
Lustre™ 2.0 Operations Manual

Part No. xxx-xxxx-10

Lustre manual version: Lustre_2.0_man_v1.1

April 2010

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software
or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware
in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Oracle and Java are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel
Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content,
products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access
to or use of third-party content, products, or services.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license and obtain
more information about Creative Commons licensing, visit Creative Commons Attribution-Share Alike 3.0 United States or send a letter to
Creative Commons, 171 2nd Street, Suite 300, San Francisco, California 94105, USA.
Please
Recycle

http://creativecommons.org/licenses/by-sa/3.0/us

Please
Recycle

Contents

Preface xxv

Part I Lustre Architecture

1. Introduction to Lustre 1–1

1.1 Introducing the Lustre File System 1–2

1.1.1 Lustre Key Features 1–3

1.2 Lustre Components 1–5

1.2.1 Lustre Networking (LNET) 1–7

1.2.2 Management Server (MGS) 1–7

1.3 Lustre Systems 1–8

1.4 Files in the Lustre File System 1–10

1.4.1 Lustre File System and Striping 1–12

1.4.2 Lustre Storage 1–13

1.4.2.1 OSS Storage 1–13

1.4.2.2 MDS Storage 1–13

1.4.3 Lustre System Capacity 1–14

1.5 Lustre Configurations 1–14

1.6 Lustre Networking 1–16

1.7 Lustre Failover 1–17
v

2. Understanding Lustre Networking 2–1

2.1 Introduction to LNET 2–1

2.2 Supported Network Types 2–2

2.3 Designing Your Lustre Network 2–3

2.3.1 Identify All Lustre Networks 2–3

2.3.2 Identify Nodes to Route Between Networks 2–3

2.3.3 Identify Network Interfaces to Include/Exclude from LNET 2–3

2.3.4 Determine Cluster-wide Module Configuration 2–4

2.3.5 Determine Appropriate Mount Parameters for Clients 2–4

2.4 Configuring LNET 2–5

2.4.1 Module Parameters 2–5

2.4.1.1 Using Usocklnd 2–7

2.4.1.2 OFED InfiniBand Options 2–8

2.4.2 Module Parameters - Routing 2–8

2.4.2.1 LNET Routers 2–11

2.4.3 Downed Routers 2–12

2.5 Starting and Stopping LNET 2–13

2.5.1 Starting LNET 2–13

2.5.1.1 Starting Clients 2–13

2.5.2 Stopping LNET 2–14
vi Lustre 2.0 Operations Manual • April 2010

Part II Lustre Administration

3. Installing Lustre 3–1

3.1 Preparing to Install Lustre 3–2

3.1.1 Supported Linux Distribution, Architecture and Interconnect 3–2

3.1.2 Required Lustre Software 3–3

3.1.3 Required Tools and Utilities 3–3

3.1.4 (Optional) High-Availability Software 3–4

3.1.5 Debugging Tools 3–4

3.1.6 Environmental Requirements 3–5

3.1.7 Memory Requirements 3–6

3.1.7.1 MDS Memory Requirements 3–6

3.1.7.2 OSS Memory Requirements 3–7

3.2 Installing Lustre from RPMs 3–9

3.3 Installing Lustre from Source Code 3–13

3.3.1 Patching the Kernel 3–14

3.3.1.1 Introducing the Quilt Utility 3–14

3.3.1.2 Get the Lustre Source and Unpatched Kernel 3–15

3.3.1.3 Patch the Kernel 3–16

3.3.2 Create and Install the Lustre Packages 3–17

3.3.3 Installing Lustre with a Third-Party Network Stack 3–19
Contents vii

4. Configuring Lustre 4–1

4.1 Configuring the Lustre File System 4–2

4.1.0.1 Simple Lustre Configuration Example 4–5

4.1.0.2 Module Setup 4–10

4.1.1 Scaling the Lustre File System 4–10

4.2 Additional Lustre Configuration 4–10

4.3 Basic Lustre Administration 4–11

4.3.1 Specifying the File System Name 4–12

4.3.2 Starting Lustre 4–12

4.3.3 Mounting a Server 4–13

4.3.4 Unmounting a Server 4–14

4.3.5 Working with Inactive OSTs 4–14

4.3.6 Finding Nodes in the Lustre File System 4–15

4.3.7 Mounting a Server Without Lustre Service 4–16

4.3.8 Specifying Failout/Failover Mode for OSTs 4–16

4.3.9 Running Multiple Lustre File Systems 4–17

4.3.10 Setting and Retrieving Lustre Parameters 4–19

4.3.10.1 Setting Parameters with mkfs.lustre 4–19

4.3.10.2 Setting Parameters with tunefs.lustre 4–19

4.3.10.3 Setting Parameters with lctl 4–20

4.3.10.4 Reporting Current Parameter Values 4–21

4.3.11 Regenerating Lustre Configuration Logs 4–22

4.3.12 Changing a Server NID 4–23

4.3.13 Removing and Restoring OSTs 4–24

4.3.13.1 Removing an OST from the File System 4–24

4.3.13.2 Restoring an OST in the File System 4–26

4.3.14 Aborting Recovery 4–26

4.3.15 Determining Which Machine is Serving an OST 4–27
viii Lustre 2.0 Operations Manual • April 2010

4.4 More Complex Configurations 4–28

4.4.1 Failover 4–28

4.5 Operational Scenarios 4–29

4.5.1 Unmounting a Server (without Failover) 4–31

4.5.2 Unmounting a Server (with Failover) 4–31

4.5.3 Changing the Address of a Failover Node 4–31

5. Service Tags 5–1

5.1 Introduction to Service Tags 5–1

5.2 Using Service Tags 5–2

5.2.1 Installing Service Tags 5–2

5.2.2 Discovering and Registering Lustre Components 5–3

5.2.3 Information Registered with Oracle 5–6

6. Configuring Lustre - Examples 6–1

6.1 Simple TCP Network 6–1

6.1.1 Lustre with Combined MGS/MDT 6–1

6.1.1.1 Installation Summary 6–1

6.1.1.2 Configuration Generation and Application 6–2

6.1.2 Lustre with Separate MGS and MDT 6–3

6.1.2.1 Installation Summary 6–3

6.1.2.2 Configuration Generation and Application 6–3
Contents ix

7. More Complicated Configurations 7–1

7.1 Multihomed Servers 7–1

7.1.1 Modprobe.conf 7–1

7.1.2 Start Servers 7–3

7.1.3 Start Clients 7–4

7.2 Elan to TCP Routing 7–5

7.2.1 Modprobe.conf 7–5

7.2.2 Start servers 7–5

7.2.3 Start clients 7–5

7.3 Load Balancing with InfiniBand 7–6

7.3.1 Setting Up modprobe.conf for Load Balancing 7–6

7.4 Multi-Rail Configurations with LNET 7–7

8. Failover 8–1

8.1 What is Failover? 8–1

8.1.1 Failover Capabilities 8–2

8.1.2 Types of Failover Configurations 8–2

8.2 Failover Functionality in Lustre 8–3

8.2.1 MDT Failover Configuration (Active/Passive) 8–4

8.2.2 OST Failover Configuration (Active/Active) 8–4

8.2.3 Lustre Failover and MMP 8–4

8.2.3.1 Working with MMP 8–5
x Lustre 2.0 Operations Manual • April 2010

8.3 Configuring and Using Heartbeat with Lustre Failover 8–6

8.3.1 Creating a Failover Environment 8–6

8.3.1.1 Power Management Software 8–6

8.3.1.2 Power Equipment 8–7

8.3.2 Setting up the Heartbeat Software 8–7

8.3.2.1 Installing Heartbeat 8–8

8.3.2.2 Configuring Heartbeat 8–8

8.3.2.3 (Optional) Migrating a Heartbeat Configuration (v1 to
v2) 8–13

8.3.3 Working with Heartbeat 8–14

8.3.3.1 Starting Heartbeat 8–14

8.3.3.2 Switching Resources Between Nodes 8–14

9. Configuring Quotas 9–1

9.1 Working with Quotas 9–1

9.1.1 Enabling Disk Quotas 9–2

9.1.1.1 Administrative and Operational Quotas 9–3

9.1.2 Creating Quota Files and Quota Administration 9–4

9.1.3 Quota Allocation 9–7

9.1.4 Known Issues with Quotas 9–10

9.1.4.1 Granted Cache and Quota Limits 9–10

9.1.4.2 Quota Limits 9–11

9.1.4.3 Quota File Formats 9–12

9.1.5 Lustre Quota Statistics 9–13

9.1.5.1 Interpreting Quota Statistics 9–14
Contents xi

10. RAID 10–1

10.1 Considerations for Backend Storage 10–2

10.1.1 Selecting Storage for the MDS or OSTs 10–2

10.1.2 Reliability Best Practices 10–3

10.1.3 Understanding Double Failures with Hardware and Software
RAID5 10–4

10.1.4 Performance Tradeoffs 10–5

10.1.5 Formatting Options for RAID Devices 10–5

10.1.5.1 Creating an External Journal 10–6

10.1.6 Handling Degraded RAID Arrays 10–7

10.2 Insights into Disk Performance Measurement 10–7

10.3 Lustre Software RAID Support 10–8

10.3.0.1 Enabling Software RAID on Lustre 10–8

11. Kerberos 11–1

11.1 What is Kerberos? 11–1

11.2 Lustre Setup with Kerberos 11–2

11.2.1 Configuring Kerberos for Lustre 11–2

11.2.1.1 Kerberos Distributions Supported on Lustre 11–2

11.2.1.2 Preparing to Set Up Lustre with Kerberos 11–3

11.2.1.3 Configuring Lustre for Kerberos 11–4

11.2.1.4 Configuring Kerberos 11–6

11.2.1.5 Setting the Environment 11–8

11.2.1.6 Building Lustre 11–9

11.2.1.7 Running GSS Daemons 11–10
xii Lustre 2.0 Operations Manual • April 2010

11.2.2 Types of Lustre-Kerberos Flavors 11–11

11.2.2.1 Basic Flavors 11–11

11.2.2.2 Security Flavor 11–12

11.2.2.3 Customized Flavor 11–13

11.2.2.4 Specifying Security Flavors 11–14

11.2.2.5 Mounting Clients 11–14

11.2.2.6 Rules, Syntax and Examples 11–15

11.2.2.7 Authenticating Normal Users 11–16

12. Bonding 12–1

12.1 Network Bonding 12–1

12.2 Requirements 12–2

12.3 Using Lustre with Multiple NICs versus Bonding NICs 12–4

12.4 Bonding Module Parameters 12–5

12.5 Setting Up Bonding 12–5

12.5.1 Examples 12–9

12.6 Configuring Lustre with Bonding 12–11

12.6.1 Bonding References 12–11

13. Lustre SNMP Module 13–1

13.1 Installing the Lustre SNMP Module 13–2

13.2 Building the Lustre SNMP Module 13–2

13.3 Using the Lustre SNMP Module 13–3
Contents xiii

14. Backup and Restore 14–1

14.1 Backing up a File System 14–1

14.1.1 Lustre_rsync 14–2

14.1.1.1 Using Lustre_rsync 14–2

14.1.1.2 Lustre_rsync Examples 14–4

14.2 Backing up a Device (MDS or OST) 14–5

14.2.1 Backing Up the MDS 14–5

14.2.2 Backing Up an OST 14–6

14.3 Backing up Files 14–7

14.3.1 Backing up Extended Attributes 14–7

14.4 Restoring from a File-level Backup 14–8

14.5 Using LVM Snapshots with Lustre 14–9

14.5.1 Creating an LVM-based Backup File System 14–10

14.5.2 Backing up New/Changed Files to the Backup File System 14–11

14.5.3 Creating Snapshot Volumes 14–12

14.5.4 Restoring the File System From a Snapshot 14–13

14.5.5 Deleting Old Snapshots 14–15

14.5.6 Changing Snapshot Volume Size 14–15

15. POSIX 15–1

15.1 Introduction to POSIX 15–1

15.2 Installing POSIX 15–2

15.2.1 POSIX Installation Using a Quick Start Version 15–2

15.3 Building and Running a POSIX-Compliant Test Suite on Lustre 15–3

15.3.1 Building the Test Suite from Scratch 15–3

15.3.2 Running the Test Suite Against Lustre 15–5

15.4 Isolating and Debugging Failures 15–6
xiv Lustre 2.0 Operations Manual • April 2010

16. Benchmarking 16–1

16.1 Bonnie++ Benchmark 16–2

16.2 IOR Benchmark 16–3

16.3 IOzone Benchmark 16–5

17. Lustre I/O Kit 17–1

17.1 Lustre I/O Kit Description and Prerequisites 17–1

17.1.1 Downloading an I/O Kit 17–2

17.1.2 Prerequisites to Using an I/O Kit 17–2

17.2 Running I/O Kit Tests 17–2

17.2.1 sgpdd_survey 17–3

17.2.2 obdfilter_survey 17–5

17.2.2.1 Running obdfilter_survey Against a Local Disk 17–6

17.2.2.2 Running obdfilter_survey Against a Network 17–7

17.2.2.3 Running obdfilter_survey Against a Network Disk 17–
8

17.2.2.4 Output Files 17–9

17.2.2.5 Script Output 17–10

17.2.2.6 Visualizing Results 17–10

17.2.3 ost_survey 17–11

17.2.4 stats-collect 17–12

17.3 PIOS Test Tool 17–14

17.3.1 Synopsis 17–15

17.3.2 PIOS I/O Modes 17–16

17.3.3 PIOS Parameters 17–17

17.3.4 PIOS Examples 17–20
Contents xv

17.4 LNET Self-Test 17–21

17.4.1 Basic Concepts of LNET Self-Test 17–21

17.4.1.1 Modules 17–21

17.4.1.2 Utilities 17–22

17.4.1.3 Session 17–22

17.4.1.4 Console 17–22

17.4.1.5 Group 17–23

17.4.1.6 Test 17–23

17.4.1.7 Batch 17–24

17.4.1.8 Sample Script 17–25

17.4.2 LNET Self-Test Commands 17–26

17.4.2.1 Session 17–26

17.4.2.2 Group 17–27

17.4.2.3 Batch and Test 17–30

17.4.2.4 Other Commands 17–33

18. Lustre Recovery 18–1

18.1 Recovery Overview 18–2

18.1.1 Client Failure 18–2

18.1.2 Client Eviction 18–3

18.1.3 MDS Failure (Failover) 18–3

18.1.4 OST Failure (Failover) 18–4

18.1.5 Network Partition 18–5

18.1.6 Failed Recovery 18–5
xvi Lustre 2.0 Operations Manual • April 2010

18.2 Metadata Replay 18–6

18.2.1 XID Numbers 18–6

18.2.2 Transaction Numbers 18–6

18.2.3 Replay and Resend 18–7

18.2.4 Client Replay List 18–7

18.2.5 Server Recovery 18–8

18.2.6 Request Replay 18–9

18.2.7 Gaps in the Replay Sequence 18–9

18.2.8 Lock Recovery 18–10

18.2.9 Request Resend 18–10

18.3 Reply Reconstruction 18–11

18.3.1 Required State 18–11

18.3.2 Reconstruction of Open Replies 18–11

18.4 Version-based Recovery 18–13

18.4.1 VBR Messages 18–14

18.4.2 Tips for Using VBR 18–14

18.5 Commit on Share 18–15

18.5.1 Working with Commit on Share 18–15

18.5.2 Tuning Commit On Share 18–16

18.6 Recovering from Errors or Corruption on a Backing File System 18–16

18.7 Recovering from Corruption in the Lustre File System 18–18

18.7.1 Working with Orphaned Objects 18–22
Contents xvii

Part III Lustre Tuning, Monitoring and Troubleshooting

19. Lustre Tuning 19–1

19.1 Module Options 19–2

19.1.1 OSS Service Thread Count 19–2

19.1.1.1 Optimizing the Number of Service Threads 19–2

19.1.2 MDS Service Thread Count 19–3

19.1.2.1 I/O Scheduler 19–4

19.2 LNET Tunables 19–4

19.2.0.1 Transmit and receive buffer size: 19–4

19.2.0.2 irq_affinity 19–4

19.3 Options for Formatting the MDT and OSTs 19–5

19.3.1 Planning for Inodes 19–5

19.3.2 Sizing the MDT 19–5

19.4 Overriding Default Formatting Options 19–6

19.4.1 Number of Inodes for the MDT 19–6

19.4.2 Inode Size for the MDT 19–7

19.4.3 Number of Inodes for an OST 19–7

19.5 Large-Scale Tuning for Cray XT and Equivalents 19–8

19.5.1 Network Tunables 19–8

19.6 Lockless I/O Tunables 19–9

19.7 Data Checksums 19–10
xviii Lustre 2.0 Operations Manual • April 2010

20. LustreProc 20–1

20.1 Proc Entries for Lustre 20–2

20.1.1 Locating Lustre File Systems and Servers 20–2

20.1.2 Lustre Timeouts 20–3

20.1.3 Adaptive Timeouts 20–5

20.1.3.1 Configuring Adaptive Timeouts 20–6

20.1.3.2 Interpreting Adaptive Timeouts Information 20–8

20.1.4 LNET Information 20–9

20.1.5 Free Space Distribution 20–11

20.1.5.1 Managing Stripe Allocation 20–11

20.2 Lustre I/O Tunables 20–12

20.2.1 Client I/O RPC Stream Tunables 20–12

20.2.2 Watching the Client RPC Stream 20–14

20.2.3 Client Read-Write Offset Survey 20–15

20.2.4 Client Read-Write Extents Survey 20–17

20.2.5 Watching the OST Block I/O Stream 20–19

20.2.6 Using File Readahead and Directory Statahead 20–20

20.2.6.1 Tuning File Readahead 20–20

20.2.6.2 Tuning Directory Statahead 20–21

20.2.7 OSS Read Cache 20–22

20.2.7.1 Using OSS Read Cache 20–22

20.2.8 mballoc History 20–25

20.2.9 mballoc3 Tunables 20–27

20.2.10 Locking 20–29

20.2.11 Setting MDS and OSS Thread Counts 20–30
Contents xix

20.3 Debug Support 20–32

20.3.1 RPC Information for Other OBD Devices 20–35

20.3.1.1 Interpreting OST Statistics 20–36

20.3.1.2 llobdstat 20–38

20.3.1.3 Interpreting MDT Statistics 20–38

21. Lustre Troubleshooting 21–1

21.1 Troubleshooting Lustre 21–2

21.1.1 Error Numbers 21–2

21.1.2 Error Messages 21–3

21.1.3 Lustre Logs 21–3

21.2 Reporting a Lustre Bug 21–4

21.3 Common Lustre Problems and Performance Tips 21–5

21.3.1 Recovering from an Unavailable OST 21–5

21.3.2 Write Performance Better Than Read Performance 21–6

21.3.3 OST Object is Missing or Damaged 21–7

21.3.4 OSTs Become Read-Only 21–8

21.3.5 Identifying a Missing OST 21–8

21.3.6 Improving Lustre Performance When Working with Small Files
21–10

21.3.7 Default Striping 21–10

21.3.8 Erasing a File System 21–11

21.3.9 Reclaiming Reserved Disk Space 21–11

21.3.10 Considerations in Connecting a SAN with Lustre 21–12

21.3.11 Handling/Debugging "Bind: Address already in use" Error 21–13

21.3.12 Replacing An Existing OST or MDS 21–14

21.3.13 Handling/Debugging Error "- 28" 21–14

21.3.14 Triggering Watchdog for PID NNN 21–15

21.3.15 Handling Timeouts on Initial Lustre Setup 21–16
xx Lustre 2.0 Operations Manual • April 2010

21.3.16 Handling/Debugging "LustreError: xxx went back in time" 21–17

21.3.17 Lustre Error: "Slow Start_Page_Write" 21–17

21.3.18 Drawbacks in Doing Multi-client O_APPEND Writes 21–18

21.3.19 Slowdown Occurs During Lustre Startup 21–18

21.3.20 Log Message ‘Out of Memory’ on OST 21–18

21.3.21 Number of OSTs Needed for Sustained Throughput 21–19

21.3.22 Setting SCSI I/O Sizes 21–19

21.3.23 Identifying Which Lustre File an OST Object Belongs To 21–20

22. Lustre Monitoring 22–1

22.1 Lustre Changelogs 22–2

22.1.1 Working with Changelogs 22–3

22.1.2 Changelog Examples 22–4

22.2 Lustre Monitoring Tool 22–8

22.3 Red Hat Cluster Manager 22–8

22.4 SNMP Monitoring 22–9

22.5 CollectL 22–9

23. Lustre Debugging 23–1

23.1 Lustre Debug Messages 23–2

23.1.1 Format of Lustre Debug Messages 23–3

23.2 Tools for Lustre Debugging 23–4

23.2.1 Debug Daemon Option to lctl 23–6

23.2.1.1 lctl Debug Daemon Commands 23–7

23.2.2 Controlling the Kernel Debug Log 23–8

23.2.3 The lctl Tool 23–8

23.2.4 Finding Memory Leaks 23–10

23.2.5 Printing to /var/log/messages 23–10

23.2.6 Tracing Lock Traffic 23–10
Contents xxi

23.2.7 Sample lctl Run 23–11

23.2.8 Adding Debugging to the Lustre Source Code 23–11

23.3 Troubleshooting with strace 23–14

23.4 Looking at Disk Content 23–15

23.4.1 Determine the Lustre UUID of an OST 23–16

23.4.2 Tcpdump 23–16

23.5 Ptlrpc Request History 23–16

23.6 Using LWT Tracing 23–17

Part IV Lustre for Users

24. Striping and I/O Options 24–1

24.1 File Striping 24–1

24.1.1 Advantages of Striping 24–2

24.1.1.1 Bandwidth 24–2

24.1.2 Disadvantages of Striping 24–3

24.1.2.1 Increased Overhead 24–3

24.1.2.2 Increased Risk 24–3

24.1.3 Stripe Size 24–4

24.2 Displaying Files and Directories with lfs getstripe 24–5

24.3 lfs setstripe – Setting File Layouts 24–6

24.3.1 Changing Striping for a Subdirectory 24–7

24.3.2 Using a Specific Striping Pattern/File Layout for a Single File 24–7

24.3.3 Creating a File on a Specific OST 24–8
xxii Lustre 2.0 Operations Manual • April 2010

24.4 Managing Free Space 24–9

24.4.1 Checking File System Free Space 24–9

24.4.2 Using Stripe Allocations 24–11

24.4.3 Round-Robin Allocator 24–11

24.4.4 Weighted Allocator 24–11

24.4.5 Adjusting the Weighting Between Free Space and Location 24–12

24.5 Handing Full OSTs 24–12

24.5.1 Checking File System Usage 24–12

24.5.2 Taking a Full OST Offline 24–13

24.5.3 Migrating Data within a File System 24–14

24.6 Creating and Managing OST Pools 24–16

24.6.1 Working with OST Pools 24–17

24.6.1.1 Using the lfs Command with OST Pools 24–18

24.6.2 Tips for Using OST Pools 24–19

24.7 Performing Direct I/O 24–20

24.7.1 Making File System Objects Immutable 24–20

24.8 Other I/O Options 24–20

24.8.1 Lustre Checksums 24–20

24.8.1.1 Changing Checksum Algorithms 24–21

24.9 Striping Using llapi 24–22
Contents xxiii

25. Lustre Security 25–1

25.1 Using ACLs 25–1

25.1.1 How ACLs Work 25–1

25.1.2 Using ACLs with Lustre 25–2

25.1.3 Examples 25–3

25.2 Using Root Squash 25–4

25.2.1 Configuring Root Squash 25–4

25.2.2 Enabling and Tuning Root Squash 25–4

25.2.3 Tips on Using Root Squash 25–6

26. Lustre Operating Tips 26–1

26.1 Adding an OST to a Lustre File System 26–2

26.2 A Simple Data Migration Script 26–3

26.3 Adding Multiple SCSI LUNs on Single HBA 26–5

26.4 Failures Running a Client and OST on the Same Machine 26–5

26.5 Improving Lustre Metadata Performance While Using Large Directories
26–6
xxiv Lustre 2.0 Operations Manual • April 2010

