group servers 192.168.10.[8,10,12-16]@tcp

lst add_group readers 192.168.1.[1-253/2]@o2ib

lst add_group writers 192.168.1.[2-254/2]@o2ib

lst add_batch bulk_rw

lst add_test --batch bulk_rw --from readers --to servers     brw read 
check=simple size=1M

lst add_test --batch bulk_rw --from writers --to servers     brw write 
check=full size=4K

# start running

lst run bulk_rw

# display server stats for 30 seconds

lst stat servers & sleep 30; kill $!

# tear down

lst end_session
32-36 Lustre 2.0 Operations Manual • April 2010



32.6.11 plot-llstat 
The plot-llstat utility plots Lustre statistics.

Synopsis

plot-llstat results_filename [parameter_index]

Options

Description

The plot-llstat utility generates a CSV file and instruction files for gnuplot from 
llstat output. Since llstat is generic in nature, plot-llstat is also a generic script. 
The value of parameter_index can be 1 for count per interval, 2 for count per second 
(default setting) or 3 for total count.

The plot-llstat utility creates a .dat (CSV) file using the number of operations 
specified by the user. The number of operations equals the number of columns in the 
CSV file. The values in those columns are equal to the corresponding value of 
parameter_index in the output file.

The plot-llstat utility also creates a .scr file that contains instructions for gnuplot 
to plot the graph. After generating  the .dat and .scr files, the plot-llstat tool 
invokes gnuplot to display the graph.

Example

llstat -i2 -g -c lustre-OST0000 > log

plot-llstat log 3

Option Description

results_filename

Output generated by plot-llstat

parameter_index

Value of parameter_index can be:
1 - count per interval
2 - count per second (default setting)
3 - total count
Chapter 32 System Configuration Utilities (man8) 32-37



32.6.12 routerstat
The routerstat utility prints Lustre router statistics.

Synopsis

routerstat [interval]

Description

The routerstat utility watches LNET router statistics. If no interval is specified, 
then statistics are sampled and printed only one time. Otherwise, statistics are 
sampled and printed at the specified interval (in seconds).

Options

The routerstat output includes the following fields:

Files

The routerstat utility extracts statistics data from: 

/proc/sys/lnet/stats

Field Description

M msgs_alloc(msgs_max)

E errors

S send_length/send_count

R recv_length/recv_count

F route_length/route_count

D drop_length/drop_count
32-38 Lustre 2.0 Operations Manual • April 2010



32.6.13 ll_recover_lost_found_objs
The ll_recover_lost_found_objs utility helps recover Lustre OST objects (file 
data) from a lost and found directory back to their correct locations. 

Running the ll_recover_lost_found_objs tool is not strictly necessary to bring 
an OST back online, it just avoids losing access to objects that were moved to the lost 
and found directory due to directory corruption.

Synopsis

$ ll_recover_lost_found_objs [-hv] -d directory

Description

The first time Lustre writes to an object, it saves the MDS inode number and the objid 
as an extended attribute on the object, so in case of directory corruption of the OST, it 
is possible to recover the objects. Running e2fsck fixes the corrupted OST directory, 
but it puts all of the objects into a lost and found directory, where they are 
inaccessible to Lustre. Use the ll_recover_lost_found_objs utility to recover all 
(or at least most) objects from a lost and found directory back to their place in the 
O/0/d* directories. 

To use ll_recover_lost_found_objs, mount the file system locally (using the -t 
ldiskfs command), run the utility and then unmount it again. The OST must not be 
mounted by Lustre when ll_recover_lost_found_objs is run.

Options

Example

ll_recover_lost_found_objs -d /mnt/ost/lost+found

Field Description

-h Prints a help message

-v Increases verbosity

-d directory Sets the lost and found directory path
Chapter 32 System Configuration Utilities (man8) 32-39



32-40 Lustre 2.0 Operations Manual • April 2010



CHAPTER 33

System Limits

This chapter describes various limits on the size of files and file systems. These limits 
are imposed by either the Lustre architecture or the Linux VFS and VM subsystems. 
In a few cases, a limit is defined within the code and could be changed by 
re-compiling Lustre. In those cases, the selected limit is supported by Lustre testing 
and may change in future releases. This chapter includes the following sections:

■ Maximum Stripe Count

■ Maximum Stripe Size

■ Minimum Stripe Size

■ Maximum Number of OSTs and MDTs

■ Maximum Number of Clients

■ Maximum Size of a File System

■ Maximum File Size

■ Maximum Number of Files or Subdirectories in a Single Directory

■ MDS Space Consumption

■ Maximum Length of a Filename and Pathname

■ Maximum Number of Open Files for Lustre File Systems

■ OSS RAM Size

33.1 Maximum Stripe Count
The maximum number of stripe count is 160. This limit is hard-coded, but is near the 
upper limit imposed by the underlying ext3 file system. It may be increased in future 
releases. Under normal circumstances, the stripe count is not affected by ACLs.
33-1



33.2 Maximum Stripe Size
For a 32-bit machine, the product of stripe size and stripe count (stripe_size * 
stripe_count) must be less than 2^32. The ext3 limit of 2TB for a single file applies for 
a 64-bit machine. (Lustre can support 160 stripes of 2 TB each on a 64-bit system.)

33.3 Minimum Stripe Size
Due to the 64 KB PAGE_SIZE on some 64-bit machines, the minimum stripe size is 
set to 64 KB.

33.4 Maximum Number of OSTs and MDTs
You can set the maximum number of OSTs by a compile option. The limit of 1020 
OSTs in Lustre release 1.4.7 is increased to a maximum of 8150 OSTs in 1.6.0. Testing 
is in progress to move the limit to 4000 OSTs. 

The maximum number of MDSs will be determined after accomplishing MDS 
clustering.

33.5 Maximum Number of Clients
Currently, the number of clients is limited to 131072. 
33-2 Lustre 2.0 Operations Manual • June 2010



33.6 Maximum Size of a File System
For i386 systems with 2.6 kernels, the block devices are limited to 16 TB. Each OST or 
MDT can have a file system up to 16 TB, regardless of whether 32-bit or 64-bit 
kernels are on the server.

You can have multiple OST file systems on a single node. Currently, the largest 
production Lustre file system has 448 OSTs in a single file system. There is a 
compile-time limit of 8150 OSTs in a single file system, giving a theoretical file 
system limit of nearly 64 PB.

Several production Lustre file systems have around 200 OSTs in a single file system. 
The largest file system in production is at least 1.3 PB (184 OSTs). All these facts 
indicate that Lustre would scale just fine if more hardware is made available.

33.7 Maximum File Size
Individual files have a hard limit of nearly 16 TB on 32-bit systems imposed by the 
kernel memory subsystem. On 64-bit systems this limit does not exist. Hence, files 
can be 64-bits in size. Lustre imposes an additional size limit of up to the number of 
stripes, where each stripe is 2 TB. A single file can have a maximum of 160 stripes, 
which gives an upper single file limit of 320 TB for 64-bit systems. The actual amount 
of data that can be stored in a file depends upon the amount of free space in each 
OST on which the file is striped.

33.8 Maximum Number of Files or 
Subdirectories in a Single Directory
Lustre uses the ext3 hashed directory code, which has a limit of about 25 million files. 
On reaching this limit, the directory grows to more than 2 GB depending on the 
length of the filenames. The limit on subdirectories is the same as the limit on regular 
files in all later versions of Lustre due to a small ext3 format change. 

In fact, Lustre is tested with ten million files in a single directory. On a 
properly-configured dual-CPU MDS with 4 GB RAM, random lookups in such a 
directory are possible at a rate of 5,000 files / second. 
Chapter 33 System Limits 33-3



33.9 MDS Space Consumption
A single MDS imposes an upper limit of 4 billion inodes. The default limit is slightly 
less than the device size of 4 KB, meaning 512 MB inodes for a file system with MDS 
of 2 TB. This can be increased initially, at the time of MDS file system creation, by 
specifying the --mkfsoptions='-i 2048' option on the --add mds config line 
for the MDS.

For newer releases of e2fsprogs, you can specify '-i 1024' to create 1 inode for 
every 1 KB disk space. You can also specify '-N {num inodes}' to set a specific 
number of inodes. The inode size (-I) should not be larger than half the inode ratio 
(-i). Otherwise, mke2fs will spin trying to write more number of inodes than the 
inodes that can fit into the device.

For more information, see Options for Formatting the MDT and OSTs.

33.10 Maximum Length of a Filename and 
Pathname
This limit is 255 bytes for a single filename, the same as in an ext3 file system. The 
Linux VFS imposes a full pathname length of 4096 bytes.
33-4 Lustre 2.0 Operations Manual • June 2010



33.11 Maximum Number of Open Files for 
Lustre File Systems
Lustre does not impose maximum number of open files, but practically it depends on 
amount of RAM on the MDS. There are no "tables" for open files on the MDS, as they 
are only linked in a list to a given client's export. Each client process probably has a 
limit of several thousands of open files which depends on the ulimit.

33.12 OSS RAM Size
For a single OST, there is no strict rule to size the OSS RAM. However, as a guideline 
for Lustre 2.0 installations, 2 GB per OST is a reasonable RAM size. For details on 
determining the memory needed for an OSS node, see OSS Memory Requirements
Chapter 33 System Limits 33-5



33-6 Lustre 2.0 Operations Manual • June 2010



Glossary

A
ACL Access Control List - An extended attribute associated with a file which 

contains authorization directives.

Administrative
OST failure

A configuration directive given to a cluster to declare that an OST has failed, 
so errors can be immediately returned.

C
CFS Cluster File Systems, Inc., a United States corporation founded in 2001 by 

Peter J. Braam to develop, maintain and support Lustre.

CMD Clustered metadata, a collection of metadata targets implementing a single 
file system namespace.

Completion Callback An RPC made by an OST or MDT to another system, usually a client, to 
indicate that the lock request is now granted.

Configlog An llog file used in a node, or retrieved from a management server over the 
network with configuration instructions for Lustre systems at startup time.

Configuration Lock A lock held by every node in the cluster to control configuration changes. 
When callbacks are received, the nodes quiesce their traffic, cancel the lock 
and await configuration changes after which they reacquire the lock before 
resuming normal operation.
Glossary-1



D
Default stripe pattern Information in the LOV descriptor that describes the default stripe count 

used for new files in a file system. This can be amended by using a directory 
stripe descriptor or a per-file stripe descriptor.

Direct I/O A mechanism which can be used during read and write system calls. It 
bypasses the kernel. I/O cache to memory copy of data between kernel and 
application memory address spaces.

Directory stripe
descriptor

An extended attribute that describes the default stripe pattern for files 
underneath that directory.

E
EA Extended Attribute. A small amount of data which can be retrieved through 

a name associated with a particular inode. Lustre uses EAa to store striping 
information (location of file data on OSTs). Examples of extended attributes 
are ACLs, striping information, and crypto keys.

Eviction The process of eliminating server state for a client that is not returning to the 
cluster after a timeout or if server failures have occurred.

Export The state held by a server for a client that is sufficient to transparently 
recover all in-flight operations when a single failure occurs.

Extent Lock A lock used by the OSC to protect an extent in a storage object for 
concurrent control of read/write, file size acquisition and truncation 
operations.

F
Failback The failover process in which the default active server regains control over 

the service.

Failout OST An OST which is not expected to recover if it fails to answer client requests. 
A failout OST can be administratively failed, thereby enabling clients to 
return errors when accessing data on the failed OST without making 
additional network requests.
Glossary-2 Lustre 2.0 Operations Manual • June 2010



Failover The process by which a standby computer server system takes over for an 
active computer server after a failure of the active node. Typically, the 
standby computer server gains exclusive access to a shared storage device 
between the two servers.