Part V Reference

27. User Utilities (man1) 27–1

27.1 lfs 27–2

27.2 lfsck 27–13

27.3 Filefrag 27–15

27.4 Mount 27–17

27.5 Handling Timeouts 27–17

28. Lustre Programming Interfaces (man2) 28–1

28.1 User/Group Cache Upcall 28–1

28.1.1 Name 28–1

28.1.2 Description 28–2

28.1.2.1 Primary and Secondary Groups 28–2

28.1.3 Parameters 28–3

28.1.4 Data Structures 28–3

29. Setting Lustre Properties (man3) 29–1

29.1 Using llapi 29–1

29.1.1 llapi_file_create 29–1

29.1.2 llapi_file_get_stripe 29–4

29.1.3 llapi_file_open 29–5

29.1.4 llapi_quotactl 29–6

29.1.5 llapi_path2fid 29–9
Contents xxv

30. Configuration Files and Module Parameters (man5) 30–1

30.1 Introduction 30–1

30.2 Module Options 30–2

30.2.1 LNET Options 30–3

30.2.1.1 Network Topology 30–3

30.2.1.2 networks ("tcp") 30–5

30.2.1.3 routes (“”) 30–5

30.2.1.4 forwarding ("") 30–7

30.2.2 SOCKLND Kernel TCP/IP LND 30–8

30.2.3 QSW LND 30–10

30.2.4 RapidArray LND 30–11

30.2.5 VIB LND 30–12

30.2.6 OpenIB LND 30–14

30.2.7 Portals LND (Linux) 30–15

30.2.8 Portals LND (Catamount) 30–17

30.2.9 MX LND 30–19

31. System Configuration Utilities (man8) 31–1

31.1 mkfs.lustre 31–2

31.2 tunefs.lustre 31–5

31.3 lctl 31–8

31.4 mount.lustre 31–15

31.5 lustre_rsync 31–18

31.6 Additional System Configuration Utilities 31–22

31.6.1 lustre_rmmod.sh 31–22

31.6.2 e2scan 31–23

31.6.3 Application Profiling Utilities 31–24

31.6.4 More /proc Statistics for Application Profiling 31–24

31.6.5 Testing / Debugging Utilities 31–25
xxvi Lustre 2.0 Operations Manual • April 2010

31.6.6 Flock Feature 31–30

31.6.6.1 Example 31–30

31.6.7 l_getidentity 31–31

31.6.8 llobdstat 31–32

31.6.9 llstat 31–33

31.6.10 lst 31–35

31.6.11 plot-llstat 31–37

31.6.12 routerstat 31–38

31.6.13 ll_recover_lost_found_objs 31–39

32. System Limits 32–1

32.1 Maximum Stripe Count 32–1

32.2 Maximum Stripe Size 32–2

32.3 Minimum Stripe Size 32–2

32.4 Maximum Number of OSTs and MDTs 32–2

32.5 Maximum Number of Clients 32–2

32.6 Maximum Size of a File System 32–3

32.7 Maximum File Size 32–3

32.8 Maximum Number of Files or Subdirectories in a Single Directory 32–3

32.9 MDS Space Consumption 32–4

32.10 Maximum Length of a Filename and Pathname 32–4

32.11 Maximum Number of Open Files for Lustre File Systems 32–5

32.12 OSS RAM Size 32–5

Glossary Glossary–1

Index Index–1
Contents xxvii

xxviii Lustre 2.0 Operations Manual • April 2010

Preface

The Lustre 2.0 Operations Manual provides detailed information and procedures to
install, configure and tune Lustre. The manual covers topics such as failover, quotas,
striping and bonding. The Lustre manual also contains troubleshooting information
and tips to improve Lustre operation and performance.

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com
xxv

http://docs.sun.com

Shell Prompts

Typographic Conventions

Note – Characters display differently depending on browser settings. If characters
do not display correctly, change the character encoding in your browser to Unicode
UTF-8.

A '\' (backslash) continuation character is used to indicate that commands are too
long to fit on one text line.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.
xxvi Lustre 2.0 Operations Manual • April 2010

Third-Party Web Sites
Oracle is not responsible for the availability of third-party web sites mentioned in
this document. Oracle does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Oracle will not be responsible or liable for any actual or
alleged damage or loss caused by or in connection with the use of or reliance on any
such content, goods, or services that are available on or through such sites or
resources.
Preface xxvii

xxviii Lustre 2.0 Operations Manual • April 2010

Revision History

BookTitle Part Number Rev Date Comments

Lustre 2.0 Operations Manual xxx-xxxx-10 A April 2010 First release of Lustre 2.0 manual

PART I Lustre Architecture

Lustre is a storage-architecture for clusters. The central component is the Lustre file
system, a shared file system for clusters. The Lustre file system is currently available
for Linux and provides a POSIX-compliant UNIX file system interface.

The Lustre architecture is used for many different kinds of clusters. It is best known
for powering seven of the ten largest high-performance computing (HPC) clusters in
the world with tens of thousands of client systems, petabytes (PBs) of storage and
hundreds of gigabytes per second (GB/sec) of I/O throughput. Many HPC sites use
Lustre as a site-wide global file system, servicing dozens of clusters on an
unprecedented scale.

CHAPTER 1

Introduction to Lustre

This chapter describes Lustre software and components, and includes the following
sections:

■ Introducing the Lustre File System

■ Lustre Components

■ Lustre Systems

■ Files in the Lustre File System

■ Lustre Configurations

■ Lustre Networking

■ Lustre Failover

These instructions assume you have some familiarity with Linux system
administration, cluster systems and network technologies.
1-1

1.1 Introducing the Lustre File System
Lustre is a storage architecture for clusters. The central component is the Lustre file
system, which is available for Linux and provides a POSIX-compliant UNIX file
system interface.

The Lustre architecture is used for many different kinds of clusters. It is best known
for powering seven of the ten largest high-performance computing (HPC) clusters
worldwide, with tens of thousands of client systems, petabytes (PB) of storage and
hundreds of gigabytes per second (GB/sec) of I/O throughput. Many HPC sites use
Lustre as a site-wide global file system, serving dozens of clusters on an
unprecedented scale.

The scalability of a Lustre file system reduces the need to deploy many separate file
systems (such as one for each cluster). This offers significant storage management
advantages, for example, avoiding maintenance of multiple data copies staged on
multiple file systems. Hand in hand with aggregating file system capacity with many
servers, I/O throughput is also aggregated and scales with additional servers.
Moreover, throughput (or capacity) can be easily adjusted by adding servers
dynamically.

Lustre has been integrated with several vendor’s kernels. We offer Red Hat
Enterprise Linux (RHEL) and SUSE Linux Enterprise (SUSE) kernels with Lustre
patches.
1-2 Lustre 2.0 Operations Manual • April 2010

1.1.1 Lustre Key Features
The key features of Lustre include:

■ Scalability: Lustre scales up or down with respect to the number of client nodes,
disk storage and bandwidth. Currently, Lustre is running in production
environments with up to 26,000 client nodes, with many clusters in the
10,000-20,000 client range. Other Lustre installations provide aggregated disk
storage and bandwidth of up to 1,000 OSTs running on more than 450 OSSs.
Several Lustre file systems with a capacity of 1 PB or more (allowing storage of up
to 2 billion files) have been in use since 2006.

■ Performance: Lustre deployments in production environments currently offer
performance of up to 100 GB/s. In a test environment, a performance of 130 GB/s
and 13,000 creates/s has been sustained. Lustre single client node throughput has
been measured at 2 GB/s (max) and OSS throughput at 2.5 GB/s (max). Lustre has
been run at 240 GB/sec on the Spider file system at Oak Ridge National
Laboratories.

■ POSIX compliance: The full POSIX test suite passes on Lustre clients. In a cluster,
POSIX compliance means that most operations are atomic and clients never see
stale data or metadata.

■ High-availability: Lustre offers shared storage partitions for OSS targets (OSTs),
and a shared storage partition for the MDS target (MDT).

■ Security: In Lustre, it is an option to have TCP connections only from privileged
ports. Group membership handling is server-based. POSIX access control lists
(ACLs) are supported.

■ Open source: Lustre is licensed under the GNU GPL.

Additionally, Lustre offers these features:

■ Interoperability: Lustre runs on a variety of CPU architectures and mixed-endian
clusters and interoperability between adjacent Lustre software releases.

■ Access control list (ACL): Currently, the Lustre security model follows a UNIX file
system, enhanced with POSIX ACLs. Noteworthy additional features include root
squash and connecting from privileged ports only.

■ Quotas: User and group quotas are available for Lustre.

■ OSS addition: The capacity of a Lustre file system and aggregate cluster
bandwidth can be increased without interrupting any operations by adding a new
OSS with OSTs to the cluster.

■ Controlled striping: The default stripe count and stripe size can be controlled in
various ways. The file system has a default setting that is determined at format
time. Directories can be given an attribute so that all files under that directory
(and recursively under any sub-directory) have a striping pattern determined by
the attribute. Finally, utilities and application libraries are provided to control the
striping of an individual file at creation time.
Chapter 1 Introduction to Lustre 1-3

■ Snapshots: Lustre file servers use volumes attached to the server nodes. The
Lustre software includes a utility (using LVM snapshot technology) to create a
snapshot of all volumes and group snapshots together in a snapshot file system
that can be mounted with Lustre.

■ Backup tools: Lustre 1.6 includes two utilities supporting backups. One tool scans
file systems and locates files modified since a certain timeframe. This utility makes
modified files’ pathnames available so they can be processed in parallel by other
utilities (such as rsync) using multiple clients. Another useful tool is a modified
version of GNU tar (gtar) which can back up and restore extended attributes (i.e.
file striping and pool membership) for Lustre.1

■ Other current features of Lustre are described in detail in this manual. Future
features are described in the Lustre roadmap.

1. Files backed up using the modified version of gtar are restored per the backed up striping information. The
backup procedure does not use default striping rules.
1-4 Lustre 2.0 Operations Manual • April 2010

1.2 Lustre Components
A Lustre file system consists of the following basic components (see FIGURE 1-1).

■ Metadata Server (MDS) - The MDS server makes metadata stored in one or more
MDTs available to Lustre clients. Each MDS manages the names and directories in
the Lustre file system(s) and provides network request handling for one or more
local MDTs.

■ Metadata Target (MDT) - The MDT stores metadata (such as filenames,
directories, permissions and file layout) on an MDS. Each file system has one
MDT. An MDT on a shared storage target can be available to many MDSs,
although only one should actually use it. If an active MDS fails, a passive MDS
can serve the MDT and make it available to clients. This is referred to as MDS
failover.

■ Object Storage Servers (OSS): The OSS provides file I/O service, and network
request handling for one or more local OSTs. Typically, an OSS serves between 2
and 8 OSTs, up to 8 TB each2. The MDT, OSTs and Lustre clients can run
concurrently (in any mixture) on a single node. However, a typical configuration is
an MDT on a dedicated node, two or more OSTs on each OSS node, and a client on
each of a large number of compute nodes.

■ Object Storage Target (OST): The OST stores file data (chunks of user files) as
data objects on one or more OSSs. A single Lustre file system can have multiple
OSTs, each serving a subset of file data. There is not necessarily a 1:1
correspondence between a file and an OST. To optimize performance, a file may be
spread over many OSTs. A Logical Object Volume (LOV), manages file striping
across many OSTs.

■ Lustre clients: Lustre clients are computational, visualization or desktop nodes
that run Lustre software that allows them to mount the Lustre file system.

The Lustre client software consists of an interface between the Linux Virtual File
System and the Lustre servers. Each target has a client counterpart: Metadata
Client (MDC), Object Storage Client (OSC), and a Management Client (MGC). A
group of OSCs are wrapped into a single LOV. Working in concert, the OSCs
provide transparent access to the file system.

Clients, which mount the Lustre file system, see a single, coherent, synchronized
namespace at all times. Different clients can write to different parts of the same file
at the same time, while other clients can read from the file.

Lustre includes several additional components, LNET and the MGS, described in the
following sections.

2. In Lustre 2.0, 16 TB OSTs will be supported on OEL 5 using specific RPMs (with ext4-based ldiskfs).
Chapter 1 Introduction to Lustre 1-5

FIGURE 1-1 Lustre components in a basic cluster
1-6 Lustre 2.0 Operations Manual • April 2010

1.2.1 Lustre Networking (LNET)
Lustre Networking (LNET) is an API that handles metadata and file I/O data for file
system servers and clients. LNET supports multiple, heterogeneous interfaces on
clients and servers. LNET interoperates with a variety of network transports through
Network Abstraction Layers (NAL). Lustre Network Drivers (LNDs) are available for
a number of commodity and high-end networks, including Infiniband, TCP/IP,
Quadrics Elan, Myrinet (MX and GM) and Cray.

In clusters with a Lustre file system, servers and clients communicate with one
another over a custom networking API known as Lustre Networking (LNET), while
the disk storage behind the MDSs and OSSs is connected to these servers using
traditional SAN technologies.

Key features of LNET include:

■ RDMA, when supported by underlying networks such as Elan, Myrinet and
InfiniBand.

■ Support for many commonly-used network types such as InfiniBand and IP.

■ High availability and recovery features enabling transparent recovery in
conjunction with failover servers.

■ Simultaneous availability of multiple network types with routing between them.

1.2.2 Management Server (MGS)
The MGS stores configuration information for all Lustre file systems in a cluster. Each
Lustre target contacts the MGS to provide information, and Lustre clients contact the
MGS to retrieve information. The MGS requires its own disk for storage. However,
there is a provision that allows the MGS to share a disk ("co-locate") with a single
MDT. The MGS is not considered "part" of an individual file system; it provides
configuration information for all managed Lustre file systems to other Lustre
components.
Chapter 1 Introduction to Lustre 1-7

1.3 Lustre Systems
Lustre components work together as coordinated systems to manage file and
directory operations in the file system (see FIGURE 1-2).

FIGURE 1-2 Lustre system interaction in a file system

The characteristics of the Lustre system include:

Typical number of
systems Performance

Required
attached storage

Desirable hardware
characteristics

Clients 1-100,000 1 GB/sec I/O,
1,000 metadata
ops/sec

None None

OSS 1-1,000 500-2.5 GB/sec File system
capacity/OSS
count

Good bus bandwidth

MDS 2
(2-100 in future)

3,000-15,000
metadata ops/sec

1-2% of file
system capacity

Adequate CPU power,
plenty of memory
1-8 Lustre 2.0 Operations Manual • April 2010

At scale, the Lustre cluster can include up to 1,000 OSSs and 100,000 clients (see
FIGURE 1-3).

FIGURE 1-3 Lustre cluster at scale
Chapter 1 Introduction to Lustre 1-9

1.4 Files in the Lustre File System
Traditional UNIX disk file systems use inodes, which contain lists of block numbers
where file data for the inode is stored. Similarly, for each file in a Lustre file system,
one inode exists on the MDT. However, in Lustre, the inode on the MDT does not
point to data blocks, but instead, points to one or more objects associated with the
files. This is illustrated in FIGURE 1-4. These objects are implemented as files on the
OST file systems and contain file data.

FIGURE 1-4 MDS inodes point to objects, ext3 inodes point to data
1-10 Lustre 2.0 Operations Manual • April 2010

FIGURE 1-5 shows how a file open operation transfers the object pointers from the
MDS to the client when a client opens the file, and how the client uses this
information to perform I/O on the file, directly interacting with the OSS nodes where
the objects are stored.

FIGURE 1-5 File open and file I/O in Lustre

If only one object is associated with an MDS inode, that object contains all of the data
in that Lustre file. When more than one object is associated with a file, data in the file
is "striped" across the objects.

The MDS knows the layout of each file, the number and location of the file's stripes.
The clients obtain the file layout from the MDS. Client do I/O against the stripes of a
file by communicating directly with the relevant OSTs.

The benefits of the Lustre arrangement are clear. The capacity of a Lustre file system
equals the sum of the capacities of the storage targets. The aggregate bandwidth
available in the file system equals the aggregate bandwidth offered by the OSSs to
the targets. Both capacity and aggregate I/O bandwidth scale simply with the
number of OSSs.
Chapter 1 Introduction to Lustre 1-11

1.4.1 Lustre File System and Striping
Striping allows parts of files to be stored on different OSTs, as shown in FIGURE 1-6. A
RAID 0 pattern, in which data is "striped" across a certain number of objects, is used;
the number of objects is called the stripe_count. Each object contains "chunks" of
data. When the "chunk" being written to a particular object exceeds the stripe_size,
the next "chunk" of data in the file is stored on the next target.

FIGURE 1-6 Files striped with a stripe count of 2 and 3 with different stripe sizes

File striping presents several benefits. One is that the maximum file size is not
limited by the size of a single target. Lustre can stripe files over up to 160 targets, and
each target can support a maximum disk use of 8 TB3 by a file. This leads to a
maximum disk use of 1.48 PB4 by a file. Note that the maximum file size is much
larger (2^64 bytes), but the file cannot have more than 1.48 PB2 of allocated data;
hence a file larger than 1.48 PB2 must have many sparse sections. While a single file
can only be striped over 160 targets, Lustre file systems have been built with almost
5000 targets, which is enough to support a 40 PB file system.

3. In Lustre 2.0, 16 TB on OEL 5.

4. In Lustre 2.0, 2.96 PB on OEL 5.
1-12 Lustre 2.0 Operations Manual • April 2010

Another benefit of striped files is that the I/O bandwidth to a single file is the
aggregate I/O bandwidth to the objects in a file and this can be as much as the
bandwidth of up to 160 servers.

1.4.2 Lustre Storage
The storage attached to the servers is partitioned, optionally organized with logical
volume management (LVM) and formatted as file systems. Lustre OSS and MDS
servers read, write and modify data in the format imposed by these file systems.

1.4.2.1 OSS Storage

Each OSS can manage multiple object storage targets (OSTs), one for each volume;
I/O traffic is load-balanced against servers and targets. An OSS should also balance
network bandwidth between the system network and attached storage to prevent
network bottlenecks. Depending on the server's hardware, an OSS typically serves
between 2 and 25 targets, with each target up to 8 terabytes (TBs) in size.

1.4.2.2 MDS Storage

For the MDS nodes, storage must be attached for Lustre metadata, for which 1-2
percent of the file system capacity is needed. The data access pattern for MDS storage
is different from the OSS storage: the former is a metadata access pattern with many
seeks and read-and-writes of small amounts of data, while the latter is an I/O access
pattern, which typically involves large data transfers.

High throughput to MDS storage is not important. Therefore, we recommend that a
different storage type be used for the MDS (for example FC or SAS drives, which
provide much lower seek times). Moreover, for low levels of I/O, RAID 5/6 patterns
are not optimal, a RAID 0+1 pattern yields much better results.

Lustre uses journaling file system technology on the targets, and for a MDS, an
approximately 20 percent performance gain can sometimes be obtained by placing
the journal on a separate device. Typically, the MDS requires CPU power; we
recommend at least four processor cores.
Chapter 1 Introduction to Lustre 1-13

1.4.3 Lustre System Capacity
Lustre file system capacity is the sum of the capacities provided by the targets.

As an example, 64 OSSs, each with two 8-TB targets, provide a file system with a
capacity of nearly 1 PB. If this system uses sixteen 1-TB SATA disks, it may be
possible to get 50 MB/sec from each drive, providing up to 800 MB/sec of disk
bandwidth. If this system is used as storage backend with a system network like
InfiniBand that supports a similar bandwidth, then each OSS could provide 800
MB/sec of end-to-end I/O throughput. Note that the OSS must provide inbound and
outbound bus throughput of 800 MB/sec simultaneously. The cluster could see
aggregate I/O bandwidth of 64x800, or about 50 GB/sec. Although the architectural
constraints described here are simple, in practice it takes careful hardware selection,
benchmarking and integration to obtain such results.

In a Lustre file system, storage is only attached to server nodes, not to client nodes. If
failover capability is desired, then this storage must be attached to multiple servers.
In all cases, the use of storage area networks (SANs) with expensive switches can be
avoided, because point-to-point connections between the servers and the storage
arrays normally provide the simplest and best attachments.

1.5 Lustre Configurations
Lustre file systems are easy to configure. First, the Lustre software is installed, and
then MDT and OST partitions are formatted using the standard UNIX mkfs
command. Next, the volumes carrying the Lustre file system targets are mounted on
the server nodes as local file systems. Finally, the Lustre client systems are mounted
(in a manner similar to NFS mounts).
1-14 Lustre 2.0 Operations Manual • April 2010

The configuration commands listed below are for the Lustre cluster shown in
FIGURE 1-7.

On the MDS (mds.your.org@tcp0):

mkfs.lustre --mdt --mgs --fsname=large-fs /dev/sda
mount -t lustre /dev/sda /mnt/mdt

On OSS1:

mkfs.lustre --ost --fsname=large-fs --mgsnode=mds.your.org@tcp0 /dev/sdb
mount -t lustre /dev/sdb/mnt/ost1

On OSS2:

mkfs.lustre --ost --fsname=large-fs --mgsnode=mds.your.org@tcp0 /dev/sdc
mount -t lustre /dev/sdc/mnt/ost2

FIGURE 1-7 A simple Lustre cluster
Chapter 1 Introduction to Lustre 1-15

1.6 Lustre Networking
In clusters with a Lustre file system, the system network connects the servers and the
clients. The disk storage behind the MDSs and OSSs connects to these servers using
traditional SAN technologies, but this SAN does not extend to the Lustre client
system. Servers and clients communicate with one another over a custom networking
API known as Lustre Networking (LNET). LNET interoperates with a variety of
network transports through Network Abstraction Layers (NAL).

Key features of LNET include:

■ RDMA, when supported by underlying networks such as Elan, Myrinet and
InfiniBand.

■ Support for many commonly-used network types such as InfiniBand and IP.

■ High availability and recovery features enabling transparent recovery in
conjunction with failover servers.

■ Simultaneous availability of multiple network types with routing between them.

LNET includes LNDs to support many network type including:

■ InfiniBand: OpenFabrics versions 1.0 and 1.2, Mellanox Gold, Cisco, Voltaire, and
Silverstorm

■ TCP: Any network carrying TCP traffic, including GigE, 10GigE, and IPoIB

■ Quadrics: Elan3, Elan4

■ Myrinet: GM, MX

■ Cray: Seastar, RapidArray

The LNDs that support these networks are pluggable modules for the LNET software
stack.

LNET offers extremely high performance. It is common to see end-to-end throughput
over GigE networks in excess of 110 MB/sec, InfiniBand double data rate (DDR) links
reach bandwidths up to 1.5 GB/sec, and 10GigE interfaces provide end-to-end
bandwidth of over 1 GB/sec.
1-16 Lustre 2.0 Operations Manual • April 2010

1.7 Lustre Failover
Lustre offers a robust, application-transparent failover mechanism that delivers call
completion. Lustre MDSs are configured as an active/passive pair, while OSSs are
typically deployed in an active/active configuration that provides redundancy
without extra overhead, as shown in FIGURE 1-8. Often the standby MDS is the active
MDS for another Lustre file system, so no nodes are idle in the cluster.

FIGURE 1-8 Lustre failover configurations for OSSs and MDSs

Although a file system checking tool (lfsck) is provided for disaster recovery,
journaling and sophisticated protocols re-synchronize the cluster within seconds,
without the need for a lengthy fsck. Lustre version interoperability between
successive minor versions is guaranteed. As a result, the Lustre failover capability is
used regularly to upgrade the software without cluster downtime.
Chapter 1 Introduction to Lustre 1-17

Note – Lustre does not provide redundancy for data; it depends exclusively on
redundancy of backing storage devices. The backing OST storage should be RAID 5
or, preferably, RAID 6 storage. MDT storage should be RAID 1 or RAID 0+1.
1-18 Lustre 2.0 Operations Manual • April 2010

CHAPTER 2

Understanding Lustre Networking

This chapter describes Lustre Networking (LNET) and supported networks, and
includes the following sections:

■ Introduction to LNET

■ Supported Network Types

■ Designing Your Lustre Network

■ Configuring LNET

■ Starting and Stopping LNET

2.1 Introduction to LNET
In a Lustre network, servers and clients communicate with one another using LNET,
a custom networking API which abstracts away all transport-specific interaction. In
turn, LNET operates with a variety of network transports through Lustre Network
Drivers (LNDs).

The following terms are important to understanding LNET.

■ LND: Lustre Network Driver. A modular sub-component of LNET that
implements one of the network types. LNDs are implemented as individual kernel
modules (or a library in userspace) and, typically, must be compiled against the
network driver software.

■ Network: A group of nodes that communicate directly with each other. The
network is how LNET represents a single cluster. Multiple networks can be used
to connect clusters together. Each network has a unique type and number (for
example, tcp0, tcp1, or elan0).

■ NID: Lustre Network Identifier. The NID uniquely identifies a Lustre network
endpoint, including the node and the network type. There is an NID for every
network which a node uses.
2-1

Key features of LNET include:

■ RDMA, when supported by underlying networks such as Elan, Myrinet, and
InfiniBand

■ Support for many commonly-used network types such as InfiniBand and TCP/IP

■ High availability and recovery features enabling transparent recovery in
conjunction with failover servers

■ Simultaneous availability of multiple network types with routing between them

LNET is designed for complex topologies, superior routing capabilities and
simplified configuration.

2.2 Supported Network Types
LNET supports the following network types:

■ TCP

■ openib (Mellanox-Gold InfiniBand)

■ cib (Cisco Topspin)

■ iib (Infinicon InfiniBand)

■ vib (Voltaire InfiniBand)

■ o2ib (OFED - InfiniBand and iWARP)

■ ra (RapidArray)

■ Elan (Quadrics Elan)

■ GM and MX (Myrinet)

■ Cray Seastar
2-2 Lustre 2.0 Operations Manual • April 2010

2.3 Designing Your Lustre Network
Before you configure Lustre, it is essential to have a clear understanding of the Lustre
network topologies.

2.3.1 Identify All Lustre Networks
A network is a group of nodes that communicate directly with one another. As
previously mentioned in this manual, Lustre supports a variety of network types and
hardware, including TCP/IP, Elan, varieties of InfiniBand, Myrinet and others. The
normal rules for specifying networks apply to Lustre networks. For example, two
TCP networks on two different subnets (tcp0 and tcp1) would be considered two
different Lustre networks.

2.3.2 Identify Nodes to Route Between Networks
Any node with appropriate interfaces can route LNET between different
networks—the node may be a server, a client, or a standalone router. LNET can route
across different network types (such as TCP-to-Elan) or across different topologies
(such as bridging two InfiniBand or TCP/IP networks).

2.3.3 Identify Network Interfaces to Include/Exclude
from LNET
If not explicitly specified, LNET uses either the first available interface or a
pre-defined default for a given network type. If there are interfaces that LNET should
not use (such as administrative networks, IP over IB, and so on), then the included
interfaces should be explicitly listed.
Chapter 2 Understanding Lustre Networking 2-3

2.3.4 Determine Cluster-wide Module Configuration
The LNET configuration is managed via module options, typically specified in
/etc/modprobe.conf or /etc/modprobe.conf.local (depending on the distribution).
To ease the maintenance of large clusters, you can configure the networking setup for
all nodes using a single, unified set of options in the modprobe.conf file on each
node. For more information, see the ip2nets option in Setting Up modprobe.conf for
Load Balancing.

Users of liblustre should set the accept=all parameter. For details, see Module
Parameters.

2.3.5 Determine Appropriate Mount Parameters for
Clients
In mount commands, clients use the NID of the MDS host to retrieve their
configuration information. Since an MDS may have more than one NID, a client
should use the appropriate NID for its local network. If you are unsure which NID to
use, there is a lctl command that can help.

MDS

On the MDS, run:

lctl list_nids

This displays the server's NIDs (networks configured to work with Lustre).

Client

On a client, run:

lctl which_nid <NID list>

This displays the closest NID for the client.
2-4 Lustre 2.0 Operations Manual • April 2010

Client with SSH Access

From a client with SSH access to the MDS, run:

mds_nids=`ssh the_mds lctl list_nids`

lctl which_nid $mds_nids

This displays, generally, the correct NID to use for the MDS in the mount command.

Note – In the mds_nids command above, be sure to use the correct mark (`), not a
straight quotation mark ('). Otherwise, the command will not work.

2.4 Configuring LNET
This section describes how to configure LNET, including entries in the
modprobe.conf file which tell LNET which NIC(s) will be configured to work with
Lustre, and parameters that specify the routing that will be used with Lustre.

Note – We recommend that you use dotted-quad IP addressing rather than host
names. We have found this aids in reading debug logs, and helps greatly when
debugging configurations with multiple interfaces.

2.4.1 Module Parameters
LNET hardware and routing are configured via module parameters of the LNET and
LND-specific modules. Parameters should be specified in the /etc/modprobe.conf or
/etc/modules.conf file. This example specifies that the node should use a TCP
interface and an Elan interface:

options lnet networks=tcp0,elan0

Depending on the LNDs used, it may be necessary to specify explicit interfaces. For
example, if you want to use two TCP interfaces (tcp0 and tcp1, for example), it is
necessary to specify the module parameters and ethX interfaces, like this:

options lnet networks=tcp0(eth0),tcp1(eth1)

This modprobe.conf entry specifies:

■ First Lustre network, tcp0, is configured on interface eth0

■ Second Lustre network, tcp1, is configured on interface eth1
Chapter 2 Understanding Lustre Networking 2-5

Note – The requirement to specify explicit interfaces is not consistent across all
LNDs used with Lustre, and LND behavior may change over time. We recommend
that if your multi-homed settings do not work, try specifying the ethX interfaces in
the options lnet networks line.

All LNET routers that bridge two networks are equivalent; their configuration is not
primary or secondary. All available routers balance their overall load. With the router
checker configured, Lustre nodes can detect router health status, avoid those that
appear dead, and reuse the ones that restore service after failures. To do this, LNET
routing must correspond exactly with the Linux nodes' map of alive routers. There is
no hard limit on the number of LNET routers.

Note – When multiple interfaces are available during the network setup, Lustre
choose the 'best' route. Once the network connection is established, Lustre expects
the network to stay connected. In a Lustre network, connections do not fail over to
the other interface, even if multiple interfaces are available on the same node.

Under Linux 2.6, the LNET configuration parameters can be viewed under
/sys/module/; generic and acceptor parameters under lnet and LND-specific
parameters under the corresponding LND name.

Note – Depending on the Linux distribution, options with included commas may
need to be escaped using single and/or double quotes. Worst-case quotes look like:
options lnet'networks="tcp0,elan0"' 'routes="tcp [2,10]@elan0"'

Additional quotes may confuse some distributions. Check for messages such as:
lnet: Unknown parameter ‘'networks'

After modprobe LNET, remove the additional single quotes (modprobe.conf in this
case). Additionally, the refusing connection - no matching NID message generally
points to an error in the LNET module configuration.

Note – By default, Lustre ignores the loopback (lo0) interface. Lustre does not ignore
IP addresses aliased to the loopback. In this case, specify all Lustre networks.

The liblustre network parameters may be set by exporting the environment variables
LNET_NETWORKS, LNET_IP2NETS and LNET_ROUTES. Each of these variables
uses the same parameters as the corresponding modprobe option.
2-6 Lustre 2.0 Operations Manual • April 2010

Note, it is very important that a liblustre client includes ALL the routers in its setting
of LNET_ROUTES. A liblustre client cannot accept connections, it can only create
connections. If a server sends remote procedure call (RPC) replies via a router to
which the liblustre client has not already connected, then these RPC replies are lost.

Note – Liblustre is not required or even recommended for running Lustre on Linux.
Most users will not use liblustre. Instead, you should use the Lustre (VFS) client file
system to mount Lustre directly. Liblustre does NOT support multi-threaded
applications.

Note – Liblustre is not widely tested as part of Lustre release testing, and is
currently maintained only as a courtesy to the Lustre community.

2.4.1.1 Using Usocklnd

Lustre now offers usocklnd, a socket-based LND that uses TCP in userspace. By
default, liblustre is compiled with usocklnd as the transport, so there is no need to
specially enable it.

Use the following environmental variables to tune usocklnd’s behavior.

Variable Description

USOCK_SOCKNAGLE=N Turns the TCP Nagle algorithm on or off. Setting N to 0 (the
default value), turns the algorithm off. Setting N to 1 turns
the algorithm on.

USOCK_SOCKBUFSIZ=N Changes the socket buffer size. Setting N to 0 (the default
value), specifies the default socket buffer size. Setting N to
another value (must be a positive integer) causes usocklnd
to try to set the socket buffer size to the specified value.

USOCK_TXCREDITS=N Specifies the maximum number of concurrent sends. The
default value is 256. N should be set to a positive value.

USOCK_PEERTXCREDITS=N Specifies the maximum number of concurrent sends per
peer. The default value is 8. N should be set to a positive
value and should not be greater than the value of the
USOCK_TXCREDITS parameter.

USOCK_NPOLLTHREADS=N Defines the degree of parallelism of usocklnd, by equaling
the number of threads devoted to processing network
events. The default value is the number of CPUs in the
system. N should be set to a positive value.
Chapter 2 Understanding Lustre Networking 2-7

2.4.1.2 OFED InfiniBand Options

For the SilverStorm/Infinicon InfiniBand LND (iiblnd), the network and HCA may
be specified, as in this example:

options lnet networks="o2ib3(ib3)"

This specifies that the node is on o2ib network number 3, using HCA ib3.

2.4.2 Module Parameters - Routing
The following parameter specifies a colon-separated list of router definitions. Each
route is defined as a network number, followed by a list of routers.

route=<net type> <router NID(s)>

Examples:

options lnet 'networks="o2ib0"' 'routes="tcp0 192.168.10.[1-8]@o2ib0"'

This is an example for IB clients to access TCP servers via 8 IB-TCP routers.

options lnet 'ip2nets="tcp0 10.10.0.*; o2ib0(ib0) 192.168.10.[1-128]"' \
'routes="tcp 192.168.10.[1-8]@o2ib0; o2ib 10.10.0.[1-8]@tcp0"

This specifies bi-directional routing; TCP clients can reach Lustre resources on the IB
networks and IB servers can access the TCP networks. For more information on
ip2nets, Modprobe.conf.

USOCK_FAIR_LIMIT=N The maximum number of times that usocklnd loops
processing events before the next polling occurs. The default
value is 1, meaning that every network event has only one
chance to be processed before polling occurs the next time.
N should be set to a positive value.

USOCK_TIMEOUT=N Specifies the network timeout (measured in seconds).
Network options that are not completed in N seconds
time out and are canceled. The default value is 50 seconds.
N should be a positive value.

USOCK_POLL_TIMEOUT=N Specifies the polling timeout; how long usocklnd ‘sleeps’ if
no network events occur. N results in a slightly lower
overhead of checking network timeouts and longer delay of
evicting timed-out events. The default value is 1 second.
N should be set to a positive value.

USOCK_MIN_BULK=N This tunable is only used for typed network connections.
Currently, liblustre clients do not use this usocklnd facility.
2-8 Lustre 2.0 Operations Manual • April 2010

Note – Configure IB network interfaces on a different subnet than LAN interfaces.

Best Practices for ip2nets, routes and networks Options

For the ip2nets, routes and networks options, several best practices must be
followed or configuration errors occur.

Best Practice 1: If you add a comment to any of the above options, position the
semicolon after the comment. If you fail to do so, some nodes are not properly
initialized because LNET silently ignores everything following the '#' character
(which begins the comment), until it reaches the next semicolon. This is subtle; no
error message is generated to alert you to the problem.

This example shows the correct syntax:

options lnet ip2nets="pt10 192.168.0.[89,93] # comment with semicolon AFTER comment; \

pt11 192.168.0.[92,96] # comment

In this example, the following is ignored: comment with semicolon AFTER comment

This example shows the wrong syntax:

options lnet ip2nets="pt10 192.168.0.[89,93]; # comment with semicolon BEFORE comment \
pt11 192.168.0.[92,96];

In this example, the following is ignored: comment with semicolon BEFORE comment

pt11 192.168.0.[92,96]. Because LNET silently ignores pt11 192.168.0.[92,96],
these nodes are not properly initialized.

Best Practice 2: Do not add an excessive number of comments to these options. The
Linux kernel has a limit on the length of string module options; it is usually 1KB, but
may differ in vendor kernels. If you exceed this limit, errors result and the
configuration specified by the user is not processed properly.

Using Routing Parameters Across a Cluster

To ease Lustre administration, the same routing parameters can be used across
different parts of a routed cluster. For example, the bi-directional routing example
above can be used on an entire cluster (TCP clients, TCP-IB routers, and IB servers):

■ TCP clients would ignore o2ib0(ib0) 192.168.10.[1-128] in ip2nets since they have
no such interfaces. Similarly, IB servers would ignore tcp0 192.168.0.*. But TCP-IB
routers would use both since they are multi-homed.

■ TCP clients would ignore the route "tcp 192.168.10.[1-8]@o2ib0" since the target
network is a local network. For the same reason, IB servers would ignore "o2ib
10.10.0.[1-8]@tcp0".
Chapter 2 Understanding Lustre Networking 2-9

■ TCP-IB routers would ignore both routes, because they are multi-homed.
Moreover, the routers would enable LNet forwarding since their NIDs are
specified in the 'routes' parameters as being routers.

live_router_check_interval, dead_router_check_interval, auto_down,
check_routers_before_use and router_ping_timeout

In a routed Lustre setup with nodes on different networks such as TCP/IP and Elan,
the router checker checks the status of a router. The auto_down parameter
enables/disables (1/0) the automatic marking of router state.

The live_router_check_interval parameter specifies a time interval in seconds
after which the router checker will ping the live routers.

In the same way, you can set the dead_router_check_interval parameter for
checking dead routers.

You can set the timeout for the router checker to check the live or dead routers by
setting the router_ping_timeout parameter. The Router pinger sends a ping
message to a dead/live router once every dead/live_router_check_interval
seconds, and if it does not get a reply message from the router within
router_ping_timeout seconds, it considers the router to be down.

The last parameter is check_routers_before_use, which is off by default. If it is
turned on, you must also give dead_router_check_interval a positive integer
value.

The router checker gets the following variables for each router:

■ Last time that it was disabled

■ Duration of time for which it is disabled

The initial time to disable a router should be one minute (enough to plug in a cable
after removing it). If the router is administratively marked as "up", then the router
checker clears the timeout. When a route is disabled (and possibly new), the "sent
packets" counter is set to 0. When the route is first re-used (that is an elapsed disable
time is found), the sent packets counter is incremented to 1, and incremented for all
further uses of the route. If the route has been used for 100 packets successfully, then
the sent-packets counter should be with a value of 100. Set the timeout to 0 (zero), so
future errors no longer double the timeout.

Note – The router_ping_timeout is consistent with the default LND timeouts.
You may have to increase it on very large clusters if the LND timeout is also
increased. For larger clusters, we suggest increasing the check interval.
2-10 Lustre 2.0 Operations Manual • April 2010

2.4.2.1 LNET Routers

All LNET routers that bridge two networks are equivalent. They are not configured
as primary or secondary, and load is balanced across all available routers.

With the router checker configured, Lustre nodes can detect router health status,
avoid those that appear dead, and reuse the ones that restore service after failures.