FID Lustre File Identifier. A collection of integers which uniquely identify a file 
or object. The FID structure contains a sequence, identity and version 
number.

Fileset A group of files that are defined through a directory that represents a file 
system’s start point.

FLDB FID Location Database. This database maps a sequence of FIDs to a server 
which is managing the objects in the sequence.

Flight Group Group or I/O transfer operations initiated in the OSC, which is 
simultaneously going between two endpoints. Tuning the flight group size 
correctly leads to a full pipe.

G
Glimpse callback An RPC made by an OST or MDT to another system, usually a client, to 

indicate to tthat an extent lock it is holding should be surrendered if it is not 
in use. If the system is using the lock, then the system should report the 
object size in the reply to the glimpse callback. Glimpses are introduced to 
optimize the acquisition of file sizes.

Group Lock

Group upcall

I
Import The state held by a client to fully recover a transaction sequence after a 

server failure and restart.

Intent Lock A special locking operation introduced by Lustre into the Linux kernel. An 
intent lock combines a request for a lock, with the full information to 
perform the operation(s) for which the lock was requested. This offers the 
server the option of granting the lock or performing the operation and 
informing the client of the operation result without granting a lock. The use 
of intent locks enables metadata operations (even complicated ones), to be 
implemented with a single RPC from the client to the server.
Glossary-3



IOV I/O vector. A buffer destined for transport across the network which 
contains a collection (a/k/a as a vector) of blocks with data.

K
Kerberos An authentication mechanism, optionally available in an upcoming Lustre 

version as a GSS backend.

L
LBUG A bug that Lustre writes into a log indicating a serious system failure.

LDLM Lustre Distributed Lock Manager.

lfs The Lustre File System configuration tool for end users to set/check file 
striping, etc.  See lfs.

lfsck Lustre File System Check. A distributed version of a disk file system checker. 
Normally, lfsck does not need to be run, except when file systems are 
damaged through multiple disk failures and other means that cannot be 
recovered using file system journal recovery. 

liblustre Lustre library. A user-mode Lustre client linked into a user program for 
Lustre fs access. liblustre clients cache no data, do not need to give back 
locks on time, and can recover safely from an eviction.  They should not 
participate in recovery. 

Llite Lustre lite. This term is in use inside the code and module names to indicate 
that code elements are related to the Lustre file system.

Llog Lustre log. A log of entries used internally by Lustre. An llog is suitable for 
rapid transactional appends of records and cheap cancellation of records 
through a bitmap.

Llog Catalog Lustre log catalog. An llog with records that each point at an llog. Catalogs 
were introduced to give llogs almost infinite size. llogs have an originator 
which writes records and a replicator which cancels record (usually through 
an RPC), when the records are not needed.

LMV Logical Metadata Volume. A driver to abstract in the Lustre client that it is 
working with a metadata cluster instead of a single metadata server.
Glossary-4 Lustre 2.0 Operations Manual • June 2010



LND Lustre Network Driver. A code module that enables LNET support over a 
particular transport, such as TCP and various kinds of InfiniBand, Elan or 
Myrinet.

LNET Lustre Networking. A message passing network protocol capable of running 
and routing through various physical layers. LNET forms the underpinning 
of LNETrpc.

Load-balancing MDSs A cluster of MDSs that perform load balancing of on system requests.

Lock Client A module that makes lock RPCs to a lock server and handles revocations 
from the server.

Lock Server A system that manages locks on certain objects. It also issues lock callback 
requests, calls while servicing or, for objects that are already locked, 
completes lock requests.

LOV Logical Object Volume. The object storage analog of a logical volume in a 
block device volume management system, such as LVM or EVMS. The LOV 
is primarily used to present a collection of OSTs as a single device to the 
MDT and client file system drivers.

LOV descriptor A set of configuration directives which describes which nodes are OSS 
systems in the Lustre cluster, providing names for their OSTs.

Lustre The name of the project chosen by Peter Braam in 1999 for an object-based 
storage architecture. Now the name is commonly associated with the Lustre 
file system.

Lustre client An operating instance with a mounted Lustre file system.

Lustre file A file in the Lustre file system. The implementation of a Lustre file is 
through an inode on a metadata server which contains references to a 
storage object on OSSs.

Lustre lite A preliminary version of Lustre developed for LLNL in 2002. With the 
release of Lustre 1.0 in late 2003, Lustre Lite became obsolete.

Lvfs A library that provides an interface between Lustre OSD and MDD drivers 
and file systems; this avoids introducing file system-specific abstractions into 
the OSD and MDD drivers.

M
Mballoc Multi-Block-Allocate. Lustre functionality that enables the ext3 file system to 

allocate multiple blocks with a single request to the block allocator. 
Normally, an ext3 file system only allocates only one block per request.
Glossary-5



MDC MetaData Client - Lustre client component that sends metadata requests via 
RPC over LNET to the Metadata Target (MDT).

MDD MetaData Disk Device - Lustre server component that interfaces with the 
underlying Object Storage Device to manage the Lustre file system 
namespace (directories, file ownership, attributes).

MDS MetaData Server - Server node that is hosting the Metadata Target (MDT).

MDT Metadata Target. A metadata device made available through the Lustre 
meta-data network protocol.

Metadata Write-back
Cache

A cache of metadata updates (mkdir, create, setattr, other operations) which 
an application has performed, but have not yet been flushed to a storage 
device or server.

MGS Management Service. A software module that manages the startup 
configuration and changes to the configuration. Also, the server node on 
which this system runs.

Mountconf The Lustre configuration protocol (introduced in version 1.6) which formats 
disk file systems on servers with the mkfs.lustre program, and prepares 
them for automatic incorporation into a Lustre cluster.

N
NAL An older, obsolete term for LND.

NID Network Identifier. Encodes the type, network number and network address 
of a network interface on a node for use by Lustre.

NIO API A subset of the LNET RPC module that implements a library for sending 
large network requests, moving buffers with RDMA.

O
OBD Object Device. The base class of layering software constructs that provides 

Lustre functionality.

OBD API See Storage Object API.

OBD type Module that can implement the Lustre object or metadata APIs. Examples of 
OBD types include the LOV, OSC and OSD.
Glossary-6 Lustre 2.0 Operations Manual • June 2010



Obdfilter An older name for the OSD device driver.

Object device An instance of an object that exports the OBD API.

Object storage Refers to a storage-device API or protocol involving storage objects. The two 
most well known instances of object storage are the T10 iSCSI storage object 
protocol and the Lustre object storage protocol (a network implementation of 
the Lustre object API). The principal difference between the Lustre and T10 
protocols is that Lustre includes locking and recovery control in the protocol 
and is not tied to a SCSI transport layer.

opencache A cache of open file handles. This is a performance enhancement for NFS.

Orphan objects Storage objects for which there is no Lustre file pointing at them. Orphan 
objects can arise from crashes and are automatically removed by an llog 
recovery. When a client deletes a file, the MDT gives back a cookie for each 
stripe. The client then sends the cookie and directs the OST to delete the 
stripe. Finally, the OST sends the cookie back to the MDT to cancel it.

Orphan handling A component of the metadata service which allows for recovery of open, 
unlinked files after a server crash. The implementation of this feature retains 
open, unlinked files as orphan objects until it is determined that no clients 
are using them.

OSC Object Storage Client. The client unit talking to an OST (via an OSS).

OSD Object Storage Device. A generic, industry term for storage devices with 
more extended interface than block-oriented devices, such as disks. Lustre 
uses this name to describe to a software module that implements an object 
storage API in the kernel. Lustre also uses this name to refer to an instance 
of an object storage device created by that driver. The OSD device is layered 
on a file system, with methods that mimic create, destroy and I/O 
operations on file inodes.

OSS Object Storage Server. A server OBD that provides access to local OSTs.

OST Object Storage Target. An OSD made accessible through a network protocol. 
Typically, an OST is associated with a unique OSD which, in turn is 
associated with a formatted disk file system on the server containing the 
storage objects.

P

Pdirops A locking protocol introduced in the VFS by CFS to allow for concurrent 
operations on a single directory inode.
Glossary-7



pool OST pools allows the administrator to associate a name with an arbitrary 
subset of OSTs in a Lustre cluster. A group of OSTs can be combined into a 
named pool with unique access permissions and stripe characteristics. 

Portal A concept used by LNET. LNET messages are sent to a portal on a NID. 
Portals can receive packets when a memory descriptor is attached to the 
portal. Portals are implemented as integers. 

Examples of portals are the portals on which certain groups of object, 
metadata, configuration and locking requests and replies are received.

PTLRPC An RPC protocol layered on LNET. This protocol deals with stateful servers 
and has exactly-once semantics and built in support for recovery.

R
Recovery The process that re-establishes the connection state when a client that was 

previously connected to a server reconnects after the server restarts.

Reply The concept of re-executing a server request after the server lost information 
in its memory caches and shut down. The replay requests are retained by 
clients until the server(s) have confirmed that the data is persistent on disk. 
Only requests for which a client has received a reply are replayed.

Re-sent request A request that has seen no reply can be re-sent after a server reboot.

Revocation Callback An RPC made by an OST or MDT to another system, usually a client, to 
revoke a granted lock.

Rollback The concept that server state is in a crash lost because it was cached in 
memory and not yet persistent on disk.

Root squash A mechanism whereby the identity of a root user on a client system is 
mapped to a different identity on the server to avoid root users on clients 
gaining broad permissions on servers. Typically, for management purposes, 
at least one client system should not be subject to root squash.

routing LNET routing between different networks and LNDs.

RPC Remote Procedure Call. A network encoding of a request.
Glossary-8 Lustre 2.0 Operations Manual • June 2010



S
Storage Object API The API that manipulates storage objects. This API is richer than that of 

block devices and includes the create/delete of storage objects, read/write of 
buffers from and to certain offsets, set attributes and other storage object 
metadata.

Storage Objects A generic concept referring to data containers, similar/identical to file 
inodes. 

Stride A contiguous, logical extent of a Lustre file written to a single OST.

Stride size The maximum size of a stride, typically 4 MB.

Stripe count The number of OSTs holding objects for a RAID0-striped Lustre file.

Striping metadata The extended attribute associated with a file that describes how its data is 
distributed over storage objects. See also default stripe pattern. 

T
T10 object protocol An object storage protocol tied to the SCSI transport layer. Lustre does not 

use T10.