There are no hard requirements regarding the number of LNET routers, although
there should enough to handle the required file serving bandwidth (and a 25%
margin for headroom).

Comparing 32-bit and 64-bit LNET Routers

By default, at startup, LNET routers allocate 544M (i.e. 139264 4K pages) of memory
as router buffers. The buffers can only come from low system memory (i.e.
ZONE_DMA and ZONE_NORMAL).

On 32-bit systems, low system memory is, at most, 896M no matter how much RAM
is installed. The size of the default router buffer puts big pressure on low memory
zones, making it more likely that an out-of-memory (OOM) situation will occur. This
is a known cause of router hangs. Lowering the value of the large_router_buffers
parameter can circumvent this problem, but at the cost of penalizing router
performance, by making large messages wait for longer for buffers.

On 64-bit architectures, the ZONE_HIGHMEM zone is always empty. Router buffers
can come from all available memory and out-of-memory hangs do not occur.
Therefore, we recommend using 64-bit routers.
Chapter 2 Understanding Lustre Networking 2-11

2.4.3 Downed Routers
There are two mechanisms to update the health status of a peer or a router:

■ LNET can actively check health status of all routers and mark them as dead or
alive automatically. By default, this is off. To enable it set auto_down and if
desired check_routers_before_use. This initial check may cause a pause
equal to router_ping_timeout at system startup, if there are dead routers in
the system.

■ When there is a communication error, all LNDs notify LNET that the peer (not
necessarily a router) is down. This mechanism is always on, and there is no
parameter to turn it off. However, if you set the LNET module parameter
auto_down to 0, LNET ignores all such peer-down notifications.

Several key differences in both mechanisms:

■ The router pinger only checks routers for their health, while LNDs notices all dead
peers, regardless of whether they are a router or not.

■ The router pinger actively checks the router health by sending pings, but LNDs
only notice a dead peer when there is network traffic going on.

■ The router pinger can bring a router from alive to dead or vice versa, but LNDs
can only bring a peer down.
2-12 Lustre 2.0 Operations Manual • April 2010

2.5 Starting and Stopping LNET
Lustre automatically starts and stops LNET, but it can also be manually started in a
standalone manner. This is particularly useful to verify that your networking setup is
working correctly before you attempt to start Lustre.

2.5.1 Starting LNET
To start LNET, run:

$ modprobe lnet

$ lctl network up

To see the list of local NIDs, run:

$ lctl list_nids

This command tells you the network(s) configured to work with Lustre

If the networks are not correctly setup, see the modules.conf "networks=" line and
make sure the network layer modules are correctly installed and configured.

To get the best remote NID, run:

$ lctl which_nid <NID list>

where <NID list> is the list of available NIDs.

This command takes the "best" NID from a list of the NIDs of a remote host. The
"best" NID is the one that the local node uses when trying to communicate with the
remote node.

2.5.1.1 Starting Clients

To start a TCP client, run:

mount -t lustre mdsnode:/mdsA/client /mnt/lustre/

To start an Elan client, run:

mount -t lustre 2@elan0:/mdsA/client /mnt/lustre
Chapter 2 Understanding Lustre Networking 2-13

2.5.2 Stopping LNET
Before the LNET modules can be removed, LNET references must be removed. In
general, these references are removed automatically when Lustre is shut down, but
for standalone routers, an explicit step is needed to stop LNET. Run:

lctl network unconfigure

Note – Attempting to remove Lustre modules prior to stopping the network may
result in a crash or an LNET hang. if this occurs, the node must be rebooted (in most
cases). Make sure that the Lustre network and Lustre are stopped prior to unloading
the modules. Be extremely careful using rmmod -f.

To unconfigure the LNET network, run:

modprobe -r <any lnd and the lnet modules>

Tip – To remove all Lustre modules, run:

$ lctl modules | awk '{print $2}' | xargs rmmod
2-14 Lustre 2.0 Operations Manual • April 2010

PART II Lustre Administration

Lustre administration includes the steps necessary to meet pre-installation
requirements, and install and configure Lustre. It also includes advanced topics such
as failover, quotas, bonding, benchmarking, Kerberos and POSIX.

CHAPTER 3

Installing Lustre

Lustre installation involves two procedures, meeting the installation prerequisites
and installing the Lustre software, either from RPMs or from source code. This
chapter includes these sections:

■ Preparing to Install Lustre

■ Installing Lustre from RPMs

■ Installing Lustre from Source Code

Lustre can be installed from either packaged binaries (RPMs) or freely-available
source code. Installing from the package release is straightforward, and
recommended for new users. Integrating Lustre into an existing kernel and building
the associated Lustre software is an involved process.

For either installation method, the following are required:

■ Linux kernel patched with Lustre-specific patches

■ Lustre modules compiled for the Linux kernel

■ Lustre utilities required for Lustre configuration

Note – When installing Lustre and creating components on devices, a certain
amount of space is reserved, so less than 100% of storage space will be available.
Lustre servers use the ext3 file system to store user-data objects and system data. By
default, ext3 file systems reserve 5% of space that cannot be used by Lustre.
Additionally, Lustre reserves up to 400 MB on each OST for journal use1. This
reserved space is unusable for general storage. For this reason, you will see up to 400
MB of space used on each OST before any file object data is saved to it.

1. Additionally, a few bytes outside the journal are used to create accounting data for Lustre.
3-1

3.1 Preparing to Install Lustre
To successfully install and run Lustre, make sure the following installation
prerequisites have been met:

■ Supported Linux Distribution, Architecture and Interconnect

■ Required Lustre Software

■ Required Tools and Utilities

■ (Optional) High-Availability Software

■ Debugging Tools

■ Environmental Requirements

■ Memory Requirements

3.1.1 Supported Linux Distribution, Architecture and
Interconnect
Lustre 2.0 supports the following Linux distributions, architectures2 and
interconnects. To install Lustre from downloaded packages (RPMs), you must use a
supported configuration.

2. We encourage the use of 64-bit platforms.

Linux Distribution*

* Lustre does not support security-enhanced (SE) Linux (including clients and servers).

Architecture Interconnect

Server OEL 5.4
RHEL 5.4

x86_64

Client OEL 5.4
RHEL 5
SLES 10, 11
Scientific Linux [New]

x86_64
i164 (RHEL)
ppc64 (SLES)
i686

Server and Client TCP/IP
Quadrics Elan 3 and 4
Myri-10G and Myrinet-2000
Mellanox
InfiniBand (Voltaire, OpenIB, Silverstorm and
any OFED-supported InfiniBand adapter)
3-2 Lustre 2.0 Operations Manual • April 2010

Note – Lustre clients running on architectures with different endianness are
supported. One limitation is that the PAGE_SIZE kernel macro on the client must be
as large as the PAGE_SIZE of the server. In particular, ia64 clients with large pages
(up to 64kB pages) can run with i386 servers (4kB pages). If you are running i386
clients with ia64 servers, you must compile the ia64 kernel with a 4kB PAGE_SIZE
(so the server page size is not larger than the client page size).

3.1.2 Required Lustre Software
To install Lustre, the following are required:

■ Linux kernel patched with Lustre-specific patches (the patched Linux kernel is
required only on the Lustre MDS and OSSs)

■ Lustre modules compiled for the Linux kernel

■ Lustre utilities required for Lustre configuration

■ (Optional) Network-specific kernel modules and libraries (for example, kernel
modules and libraries required for an InfiniBand interconnect)

These packages can be downloaded from the Lustre download site.

3.1.3 Required Tools and Utilities
Several third-party utilities are required:

■ e2fsprogs: Lustre requires a recent version of e2fsprogs that understands extents.
Use e2fsprogs-1.41-6 or later, available on the Lustre download site.

Note – Lustre-patched e2fsprogs utility only needs to be installed on machines that
mount backend (ldiskfs) file systems, such as the OSS, MDS and MGS nodes. It does
not need to be loaded on clients.

■ Perl - Various userspace utilities are written in Perl. Any recent version of Perl will
work with Lustre.
Chapter 3 Installing Lustre 3-3

http://www.sun.com/software/products/lustre/get.jsp
http://www.sun.com/software/products/lustre/get.jsp

3.1.4 (Optional) High-Availability Software
If you plan to enable failover server functionality with Lustre (either on an OSS or
the MDS), you must add high-availability (HA) software to your cluster software.
You can use any HA software package with Lustre.3 For more information, see
Failover.

3.1.5 Debugging Tools
Lustre is a complex system and you may encounter problems when using it. You
should have debugging tools on hand to help figure out how and why a problem
occurred. A variety of diagnostic and analysis tools are available to debug issues
with the Lustre software. Some of these are provided in Linux distributions, while
others have been developed and are made available by the Lustre project.

These in-kernel debug mechanisms are incorporated into the Lustre software:

■ Debug logs

■ Debug daemon

■ /proc/sys/lnet/debug

These tools are also provided with the Lustre software:

■ lctl

■ Lustre subsystem asserts

■ lfs

These general debugging tools are provided as a part of the standard Linux
distribution:

■ strace

■ /var/log/messages

■ Crash dumps

■ debugfs

These logging and data collection tools can be used to collect information for
debugging Lustre kernel issues:

■ kdump

■ netconsole

■ netdump

3. In this manual, the Linux-HA (Heartbeat) package is referenced, but you can use any HA software.
3-4 Lustre 2.0 Operations Manual • April 2010

To debug Lustre in a development environment, use:

■ leak_finder.pl

A variety of debuggers and analysis tools are available including:

■ kgdb

■ crash

For detailed information about these debugging tools, see Tools for Lustre
Debugging.

3.1.6 Environmental Requirements
Make sure the following environmental requirements are met before installing
Lustre:

■ (Recommended) Provide remote shell access to clients. Although not strictly
required to run Lustre, we recommend that all cluster nodes have remote shell
client access, to facilitate the use of Lustre configuration and monitoring scripts.
Parallel Distributed SHell (pdsh) is preferable, although Secure SHell (SSH) is
acceptable.

■ Ensure client clocks are synchronized. Lustre uses client clocks for timestamps. If
clocks are out-of-sync between clients and servers, timeouts and client evictions
will occur. Drifting clocks can also cause problems by, for example, making it
difficult to debug multi-node issues or correlate logs, which depend on
timestamps. We recommend that you use Network Time Protocol (NTP) to keep
client and server clocks in sync with each other. For more information about NTP,
see: http://www.ntp.org.

■ Maintain uniform file access permissions on all cluster nodes. Use the same user
IDs (UID) and group IDs (GID) on all clients. If use of supplemental groups is
required, verify that the group_upcall requirements have been met. See
User/Group Cache Upcall.

■ (Recommended) Disable Security-Enhanced Linux (SELinux) on servers and
clients. Lustre does not support SELinux. Therefore, disable the SELinux system
extension on all Lustre nodes and make sure other security extensions, like Novell
AppArmorand network packet filtering tools (such as iptables) do not interfere
with Lustre.
Chapter 3 Installing Lustre 3-5

http://www.ntp.org/

3.1.7 Memory Requirements
This section describes the memory requirements of Lustre.

3.1.7.1 MDS Memory Requirements

MDS memory requirements are determined by the following factors:

■ Number of clients

■ Size of the directories

■ Extent of load

The amount of memory used by the MDS is a function of how many clients are on
the system, and how many files they are using in their working set. This is driven,
primarily, by the number of locks a client can hold at one time. The default maximum
number of locks for a compute node is 100*num_cores, and interactive clients can
hold in excess of 10,000 locks at times. For the MDS, this works out to approximately
2 KB per file, including the Lustre DLM lock and kernel data structures for it, just for
the current working set.

There is, by default, 400 MB for the file system journal, and additional RAM usage
for caching file data for the larger working set that is not actively in use by clients,
but should be kept "HOT" for improved access times. Having file data in cache can
improve metadata performance by a factor of 10x or more compared to reading it
from disk. Approximately 1.5 KB/file is needed to keep a file in cache.

For example, for a single MDT on an MDS with 1,000 clients, 16 interactive nodes,
and a 2 million file working set (of which 400,000 files are cached on the clients):

File system journal = 400 MB

1000 * 4-core clients * 100 files/core * 2kB = 800 MB

16 interactive clients * 10,000 files * 2kB = 320 MB

1,600,000 file extra working set * 1.5kB/file = 2400 MB

Thus, the minimum requirement for a system with this configuration is 4-GB RAM.
However, additional memory may significantly improve performance4.

If there are directories containing 1 million or more files, you may benefit
significantly from having more memory. For example, in an environment where
clients randomly access one of 10 million files, having extra memory for the cache
significantly improves performance.

4. Having more RAM is always prudent, given the relatively low cost of this component compared to the total
system cost.
3-6 Lustre 2.0 Operations Manual • April 2010

3.1.7.2 OSS Memory Requirements

When planning the hardware for an OSS node, consider the memory usage of several
components in the Lustre system (i.e., journal, service threads, file system metadata,
etc.). Also, consider the effect of the OSS read cache feature, which consumes
memory as it caches data on the OSS node.

■ Journal size: By default, each Lustre ldiskfs file system has 400 MB for the journal
size. This can pin up to an equal amount of RAM on the OSS node per file system.

■ Service threads: The service threads on the OSS node pre-allocate a 1 MB I/O
buffer for each ost_io service thread, so these buffers do not need to be allocated
and freed for each I/O request.

■ File system metadata: A reasonable amount of RAM needs to be available for file
system metadata. While no hard limit can be placed on the amount of file system
metadata, if more RAM is available, then the disk I/O is needed less often to
retrieve the metadata.

■ Network transport: If you are using TCP or other network transport that uses
system memory for send/receive buffers, this must also be taken into
consideration.

■ Failover configuration: If the OSS node will be used for failover from another
node, then the RAM for each journal should be doubled, so the backup server can
handle the additional load if the primary server fails.

■ OSS read cache: OSS read cache provides read-only caching of data on an OSS,
using the regular Linux page cache to store the data. Just like caching from a
regular file system in Linux, OSS read cache uses as much physical memory as is
available.

Because of these memory requirements, the following calculations should be taken as
determining the absolute minimum RAM required in an OSS node.
Chapter 3 Installing Lustre 3-7

Calculating OSS Memory Requirements

The minimum recommended RAM size for an OSS with two OSTs is computed
below:

1.5 MB per OST IO thread * 512 threads = 768 MB

e1000 RX descriptors, RxDescriptors=4096 for 9000 byte MTU = 128 MB

Operating system overhead = 512 MB

400 MB journal size * 2 OST devices = 800 MB

600 MB file system metadata cache * 2 OSTs = 1200 MB

This consumes about 1,700 MB just for the pre-allocated buffers, and an additional 2
GB for minimal file system and kernel usage. Therefore, for a non-failover
configuration, the minimum RAM would be 4 GB for an OSS node with two OSTs.
While it is not strictly required, adding additional memory on the OSS will improve
the performance of reading smaller, frequently-accessed files.

For a failover configuration, the minimum RAM would be at least 6 GB. For 4 OSTs
on each OSS in a failover configuration 10GB of RAM is reasonable. When the OSS is
not handling any failed-over OSTs the extra RAM will be used as a read cache.

As a reasonable rule of thumb, about 2 GB of base memory plus 1 GB per OST can be
used. In failover configurations, about 2 GB per OST is needed.
3-8 Lustre 2.0 Operations Manual • April 2010

3.2 Installing Lustre from RPMs
This procedure describes how to install Lustre from the RPM packages. This is the
easier installation method and is recommended for new users.

Alternately, you can install Lustre directly from the source code. For more
information on this installation method, see Installing Lustre from Source Code.

Note – In all Lustre installations, the server kernel that runs on an MDS, MGS or
OSS must be patched. However, running a patched kernel on a Lustre client is
optional and only required if the client will be used for multiple purposes, such as
running as both a client and an OST.

Caution – Lustre contains kernel modifications which interact with storage devices
and may introduce security issues and data loss if not installed, configured or
administered properly. Before installing Lustre, be cautious and back up ALL data.

Use this procedure to install Lustre from RPMs.

1. Verify that all Lustre installation requirements have been met.

For more information on these prerequisites, see Preparing to Install Lustre.

2. Download the Lustre RPMs.

a. On the Lustre download site, select your platform.

The files required to install Lustre (kernels, modules and utilities RPMs) are
listed for the selected platform.

b. Download the required files.

Use the Download Manager or download the files individually.
Chapter 3 Installing Lustre 3-9

http://www.sun.com/software/products/lustre/get.jsp

3. Install the Lustre packages.

Some Lustre packages are installed on servers (MDS and OSSs), and others are
installed on Lustre clients. Lustre packages must be installed in a specific order.

Caution – For a non-production Lustre environment or for testing, a Lustre client
and server can run on the same machine. However, for best performance in a production
environment, dedicated clients are always best. Performance and other issues can occur
when an MDS or OSS and a client are running on the same machine5. The MDS and
MGS can run on the same machine.

a. For each Lustre package, determine if it needs to be installed on servers
and/or clients. Use TABLE 3-1 to determine where to install a specific package.
Depending on your platform, not all of the listed files need to be installed.

5. Running the MDS and a client on the same machine can cause recovery and deadlock issues, and the
performance of other Lustre clients to suffer. Running the OSS and a client on the same machine can cause
issues with low memory and memory pressure. The client consume all of the memory and tries to flush pages
to disk. The OSS needs to allocate pages to receive data from the client, but cannot perform this operation, due
to low memory. This can result in OOM kill and other issues.

TABLE 3-1 Lustre required packages, descriptions and installation guidance

Lustre Package Description

Install
on

servers

Install on
patchless

clients

Install on
patched
clients

Lustre kernel RPMs

kernel-lustre-<ver> Lustre-patched kernel
package for RHEL 5 (i686,
ia64 and x86_64) platform.

X X*

kernel-lustre-smp-<ver> Lustre-patched kernel
package for SuSE Server 10
(x86_64) platform.

X X*

kernel-lustre-bigsmp-<ver> Lustre-patched kernel
package for SuSE Server 10
(i686) platform.

X X*

kernel-ib-<ver> Lustre OFED package.
Install if the network
interconnect is InfiniBand.

X X X*

kernel-lustre-default-<ver>
kernel-lustre-default-base-<ver>

Lustre-patched kernel
package for SuSE Server 11
(i686 and x86_64) platform.

X X*

Lustre module RPMs
3-10 Lustre 2.0 Operations Manual • April 2010

b. Install the kernel, modules and ldiskfs packages.

Use the rpm -ivh command to install the kernel, module and ldiskfs packages.
For example:

$ rpm -ivh kernel-lustre-smp-<ver> \

kernel-ib-<ver> \

lustre-modules-<ver> \

lustre-ldiskfs-<ver>

c. Install the utilities/userspace packages.

Use the rpm -ivh command to install the utilities packages. For example:

$ rpm -ivh lustre-<ver>

lustre-modules-<ver> Lustre modules for the
patched kernel.

X X*

lustre-client-modules-<ver> Lustre modules for
patchless clients.

X

Lustre utilities

lustre-<ver> Lustre utilities package.
This includes userspace
utilities to configure and
run Lustre.

X X*

lustre-ldiskfs-<ver> Lustre-patched backing file
system kernel module
package for the ext3 file
system

X

e2fsprogs-<ver> Utilities package used to
maintain the ext3 backing
file system.

X

lustre-client-<ver> Lustre utilities for
patchless clients

X

* Only install this kernel RPM if you want to patch the client kernel. You do not have to patch the clients to run
Lustre.

TABLE 3-1 Lustre required packages, descriptions and installation guidance

Lustre Package Description

Install
on

servers

Install on
patchless

clients

Install on
patched
clients
Chapter 3 Installing Lustre 3-11

d. Install the e2fsprogs package.

Use the rpm -ivh command to install the e2fsprogs package. For example:

$ rpm -ivh e2fsprogs-<ver>

If e2fsprogs is already installed on your Linux system, install the Lustre-specific
e2fsprogs version by using rpm -Uvh to update the existing e2fsprogs package.
For example:

$ rpm -Uvh e2fsprogs-<ver>

The rpm command options --force or --nodeps are not required to install or
update the Lustre-specific e2fsprogs package. We specifically recommend that
you not use these options. If errors are reported, notify Lustre Support by filing a
bug.

e. (Optional) If you want to add optional packages to your Lustre file system,
install them now.

Optional packages include file system creation and repair tools, debugging
tools, test programs and scripts, Linux kernel and Lustre source code, and other
packages. A complete list of optional packages for your platform is provided on
the Lustre download site.

4. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the
patched kernel.

5. Reboot the patched clients and the servers.

a. If you applied the patched kernel to any clients, reboot them.

Unpatched clients do not need to be rebooted.

b. Reboot the servers.

Once all machines have rebooted, go to Configuring Lustre to configure Lustre
Networking (LNET) and the Lustre file system.
3-12 Lustre 2.0 Operations Manual • April 2010

http://www.sun.com/software/products/lustre/get.jsp

3.3 Installing Lustre from Source Code
If you need to build a customized Lustre server kernel or are using a Linux kernel
that has not been tested with the version of Lustre you are installing, you may need
to build and install Lustre from source code. This involves several steps:

■ Patching the core kernel

■ Configuring the kernel to work with Lustre

■ Creating Lustre and kernel RPMs from source code.

Please note that the Lustre/kernel configurations available at the Lustre download
site have been extensively tested and verified with Lustre. The recommended method
for installing Lustre servers is to use these pre-built binary packages (RPMs). For
more information on this installation method, see Installing Lustre from RPMs.

Caution – Lustre contains kernel modifications which interact with storage devices
and may introduce security issues and data loss if not installed, configured and
administered correctly. Before installing Lustre, be cautious and back up ALL data.

Note – When using third-party network hardware with Lustre, the third-party
modules (typically, the drivers) must be linked against the Linux kernel. The LNET
modules in Lustre also need these references. To meet these requirements, a specific
process must be followed to install and recompile Lustre. See Installing Lustre with a
Third-Party Network Stack, for an example showing how to install Lustre 1.6.6 using
the Myricom MX 1.2.7 driver. The same process can be used for other third-party
network stacks.
Chapter 3 Installing Lustre 3-13

http://www.sun.com/software/products/lustre/get.jsp

3.3.1 Patching the Kernel
If you are using non-standard hardware, plan to apply a Lustre patch, or have
another reason not to use packaged Lustre binaries, you have to apply several Lustre
patches to the core kernel and run the Lustre configure script against the kernel.

3.3.1.1 Introducing the Quilt Utility

To simplify the process of applying Lustre patches to the kernel, we recommend that
you use the Quilt utility.

Quilt manages a stack of patches on a single source tree. A series file lists the patch
files and the order in which they are applied. Patches are applied, incrementally, on
the base tree and all preceding patches. You can:

■ Apply patches from the stack (quilt push)

■ Remove patches from the stack (quilt pop)

■ Query the contents of the series file (quilt series), the contents of the stack
(quilt applied, quilt previous, quilt top), and the patches that are not
applied at a particular moment (quilt next, quilt unapplied).

■ Edit and refresh (update) patches with Quilt, as well as revert inadvertent
changes, and fork or clone patches and show the diffs before and after work.

A variety of Quilt packages (RPMs, SRPMs and tarballs) are available from various
sources. Use the most recent version you can find. Quilt depends on several other
utilities, e.g., the coreutils RPM that is only available in RedHat 9. For other
RedHat kernels, you have to get the required packages to successfully install Quilt. If
you cannot locate a Quilt package or fulfill its dependencies, you can build Quilt
from a tarball, available at the Quilt project website:

http://savannah.nongnu.org/projects/quilt

For additional information on using Quilt, including its commands, see Introduction
to Quilt and the quilt(1) man page.
3-14 Lustre 2.0 Operations Manual • April 2010

http://savannah.nongnu.org/projects/quilt
http://www.suse.de/~agruen/quilt.pdf
http://www.suse.de/~agruen/quilt.pdf
http://linux.die.net/man/1/quilt

3.3.1.2 Get the Lustre Source and Unpatched Kernel

The Lustre Engineering Team has targeted several Linux kernels for use with Lustre
servers (MDS/OSS) and provides a series of patches for each one. The Lustre patches
are maintained in the kernel_patch directory bundled with the Lustre source code.

Note – Each patch series has been tailored to a specific kernel version, and may or
may not apply cleanly to other versions of the kernel.

To obtain the Lustre source and unpatched kernel:

1. Verify that all of the Lustre installation requirements have been met.

For more information on these prerequisites, see Preparing to Install Lustre.

2. Download the Lustre source code. On the Lustre download site, select a version
of Lustre to download and then select Source as the platform.

3. Download the unpatched kernel.

For convenience, Oracle maintains an archive of unpatched kernel sources at:

http://downloads.lustre.org/public/kernels/

4. To save time later, download e2fsprogs now.

The source code for Oracle’s Lustre-enabled e2fsprogs distribution can be found
at:

http://downloads.lustre.org/public/tools/e2fsprogs/
Chapter 3 Installing Lustre 3-15

http://downloads.lustre.org/public/tools/e2fsprogs/
http://www.sun.com/software/products/lustre/get.jsp
http://downloads.lustre.org/public/kernels/

3.3.1.3 Patch the Kernel

This procedure describes how to use Quilt to apply the Lustre patches to the kernel.
To illustrate the steps in this procedure, a RHEL 5 kernel is patched for Lustre 1.6.5.1.

1. Unpack the Lustre source and kernel to separate source trees.

a. Unpack the Lustre source.

For this procedure, we assume that the resulting source tree is in
/tmp/lustre-1.6.5.1

b. Unpack the kernel.

For this procedure, we assume that the resulting source tree (also known as the
destination tree) is in /tmp/kernels/linux-2.6.18

2. Select a config file for your kernel, located in the kernel_configs directory
(lustre/kernel_patches/kernel_config).

The kernel_config directory contains the .config files, which are named to
indicate the kernel and architecture with which they are associated. For example,
the configuration file for the 2.6.18 kernel shipped with RHEL 5 (suitable for i686
SMP systems) is kernel-2.6.18-2.6-rhel5-i686-smp.config.

3. Select the series file for your kernel, located in the series directory
(lustre/kernel_patches/series).

The series file contains the patches that need to be applied to the kernel.

4. Set up the necessary symlinks between the kernel patches and the Lustre
source.

This example assumes that the Lustre source files are unpacked under
/tmp/lustre-1.6.5.1 and you have chosen the 2.6-rhel5.series file). Run:

$ cd /tmp/kernels/linux-2.6.18

$ rm -f patches series

$ ln -s /tmp/lustre-1.6.5.1/lustre/kernel_patches/series/2.6-\
rhel5.series ./series

$ ln -s /tmp/lustre-1.6.5.1/lustre/kernel_patches/patches .

5. Use Quilt to apply the patches in the selected series file to the unpatched
kernel. Run:

$ cd /tmp/kernels/linux-2.6.18

$ quilt push -av

The patched destination tree acts as a base Linux source tree for Lustre.
3-16 Lustre 2.0 Operations Manual • April 2010

3.3.2 Create and Install the Lustre Packages
After patching the kernel, configure it to work with Lustre, create the Lustre
packages (RPMs) and install them.

1. Configure the patched kernel to run with Lustre. Run:

$ cd <path to kernel tree>

$ cp /boot/config-‘uname -r‘ .config

$ make oldconfig || make menuconfig

$ make include/asm

$ make include/linux/version.h

$ make SUBDIRS=scripts

$ make include/linux/utsrelease.h

2. Run the Lustre configure script against the patched kernel and create the Lustre
packages.

$ cd <path to lustre source tree>

$./configure --with-linux=<path to kernel tree>

$ make rpms

This creates a set of .rpms in /usr/src/redhat/RPMS/<arch> with an
appended date-stamp. The SuSE path is /usr/src/packages.

Note – You do not need to run the Lustre configure script against an unpatched
kernel.

Example set of RPMs:

lustre-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.1.6.5.1.custom_20081021.i686.rpm

lustre-debuginfo-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.1.6.5.1.custom_20081021.i686.rpm

lustre-modules-1.6.5.1-\
2.6.18_53.xx.xxel5_lustre.1.6.5.1.custom_20081021.i686.rpm

lustre-source-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.1.6.5.1.custom_20081021.i686.rpm

Note – If the steps to create the RPMs fail, contact Lustre Support by reporting a
bug. See Reporting a Lustre Bug.
Chapter 3 Installing Lustre 3-17

Note – Lustre supports several features and packages that extend the core
functionality of Lustre. These features/packages can be enabled at the build time by
issuing appropriate arguments to the configure command. For a list of supported
features and packages, run ./configure –help in the Lustre source tree. The
configs/ directory of the kernel source contains the config files matching each the
kernel version. Copy one to .config at the root of the kernel tree.

3. Create the kernel package. Navigate to the kernel source directory and run:

$ make rpm

Example result:

kernel-2.6.95.0.3.EL_lustre.1.6.5.1custom-1.i686.rpm

Note – Step 3 is only valid for RedHat and SuSE kernels. If you are using a stock
Linux kernel, you need to get a script to create the kernel RPM.

4. Install the Lustre packages.

Some Lustre packages are installed on servers (MDS and OSSs), and others are
installed on Lustre clients. For guidance on where to install specific packages, see
TABLE 3-1, which lists required packages and for each package, where to install it.
Depending on the selected platform, not all of the packages listed in TABLE 3-1
need to be installed.

Note – Running the patched server kernel on the clients is optional. It is not
necessary unless the clients will be used for multiple purposes, for example, to run as
a client and an OST.

Lustre packages should be installed in this order:

a. Install the kernel, modules and ldiskfs packages.

Navigate to the directory where the RPMs are stored, and use the rpm -ivh
command to install the kernel, module and ldiskfs packages.

$ rpm -ivh kernel-lustre-smp-<ver> \

kernel-ib-<ver> \

lustre-modules-<ver> \

lustre-ldiskfs-<ver>

b. Install the utilities/userspace packages.

Use the rpm -ivh command to install the utilities packages. For example:

$ rpm -ivh lustre-<ver>
3-18 Lustre 2.0 Operations Manual • April 2010

c. Install the e2fsprogs package.

Make sure the e2fsprogs package downloaded in Step 4 is unpacked, and use
the rpm -i command to install it. For example:

$ rpm -i e2fsprogs-<ver>

d. (Optional) If you want to add optional packages to your Lustre system, install
them now.

5. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the
patched kernel.

6. Reboot the patched clients and the servers.

a. If you applied the patched kernel to any clients, reboot them.

Unpatched clients do not need to be rebooted.

b. Reboot the servers.

Once all the machines have rebooted, the next steps are to configure Lustre
Networking (LNET) and the Lustre file system. See Configuring Lustre.

3.3.3 Installing Lustre with a Third-Party Network
Stack
When using third-party network hardware, you must follow a specific process to
install and recompile Lustre. This section provides an installation example,
describing how to install Lustre 1.6.6 while using the Myricom MX 1.2.7 driver. The
same process is used for other third-party network stacks, by replacing MX-specific
references in Step 2 with the stack-specific build and using the proper --with option
when configuring the Lustre source code.

1. Compile and install the Lustre kernel.

a. Install the necessary build tools. GCC and related tools must also be
installed. For more information, see Required Lustre Software.

$ yum install rpm-build redhat-rpm-config

$ mkdir -p rpmbuild/{BUILD,RPMS,SOURCES,SPECS,SRPMS}

$ echo '%_topdir %(echo $HOME)/rpmbuild' > .rpmmacros

b. Install the patched Lustre source code.

This RPM is available at the Lustre download page.

$ rpm -ivh kernel-lustre-source-2.6.18-92.1.10.el5_lustre.1.6.6.x86_64.rpm
Chapter 3 Installing Lustre 3-19

http://www.sun.com/software/products/lustre/get.jsp

c. Build the Linux kernel RPM.

$ cd /usr/src/linux-2.6.18-92.1.10.el5_lustre.1.6.6

$ make distclean

$ make oldconfig dep bzImage modules

$ cp /boot/config-`uname -r` .config

$ make oldconfig || make menuconfig

$ make include/asm

$ make include/linux/version.h

$ make SUBDIRS=scripts

$ make rpm

d. Install the Linux kernel RPM.

If you are building a set of RPMs for a cluster installation, this step is not
necessary. Source RPMs are only needed on the build machine.

$ rpm -ivh ~/rpmbuild/kernel-lustre-2.6.18-92.1.10.el5_lustre.1.6.6.x86_64.rpm
$ mkinitrd /boot/2.6.18-92.1.10.el5_lustre.1.6.6

e. Update the boot loader (/etc/grub.conf) with the new kernel boot
information.

$ /sbin/shutdown 0 -r

2. Compile and install the MX stack.

$ cd /usr/src/

$ gunzip mx_1.2.7.tar.gz (can be obtained from www.myri.com/scs/)

$ tar -xvf mx_1.2.7.tar

$ cd mx-1.2.7

$ ln -s common include

$./configure --with-kernel-lib

$ make

$ make install
3-20 Lustre 2.0 Operations Manual • April 2010

3. Compile and install the Lustre source code.

a. Install the Lustre source (this can be done via RPM or tarball). The source file
is available at the Lustre download page. This example shows installation via
the tarball.

$ cd /usr/src/

$ gunzip lustre-1.6.6.tar.gz

$ tar -xvf lustre-1.6.6.tar

b. Configure and build the Lustre source code.

The ./configure --help command shows a list of all of the --with
options. All third-party network stacks are built in this manner.

$ cd lustre-1.6.6
$./configure --with-linux=/usr/src/linux --with-mx=/usr/src/mx-1.2.7
$ make
$ make rpms

The make rpms command output shows the location of the generated RPMs

4. Use the rpm -ivh command to install the RPMS.

$ rpm -ivh lustre-1.6.6-2.6.18_92.1.10.el5_lustre.1.6.6smp.x86_64.rpm
$ rpm -ivh lustre-modules-1.6.6-2.6.18_92.1.10.el5_lustre.1.6.6smp.x86_64.rpm
$ rpm -ivh lustre-ldiskfs-3.0.6-2.6.18_92.1.10.el5_lustre.1.6.6smp.x86_64.rpm

5. Add the following lines to the /etc/modprobe.conf file.

options kmxlnd hosts=/etc/hosts.mxlnd

options lnet networks=mx0(myri0),tcp0(eth0)

6. Populate the myri0 configuration with the proper IP addresses.

vim /etc/sysconfig/network-scripts/myri0

7. Add the following line to the /etc/hosts.mxlnd file.

$ IP HOST BOARD EP_ID

8. Start Lustre.

Once all the machines have rebooted, the next steps are to configure Lustre
Networking (LNET) and the Lustre file system. See Configuring Lustre.
Chapter 3 Installing Lustre 3-21

http://www.sun.com/software/products/lustre/get.jsp

3-22 Lustre 2.0 Operations Manual • April 2010

CHAPTER 4

Configuring Lustre

You can use the administrative utilities provided with Lustre to set up a system with
many different configurations. This chapter shows how to configure a simple Lustre
system comprised of a combined MGS/MDT, an OST and a client, and includes the
following sections:

■ Configuring the Lustre File System

■ Additional Lustre Configuration

■ Basic Lustre Administration

■ More Complex Configurations

■ Operational Scenarios
4-1

4.1 Configuring the Lustre File System
A Lustre file system consists of four types of subsystems – a Management Server
(MGS), a Metadata Target (MDT), Object Storage Targets (OSTs) and clients. We
recommend running these components on different systems, although, technically,
they can co-exist on a single system. Together, the OSSs and MDS present a Logical
Object Volume (LOV) which is an abstraction that appears in the configuration.

It is possible to set up the Lustre system with many different configurations by using
the administrative utilities provided with Lustre. Some sample scripts are included in
the directory where Lustre is installed. If you have installed the Lustre source code,
the scripts are located in the lustre/tests sub-directory. These scripts enable
quick setup of some simple, standard Lustre configurations.

Note – We recommend that you use dotted-quad IP addressing (IPv4) rather than
host names. This aids in reading debug logs, and helps greatly when debugging
configurations with multiple interfaces.

1. Define the module options for Lustre networking (LNET), by adding this line to
the /etc/modprobe.conf file1.

options lnet networks=<network interfaces that LNET can use>

This step restricts LNET to use only the specified network interfaces and prevents
LNET from using all network interfaces.

As an alternative to modifying the modprobe.conf file, you can modify the
modprobe.local file or the configuration files in the modprobe.d directory.

Note – For details on configuring networking and LNET, see Configuring LNET.

2. (Optional) Prepare the block devices to be used as OSTs or MDTs.

Depending on the hardware used in the MDS and OSS nodes, you may want to set
up a hardware or software RAID to increase the reliability of the Lustre system.
For more details on how to set up a hardware or software RAID, see the
documentation for your RAID controller or see Lustre Software RAID Support.

1. The modprobe.conf file is a Linux file that lives in /etc/modprobe.conf and specifies what parts of the kernel
are loaded.
4-2 Lustre 2.0 Operations Manual • April 2010

3. Create a combined MGS/MDT file system.

a. Consider the MDT size needed to support the file system.

When calculating the MDT size, the only important factor is the number of files
to be stored in the file system. This determines the number of inodes needed,
which drives the MDT sizing. For more information, see Sizing the MDT and
Planning for Inodes. Make sure the MDT is properly sized before performing
the next step, as a too-small MDT can cause the space on the OSTs to be
unusable.

b. Create the MGS/MDT file system on the block device. On the MDS node,
run:

mkfs.lustre --fsname=<fsname> --mgs --mdt <block device name>

The default file system name (fsname) is lustre.

Note – If you plan to generate multiple file systems, the MGS should be on its own
dedicated block device.

4. Mount the combined MGS/MDT file system on the block device. On the MDS
node, run:

mount -t lustre <block device name> <mount point>

5. Create the OST2. On the OSS node, run:

mkfs.lustre --ost --fsname=<fsname> --mgsnode=<NID> <block device
name>

You can have as many OSTs per OSS as the hardware or drivers allow.

You should only use only 1 OST per block device. Optionally, you can create an
OST which uses the raw block device and does not require partitioning.

Note – If the block device has more than 8 TB3 of storage, it must be partitioned
(because of the ext3 file system limitation). Lustre can support block devices with
multiple partitions, but they are not recommended because of resulting bottlenecks.

6. Mount the OST. On the OSS node where the OST was created, run:

mount -t lustre <block device name> <mount point>

2. When you create the OST, you are defining a storage device ('sd'), a device number (a, b, c, d), and a partition
(1, 2, 3) where the OST node lives.

3. In Lustre 2.0, 16 TB on OEL 5 and 8 TB on other distributions.
Chapter 4 Configuring Lustre 4-3

Note – To create additional OSTs, repeat Step 4 and Step 5.

7. Create the client (mount the file system on the client). On the client node, run:

mount -t lustre <MGS node>:/<fsname> <mount point>

Note – To create additional clients, repeat Step 7.

8. Verify that the file system started and is working correctly by running the df,
dd and ls commands on the client node.

a. Run the lfs df -h command.

[root@client1 /] lfs df -h

The lfs df -h command lists space usage per OST and the MDT in
human-readable format.

b. Run the lfs df -ih command.

[root@client1 /] lfs df -ih

The lfs df -ih command lists inode usage per OST and the MDT.

c. Run the dd command.

[root@client1 /] cd /lustre

[root@client1 /lustre] dd if=/dev/zero of=/lustre/zero.dat bs=4M
count=2

The dd command verifies write functionality by creating a file containing all
zeros (0s). In this command, an 8 MB file is created.

d. Run the ls command.

[root@client1 /lustre] ls -lsah

The ls -lsah command lists files and directories in the current working
directory.

If you have a problem mounting the file system, check the syslogs for errors.

Tip – Now that you have configured Lustre, you can collect and register your service
tags. For more information, see Service Tags.
4-4 Lustre 2.0 Operations Manual • April 2010

4.1.0.1 Simple Lustre Configuration Example

To see the steps in a simple Lustre configuration, follow this worked example in
which a combined MGS/MDT and two OSTs are created. Three block devices are
used, one for the combined MGS/MDS node and one for each OSS node. Common
parameters used in the example are listed below, along with individual node
parameters.