W
Wide striping Strategy of using many OSTs to store stripes of a single file. This obtains 

maximum bandwidth to a single file through parallel utilization of many 
OSTs.
Glossary-9



Glossary-10 Lustre 2.0 Operations Manual • June 2010



Index
A
access control list (ACL), 26-1
ACL, using, 26-1
ACLs

examples, 26-3
Lustre support, 26-2

adaptive timeouts
configuring, 21-6
interpreting, 21-8
introduction, 21-5

adding
clients, 4-10
OSTs, 4-10

adding multiple LUNs on a single HBA, 27-5
allocating quotas, 9-7

B
benchmark

Bonnie++, 17-2
IOR, 17-3
IOzone, 17-5

bonding, 12-1
configuring Lustre, 12-11
module parameters, 12-5
references, 12-11
requirements, 12-2
setting up, 12-5

bonding NICs, 12-4
Bonnie++ benchmark, 17-2
building

Lustre SNMP module, 14-2

C
calculating

OSS memory requirements, 3-7
capacity, system, 1-14
changelogs, 22-2
checksums, 25-22
Cisco Topspin (cib), 2-2
client

eviction, 19-3
client read/write

extents survey, 21-17
offset survey, 21-15

clients
adding, 4-10

CollectL, 22-9
command

filefrag, 28-15
lfsck, 28-13
llapi, 30-1
mount, 28-17

command lfs, 28-2
Commit on Share (COS), 19-15
complicated configurations, multihomed servers, 7-

1
components, Lustre, 1-5
configuration

module setup, 4-10
configuration example, Lustre, 4-5
configuration, logs, regenerating, 4-22
configuration, more complex

failover, 4-29
Index-1



configuring
adaptive timeouts, 21-6
LNET, 2-5
root squash, 26-4

configuring Lustre, 4-2
COW I/O, 18-16
Cray Seastar, 2-2

D
debug_mb, 24-3
debugging

adding debugging to source code, 24-11
buffer, 24-3
controlling the kernel debug log, 24-8
daemon, 24-6
finding Lustre UUID of an OST, 24-16
finding memory leaks, 24-10
lctl tool, 24-8
looking at disk content, 24-15
messages, 24-2
printing to /var/log/messages, 24-10
Ptlrpc request history, 24-16
sample lctl run, 24-11
tcpdump, 24-16
tools, 24-4
tracing lock traffic, 24-10
troubleshooting with strace, 24-14

debugging tools, 3-4
designing a Lustre network, 2-3
DIRECT I/O, 18-16
directory statahead, using, 21-20
downed routers, 2-12

E
e2fsprogs, 3-3
e2scan, 32-23
Elan (Quadrics Elan), 2-2
Elan to TCP routing

modprobe.conf, 7-5
start clients, 7-5
start servers, 7-5

environmental requirements, 3-5
error messages, 23-3
error numbers, 23-2
external journal, creating, 10-5

F
failover, 8-1

capabilities, 8-2
configuration types, 8-2
configuring, 4-29
failover and MMP, 8-4
MDT (active/passive), 8-4
OST (active/active), 8-4
using Heartbeat, 8-6

failures, isolating and debugging, 16-6
file formats, quotas, 9-12
file readahead, using, 21-20
file size, maximum, 33-3
file striping, 25-2
file system

name, 4-12
file system size, maximum, 33-3
filefrag command, 28-15
filename length, maximum, 33-4
flock utility, 32-30
free space management

adjusting weighting between free space and 
location, 25-14

round-robin allocator, 25-13
weighted allocator, 25-13

free space, managing, 25-11

G
GM and MX (Myrinet), 2-2

H
HA software, 3-4
handling full OSTs, 25-14
handling timeouts, 28-17
HBA, adding SCSI LUNs, 27-5
Heartbeat, configuring for Lustre failover, 8-6

I
I/O options

checksums, 25-22
I/O tunables, 21-12
I/O, direct, performing, 25-21
improving Lustre metadata performance with large 

directories, 27-6
Infinicon InfiniBand (iib), 2-2
Index-2 Lustre 2.0 Operations Manual • June 2010



inode number, OST, 20-7
inode size, MDT, 20-7
installing

Lustre SNMP module, 14-2
POSIX, 16-2

installing Lustre
from RPMs, 3-9
from source code, 3-13

installing Lustre, debugging tools, 3-4
installing Lustre, environmental requirements, 3-5
installing Lustre, HA software, 3-4
installing Lustre, memory requirements, 3-6
installing Lustre, prerequisites, 3-2
installing Lustre, required software, 3-3
installing Lustre, required tools / utilities, 3-3
installing Lustre, supported Linux distributions, 

architectures, and interconnects, 3-2
interoperability, 13-1
interpreting

adaptive timeouts, 21-8
IOR benchmark, 17-3
IOzone benchmark, 17-5

K
Kerberos

Lustre setup, 11-2
Lustre-Kerberos flavors, 11-11

key features, 1-3

L
l_getidentity, 32-31
lctl, 32-8

setting parameters, 4-20
lctl tool, 24-8
lfs command, 28-2
lfsck command, 28-13
ll_recover_lost_found_objs, 32-39
llapi, 25-24
llapi command, 30-1
llobdstat, 32-32
llstat, 32-33
LND, 2-1
LNET, 1-16

configuring, 2-5
routers, 2-11

starting, 2-13
stopping, 2-14

LNET self-test
commands, 18-26
concepts, 18-21

Load balancing with InfiniBand
modprobe.conf, 7-6

locking proc entries, 21-29
logs, 23-3
lst, 32-35
LUNs, adding, 27-5
Lustre

administration, aborting recovery, 4-27
administration, changing a server NID, 4-23
administration, determining which machine is 

serving an OST, 4-28
administration, failout / failover mode for 

OSTs, 4-16
administration, file system name, 4-12
administration, finding nodes in the file 

system, 4-15
administration, mounting a server, 4-13
administration, mounting a server without 

Lustre service, 4-16
administration, regenerating Lustre 

configuration logs, 4-22
administration, removing and restoring OSTs, 4-

25
administration, running multiple Lustre file 

systems, 4-17
administration, setting and retrieving Lustre 

parameters, 4-19
administration, starting Lustre, 4-12
administration, working with inactive OSTs, 4-

14
adminstration, unmounting a server, 4-14
components, 1-5
configuration example, 4-5
configuring, 4-2
COS, 19-15
failover, 8-1
installing, debugging tools, 3-4
installing, environmental requirements, 3-5
installing, HA software, 3-4
installing, memory requirements, 3-6
installing, prerequisites, 3-2
installing, required software, 3-3
installing, required tools / utilities, 3-3
Index-3



installing, supported Linux distributions, 
architectures and interconnects, 3-2

interoperability, 13-1
isolating and debugging failures, 16-6
key features, 1-3
metadata replay, 19-6
operational scenarios, 4-30
orphaned objects, 19-22
parameters, reporting current, 4-21
parameters, setting and retrieving, 4-19
parameters, setting with lctl, 4-20
parameters, setting with mkfs.lustre, 4-19
parameters, setting with tunefs.lustre, 4-19
performance tips, 23-5
recovering from corruption in Lustre file 

system, 19-18
recovering from errors on backing file 

system, 19-16
recovery, client eviction, 19-3
reply reconstruction, 19-11
scaling, 4-10
starting, 4-12
system capacity, 1-14
upgrading, 1.6.x to 1.8.x, 13-2
VBR, introduction, 19-13
VBR, tips, 19-14
VBR, working with, 19-14

Lustre I/O kit
downloading, 18-2
obdfilter_survey tool, 18-5
ost_survey tool, 18-11
PIOS I/O modes, 18-16
PIOS tool, 18-14
prerequisites to using, 18-2
running tests, 18-2
sgpdd_survey tool, 18-3

Lustre Monitoring Tool (LMT), 22-8
Lustre Network Driver (LND), 2-1
Lustre Networking (LNET), 1-16
Lustre SNMP module

building, 14-2
installing, 14-2
using, 14-3

lustre_rmmod.sh, 32-22
lustre_rsync, 32-18

M
man1

filefrag, 28-15
lfs, 28-2
lfsck, 28-13
mount, 28-17

man2
user/group cache upcall, 29-1

man3
llapi, 30-1

man5
LNET options, 31-3
module options, 31-2
MX LND, 31-19
OpenIB LND, 31-14
Portals LND (Catamount), 31-17
Portals LND (Linux), 31-15
QSW LND, 31-10
RapidArray LND, 31-11
SOCKLND kernel TCP/IP LND, 31-8
VIB LND, 31-12

man8
application profiling utilties, 32-24
l_getidentity, 32-31
lctl, 32-8
ll_recover_lost_found_objs, 32-39
llobdstat, 32-32
llstat, 32-33
lst, 32-35
lustre_rsync, 32-18
mkfs.lustre, 32-2
mount.lustre, 32-15
plot-llstat, 32-37
proc statistics, 32-24
routerstat, 32-38
system configuration utilities, 32-22
test/debug utilities, 32-25
tunefs.lustre, 32-5

managing free space, 25-11
maximum

file size, 33-3
file system size, 33-3
filename/pathname length, 33-4
number of clients, 33-2
number of files in a directory, 33-3
number of open files, 33-5
number of OSTs and MDTs, 33-2
OSS RAM size, 33-5
stripe count, 33-1
stripe size, 33-2
Index-4 Lustre 2.0 Operations Manual • June 2010



mballoc
history, 21-25

mballoc3
tunables, 21-27

MDS
service thread count, 20-3
space consumption, 33-4

MDT
failover, 8-4
inode size, 20-7

MDT/OST formatting
planning for inodes, 20-5
sizing the MDT, 20-5

Mellanox-Gold InfiniBand (openib), 2-2
memory requirements, 3-6
metadata replay, 19-6
minimum

stripe size, 33-2
mkfs.lustre, 32-2

setting parameters, 4-19
MMP

MMP and failover, 8-4
modprobe.conf, 7-1, 7-5, 7-6
module parameters, 2-5
module parameters, routing, 2-8
module setup, 4-10
monitoring

changelogs, 22-2
CollectL, 22-9
Lustre Monitoring Tool, 22-8
Red Hat Cluster Manager, 22-8
SNMP, 22-9

mount command, 28-17
mount.lustre, 32-15
multihomed server

Lustre complicated configurations, 7-1
modprobe.conf, 7-1
start clients, 7-4
start server, 7-3

multiple NICs, 12-4
MX LND, 31-19
Myrinet, 2-2

N
network

bonding, 12-1

networks, supported
cib (Cisco Topspin), 2-2
Cray Seastar, 2-2
Elan (Quadrics Elan), 2-2
GM and MX (Myrinet), 2-2
iib (Infinicon InfiniBand), 2-2
o2ib (OFED), 2-2
openib (Mellanox-Gold InfiniBand), 2-2
ra (RapidArray), 2-2
TCP, 2-2
vib (Voltaire InfiniBand), 2-2

NIC
bonding, 12-4
multiple, 12-4

NID, server, changing, 4-23
number of clients, maximum, 33-2
number of files in a directory, maximum, 33-3
number of open files, maximum, 33-5

O
o2ib (OFED), 2-2
obdfilter_survey tool, 18-5
OFED, 2-2
OpenIB LND, 31-14
operating tips

data migration script, simple, 27-3
Operational scenarios, 4-30
orphaned objects, working with, 19-22
OSS

memory, determining, 3-7
RAM size, maximum, 33-5
service thread count, 20-2

OSS read cache, 21-22
OST

failover, 8-4
number of inodes, 20-7
removing and restoring, 4-25

OST block I/O stream, watching, 21-19
OST pools, 25-18
OST, adding, 27-2
OST, determining which machine is serving, 4-28
ost_survey tool, 18-11
OSTs

adding, 4-10
OSTs and MDTs, maximum, 33-2
OSTs, full, handling, 25-14
Index-5



P
parameters, setting with lctl, 4-20
parameters, setting with mkfs.lustre, 4-19
parameters, setting with tunefs.lustre, 4-19
pathname length, maximum, 33-4
performance tips, 23-5
performing direct I/O, 25-21
Perl, 3-3
PIOS

examples, 18-20
PIOS I/O mode

COW I/O, 18-16
DIRECT I/O, 18-16
POSIX I/O, 18-16

PIOS I/O modes, 18-16
PIOS parameter

ChunkSize(c), 18-17
Offset(o), 18-18
RegionCount(n), 18-17
RegionSize(s), 18-17
ThreadCount(t), 18-17