Common Parameters Value Description

MGS node 10.2.0.1@tcp0Node for the combined MGS/MDS

file system temp Name of the Lustre file system

network type TCP/IP Network type used for Lustre file system temp

Node Parameters Value Description

MGS/MDS node

MGS/MDS nodemdt1 MDS in Lustre file system temp

block device /dev/sdb Block device for the combined MGS/MDS node

mount point /mnt/mdt Mount point for the mdt1 block device (/dev/sdb) on the
MGS/MDS node

First OSS node

OSS node oss1 First OSS node in Lustre file system temp

OST ost1 First OST in Lustre file system temp

block device /dev/sdc Block device for the first OSS node (oss1)

mount point /mnt/ost1 Mount point for the ost1 block device (/dev/sdc) on the
oss1 node

Second OSS node

OSS node oss2 Second OSS node in Lustre file system temp

OST ost2 Second OST in Lustre file system temp

block device /dev/sdd Block device for the second OSS node (oss2)

mount point /mnt/ost2 Mount point for the ost2 block device (/dev/sdd) on the
oss2 node

Client node

client node client1 Client in Lustre file system temp

mount point /lustre Mount point for Lustre file system temp on the client1
node
Chapter 4 Configuring Lustre 4-5

1. Define the module options for Lustre networking (LNET), by adding this line to
the /etc/modprobe.conf file.

options lnet networks=tcp

2. Create a combined MGS/MDT file system on the block device. On the MDS
node, run:

[root@mds /]# mkfs.lustre --fsname=temp --mgs --mdt /dev/sdb

This command generates this output:

Permanent disk data:
Target: temp-MDTffff
Index: unassigned
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x75

(MDT MGS needs_index first_time update)
Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
Parameters: mdt.group_upcall=/usr/sbin/l_getgroups

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdb

target nametemp-MDTffff
4k blocks 0
options -i 4096 -I 512 -q -O dir_index,uninit_groups -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-MDTffff -i 4096 -I 512 -q -O
dir_index,uninit_groups -F /dev/sdb
Writing CONFIGS/mountdata

3. Mount the combined MGS/MDT file system on the block device. On the MDS
node, run:

[root@mds /]# mount -t lustre /dev/sdb /mnt/mdt

This command generates this output:

Lustre: temp-MDT0000: new disk, initializing
Lustre: 3009:0:(lproc_mds.c:262:lprocfs_wr_group_upcall()) \
temp-MDT0000: group upcall set to /usr/sbin/l_getgroups
Lustre: temp-MDT0000.mdt: set parameter \
group_upcall=/usr/sbin/l_getgroups
Lustre: Server temp-MDT0000 on device /dev/sdb has started
4-6 Lustre 2.0 Operations Manual • April 2010

4. Create the OSTs.

In this example, the OSTs (ost1 and ost2) are being created or different OSSs (oss1
and oss2).

a. Create ost1. On oss1 node, run:

[root@oss1 /]# mkfs.lustre --ost --fsname=temp --mgsnode=
10.2.0.1@tcp0 /dev/sdc

The command generates this output:

Permanent disk data:
Target: temp-OSTffff
Index: unassigned
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x72
(OST needs_index first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdc

target name temp-OSTffff
4k blocks 0
options -I 256 -q -O dir_index,uninit_groups -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OSTffff -I 256 -q -O
dir_index,uninit_groups -F /dev/sdc
Writing CONFIGS/mountdata

b. Create ost2. On oss2 node, run:

[root@oss2 /]# mkfs.lustre --ost --fsname=temp --mgsnode=
10.2.0.1@tcp0 /dev/sdd

The command generates this output:

Permanent disk data:
Target: temp-OSTffff
Index: unassigned
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x72
(OST needs_index first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp
Chapter 4 Configuring Lustre 4-7

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdd

target name temp-OSTffff
4k blocks 0
options -I 256 -q -O dir_index,uninit_groups -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OSTffff -I 256 -q -O
dir_index,uninit_groups -F /dev/sdc
Writing CONFIGS/mountdata

5. Mount the OSTs.

Mount each OST (ost1 and ost2), on the OSS where the OST was created.

a. Mount ost1. On oss1 node, run:

root@oss1 /] mount -t lustre /dev/sdc /mnt/ost1

The command generates this output:

LDISKFS-fs: file extents enabled
LDISKFS-fs: mballoc enabled
Lustre: temp-OST0000: new disk, initializing
Lustre: Server temp-OST0000 on device /dev/sdb has started

Shortly afterwards, this output appears:

Lustre: temp-OST0000: received MDS connection from 10.2.0.1@tcp0
Lustre: MDS temp-MDT0000: temp-OST0000_UUID now active, resetting
orphans

b. Mount ost2. On oss2 node, run:

root@oss2 /] mount -t lustre /dev/sdd /mnt/ost2

The command generates this output:

LDISKFS-fs: file extents enabled
LDISKFS-fs: mballoc enabled
Lustre: temp-OST0000: new disk, initializing
Lustre: Server temp-OST0000 on device /dev/sdb has started

Shortly afterwards, this output appears:

Lustre: temp-OST0000: received MDS connection from 10.2.0.1@tcp0
Lustre: MDS temp-MDT0000: temp-OST0000_UUID now active, resetting
orphans
4-8 Lustre 2.0 Operations Manual • April 2010

6. Create the client (mount the file system on the client). On the client node, run:

root@client1 /] mount -t lustre 10.2.0.1@tcp0:/temp /lustre

This command generates this output:

Lustre: Client temp-client has started

7. Verify that the file system started and is working by running the df, dd and ls
commands on the client node.

a. Run the df command:

[root@client1 /] lfs df -h

This command generates output similar to this:

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup00-LogVol00

7.2G 2.4G 4.5G 35% /
dev/sda1 99M 29M 65M 31% /boot
tmpfs 62M 0 62M 0% /dev/shm
10.2.0.1@tcp0:/temp 30M 8.5M 20M 30% /lustre

b. Run the dd command:

[root@client1 /] cd /lustre
[root@client1 /lustre] dd if=/dev/zero of=/lustre/zero.dat bs=4M
count=2

This command generates output similar to this:

2+0 records in
2+0 records out
8388608 bytes (8.4 MB) copied, 0.159628 seconds, 52.6 MB/s

c. Run the ls command:

[root@client1 /lustre] ls -lsah

This command generates output similar to this:

total 8.0M
4.0K drwxr-xr-x 2 root root 4.0K Oct 16 15:27 .
8.0K drwxr-xr-x 25 root root 4.0K Oct 16 15:27 ..
8.0M -rw-r--r-- 1 root root 8.0M Oct 16 15:27 zero.dat
Chapter 4 Configuring Lustre 4-9

4.1.0.2 Module Setup

Make sure the modules (like LNET) are installed in the appropriate /lib/modules
directory. The mkfs.lustre utility tries to automatically load LNET (via the Lustre
module) with the default network settings (using all available network interfaces). To
change this default setting, use the network=... option to specify the network(s)
that LNET should use:

modprobe -v lustre "networks=XXX"

For example, to load Lustre with multiple-interface support (meaning LNET will use
more than one physical circuit for communication between nodes), load the Lustre
module with the following network=... option:

modprobe -v lustre "networks=tcp0(eth0),o2ib0(ib0)"

where:

tcp0 is the network itself (TCP/IP)

eth0 is the physical device (card) that is used (Ethernet)

o2ib0 is the interconnect (InfiniBand)

4.1.1 Scaling the Lustre File System
A Lustre file system can be scaled by adding OSTs or clients. For instructions on
creating additional OSTs see Step 4 and Step 5 above; for clients, see Step 7.

4.2 Additional Lustre Configuration
Once the Lustre file system is configured, it is ready for use. If additional
configuration is necessary, several configuration utilities are available. For man pages
and reference information, see:

■ mkfs.lustre

■ tunefs.lustre

■ lctl

■ mount.lustre

System Configuration Utilities (man8) profiles utilities (e.g., lustre_rmmod, e2scan,
l_getgroups, llobdstat, llstat, plot-llstat, routerstat, and ll_recover_lost_found_objs),
and tools to manage large clusters, perform application profiling, and debug Lustre.
4-10 Lustre 2.0 Operations Manual • April 2010

4.3 Basic Lustre Administration
Once you have the Lustre file system up and running, you can use the procedures in
this section to perform these basic Lustre administration tasks:

■ Specifying the File System Name

■ Starting Lustre

■ Mounting a Server

■ Unmounting a Server

■ Working with Inactive OSTs

■ Finding Nodes in the Lustre File System

■ Mounting a Server Without Lustre Service

■ Specifying Failout/Failover Mode for OSTs

■ Running Multiple Lustre File Systems

■ Setting and Retrieving Lustre Parameters

■ Regenerating Lustre Configuration Logs

■ Changing a Server NID

■ Removing and Restoring OSTs

■ Changing a Server NID

■ Aborting Recovery

■ Determining Which Machine is Serving an OST

■ Failover

■ Unmounting a Server (without Failover)

■ Unmounting a Server (with Failover)

■ Changing the Address of a Failover Node
Chapter 4 Configuring Lustre 4-11

4.3.1 Specifying the File System Name
The file system name is limited to 8 characters. We have encoded the file system and
target information in the disk label, so you can mount by label. This allows system
administrators to move disks around without worrying about issues such as SCSI
disk reordering or getting the /dev/device wrong for a shared target. Soon, file
system naming will be made as fail-safe as possible. Currently, Linux disk labels are
limited to 16 characters. To identify the target within the file system, 8 characters are
reserved, leaving 8 characters for the file system name:

<fsname>-MDT0000 or <fsname>-OST0a19

To mount by label, use this command:

$ mount -t lustre -L <file system label> <mount point>

This is an example of mount-by-label:

$ mount -t lustre -L testfs-MDT0000 /mnt/mdt

Caution – Mount-by-label should NOT be used in a multi-path environment.

Although the file system name is internally limited to 8 characters, you can mount
the clients at any mount point, so file system users are not subjected to short names.
Here is an example:

mount -t lustre uml1@tcp0:/shortfs /mnt/<long-file_system-name>

4.3.2 Starting Lustre
The startup order of Lustre components depends on whether you have a combined
MGS/MDT or these components are separate.

■ If you have a combined MGS/MDT, the recommended startup order is OSTs, then
the MGS/MDT, and then clients.

■ If the MGS and MDT are separate, the recommended startup order is: MGS, then
OSTs, then the MDT, and then clients.

Note – If an OST is added to a Lustre file system with a combined MGS/MDT, then
the startup order changes slightly; the MGS must be started first because the OST
needs to write its configuration data to it. In this scenario, the startup order is
MGS/MDT, then OSTs, then the clients.
4-12 Lustre 2.0 Operations Manual • April 2010

4.3.3 Mounting a Server
Starting a Lustre server is straightforward and only involves the mount command.
Lustre servers can be added to /etc/fstab:

mount -t lustre

The mount command generates output similar to this:

/dev/sda1 on /mnt/test/mdt type lustre (rw)

/dev/sda2 on /mnt/test/ost0 type lustre (rw)

192.168.0.21@tcp:/testfs on /mnt/testfs type lustre (rw)

In this example, the MDT, an OST (ost0) and file system (testfs) are mounted.

LABEL=testfs-MDT0000 /mnt/test/mdt lustre defaults,_netdev,noauto 0 0

LABEL=testfs-OST0000 /mnt/test/ost0 lustre defaults,_netdev,noauto 0 0

In general, it is wise to specify noauto and let your high-availability (HA) package
manage when to mount the device. If you are not using failover, make sure that
networking has been started before mounting a Lustre server. RedHat, SuSE, Debian
(and perhaps others) use the _netdev flag to ensure that these disks are mounted
after the network is up.

We are mounting by disk label here—the label of a device can be read with e2label.
The label of a newly-formatted Lustre server ends in FFFF, meaning that it has yet to
be assigned. The assignment takes place when the server is first started, and the disk
label is updated.

Caution – Do not do this when the client and OSS are on the same node, as memory
pressure between the client and OSS can lead to deadlocks.

Caution – Mount-by-label should NOT be used in a multi-path environment.
Chapter 4 Configuring Lustre 4-13

4.3.4 Unmounting a Server
To stop a Lustre server, use the umount <mount point> command.

For example, to stop ost0 on mount point /mnt/test, run:

$ umount /mnt/test

Gracefully stopping a server with the umount command preserves the state of the
connected clients. The next time the server is started, it waits for clients to reconnect,
and then goes through the recovery procedure.

If the force (-f) flag is used, then the server evicts all clients and stops WITHOUT
recovery. Upon restart, the server does not wait for recovery. Any currently
connected clients receive I/O errors until they reconnect.

Note – If you are using loopback devices, use the -d flag. This flag cleans up loop
devices and can always be safely specified.

4.3.5 Working with Inactive OSTs
To mount a client or an MDT with one or more inactive OSTs, run commands similar
to this:

client> mount -o exclude=testfs-OST0000 -t lustre uml1:/testfs\
/mnt/testfs

client> cat /proc/fs/lustre/lov/testfs-clilov-*/target_obd

To activate an inactive OST on a live client or MDT, use the lctl activate
command on the OSC device. For example:

lctl --device 7 activate

Note – A colon-separated list can also be specified. For example, exclude=
testfs-OST0000:testfs-OST0001.
4-14 Lustre 2.0 Operations Manual • April 2010

4.3.6 Finding Nodes in the Lustre File System
There may be situations in which you need to find all nodes in your Lustre file
system or get the names of all OSTs.

To get a list of all Lustre nodes, run this command on the MGS:

cat /proc/fs/lustre/mgs/MGS/live/*

Note – This command must be run on the MGS.

In this example, file system lustre has three nodes, lustre-MDT0000,
lustre-OST0000, and lustre-OST0001.

cfs21:/tmp# cat /proc/fs/lustre/mgs/MGS/live/*

fsname: lustre

flags: 0x0 gen: 26

lustre-MDT0000

lustre-OST0000

lustre-OST0001

To get the names of all OSTs, run this command on the MDS:

cat /proc/fs/lustre/lov/<fsname>-mdtlov/target_obd

Note – This command must be run on the MDS.

In this example, there are two OSTs, lustre-OST0000 and lustre-OST0001,
which are both active.

cfs21:/tmp# cat /proc/fs/lustre/lov/lustre-mdtlov/target_obd

0: lustre-OST0000_UUID ACTIVE

1: lustre-OST0001_UUID ACTIVE
Chapter 4 Configuring Lustre 4-15

4.3.7 Mounting a Server Without Lustre Service
If you are using a combined MGS/MDT, but you only want to start the MGS and not
the MDT, run this command:

mount -t lustre <MDT partition> -o nosvc <mount point>

The <MDT partition> variable is the combined MGS/MDT.

In this example, the combined MGS/MDT is testfs-MDT0000 and the mount point
is mnt/test/mdt.

$ mount -t lustre -L testfs-MDT0000 -o nosvc /mnt/test/mdt

4.3.8 Specifying Failout/Failover Mode for OSTs
Lustre uses two modes, failout and failover, to handle an OST that has become
unreachable because it fails, is taken off the network, is unmounted, etc.

■ In failout mode, Lustre clients immediately receive errors (EIOs) after a timeout,
instead of waiting for the OST to recover.

■ In failover mode, Lustre clients wait for the OST to recover.

By default, the Lustre file system uses failover mode for OSTs. To specify failout
mode instead, run this command:

$ mkfs.lustre --fsname=<fsname> --ost --mgsnode=<MGS node NID>
--param="failover.mode=failout" <block device name>

In this example, failout mode is specified for the OSTs on MGS uml1, file system
testfs.

$ mkfs.lustre --fsname=testfs --ost --mgsnode=uml1 --param=
"failover.mode=failout" /dev/sdb

Caution – Before running this command, unmount all OSTS that will be affected by
the change in the failover/failout mode.

Note – After initial file system configuration, use the tunefs.lustre utility to
change the failover/failout mode. For example, to set the failout mode, run:

$ tunefs.lustre --param failover.mode=failout <OST partition>
4-16 Lustre 2.0 Operations Manual • April 2010

4.3.9 Running Multiple Lustre File Systems
There may be situations in which you want to run multiple file systems. This is
doable, as long as you follow specific naming conventions.

By default, the mkfs.lustre command creates a file system named lustre. To
specify a different file system name (limited to 8 characters), run this command:

mkfs.lustre --fsname=<new file system name>

Note – The MDT, OSTs and clients in the new file system must share the same name
(prepended to the device name). For example, for a new file system named foo, the
MDT and two OSTs would be named foo-MDT0000, foo-OST0000, and
foo-OST0001.

To mount a client on the file system, run:

mount -t lustre mgsnode:/<new fsname> <mountpoint>

For example, to mount a client on file system foo at mount point /mnt/lustre1,
run:

mount -t lustre mgsnode:/foo /mnt/lustre1

Note – If a client(s) will be mounted on several file systems, add the following line
to /etc/xattr.conf file to avoid problems when files are moved between the file
systems: lustre.* skip

Note – The MGS is universal; there is only one MGS per Lustre installation, not per
file system.

Note – There is only one file system per MDT. Therefore, specify --mdt --mgs on
one file system and --mdt --mgsnode=<MGS node NID> on the other file systems.
Chapter 4 Configuring Lustre 4-17

A Lustre installation with two file systems (foo and bar) could look like this, where
the MGS node is mgsnode@tcp0 and the mount points are /mnt/lustre1 and
/mnt/lustre2.

mgsnode# mkfs.lustre --mgs /mnt/lustre1

mdtfoonode# mkfs.lustre --fsname=foo --mdt \
--mgsnode=mgsnode@tcp0 /mnt/lustre1

ossfoonode# mkfs.lustre --fsname=foo --ost \
--mgsnode=mgsnode@tcp0 /mnt/lustre1

ossfoonode# mkfs.lustre --fsname=foo --ost \
--mgsnode=mgsnode@tcp0 /mnt/lustre2

mdtbarnode# mkfs.lustre --fsname=bar --mdt \
--mgsnode=mgsnode@tcp0 /mnt/lustre1

ossbarnode# mkfs.lustre --fsname=bar --ost \
--mgsnode=mgsnode@tcp0 /mnt/lustre1

ossbarnode# mkfs.lustre --fsname=bar --ost \
--mgsnode=mgsnode@tcp0 /mnt/lustre2

To mount a client on file system foo at mount point /mnt/lustre1, run:

mount -t lustre mgsnode@tcp0:/foo /mnt/lustre1

To mount a client on file system bar at mount point /mnt/lustre2, run:

mount -t lustre mgsnode@tcp0:/bar /mnt/lustre2
4-18 Lustre 2.0 Operations Manual • April 2010

4.3.10 Setting and Retrieving Lustre Parameters
There are several options for setting parameters in Lustre.

■ When the file system is created, using mkfs.lustre. See Setting Parameters with
mkfs.lustre

■ When a server is stopped, using tunefs.lustre. See Setting Parameters with
tunefs.lustre

■ When the file system is running, using lctl. See Setting Parameters with lctl

Additionally, you can use lctl to retrieve Lustre parameters. See Reporting Current
Parameter Values.

4.3.10.1 Setting Parameters with mkfs.lustre

When the file system is created, parameters can simply be added as a --param
option to the mkfs.lustre command. For example:

$ mkfs.lustre --mdt --param="sys.timeout=50" /dev/sda

4.3.10.2 Setting Parameters with tunefs.lustre

If a server (OSS or MDS) is stopped, parameters can be added using the --param
option to the tunefs.lustre command. For example:

$ tunefs.lustre --param="failover.node=192.168.0.13@tcp0" /dev/sda

With tunefs.lustre, parameters are "additive" -- new parameters are specified in
addition to old parameters, they do not replace them. To erase all old
tunefs.lustre parameters and just use newly-specified parameters, run:

$ tunefs.lustre --erase-params --param=<new parameters>

The tunefs.lustre command can be used to set any parameter settable in a
/proc/fs/lustre file and that has its own OBD device, so it can be specified as
<obd|fsname>.<obdtype>.<proc_file_name>=<value>. For example:

$ tunefs.lustre --param mdt.group_upcall=NONE /dev/sda1
Chapter 4 Configuring Lustre 4-19

4.3.10.3 Setting Parameters with lctl

When the file system is running, the lctl command can be used to set parameters
(temporary or permanent) and report current parameter values. Temporary
parameters are active as long as the server or client is not shut down. Permanent
parameters live through server and client reboots.

Note – Lustre 2.0 adds the lctl list_param command, which enables users to list
all parameters that can be set. See Listing Parameters.

Setting Temporary Parameters

Use the lctl set_param command to set temporary parameters on the node
where it is run. These parameters map to items in
/proc/{fs,sys}/{lnet,lustre}. The lctl set_param command uses this
syntax:

lctl set_param [-n] <obdtype>.<obdname>.<proc_file_name>=<value>

For example:

lctl set_param osc.*.max_dirty_mb=1024

osc.myth-OST0000-osc.max_dirty_mb=32

osc.myth-OST0001-osc.max_dirty_mb=32

osc.myth-OST0002-osc.max_dirty_mb=32

osc.myth-OST0003-osc.max_dirty_mb=32

osc.myth-OST0004-osc.max_dirty_mb=32

Setting Permanent Parameters

Use the lctl conf_param command to set permanent parameters. In general, the
lctl conf_param command can be used to specify any parameter settable in a
/proc/fs/lustre file, with its own OBD device. The lctl conf_param command
uses this syntax (same as the mkfs.lustre and tunefs.lustre commands):

<obd|fsname>.<obdtype>.<proc_file_name>=<value>)

Here are a few examples of lctl conf_param commands:

$ mgs> lctl conf_param testfs-MDT0000.sys.timeout=40

$ lctl conf_param testfs-MDT0000.mdt.group_upcall=NONE

$ lctl conf_param testfs.llite.max_read_ahead_mb=16

$ lctl conf_param testfs-MDT0000.lov.stripesize=2M

$ lctl conf_param testfs-OST0000.osc.max_dirty_mb=29.15
4-20 Lustre 2.0 Operations Manual • April 2010

$ lctl conf_param testfs-OST0000.ost.client_cache_seconds=15

$ lctl conf_param testfs.sys.timeout=40

Caution – Parameters specified with the lctl conf_param command are set
permanently in the file system’s configuration file on the MGS.

Listing Parameters

To list Lustre parameters that are available to set, use the lctl list_param
command. For example:

lctl list_param [-n] <obdtype>.<obdname>

For example:

$ lctl list_param obdfilter.lustre-OST0000

4.3.10.4 Reporting Current Parameter Values

To report current Lustre parameter values, use the lctl get_param command
with this syntax:

lctl get_param [-n] <obdtype>.<obdname>.<proc_file_name>

This example reports data on RPC service times.

$ lctl get_param -n ost.*.ost_io.timeouts

service : cur 1 worst 30 (at 1257150393, 85d23h58m54s ago) 1 1 1 1

This example reports the number of inodes available on each OST.

lctl get_param osc.*.filesfree

osc.myth-OST0000-osc-ffff88006dd20000.filesfree=217623

osc.myth-OST0001-osc-ffff88006dd20000.filesfree=5075042

osc.myth-OST0002-osc-ffff88006dd20000.filesfree=3762034

osc.myth-OST0003-osc-ffff88006dd20000.filesfree=91052

osc.myth-OST0004-osc-ffff88006dd20000.filesfree=129651
Chapter 4 Configuring Lustre 4-21

4.3.11 Regenerating Lustre Configuration Logs
If the Lustre system’s configuration logs are in a state where the file system cannot be
started, use the writeconf command to erase them. After the writeconf command
is run and the servers restart, the configuration logs are re-generated and stored on
the MGS (as in a new file system).