PIOS tool, 18-14
plot-llstat, 32-37
pools, OST, 25-18
Portals LND

Catamount, 31-17
Linux, 31-15

POSIX
building and running POSIX-compliant test suite 

on Lustre, 16-3
installing, 16-2

POSIX I/O, 18-16
prerequisites, 3-2
proc entries

debug support, 21-32
free space distribution, 21-11
LNET information, 21-9
locating file systems and servers, 21-2
locking, 21-29
timeouts, 21-3

Q
QSW LND, 31-10
Quadrics Elan, 2-2
quota limits, 9-11

quota statistics, 9-13
quotas

administering, 9-4
allocating, 9-7
creating files, 9-4
enabling, 9-2
file formats, 9-12
granted cache, 9-10
known issues, 9-10
limits, 9-11
statistics, 9-13
working with, 9-1

R
ra (RapidArray), 2-2
RAID

creating an external journal, 10-5
formatting options, 10-4
handling degraded arrays, 10-6
insights into disk performance 

measurement, 10-6
performance tradeoffs, 10-4
reliability best practices, 10-3
selecting storage for MDS or OSTs, 10-2
software RAID, 10-7

RapidArray, 2-2
RapidArray LND, 31-11
readahead, tuning, 21-20
recovery mode, failure types

client failure, 19-2
MDS failure/failover, 19-3
network partition, 19-5
OST failure, 19-4

recovery, aborting, 4-27
Red Hat Cluster Manager, 22-8
regenerating configuration logs, 4-22
reply reconstruction, 19-11
reporting current Lustre parameters, 4-21
required software, 3-3
required tools / utilities, 3-3
root squash

configuring, 26-4
tips, 26-6
tuning, 26-4

root squash, using, 26-4
round-robin allocator, 25-13
Index-6 Lustre 2.0 Operations Manual • June 2010



routers, downed, 2-12
routers, LNET, 2-11
routerstat, 32-38
routing, 2-8
routing, elan to TCP, 7-5
RPC stream tunables, 21-12
RPC stream, watching, 21-14
RPMs, installing Lustre, 3-9
running a client and OST on the same machine, 27-5

S
scaling Lustre, 4-10
server

mounting, 4-13
unmounting, 4-14

server NID, changing, 4-23
Service tags

introduction, 5-1
using, 5-2

service threads
MDS, 20-3
OSS, 20-2

setting
SCSI I/O sizes, 23-22

setting and retrieving Lustre parameters, 4-19
sgpdd_survey tool, 18-3
simple configuration

network, combined MGS/MDT, 6-1
network, separate MGS/MDT, 6-3
TCP network, Lustre simple configurations, 6-1

SNMP monitoring, 22-9
SOCKLND kernel TCP/IP LND, 31-8
software RAID, support, 10-7
source code, installing Lustre, 3-13
starting

LNET, 2-13
statahead, tuning, 21-21
stopping

LNET, 2-14
strace, 24-14
stripe count, maximum, 33-1
stripe size, maximum, 33-2
stripe size, minimum, 33-2
striping

advantages, 25-2

disadvantages, 25-3
managing free space, 25-11
size, 25-4

striping using llapi, 25-24
supported Linux distributions, architectures and 

interconnects, 3-2
supported networks

cib (Cisco Topspin), 2-2
Cray Seastar, 2-2
Elan (Quadrics Elan), 2-2
GM and MX (Myrinet), 2-2
iib (Infinicon InfiniBand), 2-2
o2ib (OFED), 2-2
openib (Mellanox-Gold InfiniBand), 2-2
ra (RapidArray), 2-2
TCP, 2-2
vib (Voltaire InfiniBand), 2-2

system capacity, 1-14

T
TCP, 2-2
timeouts, handling, 28-17
Troubleshooting

number of OSTs needed for sustained 
throughput, 23-22

troubleshooting
consideration in connecting a SAN with 

Lustre, 23-15
default striping, 23-10
drawbacks in doing multi-client O_APPEND 

writes, 23-21
erasing a file system, 23-11
error messages, 23-3
error numbers, 23-2
handling timeouts on initial Lustre setup, 23-19
handling/debugging "bind

address already in use" error, 23-16
handling/debugging "Lustre Error

xxx went back in time", 23-20
handling/debugging error "28", 23-17
identifying a missing OST, 23-8
improving Lustre performance when working 

with small files, 23-10
log message ’out of memory’ on OST, 23-21
logs, 23-3
Lustre Error

"slow start_page_write", 23-20
OST object missing or damaged, 23-7
Index-7



OSTs become read-only, 23-8
reclaiming reserved disk space, 23-15
recovering from an unavailable OST, 23-5
replacing an existing OST or MDS, 23-17
reporting a Lustre bug, 23-4
setting SCSI I/O sizes, 23-22
slowdown occurs during Lustre startup, 23-21
triggering watchdog for PID NNN, 23-18
write performance better than read 

performance, 23-6
tunables

RPC stream, 21-12
tunables, lockless, 20-9
tunefs.lustre, 32-5

setting parameters, 4-19
tuning

directory statahead, 21-21
file readahead, 21-20
formatting the MDT and OSTs, 20-5
large-scale, 20-8
LNET tunables, 20-4
lockless tunables, 20-9
MDS threads, 20-3
module options, 20-2
OSS threads, 20-2
root squash, 26-4

U
upgrade

1.6.x to 1.8.x, 13-2
complete file system, 13-2

using
Lustre SNMP module, 14-3

usocklnd, using, 2-7
utilities, third-party

e2fsprogs, 3-3
Perl, 3-3

V
VBR, introduction, 19-13
VBR, tips, 19-14
VBR, working with, 19-14
Version-based recovery (VBR), 19-13
VIB LND, 31-12
Voltaire InfiniBand (vib), 2-2

W
weighted allocator, 25-13
weighting, adjusting between free space and 

location, 25-14
Index-8 Lustre 2.0 Operations Manual • June 2010


	Lustre™ 2.0 Operations Manual
	Contents
	Preface
	Using UNIX Commands
	Shell Prompts
	Typographic Conventions
	Third-Party Web Sites
	Revision History
	I Lustre Architecture
	1

	Introduction to Lustre

	1.1 Introducing the Lustre File System
	1.1.1 Lustre Key Features

	1.2 Lustre Components
	FIGURE 1-1 Lustre components in a basic cluster
	1.2.1 Lustre Networking (LNET)
	1.2.2 Management Server (MGS)

	1.3 Lustre Systems
	FIGURE 1-2 Lustre system interaction in a file system
	FIGURE 1-3 Lustre cluster at scale

	1.4 Files in the Lustre File System
	FIGURE 1-4 MDS inodes point to objects, ext3 inodes point to data
	FIGURE 1-5 File open and file I/O in Lustre
	1.4.1 Lustre File System and Striping
	FIGURE 1-6 Files striped with a stripe count of 2 and 3 with different stripe sizes

	1.4.2 Lustre Storage
	1.4.2.1 OSS Storage
	1.4.2.2 MDS Storage

	1.4.3 Lustre System Capacity

	1.5 Lustre Configurations
	On the MDS (mds.your.org@tcp0):
	FIGURE 1-7 A simple Lustre cluster


	1.6 Lustre Networking
	1.7 Lustre Failover
	FIGURE 1-8 Lustre failover configurations for OSSs and MDSs
	2
	Understanding Lustre Networking


	2.1 Introduction to LNET
	2.2 Supported Network Types
	2.3 Designing Your Lustre Network
	2.3.1 Identify All Lustre Networks
	2.3.2 Identify Nodes to Route Between Networks
	2.3.3 Identify Network Interfaces to Include/Exclude from LNET
	2.3.4 Determine Cluster-wide Module Configuration
	2.3.5 Determine Appropriate Mount Parameters for Clients
	MDS
	Client
	Client with SSH Access


	2.4 Configuring LNET
	2.4.1 Module Parameters
	2.4.1.1 Using Usocklnd
	2.4.1.2 OFED InfiniBand Options

	2.4.2 Module Parameters - Routing
	Best Practices for ip2nets, routes and networks Options
	Using Routing Parameters Across a Cluster
	live_router_check_interval, dead_router_check_interval, auto_down, check_routers_before_use and router_ping_timeout
	2.4.2.1 LNET Routers
	Comparing 32-bit and 64-bit LNET Routers


	2.4.3 Downed Routers

	2.5 Starting and Stopping LNET
	2.5.1 Starting LNET
	2.5.1.1 Starting Clients

	2.5.2 Stopping LNET
	II Lustre Administration
	3

	Installing Lustre


	3.1 Preparing to Install Lustre
	3.1.1 Supported Linux Distribution, Architecture and Interconnect
	3.1.2 Required Lustre Software
	3.1.3 Required Tools and Utilities
	3.1.4 (Optional) High-Availability Software
	3.1.5 Debugging Tools
	3.1.6 Environmental Requirements
	3.1.7 Memory Requirements
	3.1.7.1 Client Memory Requirements
	3.1.7.2 MDS Memory Requirements
	3.1.7.3 OSS Memory Requirements
	Calculating OSS Memory Requirements



	3.2 Installing Lustre from RPMs
	1. Verify that all Lustre installation requirements have been met.
	2. Download the Lustre RPMs.
	a. On the Lustre download site, select your platform.
	b. Download the required files.

	3. Install the Lustre packages.
	a. For each Lustre package, determine if it needs to be installed on servers and/or clients. Use TABLE 3-1 to determine where to install a specific package. Depending on your platform, not all of the listed files need to be installed.
	TABLE 3-1 Lustre required packages, descriptions and installation guidance

	b. Install the kernel, modules and ldiskfs packages.
	c. Install the utilities/userspace packages.
	d. Install the e2fsprogs package.
	e. (Optional) If you want to add optional packages to your Lustre file system, install them now.

	4. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the patched kernel.
	5. Reboot the patched clients and the servers.
	a. If you applied the patched kernel to any clients, reboot them.
	b. Reboot the servers.


	3.3 Installing Lustre from Source Code
	3.3.1 Patching the Kernel
	3.3.1.1 Introducing the Quilt Utility
	3.3.1.2 Get the Lustre Source and Unpatched Kernel
	1. Verify that all of the Lustre installation requirements have been met.
	2. Download the Lustre source code. On the Lustre download site, select a version of Lustre to download and then select Source as the platform.
	3. Download the unpatched kernel.
	4. To save time later, download e2fsprogs now.

	3.3.1.3 Patch the Kernel
	1. Unpack the Lustre source and kernel to separate source trees.
	a. Unpack the Lustre source.
	b. Unpack the kernel.

	2. Select a config file for your kernel, located in the kernel_configs directory (lustre/kernel_patches/kernel_config).
	3. Select the series file for your kernel, located in the series directory (lustre/kernel_patches/series).
	4. Set up the necessary symlinks between the kernel patches and the Lustre source.
	5. Use Quilt to apply the patches in the selected series file to the unpatched kernel. Run:


	3.3.2 Create and Install the Lustre Packages
	1. Configure the patched kernel to run with Lustre. Run:
	2. Run the Lustre configure script against the patched kernel and create the Lustre packages.
	3. Create the kernel package. Navigate to the kernel source directory and run:
	4. Install the Lustre packages.
	a. Install the kernel, modules and ldiskfs packages.
	b. Install the utilities/userspace packages.
	c. Install the e2fsprogs package.
	d. (Optional) If you want to add optional packages to your Lustre system, install them now.

	5. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the patched kernel.
	6. Reboot the patched clients and the servers.
	a. If you applied the patched kernel to any clients, reboot them.
	b. Reboot the servers.


	3.3.3 Installing Lustre with a Third-Party Network Stack
	1. Compile and install the Lustre kernel.
	a. Install the necessary build tools. GCC and related tools must also be installed. For more information, see Required Lustre Software.
	b. Install the patched Lustre source code.
	c. Build the Linux kernel RPM.
	d. Install the Linux kernel RPM.
	e. Update the boot loader (/etc/grub.conf) with the new kernel boot information.

	2. Compile and install the MX stack.
	3. Compile and install the Lustre source code.
	a. Install the Lustre source (this can be done via RPM or tarball). The source file is available at the Lustre download page. This example shows installation via the tarball.
	b. Configure and build the Lustre source code.

	4. Use the rpm -ivh command to install the RPMS.
	5. Add the following lines to the /etc/modprobe.conf file.
	6. Populate the myri0 configuration with the proper IP addresses.
	7. Add the following line to the /etc/hosts.mxlnd file.
	8. Start Lustre.
	4
	Configuring Lustre


	4.1 Configuring the Lustre File System
	1. Define the module options for Lustre networking (LNET), by adding this line to the /etc/modprobe.conf file.
	2. (Optional) Prepare the block devices to be used as OSTs or MDTs.
	3. Create a combined MGS/MDT file system.
	a. Consider the MDT size needed to support the file system.
	b. Create the MGS/MDT file system on the block device. On the MDS node, run:

	4. Mount the combined MGS/MDT file system on the block device. On the MDS node, run:
	5. Create the OST. On the OSS node, run:
	6. Mount the OST. On the OSS node where the OST was created, run:
	7. Create the client (mount the file system on the client). On the client node, run:
	8. Verify that the file system started and is working correctly by running the df, dd and ls commands on the client node.
	a. Run the lfs df -h command.
	b. Run the lfs df -ih command.
	c. Run the dd command.
	d. Run the ls command.

	4.1.0.1 Simple Lustre Configuration Example
	1. Define the module options for Lustre networking (LNET), by adding this line to the /etc/modprobe.conf file.
	2. Create a combined MGS/MDT file system on the block device. On the MDS node, run:
	3. Mount the combined MGS/MDT file system on the block device. On the MDS node, run:
	4. Create the OSTs.
	a. Create ost1. On oss1 node, run:
	b. Create ost2. On oss2 node, run:

	5. Mount the OSTs.
	a. Mount ost1. On oss1 node, run:
	b. Mount ost2. On oss2 node, run:

	6. Create the client (mount the file system on the client). On the client node, run:
	7. Verify that the file system started and is working by running the df, dd and ls commands on the client node.
	a. Run the df command:
	b. Run the dd command:
	c. Run the ls command:


	4.1.0.2 Module Setup
	4.1.1 Scaling the Lustre File System

	4.2 Additional Lustre Configuration
	4.3 Basic Lustre Administration
	4.3.1 Specifying the File System Name
	4.3.2 Starting Lustre
	4.3.3 Mounting a Server
	4.3.4 Unmounting a Server
	4.3.5 Working with Inactive OSTs
	4.3.6 Finding Nodes in the Lustre File System
	4.3.7 Mounting a Server Without Lustre Service
	4.3.8 Specifying Failout/Failover Mode for OSTs
	4.3.9 Running Multiple Lustre File Systems
	4.3.10 Setting and Retrieving Lustre Parameters
	4.3.10.1 Setting Parameters with mkfs.lustre
	4.3.10.2 Setting Parameters with tunefs.lustre
	4.3.10.3 Setting Parameters with lctl
	Setting Temporary Parameters
	Setting Permanent Parameters
	Listing Parameters

	4.3.10.4 Reporting Current Parameter Values

	4.3.11 Regenerating Lustre Configuration Logs
	1. Shut down the file system in this order.
	a. Unmount the clients.
	b. Unmount the MDT.
	c. Unmount all OSTs.

	2. Make sure the the MDT and OST devices are available.
	3. Run the writeconf command on all servers.
	a. On the MDT, run:
	b. On each OST, run:

	4. Restart the file system in this order.
	a. Mount the MGS (or the combined MGS/MDT).
	b. Mount the MDT.
	c. Mount the OSTs.
	d. Mount the clients.


	4.3.12 Changing a Server NID
	1. Update the LNET configuration in the /etc/modprobe.conf file so the list of server NIDs (lctl list_nids) is correct.
	2. Shut down the file system in this order.
	a. Unmount the clients.
	b. Unmount the MDT.
	c. Unmount all OSTs.

	3. Run the writeconf command on all servers.
	a. On the MDT, run:
	b. On each OST, run:
	c. If the NID on the MGS was changed, communicate the new MGS location to each server. Run:

	4. Restart the file system in this order.
	a. Mount the MGS (or the combined MGS/MDT).
	b. Mount the MDT.
	c. Mount the OSTs.
	d. Mount the clients.


	4.3.13 Removing and Restoring OSTs
	4.3.13.1 Removing an OST from the File System
	1. For the OST to be removed, determine the device number of the corresponding OSC on the MDT.
	a. List all OSCs on the node, along with their device numbers. Run:
	b. Determine the device number of the OSC that corresponds to the OST to be removed.

	2. Temporarily deactivate the OSC on the MDT. On the MDT, run:
	3. Discover all files that have objects residing on the deactivated OST. Run:
	4. Copy (not move) the files to a new directory in the file system.
	5. Move (not copy) the files back to their original directory in the file system.
	6. Once all files have been moved, permanently deactivate the OST on the clients and the MDT. On the MGS, run:
	Temporarily Deactivating an OST in the File System
	1. Mount the Lustre file system.
	2. On the MDS and all clients, run:


	4.3.13.2 Restoring an OST in the File System
	1. Make sure the OST to be restored is running.
	2. Reactivate the OST. On the MGS, run:


	4.3.14 Aborting Recovery
	4.3.15 Determining Which Machine is Serving an OST

	4.4 More Complex Configurations
	4.4.1 Failover

	4.5 Operational Scenarios
	IP Network, Single MDS, Single OST, No Failover
	IP Network, Failover MDS
	IP Network, Failover MDS and OSS
	4.5.1 Changing the Address of a Failover Node
	5
	Service Tags


	5.1 Introduction to Service Tags
	5.2 Using Service Tags
	5.2.1 Installing Service Tags
	1. Navigate to the Lustre download page and download the service tag package, sun-servicetag-1.1.4-1.i386.rpm, for Lustre.
	2. Install the service tag package on all Lustre nodes (MGSs, MDSs, OSSs and clients).
	3. If this is a new installation, format the OSTs, MDTs, MGSs and Lustre clients.
	4. Mount the OSTs, MDTs, MGSs and Lustre clients, and verify that the Lustre file system is running normally.

	5.2.2 Discovering and Registering Lustre Components
	1. Navigate to the Oracle Lustre download page and download the Registration client, eis-regclient.jar.
	2. Install the Registration client on one node (the collection node) that can reach all Lustre clients and servers over a TCP/IP network.
	3. Install Java Virtual Machine (Java VM) on the collection node.
	4. Start the Registration client, run:
	FIGURE 5-1 Registration Client
	5. Select an option to locate service tags and click Next.

	FIGURE 5-2 Product Data
	6. Register the service tags or save them for later use.
	7. If you wish, navigate to Sun Inventory and log into your account to view and manage your IT assets.


	5.2.3 Service Tag Registration Information
	6
	Configuring Lustre - Examples


	6.1 Simple TCP Network
	6.1.1 Lustre with Combined MGS/MDT
	6.1.1.1 Installation Summary
	6.1.1.2 Configuration Generation and Application
	1. Install the Lustre RPMS (per Installing Lustre) on all nodes that are going to be part of the Lustre file system. Boot the nodes in Lustre kernel, including the clients.
	2. Change modprobe.conf by adding the following line to it.
	3. Configuring Lustre on MGS and MDT node.
	4. Make a mount point on MDT/MGS for the file system and mount it.
	5. Configuring Lustre on all four OSTs.
	6. Make a mount point on all the OSTs for the file system and mount it.


	6.1.2 Lustre with Separate MGS and MDT
	6.1.2.1 Installation Summary
	6.1.2.2 Configuration Generation and Application
	1. Install the Lustre RPMs (per Installing Lustre) on all the nodes that are going to be a part of the Lustre file system. Boot the nodes in the Lustre kernel, including the clients.
	2. Change the modprobe.conf by adding the following line to it.
	3. Start Lustre on the MGS node.
	4. Make a mount point on MGS for the file system and mount it.
	5. Start Lustre on the MDT node.
	6. Make a mount point on MDT/MGS for the file system and mount it.
	7. Start Lustre on all the four OSTs.
	8. Make a mount point on all the OSTs for the file system and mount it
	7
	More Complicated Configurations



	7.1 Multihomed Servers
	7.1.1 Modprobe.conf
	Networks
	ip2nets

	7.1.2 Start Servers
	7.1.3 Start Clients

	7.2 Elan to TCP Routing
	7.2.1 Modprobe.conf
	7.2.2 Start servers
	7.2.3 Start clients

	7.3 Load Balancing with InfiniBand
	7.3.1 Setting Up modprobe.conf for Load Balancing
	1. Set the modprobe.conf options.
	2. Run the modprobe lnet command and create a combined MGS/MDT file system.
	3. Mount the clients.


	7.4 Multi-Rail Configurations with LNET
	8
	Failover

	8.1 What is Failover?
	8.1.1 Failover Capabilities
	8.1.2 Types of Failover Configurations

	8.2 Failover Functionality in Lustre
	8.2.1 MDT Failover Configuration (Active/Passive)
	8.2.2 OST Failover Configuration (Active/Active)
	8.2.3 Lustre Failover and MMP
	8.2.3.1 Working with MMP


	8.3 Configuring and Using Heartbeat with Lustre Failover
	8.3.1 Creating a Failover Environment
	8.3.1.1 Power Management Software
	8.3.1.2 Power Equipment

	8.3.2 Setting up the Heartbeat Software
	8.3.2.1 Installing Heartbeat
	1. Install Lustre (see Installing Lustre).
	2. Install the Heartbeat packages.

	8.3.2.2 Configuring Heartbeat
	Configuring Heartbeat without STONITH
	1. Create (or edit) the Heartbeat configuration file, /etc/ha.d/ha.cf.
	2. Define the resources that will be controlled by Heartbeat by editing the /etc/ha/d/haresources file.
	3. Create the /etc/ha.d/authkeys file and fix its permissions.
	4. Test the Heartbeat configuration.

	Configuring Heartbeat with STONITH

	8.3.2.3 (Optional) Migrating a Heartbeat Configuration (v1 to v2)

	8.3.3 Working with Heartbeat
	8.3.3.1 Starting Heartbeat
	8.3.3.2 Switching Resources Between Nodes
	1. Generate a complete list of resources known to the Heartbeat cluster resource manager. Run:
	2. From the list, identify the group name for the resource to fail over.
	3. Determine if and where the specified resource is running. Run:
	4. Migrate the resource to the host. Run:
	5. To un-migrate a resource, run:
	9
	Configuring Quotas



	9.1 Working with Quotas
	9.1.1 Enabling Disk Quotas
	1. If you have re-complied your Linux kernel, be sure that CONFIG_QUOTA and CONFIG_QUOTACTL are enabled. Also, verify that CONFIG_QFMT_V1 and/or CONFIG_QFMT_V2 are enabled.
	2. Start the server.
	3. Mount the Lustre file system on the client and verify that the lquota module has loaded properly by using the lsmod command.
	9.1.1.1 Administrative and Operational Quotas

	9.1.2 Creating Quota Files and Quota Administration
	1. Take Lustre ''offline''. That is, verify that no write operations (append, write, truncate, create or delete) are being performed (preparing to run lfs quotacheck). Operations that do not change Lustre files (such as read or mount) are okay to run.
	2. Run the lfs command with the quotacheck option:

	9.1.3 Quota Allocation
	Additional information:

	9.1.4 Known Issues with Quotas
	9.1.4.1 Granted Cache and Quota Limits
	1. A user writes files to Lustre.
	2. If the Lustre client has enough granted cache, then it returns ‘success’ to users and arranges the writes to the OSTs.
	3. Because Lustre clients have delivered success to users, the OSTs cannot fail these writes.