You should only use the writeconf command if:

■ The configuration logs are in a state where the file system cannot start

■ A server NID is being changed

The writeconf command is destructive to some configuration items (i.e., OST pools
information and items set via conf_param), and should be used with caution. To
avoid problems:

■ Shut down the file system before running the writeconf command

■ Run the writeconf command on all servers (MDT first, then OSTs)

■ Start the file system in this order (MDT first, then OSTs, then clients)

Caution – The OST pools feature enables a group of OSTs to be named for file
striping purposes. If you use OST pools, be aware that running the writeconf
command erases all pools information (as well as any other parameters set via lctl
conf_param). We recommend that the pools definitions (and conf_param settings)
be executed via a script, so they can be reproduced easily after a writeconf is
performed.

To regenerate the Lustre system’s configuration logs:

1. Shut down the file system by unmounting all servers and clients.

Do not run writeconf until the file system is completely shut down.

2. Run the writeconf command on all servers.

Run writeconf on the MDT first, and then the OSTs.

a. On the MDT, run:

<mdt node>$ tunefs.lustre --writeconf <device>

b. On each OST, run:

<ost node>$ tunefs.lustre --writeconf <device>
4-22 Lustre 2.0 Operations Manual • April 2010

3. Restart the file system by mounting the MGS/MDT first (if co-located), then the
OSTs, then the clients. If the MGS and MDT are separate, mount the MGS first,
then the MDT, OSTs and clients.

After the writeconf command is run, the configuration logs are re-generated as
servers restart.

4.3.12 Changing a Server NID
If you need to change the NID on the MDT or an OST, run the writeconf command
to erase Lustre configuration information (including server NIDs), and then
re-generate the system configuration using updated server NIDs.

Change a server NID in these situations:

■ New server hardware is added to the file system, and the MDS or an OSS is being
moved to the new machine

■ New network card is installed in the server

■ You want to reassign IP addresses

To change a server NID:

1. Update the LNET configuration in the /etc/modprobe.conf file so the list of
server NIDs (lctl list_nids) is correct.

The lctl list_nids command indicates which network(s) are configured to
work with Lustre.

2. Shut down the file system by unmounting all servers and clients.

Do not run the writeconf command until the file system is completely shut
down.

3. Run the writeconf command on all servers.

Run writeconf on the MDT first, and then the OSTs.

a. On the MDT, run:

$ mdt> tunefs.lustre --writeconf <device>

b. On each OST, run:

$ ost> tunefs.lustre --writeconf <device>

c. If the NID on the MGS was changed, communicate the new MGS location to
each server. Run:

tunefs.lustre --erase-param --mgsnode=<new_nid(s)> --writeconf /dev/..
Chapter 4 Configuring Lustre 4-23

4. Restart the file system by mounting the MGS/MDT first (if co-located), then the
OSTs, then the clients. If the MGS and MDT are separate, mount the MGS first,
then the MDT, OSTs and clients.

After the writeconf command is run, the configuration logs are re-generated as
servers restart, and server NIDs in the updated list_nids file are used.

4.3.13 Removing and Restoring OSTs
OSTs can be removed from and restored to a Lustre file system. Currently in Lustre,
removing an OST really means that the OST is ‘deactivated’ in the file system, not
permanently removed. A removed OST still appears in the file system; do not create
a new OST with the same name.

You may want to remove (deactivate) an OST and prevent new files from being
written to it in several situations:

■ Hard drive has failed and a RAID resync/rebuild is underway

■ OST is nearing its space capacity

4.3.13.1 Removing an OST from the File System

When removing an OST, remember that the MDT does not communicate directly
with OSTs. Rather, each OST has a corresponding OSC which communicates with the
MDT. It is necessary to determine the device number of the OSC that corresponds to
the OST. Then, you use this device number to deactivate the OSC on the MDT.

To remove an OST from the file system:

1. For the OST to be removed, determine the device number of the corresponding
OSC on the MDT.

a. List all OSCs on the node, along with their device numbers. Run:

lctl dl | grep " osc "

This is sample lctl dl | grep " osc " output:

11 UP osc lustre-OST-0000-osc-cac94211 4ea5b30f-6a8e-55a0-7519-2f20318ebdb4 5
12 UP osc lustre-OST-0001-osc-cac94211 4ea5b30f-6a8e-55a0-7519-2f20318ebdb4 5
13 IN osc lustre-OST-0000-osc lustre-MDT0000-mdtlov_UUID 5
14 UP osc lustre-OST-0001-osc lustre-MDT0000-mdtlov_UUID 5

b. Determine the device number of the OSC that corresponds to the OST to be
removed.
4-24 Lustre 2.0 Operations Manual • April 2010

2. Temporarily deactivate the OSC on the MDT. On the MDT, run:

$ mdt> lctl --device <devno> deactivate

For example, based on the command output in Step 1, to deactivate device 13 (the
MDT’s OSC for OST-0000), the command would be:

$ mdt> lctl --device 13 deactivate

This marks the OST as inactive on the MDS, so no new objects are assigned to the
OST. This does not prevent use of existing objects for reads or writes.

Note – Do not deactivate the OST on the clients. Do so causes errors (EIOs), and the
copy out to fail.

Caution – Do not use lctl conf_param to deactivate the OST. It permanently
sets a parameter in the file system configuration.

3. Discover all files that have objects residing on the deactivated OST. Run:

lfs find --obd {OST UUID} / <mount_point>

4. Copy (not move) the files to a new directory in the file system.

Copying the files forces object re-creation on the active OSTs.

5. Move (not copy) the files back to their original directory in the file system.

Moving the files causes the original files to be deleted, as the copies replace them.

6. Once all files have been moved, permanently deactivate the OST on the clients
and the MDT. On the MGS, run:

mgs> lctl conf_param <OST name>.osc.active=0
Chapter 4 Configuring Lustre 4-25

Temporarily Deactivating an OST in the File System

You may encounter situations when it is necessary to temporarily deactivate an OST,
rather than permanently deactivate it. For example, you may need to deactivate a
failed OST that cannot be immediately repaired, but want to continue to access the
remaining files on the available OSTs.

To temporarily deactivate an OST:

1. Mount the Lustre file system.

2. On the MDS and all clients, run:

lctl set_param osc.<faname>-<OST name>-*.active=0

Clients accessing files on the deactivated OST receive an IO error (-5), rather than
pausing until the OST completes recovery.

4.3.13.2 Restoring an OST in the File System

Restoring an OST to the file system is as easy as activating it. When the OST is active,
it is automatically added to the normal stripe rotation and files are written to it.

To restore an OST:

1. Make sure the OST to be restored is running.

2. Reactivate the OST. On the MGS, run:

mgs> lctl conf_param <OST name>.osc.active=1

4.3.14 Aborting Recovery
You can abort recovery with either the lctl utility or by mounting the target with the
abort_recov option (mount -o abort_recov). When starting a target, run:

$ mount -t lustre -L <MDT name> -o abort_recov <mount point>

Note – The recovery process is blocked until all OSTs are available.
4-26 Lustre 2.0 Operations Manual • April 2010

4.3.15 Determining Which Machine is Serving an OST
In the course of administering a Lustre file system, you may need to determine which
machine is serving a specific OST. It is not as simple as identifying the machine’s IP
address, as IP is only one of several networking protocols that Lustre uses and, as
such, LNET does not use IP addresses as node identifiers, but NIDs instead.

To identify the NID that is serving a specific OST, run one of the following
commands on a client (you do not need to be a root user):

client$ lctl get_param osc.${fsname}-${OSTname}*.ost_conn_uuid

For example:

client$ lctl get_param osc.*-OST0000*.ost_conn_uuid

osc.myth-OST0000-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

- OR -

client$ lctl get_param osc.*.ost_conn_uuid

osc.myth-OST0000-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

osc.myth-OST0001-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

osc.myth-OST0002-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

osc.myth-OST0003-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

osc.myth-OST0004-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp
Chapter 4 Configuring Lustre 4-27

4.4 More Complex Configurations
If a node has multiple network interfaces, it may have multiple NIDs. When a node
is specified, all of its NIDs must be listed, delimited by commas (,) so other nodes can
choose the NID that is appropriate for their network interfaces. When failover nodes
are specified, they are delimited by a colon (:) or by repeating a keyword
(--mgsnode= or --failnode=). To obtain all NIDs from a node (while LNET is
running), run:

lctl list_nids

This displays the server's NIDs (networks configured to work with Lustre).

4.4.1 Failover
This example has a combined MGS/MDT failover pair on uml1 and uml2, and a OST
failover pair on uml3 and uml4. There are corresponding Elan addresses on uml1 and
uml2.

uml1> mkfs.lustre --fsname=testfs --mdt --mgs \

--failnode=uml2,2@elan /dev/sda1

uml1> mount -t lustre /dev/sda1 /mnt/test/mdt

uml3> mkfs.lustre --fsname=testfs --ost --failnode=uml4 \

--mgsnode=uml1,1@elan --mgsnode=uml2,2@elan /dev/sdb

uml3> mount -t lustre /dev/sdb /mnt/test/ost0

client> mount -t lustre uml1,1@elan:uml2,2@elan:/testfs /mnt/testfs

uml1> umount /mnt/mdt

uml2> mount -t lustre /dev/sda1 /mnt/test/mdt

uml2> cat /proc/fs/lustre/mds/testfs-MDT0000/recovery_status

Where multiple NIDs are specified, comma-separation (for example, uml2,2@elan)
means that the two NIDs refer to the same host, and that Lustre needs to choose the
"best" one for communication. Colon-separation (for example, uml1:uml2) means
that the two NIDs refer to two different hosts, and should be treated as failover
locations (Lustre tries the first one, and if that fails, it tries the second one.)
4-28 Lustre 2.0 Operations Manual • April 2010

Note – If you have an MGS or MDT configured for failover, perform these steps:

1. On the OST, list the NIDs of all MGS nodes at mkfs time.

OST# mkfs.lustre --fsname sunfs --ost --mgsnode=10.0.0.1
--mgsnode=10.0.0.2 /dev/{device}

2. On the client, mount the file system.

client# mount -t lustre 10.0.0.1:10.0.0.2:/sunfs /cfs/client/

4.5 Operational Scenarios
In the operational scenarios below, the management node is the MDS. The
management service is started as the initial part of the startup of the primary MDT.

Tip – All targets that are configured for failover must have some kind of shared
storage among two server nodes.

IP Network, Single MDS, Single OST, No Failover

On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> <partition>

mount -t lustre <partition> <mountpoint>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> <partition>

mount -t lustre <partition> <mountpoint>

On the client, run:

mount -t lustre <MGS NID>:/<fsname> <mountpoint>
Chapter 4 Configuring Lustre 4-29

IP Network, Failover MDS

For failover, storage holding target data must be available as shared storage to
failover server nodes. Failover nodes are statically configured as mount options.

On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> \
--failover=<failover MGS NID> <partition>

mount -t lustre <partition> <mount point>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> \
--mgsnode=<MGS NID>,<failover MGS NID> <partition>
mount -t lustre <partition> <mount point>

On the client, run:

mount -t lustre <MGS NID>[,<failover MGS NID>]:/<fsname> \
<mount point>

IP Network, Failover MDS and OSS

On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> \
--failover=<failover MGS NID> <partition>

mount -t lustre <partition> <mount point>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> \

--mgsnode=<MGS NID>[,<failover mds hostdesc>] \
--failover=<failover OSS NID> <partition>

mount -t lustre <partition> <mount point>

On the client, run:

mount -t lustre <MGS NID>[,<failover MGS NID>]:/<fsname> \
<mount point>
4-30 Lustre 2.0 Operations Manual • April 2010

4.5.1 Unmounting a Server (without Failover)
To stop a server (MDS or OSS) without failover, run:

umount <mds|oss mountpoint>

This stops the server unconditionally, and cleans up client connections and export
information. When the server restarts, the clients create a new connection to it.

4.5.2 Unmounting a Server (with Failover)
To stop a server (MDS or OSS) with failover, run:

umount -f <MDS|OSS mount point>

This stops the server and preserves client export information. When the server
restarts, the clients reconnect and resume in-progress transactions.

4.5.3 Changing the Address of a Failover Node
To change the address of a failover node (e.g, to use node X instead of node Y), run
this command on the OSS/OST partition:

tunefs.lustre --erase-params --failnode=<NID> <device>
Chapter 4 Configuring Lustre 4-31

4-32 Lustre 2.0 Operations Manual • April 2010

CHAPTER 5

Service Tags

This chapter describes the use of service tags with Lustre, and includes the following
sections:

Introduction to Service Tags

Using Service Tags

5.1 Introduction to Service Tags
Service tags are part of an IT asset inventory management system provided by
Oracle. A service tag is a unique identifier for a piece of hardware or software (gear)
that enables usage data about the tagged item to be shared over a local network in
standard XML format. The service tag program is used for a number of Oracle
products, including hardware, software and services, and has now been
implemented for Lustre.

Service tags are provided for each MGS, MDS, OSS node and Lustre client. Using
service tags enables automatic discovery and tracking of these system components,
so administrators can better manage their Lustre environment.

Note – Service tags are used solely to provide an inventory list of system and
software information to Oracle; they do not contain any personal information.
Service tag components that communicate information are read-only and contained.
They are not capable of accepting information and they cannot communicate with
any other services on your system.

For more information on service tags, see the Service Tag wiki and Service Tag FAQ.
5-1

http://wikis.sun.com/display/ServiceTag/Home
http://wikis.sun.com/display/ServiceTag/Sun+Service+Tag+FAQ

5.2 Using Service Tags
To begin using service tags with your Lustre system, download the service tag
package and registration client. The entire service tag process can be easily managed
from the Sun Inventory webpage.

5.2.1 Installing Service Tags
Service tag packages (for RedHat and SuSE Linux) are downloadable from the Lustre
downloads page. To download and install the service tags package:

1. Navigate to the Lustre download page and download the service tag package,
sun-servicetag-1.1.4-1.i386.rpm1, for Lustre.

2. Install the service tag package on all Lustre nodes (MGSs, MDSs, OSSs and
clients).

The service tag package includes several init.d scripts which are started on reboot
(/etc/init.d/stosreg and /etc/init.d/psn start).

This package also adds entries in the [x]inetd’s configuration scripts to provide
remote access to the nodes needed to collect information. The script restarts
[x]inetd (killall -HUP xinetd 1>/dev/null 2>&1).

3. If this is a new installation, format the OSTs, MDTs, MGSs and Lustre clients.

4. Mount the OSTs, MDTs, MGSs and Lustre clients, and verify that the Lustre file
system is running normally.

1. This is the current service tag package. The version number is subject to change.
5-2 Lustre 2.0 Operations Manual • April 2010

5.2.2 Discovering and Registering Lustre Components
After installing the service tag package on all of your Lustre nodes, discover and
register the Lustre components. To perform this procedure, Lustre must be fully
configured and running.

1. Navigate to the Oracle Lustre download page and download the Registration
client, eis-regclient.jar.

2. Install the Registration client on one node (the collection node) that can reach
all Lustre clients and servers over a TCP/IP network.

3. Install Java Virtual Machine (Java VM) on the collection node.

Java VM is available at the Java download site.

4. Start the Registration client, run:

$ java -jar eis-regclient.jar

The Registration Client utility launches.

FIGURE 5-1 Registration Client
Chapter 5 Service Tags 5-3

http://www.sun.com/software/products/lustre/get.jsp
http://www.java.com/en/download/index.jsp

Note – The Registration client requires an X display to run. If the node from which
you want to do the registration has no native X display, you can use SSH’s X
forwarding to display the Registration client interface on your local machine.

The registration process includes up to five steps. The first step is to discover the
service tags created when you started Lustre.

The Registration client looks for Sun products on your local subnet, by default.
Alternately, you can specify another subnet, specific hosts or IP addresses.

5. Select an option to locate service tags and click Next.

The Product Data screen displays Sun products (that support service tags) as they
are located. For each product, the system name, product name, and version (if
applicable) are listed.

FIGURE 5-2 Product Data

If the list of located products does not look complete, select Back and enter a more
accurate search.

Note – Located service tags are not limited to Lustre components. The Registration
client locates any Sun product on your system that is supported in the Sun inventory
management program.
5-4 Lustre 2.0 Operations Manual • April 2010

6. Register the service tags or save them for later use.

There are two options for registering service tags.

■ Click Next to continue with the remaining steps 3-5 of the registration process,
including authentication to the Inventory management website and uploading
your service tags.

■ Save the collected service tags and register them on another machine. This
option is good if the system used to collect the service tags does not have Web
access. Click Save As and enter a file where the tags should be saved. You can
then move this file (using network copy, a USB key, etc.) to a machine with Web
access.

On the Web-access machine, navigate to Sun Inventory and click Discover &
Register to start the Registration client. Select the ‘Locate Product on Other
Subnets, Specific System or Load Previously Saved Data’ option and check the
‘File Name’ box. Enter (or navigate to) the file where the collected service tags
were saved, click Next and follow the remaining steps 3-5 to complete the
registration process, including authentication to the Inventory management
website and uploading your service tags.

7. If you wish, navigate to Sun Inventory and log into your account to view and
manage your IT assets.

Note – For more information about service tags, see https://inventory.sun.com,
which links to the http://wikis.sun.com/display/ServiceTag/Home wiki. This wiki
includes an FAQ about the service tag program.
Chapter 5 Service Tags 5-5

https://inventory.sun.com
https://inventory.sun.com
https://inventory.sun.com
http://wikis.sun.com/display/ServiceTag/Hom

5.2.3 Service Tag Registration Information
The service tag registration process collects the following product, registration
agentry and system information.

Data Name Description

Product Information

Lustre-specific information Node type (client, MDS, OSS or MGS)

Instance identifier Unique identifier for that instance of the gear

Product name Name of the gear

Product identifier Unique identifier for the gear being registered

Product vendor Vendor of the gear

Product version Version of the gear

Parent name Parent gear of the registered gear

Parent identifier Unique identifier for the parent of the gear

Customer tag Optional, customer-defined value

Time stamp Day and time that the gear is registered

Source Where the gear identifiers came from

Container Name of the gear's container

Registration Agentry Information

Agentry Identifier Unique value for that instance of the agentry

Agentry Version Value of the agentry

Registry Identifier File version containing product registration information

System Information

Host System hostname

System Operating System

Release Operating system version

Architecture Physical hardware architecture

Platform Hardware platform

Manufacturer Hardware manufacturer

CPU manufacturer CPU manufacturer

HostID System host ID

Serial number System chassis serial number
5-6 Lustre 2.0 Operations Manual • April 2010

CHAPTER 6

Configuring Lustre - Examples

This chapter provides Lustre configuration examples and includes the following
section:

■ Simple TCP Network

6.1 Simple TCP Network
This chapter presents several examples of Lustre configurations on a simple TCP
network.

6.1.1 Lustre with Combined MGS/MDT
Below is an example is of a Lustre setup “datafs” having combined MDT/MGS with
four OSTs and a number of Lustre clients.

6.1.1.1 Installation Summary
■ Combined (co-located) MDT/MGS

■ Four OSTs

■ Any number of Lustre clients
6-1

6.1.1.2 Configuration Generation and Application

1. Install the Lustre RPMS (per Installing Lustre) on all nodes that are going to be
part of the Lustre file system. Boot the nodes in Lustre kernel, including the
clients.

2. Change modprobe.conf by adding the following line to it.

options lnet networks=tcp

3. Configuring Lustre on MGS and MDT node.

$ mkfs.lustre --fsname datafs --mdt --mgs /dev/sda

4. Make a mount point on MDT/MGS for the file system and mount it.

$ mkdir -p /mnt/data/mdt

$ mount -t lustre /dev/sda /mnt/data/mdt

5. Configuring Lustre on all four OSTs.

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdd

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda1

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdb

Note – While creating the file system, make sure you are not using disk with the
operating system.

6. Make a mount point on all the OSTs for the file system and mount it.

$ mkdir -p /mnt/data/ost0

$ mount -t lustre /dev/sda /mnt/data/ost0

$ mkdir -p /mnt/data/ost1

$ mount -t lustre /dev/sdd /mnt/data/ost1

$ mkdir -p /mnt/data/ost2

$ mount -t lustre /dev/sda1 /mnt/data/ost2

$ mkdir -p /mnt/data/ost3

$ mount -t lustre /dev/sdb /mnt/data/ost3

$ mount -t lustre mdt16@tcp0:/datafs /mnt/datafs
6-2 Lustre 2.0 Operations Manual • April 2010

6.1.2 Lustre with Separate MGS and MDT
The following example describes a Lustre file system “datafs” having an MGS and an
MDT on separate nodes, four OSTs, and a number of Lustre clients.

6.1.2.1 Installation Summary
■ One MGS

■ One MDT

■ Four OSTs

■ Any number of Lustre clients

6.1.2.2 Configuration Generation and Application

1. Install the Lustre RPMs (per Installing Lustre) on all the nodes that are going to
be a part of the Lustre file system. Boot the nodes in the Lustre kernel,
including the clients.