	9.1.4.2 Quota Limits
	9.1.4.3 Quota File Formats

	9.1.5 Lustre Quota Statistics
	9.1.5.1 Interpreting Quota Statistics
	Involving Lustre Support in Quotas Analysis
	1. Initialize the statistics data to 0 (zero). Run:
	2. Perform the quota operation that causes the problem or degraded performance.
	3. Collect all statistics in /proc/fs/lustre/lquota/ and send them to Lustre Support. Note the following:
	10
	RAID




	10.1 Considerations for Backend Storage
	10.1.1 Selecting Storage for the MDS or OSTs
	MDS
	OST

	10.1.2 Reliability Best Practices
	10.1.3 Performance Tradeoffs
	10.1.4 Formatting Options for RAID Devices
	10.1.4.1 Creating an External Journal
	1. Create a 400 MB (or larger) journal partition (RAID 1 is recommended).
	2. Create a journal device on the partition. Run:
	3. Create the OST.
	4. Mount the OST as usual.


	10.1.5 Handling Degraded RAID Arrays

	10.2 Insights into Disk Performance Measurement
	10.3 Lustre Software RAID Support
	10.3.0.1 Enabling Software RAID on Lustre
	1. Install Lustre, but do not configure it yet. See Installing Lustre.
	2. Create the RAID array with the mdadm command.
	a. Create a RAID array for an OST. On the OSS, run:
	b. Create a RAID array for an external journal. On the OSS, run:
	c. Create a RAID array for an MDT. On the MDT, run:

	3. Set up the mdadm tool.
	4. Set up periodic checks of the RAID array.
	5. Format the OSTs and MDT, and continue with normal Lustre setup and configuration.
	11
	Kerberos


	11.1 What is Kerberos?
	11.2 Lustre Setup with Kerberos
	11.2.1 Configuring Kerberos for Lustre
	11.2.1.1 Kerberos Distributions Supported on Lustre
	11.2.1.2 Preparing to Set Up Lustre with Kerberos
	1. Configure NTP to synchronize time across all machines.
	2. Configure DNS with zones.
	3. Verify that there are fully-qualified domain names (FQDNs), that are resolvable in both forward and reverse directions for all servers. This is required by Kerberos.
	4. On every node, install flowing packages:

	11.2.1.3 Configuring Lustre for Kerberos
	1. Configure the client nodes.
	a. For each client node, create a lustre_root principal and generate the keytab.
	b. Install the keytab on the client node.

	2. Configure the MDS nodes.
	a. For each MDS node, create a lustre_mds principal and generate the keytab.
	b. Install the keytabl on the MDS node.

	3. Configure the OSS nodes.
	a. For each OSS node, create a lustre_oss principal and generate the keytab.
	b. Install the keytab on the OSS node.

	General Installation Notes

	11.2.1.4 Configuring Kerberos
	1. Modify the files for Kerberos:
	2. Prepare the Kerberos database.
	3. Create service principals so Lustre supports Kerberos authentication.
	4. Configure the client nodes. For each client node:
	a. Create a lustre_root principal and generate the keytab:
	b. Install the keytab.

	5. Configure the MDS nodes. For each MDT node, create a lustre_mds principal, and generate and install the keytab.
	6. Configure the OSS nodes. For each OST node, create a lustre_oss principal, and generate and install the keytab.

	11.2.1.5 Setting the Environment
	System-wide Configuration
	1. On each MDT, OST, and client node, add the following line to /etc/fstab to mount them automatically.
	2. On each MDT and client node, dd the following line to /etc/request-key.conf.

	Networking

	11.2.1.6 Building Lustre
	11.2.1.7 Running GSS Daemons

	11.2.2 Types of Lustre-Kerberos Flavors
	11.2.2.1 Basic Flavors
	11.2.2.2 Security Flavor
	11.2.2.3 Customized Flavor
	11.2.2.4 Specifying Security Flavors
	Specifying Flavors by Mount Options
	Specifying Flavors by On-Disk Parameters

	11.2.2.5 Mounting Clients
	11.2.2.6 Rules, Syntax and Examples
	11.2.2.7 Authenticating Normal Users
	12
	Network Interface Bonding



	12.1 Network Bonding
	12.2 Requirements
	12.3 Using Lustre with Multiple NICs versus Bonding NICs
	12.4 Bonding Module Parameters
	12.5 Setting Up Bonding
	1. Create a virtual 'bond' interface by creating a configuration file in:
	2. Append the following lines to the file.
	3. Attach one or more slave interfaces to the bond interface. Modify the eth0 and eth1 configuration files (using a VI text editor).
	a. Use the VI text editor to open the eth0 configuration file.
	b. Modify/append the eth0 file as follows:
	c. Use the VI text editor to open the eth1 configuration file.
	d. Modify/append the eth1 file as follows:

	4. Set up the bond interface and its options in /etc/modprobe.conf. Start the slave interfaces by your normal network method.
	a. Append the following lines to the file.
	b. Load the bonding module.

	5. Start/restart the slave interfaces (using your normal network method).
	6. Check /proc/net/bonding to determine status on bonding. There should be a file there for each bond interface.
	7. Use ethtool or ifconfig to check the interface state. ifconfig lists the first bonded interface as “bond0.”
	12.5.1 Examples

	12.6 Configuring Lustre with Bonding
	12.6.1 Bonding References
	13
	Upgrading and Downgrading Lustre


	13.1 Lustre Interoperability
	13.2 Upgrading Lustre 1.8.x to 2.0
	13.2.1 Performing a File System Upgrade
	1. Make a complete, restorable file system backup before upgrading Lustre.
	2. If any Lustre nodes will not be upgraded to 2.0, make sure that these client and server nodes are at version 1.8.4.
	3. Install the 2.0 packages on the Lustre servers and, optionally, the clients.
	a. Install the kernel, modules and ldiskfs packages. For example:
	b. Upgrade the utilities/userspace packages. For example:
	c. If a new e2fsprogs package is available, upgrade it. For example:
	d. (Optional) If you want to add optional packages to your Lustre system, install them now.

	4. Shut down the file system.
	a. Unmount the clients. On each client node, run:
	b. Unmount the MDT. On the MDS node, run:
	c. Unmount the OSTs (be sure to unmount all OSTs). On each OSS node, run:

	5. Unload the old Lustre modules by rebooting the node or manually removing the Lustre modules.
	6. Start the upgraded file system.
	a. Mount the OSTs (be sure to mount all OSTs). On each OSS node, run:
	b. Mount the MDT. On the MDS node, run:
	c. Mount the file system on the clients. On each client node, run:

	14
	Lustre SNMP Module


	14.1 Installing the Lustre SNMP Module
	1. Locate the SNMP plug-in (lustresnmp.so) in the base Lustre RPM and install it.
	2. Locate the MIB (Lustre-MIB.txt) in /usr/share/lustre/snmp/mibs/Lustre-MIB.txt and append the following line to snmpd.con.
	3. You may need to copy Lustre-MIB.txt to a different location to use few tools. For this, use either of these commands.

	14.2 Building the Lustre SNMP Module
	1. Complete the net-snmp setup by checking and editing the snmpd.conf file, located in /etc/snmp
	2. Build the Lustre SNMP module from the Lustre src.rpm

	14.3 Using the Lustre SNMP Module
	15
	Backup and Restore

	15.1 Backing up a File System
	15.1.1 Lustre_rsync
	15.1.1.1 Using Lustre_rsync
	15.1.1.2 Lustre_rsync Examples


	15.2 Backing up a Device (MDS or OST)
	15.2.1 Backing Up the MDS
	1. Make a mount point for the file system. Run:
	2. Mount the file system. Run:
	3. Change to the mount point being backed up. Run:
	4. Back up the EAs. Run:
	5. Verify that the ea.bak file has properly backed up the EA data on the MDS. Without this EA data, the backup is not useful. Look at this file with "more" or a text editor. For each file, it should have an item similar to this:
	6. Back up all file system data. Run:
	7. Change directory out of the mounted file system. Run:
	8. Unmount the file system. Run:

	15.2.2 Backing Up an OST

	15.3 Backing up Files
	15.3.1 Backing up Extended Attributes
	1. Make a mountpoint for the file system.
	2. Mount the filesystem.
	3. Change to the mountpoint being backed up.
	4. Back up the extended attributes.
	5. Verify that the ea.bak file has properly backed up the EA data on the MDS. You can look at this file with "more" or a text editor. For each file, it should have an item similar to this
	6. Back up all file system data.
	7. Change out of the mounted file system.
	8. Unmount the file system.
	9. Print the file system label and write it down.


	15.4 Restoring from a File-level Backup
	1. Format the new device. Run:
	2. Mount the file system. Run:
	3. Change to the new file system mount point. Run:
	4. Restore the file system backup. Run:
	5. Restore the file system extended attributes. Run:
	6. Verify that the extended attributes were restored. If this is not correct, then all data in the files will be lost, and would show up as all files in the filesystem having zero length.
	7. Remove the (now invalid) recovery logs. Run:
	8. Change out of the MDS file system.
	9. Unmount the MDS file system.

	15.5 Using LVM Snapshots with Lustre
	15.5.1 Creating an LVM-based Backup File System
	1. Create LVM volumes for the MDT and OSTs.
	2. Format the LVM volumes as Lustre targets.

	15.5.2 Backing up New/Changed Files to the Backup File System
	15.5.3 Creating Snapshot Volumes
	15.5.4 Restoring the File System From a Snapshot
	1. Rename the LVM snapshot.
	2. Mount the file system from the LVM snapshot.
	3. Note the old directory contents, as of the snapshot time.

	15.5.5 Deleting Old Snapshots
	15.5.6 Changing Snapshot Volume Size
	16
	POSIX


	16.1 Introduction to POSIX
	16.2 Installing POSIX
	16.2.1 POSIX Installation Using a Quick Start Version
	1. Download the POSIX scripts into /usr/src/posix.
	2. Launch the setup script. Run:
	3. Edit the configuration file /mnt/lustre/TESTROOT/tetexec.cfg with appropriate values for your system.
	4. Save the TESTROOT for running Lustre tests. Run:
	5. Launch the test suite. Run:


	16.3 Building and Running a POSIX-Compliant Test Suite on Lustre
	16.3.1 Building the Test Suite from Scratch
	1. Download all POSIX files in http://downloads.lustre.org/public/tools/benchmarks/posix
	2. DO NOT configure or mount a Lustre file system yet.
	3. Run the {{{install.sh}}} script and select /home/tet for the root directory for the test suite installation. Say 'y' to install the users and groups. Accept the defaults to install the packages.
	4. Create a temporary directory to hold the POSIX tests while they are being built. Run:
	5. Log in as the test user. Run:
	6. Build the test suite. Run:
	7. When the script prompts "Install scripts into TESTROOT/BIN..?", do not stop the script from running (this does not work). Instead, use another terminal to replace the existing files with the downloaded files. Enter:
	8. Continue with the installation at this point. Answer 'y' to the "Build testsets" question.
	9. Answer 'n' to re-running just the failed tests.
	10. Save the test suite for later use, to run additional tests on a Lustre file system. Tar up the tests to avoid rebuilding them each time. Enter:

	16.3.2 Running the Test Suite Against Lustre
	1. As root, set up your Lustre file system, mounted on /mnt/lustre (e.g., sh llmount.sh) and untar the POSIX tests back to their home. Enter:
	2. As the vsx0 user, you can re-run the tests as many times as necessary. If you are newly su'd or logged in as the vsx0 user, y...
	3. To look at a formatted report, enter:
	4. To compare two test results, run:


	16.4 Isolating and Debugging Failures
	17
	Benchmarking

	17.1 Bonnie++ Benchmark
	1. Download the most recent version of the Bonnie++ software:
	2. Install and run the Bonnie++ software (per the ReadMe file accompanying the software).

	17.2 IOR Benchmark
	1. Satisfy the prerequisites to run IOR.
	a. Download lam 7.0.6 (local area multi-computer):
	b. Obtain a Fortran compiler for the Fedora Core 4 operating system.
	c. Download the most recent version of the IOR software:

	2. Install the IOR software (per the ReadMe file and User Guide accompanying the software).
	3. Run the IOR software. In user mode, use the lamboot command to start the lam service and use appropriate Lustre-specific commands to run IOR (described in the IOR User Guide).

	17.3 IOzone Benchmark
	1. Download the most recent version of the IOZone software from this location:
	2. Install the IOZone software (per the ReadMe file accompanying the IOZone software).
	3. Run the IOZone software (per the ReadMe file accompanied with the IOZone software).
	18
	Lustre I/O Kit

	18.1 Lustre I/O Kit Description and Prerequisites
	18.1.1 Downloading an I/O Kit
	18.1.2 Prerequisites to Using an I/O Kit

	18.2 Running I/O Kit Tests
	18.2.1 sgpdd_survey
	SCSI device:
	Raw device:
	18.2.1.1 Tuning sgpdd_survey

	18.2.2 obdfilter_survey
	OSTs
	Network
	Striped File System Over the Network
	18.2.2.1 Running obdfilter_survey Against a Local Disk
	1. Set up the Lustre file system.
	2. Verify that the obdecho.ko module is present.
	3. Run the obdfilter_survey script with the parameter case=disk. For example:
	1. List all OSTs you want to test. (You do not have to specify an MDS or LOV.)
	2. On all OSSs, run:
	3. Determine the obdfilter instance names on all Lustre clients. The device names appear in the fourth column of the lctl dl command output. For example:

	18.2.2.2 Running obdfilter_survey Against a Network
	1. Run the obdfilter_survey script with the parameters case=netdisk and targets= ''<hostname/ip_of_server>''. For example:

	18.2.2.3 Running obdfilter_survey Against a Network Disk
	1. Set up the Lustre file system with the required OSTs.
	2. Verify that the obdecho.ko module is present.
	3. Run the obdfilter_survey script with the parameter case=netdisk. For example:
	1. Run the obdfilter_survey script and tell the script the names of all echo_client instances (which should be up and running already).

	18.2.2.4 Output Files
	18.2.2.5 Script Output
	18.2.2.6 Visualizing Results

	18.2.3 ost_survey
	18.2.4 stats-collect
	Configuring stats-collect
	Running stats-collect
	Examples
	1. Start the collect profile daemon on each node.
	2. Run your test.
	3. Stop the collect profile daemon on each node, clean up the temporary file and create a profiling tarball.
	4. Create a csv file according to the profile.



	18.3 PIOS Test Tool
	18.3.1 Synopsis
	18.3.2 PIOS I/O Modes
	POSIX I/O:
	DIRECT I/O:
	COW I/O:

	18.3.3 PIOS Parameters
	ChunkSize(c):
	RegionSize(s):
	RegionCount(n):
	ThreadCount(t):
	Offset(o):

	18.3.4 PIOS Examples

	18.4 LNET Self-Test
	18.4.1 Basic Concepts of LNET Self-Test
	18.4.1.1 Modules
	18.4.1.2 Utilities
	18.4.1.3 Session
	18.4.1.4 Console
	18.4.1.5 Group
	18.4.1.6 Test
	18.4.1.7 Batch
	18.4.1.8 Sample Script
	1. Load libcfs.ko, lnet.ko, ksocklnd.ko and lnet_selftest.ko on all test nodes and the console node.
	2. Run this script on the console node:


	18.4.2 LNET Self-Test Commands
	18.4.2.1 Session
	18.4.2.2 Group
	18.4.2.3 Batch and Test
	18.4.2.4 Other Commands
	19
	Lustre Recovery



	19.1 Recovery Overview
	19.1.1 Client Failure
	19.1.2 Client Eviction
	19.1.3 MDS Failure (Failover)
	19.1.4 OST Failure (Failover)
	19.1.5 Network Partition
	19.1.6 Failed Recovery

	19.2 Metadata Replay
	19.2.1 XID Numbers
	19.2.2 Transaction Numbers
	19.2.3 Replay and Resend
	19.2.4 Client Replay List
	19.2.5 Server Recovery
	19.2.6 Request Replay
	19.2.7 Gaps in the Replay Sequence
	19.2.8 Lock Recovery
	19.2.9 Request Resend

	19.3 Reply Reconstruction
	19.3.1 Required State
	19.3.2 Reconstruction of Open Replies
	Finding the File Handle
	Finding the Resource/fid
	Finding the Lock Handle


	19.4 Version-based Recovery
	1. VBR only allows clients to replay transactions if the affected inodes have the same version as during the original execution of the transactions, even if there is gap in transactions due to a missed client.
	2. The server attempts to execute every transaction that the client offers, even if it encounters a re-integration failure.
	3. When the replay is complete, the client and server check if a replay failed on any transaction because of inode version misma...
	19.4.1 VBR Messages
	19.4.2 Tips for Using VBR

	19.5 Commit on Share
	19.5.1 Working with Commit on Share
	19.5.2 Tuning Commit On Share

	19.6 Recovering from Errors or Corruption on a Backing File System
	19.7 Recovering from Corruption in the Lustre File System
	1. Stop the Lustre file system.
	2. Run e2fsck -f on the individual MDS / OST that had problems to fix any local file system damage.
	3. Run a full e2fsck of the MDS to create a database for lfsck. It is critical to use the -n option for a mounted file system, otherwise you will corrupt the file system.
	4. Make this file accessible on all OSTs, either by using a shared file system or copying the file to the OSTs. The pdcp command is useful here.
	5. Run a similar e2fsck step on the OSTs. The e2fsck --ostdb command can be run in parallel on all OSTs.
	6. Make the mdsdb file and all ostdb files available on a mounted client and run lfsck to examine the file system. Optionally, correct the defects found by lfsck.
	19.7.1 Working with Orphaned Objects
	III Lustre Tuning, Monitoring and Troubleshooting
	20

	Lustre Tuning


	20.1 Module Options
	20.1.1 OSS Service Thread Count
	20.1.1.1 Optimizing the Number of Service Threads

	20.1.2 MDS Service Thread Count

	20.2 LNET Tunables
	20.2.0.1 Transmit and receive buffer size:
	20.2.0.2 irq_affinity

	20.3 Options for Formatting the MDT and OSTs
	20.3.1 Planning for Inodes
	20.3.2 Sizing the MDT

	20.4 Overriding Default Formatting Options
	20.4.1 Number of Inodes for the MDS
	20.4.2 Inode Size for the MDS
	20.4.3 Number of Inodes for an OST

	20.5 Large-Scale Tuning for Cray XT and Equivalents
	20.5.1 Network Tunables

	20.6 Lockless I/O Tunables
	20.7 Data Checksums
	21
	LustreProc

	21.1 Proc Entries for Lustre
	21.1.1 Locating Lustre File Systems and Servers
	21.1.2 Lustre Timeouts
	21.1.3 Adaptive Timeouts
	21.1.3.1 Configuring Adaptive Timeouts
	21.1.3.2 Interpreting Adaptive Timeouts Information

	21.1.4 LNET Information
	21.1.5 Free Space Distribution
	21.1.5.1 Managing Stripe Allocation


	21.2 Lustre I/O Tunables
	21.2.1 Client I/O RPC Stream Tunables
	21.2.2 Watching the Client RPC Stream
	21.2.3 Client Read-Write Offset Survey
	21.2.4 Client Read-Write Extents Survey
	21.2.5 Watching the OST Block I/O Stream
	21.2.6 Using File Readahead and Directory Statahead
	21.2.6.1 Tuning File Readahead
	21.2.6.2 Tuning Directory Statahead

	21.2.7 OSS Read Cache
	21.2.7.1 Using OSS Read Cache

	21.2.8 mballoc History
	21.2.9 mballoc3 Tunables
	21.2.10 Locking
	21.2.11 Setting MDS and OSS Thread Counts

	21.3 Debug Support
	21.3.1 RPC Information for Other OBD Devices
	21.3.1.1 Interpreting OST Statistics
	21.3.1.2 llobdstat
	21.3.1.3 Interpreting MDT Statistics
	22
	Lustre Monitoring



	22.1 Lustre Changelogs
	22.1.1 Working with Changelogs
	lctl changelog_register
	lfs changelog
	lfs changelog_clear
	lctl changelog_deregister

	22.1.2 Changelog Examples
	Registering a Changelog User
	Displaying Changelog Records
	Clearing Changelog Records
	Deregistering a Changelog User
	Displaying the Changelog Index and Registered Users
	Displaying the Changelog Mask
	Setting the Changelog Mask


	22.2 Lustre Monitoring Tool
	22.3 Red Hat Cluster Manager
	22.4 SNMP Monitoring
	22.5 CollectL
	Other Monitoring Options
	23
	Lustre Troubleshooting


	23.1 Troubleshooting Lustre
	23.1.1 Error Numbers
	23.1.2 Error Messages
	23.1.3 Lustre Logs

	23.2 Reporting a Lustre Bug
	1. Once you have a Lustre Bugzilla account, open a new bug and describe the problem you having.
	2. Run the Lustre diagnostics tool, using one of the following commands:

	23.3 Common Lustre Problems and Performance Tips
	23.3.1 Recovering from an Unavailable OST
	23.3.2 Write Performance Better Than Read Performance
	23.3.3 OST Object is Missing or Damaged
	23.3.4 OSTs Become Read-Only
	23.3.5 Identifying a Missing OST
	1. Generate a list of devices and determine the OST’s device number. Run:
	2. Deactivate the OST (on the OSS at the MDS). Run:
	3. Determine all the files that are striped over the missing OST, run:
	4. If necessary, you can read the valid parts of a striped file, run:
	5. You can delete these files with the unlink or munlink command.
	6. If you need to know, specifically, which parts of the file are missing data, then you first need to determine the file layout (striping pattern), which includes the index of the missing OST). Run:
	7. Use this computation is to determine which offsets in the file are affected: [(C*N + X)*S, (C*N + X)*S + S - 1], N = { 0, 1, 2, ...}

	23.3.6 Improving Lustre Performance When Working with Small Files
	23.3.7 Default Striping
	23.3.8 Erasing a File System
	1. Unmount all clients/servers using this file system, run:
	2. Erase the file system and, presumably, replace it with another file system, run:
	3. If you have a separate MGS (that you do not want to reformat), then add the "writeconf" flag to mkfs.lustre on the MDT, run:

	23.3.9 How to Fix a Bad LAST_ID on an OST
	1. Determine a reasonable value for the LAST_ID file. Check on the MDS:
	2. Determine the OST index for this OST.
	3. Check on the OST. Use debugfs to check the LAST_ID value:
	4. Check the objects on the OST:
	1. Access:
	2. Check the current:
	3. Be very safe, only work on backups:
	4. Convert binary to text:
	5. Fix:
	6. Convert to binary:
	7. Verify:
	8. Replace:
	9. Clean up:

	23.3.10 Reclaiming Reserved Disk Space
	23.3.11 Considerations in Connecting a SAN with Lustre
	23.3.12 Handling/Debugging "Bind: Address already in use" Error
	23.3.13 Replacing An Existing OST or MDS
	23.3.14 Handling/Debugging Error "- 28"
	23.3.15 Triggering Watchdog for PID NNN
	23.3.16 Handling Timeouts on Initial Lustre Setup
	23.3.17 Handling/Debugging "LustreError: xxx went back in time"
	23.3.18 Lustre Error: "Slow Start_Page_Write"
	23.3.19 Drawbacks in Doing Multi-client O_APPEND Writes
	23.3.20 Slowdown Occurs During Lustre Startup
	23.3.21 Log Message ‘Out of Memory’ on OST
	23.3.22 Number of OSTs Needed for Sustained Throughput
	23.3.23 Setting SCSI I/O Sizes
	23.3.24 Identifying Which Lustre File an OST Object Belongs To
	1. On the OST (as root), run debugfs to display the FID of the file associated with the object.
	2. Note the FID’s EA and apply it to the osd_inode_id mapping.
	3. On the MDT (as root), use debugfs to find the file associated with the inode.
	24
	Lustre Debugging


	24.1 Lustre Debug Messages
	24.1.1 Format of Lustre Debug Messages
	24.1.2 Lustre Debug Messages Buffer

	24.2 Tools for Lustre Debugging
	Lustre Debugging Tools
	External Debugging Tools
	24.2.1 Debug Daemon Option to lctl
	24.2.1.1 lctl Debug Daemon Commands

	24.2.2 Controlling the Kernel Debug Log
	24.2.3 The lctl Tool
	1. To obtain a list of all the types and subsystems:
	2. To filter the debug log:
	3. To show debug messages belonging to certain subsystem or type:
	4. If you already have a debug log saved to disk (likely from a crash), to filter a log on disk:
	5. To completely flush the kernel debug buffer:

	24.2.4 Finding Memory Leaks
	24.2.5 Printing to /var/log/messages
	24.2.6 Tracing Lock Traffic
	24.2.7 Sample lctl Run
	24.2.8 Adding Debugging to the Lustre Source Code

	24.3 Troubleshooting with strace
	24.4 Looking at Disk Content
	24.4.1 Determine the Lustre UUID of an OST
	24.4.2 Tcpdump

	24.5 Ptlrpc Request History
	1. Request_in_callback() adds the new request to the service's request history.
	2. When a request buffer becomes idle, add it to the service's request buffer history list.
	3. Cull buffers from the service's request buffer history if it has grown above

	24.6 Using LWT Tracing
	IV Lustre for Users
	25

	Striping and I/O Options

	25.1 Lustre File Striping
	25.1.1 Advantages of Striping
	25.1.1.1 Bandwidth

	25.1.2 Disadvantages of Striping
	25.1.2.1 Increased Overhead
	25.1.2.2 Increased Risk

	25.1.3 Stripe Size

	25.2 Setting and Retrieving Striping Information
	25.2.1 Setting File Layouts
	25.2.2 Changing Striping for a Subdirectory
	25.2.3 Using a Specific Striping Pattern/File Layout for a Single File
	25.2.4 Creating a File on a Specific OST

	25.3 Managing Free Space
	25.3.1 Checking File System Free Space
	25.3.2 Using Stripe Allocations
	25.3.3 Round-Robin Allocator
	25.3.4 Weighted Allocator
	25.3.5 Adjusting the Weighting Between Free Space and Location

	25.4 Handling Full OSTs
	25.4.1 Checking File System Usage
	25.4.2 Taking a Full OST Offline
	1. Log into the MDS server:
	2. Use the lctl dl command to show the status of all file system components:
	3. Use lctl deactivate to take the full OST offline:
	4. Display the status of the file system components:

	25.4.3 Migrating Data within a File System
	1. Identify the file(s) to be moved. In the example below, output from the getstripe command indicates that the file test_2 is located entirely on OST2:
	2. Move the file(s).
	3. Check the file system balance. The df output in the example below shows a more balanced system compared to the df output in the example in Performing Direct I/O.
	4. Change the name of the file back to the original filename so it can be found by clients.
	5. Reactivate the OST from the MDS for further writes:


	24.5 Creating and Managing OST Pools
	25.5.1 Working with OST Pools
	25.5.1.1 Using the lfs Command with OST Pools

	25.5.2 Tips for Using OST Pools

	25.6 Performing Direct I/O
	25.6.1 Making File System Objects Immutable

	25.7 Other I/O Options
	25.7.1 Lustre Checksums
	25.7.1.1 Changing Checksum Algorithms


	25.8 Striping Using llapi
	26
	Lustre Security

	26.1 Using ACLs
	26.1.1 How ACLs Work
	26.1.2 Using ACLs with Lustre
	26.1.3 Examples

	26.2 Using Root Squash
	26.2.1 Configuring Root Squash
	26.2.2 Enabling and Tuning Root Squash
	26.2.3 Tips on Using Root Squash
	27
	Lustre Operating Tips


	27.1 Adding an OST to a Lustre File System
	1. Add a new OST by passing on the following commands, run:
	2. Migrate the data (possibly).

	27.2 A Simple Data Migration Script
	27.3 Adding Multiple SCSI LUNs on Single HBA
	27.4 Failures Running a Client and OST on the Same Machine
	27.5 Improving Lustre Metadata Performance While Using Large Directories
	V Reference
	27

	User Utilities (man1)

	28.1 lfs
	Synopsis
	Description
	Options
	Examples

	28.2 lfsck
	Synopsis
	Options
	Description

	28.3 Filefrag
	Synopsis
	Description
	Options
	Examples

	28.4 Mount
	28.5 Handling Timeouts
	29
	Lustre Programming Interfaces (man2)

	29.1 User/Group Cache Upcall
	29.1.1 Name
	29.1.2 Description
	29.1.2.1 Primary and Secondary Groups

	29.1.3 Parameters
	29.1.4 Data Structures
	30
	Setting Lustre Properties (man3)


	30.1 Using llapi
	30.1.1 llapi_file_create
	Synopsis
	Description
	Examples

	30.1.2 llapi_file_get_stripe
	Synopsis
	Description

	30.1.3 llapi_file_open
	Synopsis
	Description

	30.1.4 llapi_quotactl
	Synopsis
	Description
	Return Values
	llapi Errors

	30.1.5 llapi_path2fid
	Synopsis
	Description
	Return Values
	31
	Configuration Files and Module Parameters (man5)



	31.1 Introduction
	31.2 Module Options
	31.2.1 LNET Options
	31.2.1.1 Network Topology
	31.2.1.2 networks ("tcp")
	31.2.1.3 routes (“”)
	31.2.1.4 forwarding ("")

	31.2.2 SOCKLND Kernel TCP/IP LND
	31.2.3 QSW LND
	31.2.4 RapidArray LND
	31.2.5 VIB LND
	31.2.6 OpenIB LND
	31.2.7 Portals LND (Linux)
	31.2.8 Portals LND (Catamount)
	31.2.9 MX LND
	32
	System Configuration Utilities (man8)


	32.1 mkfs.lustre
	Synopsis
	Description
	Examples

	32.2 tunefs.lustre
	Synopsis
	Description
	Options
	Examples

	32.3 lctl
	Synopsis
	Description
	Setting Parameters with lctl
	Options
	Examples

	32.4 mount.lustre
	Synopsis
	Description
	Options
	Examples

	32.5 lustre_rsync
	Synopsis
	Description
	Options
	Examples

	32.6 Additional System Configuration Utilities
	32.6.1 lustre_rmmod.sh
	32.6.2 e2scan
	Synopsis
	Description
	Options

	32.6.3 Application Profiling Utilities
	32.6.4 More /proc Statistics for Application Profiling
	32.6.5 Testing / Debugging Utilities
	loadgen
	1. Start an arbitrary number of (echo) clients.
	2. Start and connect to an echo server, instead of a real OST.
	3. Create/bulk_write/delete objects on any number of echo clients simultaneously.

	llog_reader
	lr_reader
	sgpdd_survey
	obdfilter_survey
	ior-survey
	ost_survey
	stats-collect

	32.6.6 Flock Feature
	32.6.6.1 Example

	32.6.7 l_getidentity
	Synopsis
	Options
	Description
	Files

	32.6.8 llobdstat
	Synopsis
	Description
	Example
	Files

	32.6.9 llstat
	Synopsis
	Description
	Options
	Example
	Files

	32.6.10 lst
	Synopsis
	Description
	Example

	32.6.11 plot-llstat
	Synopsis
	Options
	Description
	Example

	32.6.12 routerstat
	Synopsis
	Description
	Options
	Files

	32.6.13 ll_recover_lost_found_objs
	Synopsis
	Description
	Options
	Example
	33
	System Limits



	33.1 Maximum Stripe Count
	33.2 Maximum Stripe Size
	33.3 Minimum Stripe Size
	33.4 Maximum Number of OSTs and MDTs
	33.5 Maximum Number of Clients
	33.6 Maximum Size of a File System
	33.7 Maximum File Size
	33.8 Maximum Number of Files or Subdirectories in a Single Directory
	33.9 MDS Space Consumption
	33.10 Maximum Length of a Filename and Pathname
	33.11 Maximum Number of Open Files for Lustre File Systems
	33.12 OSS RAM Size
	Glossary
	A
	ACL
	Administrative OST failure

	C
	CFS
	CMD
	Completion Callback
	Configlog
	Configuration Lock

	D
	Default stripe pattern
	Direct I/O
	Directory stripe descriptor

	E
	EA
	Eviction
	Export
	Extent Lock

	F
	Failback
	Failout OST
	Failover
	FID
	Fileset
	FLDB
	Flight Group

	G
	Glimpse callback
	Group Lock
	Group upcall

	I
	Import
	Intent Lock
	IOV

	K
	Kerberos

	L
	LBUG
	LDLM
	lfs
	lfsck
	liblustre
	Llite
	Llog
	Llog Catalog
	LMV
	LND
	LNET
	Load-balancing MDSs
	Lock Client
	Lock Server
	LOV
	LOV descriptor
	Lustre
	Lustre client
	Lustre file
	Lustre lite
	Lvfs

	M
	Mballoc
	MDC
	MDD
	MDS
	MDT
	Metadata Write-back Cache
	MGS
	Mountconf

	N
	NAL
	NID
	NIO API

	O
	OBD
	OBD API
	OBD type
	Obdfilter
	Object device
	Object storage
	opencache
	Orphan objects
	Orphan handling
	OSC
	OSD
	OSS
	OST

	P
	Pdirops
	pool
	Portal
	PTLRPC

	R
	Recovery
	Reply
	Re-sent request
	Revocation Callback
	Rollback
	Root squash
	routing
	RPC

	S
	Storage Object API
	Storage Objects
	Stride
	Stride size
	Stripe count
	Striping metadata

	T
	T10 object protocol

	W
	Wide striping



	Index