2. Change the modprobe.conf by adding the following line to it.

options lnet networks=tcp

3. Start Lustre on the MGS node.

$ mkfs.lustre --mgs /dev/sda

4. Make a mount point on MGS for the file system and mount it.

$ mkdir -p /mnt/mgs

$ mount -t lustre /dev/sda1 /mnt/mgs

5. Start Lustre on the MDT node.

$ mkfs.lustre --fsname=datafs --mdt --mgsnode=mgsnode@tcp0 \
/dev/sda2

6. Make a mount point on MDT/MGS for the file system and mount it.

$ mkdir -p /mnt/data/mdt

$ mount -t lustre /dev/sda /mnt/data/mdt

7. Start Lustre on all the four OSTs.

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdd

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda1

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sdb
Chapter 6 Configuring Lustre - Examples 6-3

8. Make a mount point on all the OSTs for the file system and mount it

$ mkdir -p /mnt/data/ost0

$ mount -t lustre /dev/sda /mnt/data/ost0

$ mkdir -p /mnt/data/ost1

$ mount -t lustre /dev/sdd /mnt/data/ost1

$ mkdir -p /mnt/data/ost2

$ mount -t lustre /dev/sda1 /mnt/data/ost2

$ mkdir -p /mnt/data/ost3

$ mount -t lustre /dev/sdb /mnt/data/ost3

$ mount -t lustre mdsnode@tcp0:/datafs /mnt/datafs
6-4 Lustre 2.0 Operations Manual • April 2010

CHAPTER 7

More Complicated Configurations

This chapter describes more complicated Lustre configurations and includes the
following sections:

■ Multihomed Servers

■ Elan to TCP Routing

■ Load Balancing with InfiniBand

■ Multi-Rail Configurations with LNET

7.1 Multihomed Servers
If you are using multiple networks with Lustre, certain configuration settings are
required. Throughout this section, a worked example is used to illustrate these
settings.

In this example, servers megan and oscar each have three TCP NICs (eth0, eth1, and
eth2) and an Elan NIC. The eth2 NIC is used for management purposes and should
not be used by LNET. TCP clients have a single TCP interface and Elan clients have a
single Elan interface.

7.1.1 Modprobe.conf
Options under modprobe.conf are used to specify the networks available to a node.
You have the choice of two different options – the networks option, which explicitly
lists the networks available and the ip2nets option, which provides a list-matching
lookup. Only one option can be used at any one time. The order of LNET lines in
modprobe.conf is important when configuring multi-homed servers. If a server
node can be reached using more than one network, the first network specified in
modprobe.conf will be used.
7-1

Networks

On the servers:

options lnet networks=tcp0(eth0, eth1),elan0

Elan-only clients:

options lnet networks=elan0

TCP-only clients:

options lnet networks=tcp0

Note – In the case of TCP-only clients, the first available non-loopback IP interface is
used for tcp0 since the interfaces are not specified.

ip2nets

The ip2nets option is typically used to provide a single, universal modprobe.conf
file that can be run on all servers and clients. An individual node identifies the
locally available networks based on the listed IP address patterns that match the
node's local IP addresses. Note that the IP address patterns listed in the ip2nets
option are only used to identify the networks that an individual node should
instantiate. They are not used by LNET for any other communications purpose. The
servers megan and oscar have eth0 IP addresses 192.168.0.2 and .4. They also have
IP over Elan (eip) addresses of 132.6.1.2 and .4. TCP clients have IP addresses
192.168.0.5-255. Elan clients have eip addresses of 132.6.[2-3].2, .4, .6, .8.

modprobe.conf is identical on all nodes:

options lnet 'ip2nets="tcp0(eth0,eth1)192.168.0.[2,4]; tcp0 \
192.168.0.*; elan0 132.6.[1-3].[2-8/2]"'

Note – LNET lines in modprobe.conf are only used by the local node to determine
what to call its interfaces. They are not used for routing decisions.

Because megan and oscar match the first rule, LNET uses eth0 and eth1 for tcp0 on
those machines. Although they also match the second rule, it is the first matching
rule for a particular network that is used. The servers also match the (only) Elan rule.
The [2-8/2] format matches the range 2-8 stepping by 2; that is 2,4,6,8. For example,
clients at 132.6.3.5 would not find a matching Elan network.
7-2 Lustre 2.0 Operations Manual • April 2010

7.1.2 Start Servers
For the combined MGS/MDT with TCP network, run:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/mdt

- OR -

For the MGS on the separate node with TCP network, run:

$ mkfs.lustre --mgs /dev/sda

$ mkdir -p /mnt/mgs

$ mount -t lustre /dev/sda /mnt/mgs

For starting the MDT on node mds16 with MGS on node mgs16, run:

$ mkfs.lustre --fsname=spfs --mdt --mgsnode=mgs16@tcp0 /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda2 /mnt/test/mdt

For starting the OST on TCP-based network, run:

$ mkfs.lustre --fsname spfs --ost --mgsnode=mgs16@tcp0 /dev/sda$

$ mkdir -p /mnt/test/ost0

$ mount -t lustre /dev/sda /mnt/test/ost0
Chapter 7 More Complicated Configurations 7-3

7.1.3 Start Clients
TCP clients can use the host name or IP address of the MDS, run:

mount –t lustre megan@tcp0:/mdsA/client /mnt/lustre

Use this command to start the Elan clients, run:

mount –t lustre 2@elan0:/mdsA/client /mnt/lustre

Note – If the MGS node has multiple interfaces (for instance, cfs21 and 1@elan), only
the client mount command has to change. The MGS NID specifier must be an
appropriate nettype for the client (for example, a TCP client could use uml1@tcp0,
and an Elan client could use 1@elan). Alternatively, a list of all MGS NIDs can be
given, and the client chooses the correctd one. For example:

$ mount -t lustre mgs16@tcp0,1@elan:/testfs /mnt/testfs
7-4 Lustre 2.0 Operations Manual • April 2010

7.2 Elan to TCP Routing
Servers megan and oscar are on the Elan network with eip addresses 132.6.1.2 and
.4. Megan is also on the TCP network at 192.168.0.2 and routes between TCP and
Elan. There is also a standalone router, router1, at Elan 132.6.1.10 and TCP
192.168.0.10. Clients are on either Elan or TCP.

7.2.1 Modprobe.conf
modprobe.conf is identical on all nodes, run:

options lnet 'ip2nets="tcp0 192.168.0.*; elan0 132.6.1.*"' \
'routes="tcp [2,10]@elan0; elan 192.168.0.[2,10]@tcp0"'

7.2.2 Start servers
To start router1, run:

modprobe lnet

lctl network configure

To start megan and oscar, run:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/mdt

$ mount -t lustre mgs16@tcp0,1@elan:/testfs /mnt/testfs

7.2.3 Start clients
For the TCP client, run:

mount -t lustre megan:/mdsA/client /mnt/lustre/

For the Elan client, run:

mount -t lustre 2@elan0:/mdsA/client /mnt/lustre
Chapter 7 More Complicated Configurations 7-5

7.3 Load Balancing with InfiniBand
A Lustre file system contains OSSs with two InfiniBand HCAs. Lustre clients have
only one InfiniBand HCA using OFED Infiniband ''o2ib'' drivers. Load balancing
between the HCAs on the OSS is accomplished through LNET.

7.3.1 Setting Up modprobe.conf for Load Balancing
To configure LNET for load balancing on clients and servers:

1. Set the modprobe.conf options.

Depending on your configuration, set modprobe.conf options as follows:

■ Dual HCA OSS server

options lnet ip2nets= "o2ib0(ib0),o2ib1(ib1) 192.168.10.1.[101-102]

■ Client with the odd IP address

options lnet ip2nets=o2ib0(ib0) 192.168.10.[103-253/2]

■ Client with the even IP address

options lnet ip2nets=o2ib1(ib0) 192.168.10.[102-254/2]

2. Run the modprobe lnet command and create a combined MGS/MDT file
system.

The following commands create the MGS/MDT file system and mount the servers
(MGS/MDT and OSS).

modprobe lnet

$ mkfs.lustre --fsname lustre --mgs --mdt <block device name>

$ mkdir -p <mount point>

$ mount -t lustre <block device> <mount point>

$ mount -t lustre <block device> <mount point>

$ mkfs.lustre --fsname lustre --mgs --mdt <block device name>

$ mkdir -p <mount point>

$ mount -t lustre <block device> <mount point>

$ mount -t lustre <block device> <mount point>
7-6 Lustre 2.0 Operations Manual • April 2010

For example:

modprobe lnet

$ mkfs.lustre --fsname lustre --mdt --mgs /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/mdt

$ mount -t lustre mgs@o2ib0:/lustre /mnt/mdt

$ mkfs.lustre --fsname lustre --ost --mgsnode=mds@o2ib0 /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/ost

$ mount -t lustre mgs@o2ib0:/lustre /mnt/ost

3. Mount the clients.

mount -t lustre <MGS node>:/<fsname> <mount point>

This example shows an IB client being mounted.

mount -t lustre
192.168.10.101@o2ib0,192.168.10.102@o2ib1:/mds/client /mnt/lustre

7.4 Multi-Rail Configurations with LNET
To aggregate bandwidth across both rails of a dual-rail IB cluster (o2iblnd)1 using
LNET, consider these points:

■ LNET can work with multiple rails, however, it does not load balance across them.
The actual rail used for any communication is determined by the peer NID.

■ Multi-rail LNET configurations do not provide an additional level of network fault
tolerance. The configurations described below are for bandwidth aggregation only.
Network interface failover is planned as an upcoming Lustre feature.

■ A Lustre node always uses the same local NID to communicate with a given peer
NID. The criteria used to determine the local NID are:

■ Fewest hops (to minimize routing), and

■ Appears first in the "networks" or "ip2nets" LNET configuration strings

1. Multi-rail configurations are only supported by o2iblnd; other IB LNDs do not support multiple interfaces.
Chapter 7 More Complicated Configurations 7-7

As an example, consider a two-rail IB cluster running the OFA stack (OFED) with
these IPoIB address assignments.

ib0 ib1

Servers 192.168.0.* 192.168.1.*

Clients 192.168.[2-127].* 192.168.[128-253].*

You could create these configurations:

■ A cluster with more clients than servers. The fact that an individual client cannot
get two rails of bandwidth is unimportant because the servers are the actual
bottleneck.

ip2nets="o2ib0(ib0), o2ib1(ib1)192.168.[0-1].* #all servers;\
o2ib0(ib0) 192.168.[2-253].[0-252/2]#even clients;\
o2ib1(ib1) 192.168.[2-253].[1-253/2]#odd clients"

This configuration gives every server two NIDs, one on each network, and statically
load-balances clients between the rails.

■ A single client that must get two rails of bandwidth, and it does not matter if the
maximum aggregate bandwidth is only (# servers) * (1 rail).

ip2nets=" o2ib0(ib0) 192.168.[0-1].[0-252/2] #even servers;\
o2ib1(ib1) 192.168.[0-1].[1-253/2] #odd servers;\
o2ib0(ib0),o2ib1(ib1) 192.168.[2-253].* #clients"

This configuration gives every server a single NID on one rail or the other. Clients
have a NID on both rails.

■ All clients and all servers must get two rails of bandwidth.

ip2nets=” o2ib0(ib0),o2ib2(ib1) 192.168.[0-1].[0-252/2] #even servers;\
o2ib1(ib0),o2ib3(ib1) 192.168.[0-1].[1-253/2] #odd servers;\
o2ib0(ib0),o2ib3(ib1) 192.168.[2-253].[0-252/2)#even clients;\
o2ib1(ib0),o2ib2(ib1) 192.168.[2-253].[1-253/2)#odd clients"

This configuration includes two additional proxy o2ib networks to work around
Lustre's simplistic NID selection algorithm. It connects "even" clients to "even"
servers with o2ib0 on rail0, and "odd" servers with o2ib3 on rail1. Similarly, it
connects "odd" clients to "odd" servers with o2ib1 on rail0, and "even" servers with
o2ib2 on rail1.
7-8 Lustre 2.0 Operations Manual • April 2010

CHAPTER 8

Failover

This chapter describes failover in a Lustre system and includes the following
sections:

■ What is Failover?

■ Failover Functionality in Lustre

■ Configuring and Using Heartbeat with Lustre Failover

8.1 What is Failover?
A computer system is ''highly available'' when the services it provides are available
with minimal downtime. In a highly-available system, if a failure condition occurs,
such as the loss of a server or a network or software fault, the system’s services
continue without interruption. Generally, we measure availability by the percentage
of time the system is required to be available.

Availability is accomplished by replicating hardware and/or software so that when a
primary server fails or is unavailable, a standby server can be switched into its place
to run applications and associated resources. This process, called failover, should be
automatic and, in most cases, completely application-transparent.

A failover hardware setup requires a pair of servers with a shared resource (typically
a physical storage device, which may be based on SAN, NAS, hardware RAID, SCSI
or FC technology). The method of sharing storage should be essentially transparent
at the device level in that the same physical logical unit number (LUN) should be
visible from both servers. To ensure high availability at the physical storage level, we
encourage the use of RAID arrays to protect against drive-level failures.
8-1

8.1.1 Failover Capabilities
To establish a highly-available Lustre file system, power management software or
hardware and high availability (HA) software are used to provide the following
failover capabilities:

■ Resource fencing - Protects physical storage from simultaneous access by two
nodes.

■ Resource management - Starts and stops the Lustre resources as a part of failover,
maintains the cluster state, and carries out other resource management tasks.

■ Health monitoring - Verifies the availability of hardware and network resources
and responds to health indications provided by Lustre.

Although these capabilities can be provided by a variety of software and/or
hardware solutions, the currently supported solution for Lustre is Heartbeat. For
information about accessing the latest version of Heartbeat, see:

www.sun.com/software/products/hpcsoftware/getit.jsp

HA software is responsible for detecting failure of the primary Lustre server node
and controlling the failover. Lustre works with any HA software that supports
resource (I/O) fencing. For proper resource fencing, the HA software must be able to
completely power off the failed server or disconnect it from the shared storage
device. If two active nodes have access to the same storage device, data may be
severely corrupted.

8.1.2 Types of Failover Configurations
Nodes in a cluster can be configured for failover in several ways. They are often
configured in pairs (for example, two OSTs attached to a shared storage device), but
other failover configurations are also possible. Failover configurations include:

■ Active/passive pair - In this configuration, the active node provides resources and
serves data, while the passive node is usually standing by idle. If the active node
fails, the passive node takes over and becomes active.

■ Active/active pair - In this configuration, both nodes are active, each providing a
subset of resources. In case of a failure, the second node takes over resources from
the failed node.

The active/passive configuration is seldom used for OST servers as it doubles
hardware costs without improving performance. On the other hand, an active/active
cluster configuration can improve performance by serving and providing arbitrary
failover protection to a number of OSTs. In an active/active configuration, multiple
OSS nodes are configured to serve the same OST, but only one OSS node can serve
the OST at a time. The OST must never be active on more than one OSS at a time.
8-2 Lustre 2.0 Operations Manual • April 2010

http://www.sun.com/software/products/hpcsoftware/getit.jsp

8.2 Failover Functionality in Lustre
The failover functionality provided in Lustre supports the following failover
scenario. When a client attempts to do I/O to a failed Lustre target, it continues to try
until it receives an answer from any of the configured failover nodes for the Lustre
target. A user-space application does not detect anything unusual, except that the
I/O may take longer than usual to complete.

Lustre failover requires two nodes configured as a failover pair, which must share
one or more storage devices. Lustre can be configured to provide MDT or OST
failover.

■ For MDT failover, two MDSs are configured to serve the same MDT. Only one
MDS node can serve an MDT at a time.

■ For OST failover, multiple OSS nodes are configured to be able to serve the same
OST. However, only one OSS node can serve the OST at a time. An OST can be
moved between OSS nodes that have access to the same storage device using
umount/mount commands.

To add a failover partner to a Lustre configuration, the --failnode option is used.
This can be done at creation time (using mkfs.lustre) or later when the Lustre
system is active (using tunefs.lustre). For explanations of these utilities, see
mkfs.lustre and tunefs.lustre.

For a failover example, see More Complicated Configurations.

Note – Failover is supported in Lustre only at the file system level. In a complete
failover solution, support for system-level components, such as node failure
detection or power control, is provided by a third party tool.

Caution – OST failover functionality does not protect against corruption caused by
a disk failure. If the storage media (i.e., physical disk) used for an OST fails, Lustre
cannot recover it. We strongly recommend that some form of RAID be used for OSTs.
Lustre functionality assumes that the storage is reliable, so it adds no extra reliability
features.
Chapter 8 Failover 8-3

8.2.1 MDT Failover Configuration (Active/Passive)
Two MDSs are usually configured as an active/passive failover pair. Note that both
nodes must have access to shared storage for the MDT(s) and the MGS. The primary
(active) MDS manages the Lustre system metadata resources. If the primary MDS
fails, the secondary (passive) MDS takes over these resources and serves the MDTs
and the MGS.

Note – In an environment with multiple file systems, the MDSs can be configured in
a quasi active/active configuration, with each MDS managing metadata for a subset
of the Lustre file system.

8.2.2 OST Failover Configuration (Active/Active)
OSTs are usually configured in a load-balanced, active/active failover configuration.
A failover cluster is built from two OSSs.

Note – OSSs configured as a failover pair must have shared disks/RAID.

In an active configuration, 50% of the available OSTs are assigned to one OSS and the
remaining OSTs are assigned to the other OSS. Each OSS serves as the primary node
for half the OSTs and as a failover node for the remaining OSTs.

In this mode, if one OSS fails, the other OSS takes over all of the failed OSTs. The
clients attempt to connect to each OSS serving the OST, until one of them responds.
Data on the OST is written synchronously, and the clients replay transactions that
were in progress and uncommitted to disk before the OST failure.

8.2.3 Lustre Failover and MMP
The failover functionality in Lustre is supported by the multiple mount protection
(MMP) feature, which protects the file system from being mounted simultaneously to
more than one node. This feature is important in a shared storage environment (for
example, when a failover pair of OSTs share a partition).

Lustre's backend file system, ldiskfs, supports the MMP mechanism. A block in the
file system is updated by a kmmpd daemon at one second intervals, and a sequence
number is written in this block. If the file system is cleanly unmounted, then a special
"clean" sequence is written to this block. When mounting the file system, ldiskfs
checks if the MMP block has a clean sequence or not.
8-4 Lustre 2.0 Operations Manual • April 2010

Even if the MMP block has a clean sequence, ldiskfs waits for some interval to
guard against the following situations:

■ If I/O traffic is heavy, it may take longer for the MMP block to be updated.

■ If another node is trying to mount the same file system, a "race" condition may
occur.

With MMP enabled, mounting a clean file system takes at least 10 seconds. If the file
system was not cleanly unmounted, then the file system mount may require
additional time.

Note – The MMP feature is only supported on Linux kernel versions >= 2.6.9.

8.2.3.1 Working with MMP

On a new Lustre file system, MMP is automatically enabled by mkfs.lustre at
format time if failover is being used and the kernel and e2fsprogs version support it.
On an existing file system, a Lustre administrator can manually enable MMP when
the file system is unmounted.

Use the following commands to determine whether MMP is running in Lustre and to
enable or disable the MMP feature.

To determine if MMP is enabled, run:

dumpe2fs -h <device>|grep mmp

Here is a sample command:

dumpe2fs -h /dev/sdc | grep mmp

Filesystem features: has_journal ext_attr resize_inode dir_index

filetype extent mmp sparse_super large_file uninit_bg

To manually disable MMP, run:

tune2fs -O ^mmp <device>

To manually enable MMP, run:

tune2fs -O mmp <device>

When MMP is enabled, if ldiskfs detects multiple mount attempts after the file
system is mounted, it blocks these later mount attempts and reports the time when
the MMP block was last updated, the node name, and the device name of the node
where the file system is currently mounted.
Chapter 8 Failover 8-5

8.3 Configuring and Using Heartbeat with
Lustre Failover
This section describes how to configure Lustre failover using the Heartbeat cluster
infrastructure daemon.

8.3.1 Creating a Failover Environment
Lustre provides failover mechanisms only at the file system level. No failover
support is provided for system-level components, such as node failure detection or
power control, as would typically be provided in a complete failover solution.
Additional tools are also needed to provide resource fencing, control and monitoring.

8.3.1.1 Power Management Software

Lustre failover requires power control and management capability to verify that a
failed node is shut down before I/O is directed to the failover node. This avoids
double-mounting the two nodes, and the risk of unrecoverable data corruption. A
variety of power management tools will work, but two packages that are commonly
used with Lustre are STONITH and PowerMan.

Shoot The Other Node In The HEAD (STONITH), is a set of power management
tools provided with the Linux-HA package. STONITH has native support for many
power control devices and is extensible. It uses expect scripts to automate control.

PowerMan, available from the Lawrence Livermore National Laboratory (LLNL), is
used to control remote power control (RPC) devices from a central location.
PowerMan provides native support for several RPC varieties and expect-like
configuration simplifies the addition of new devices.

The latest versions of PowerMan are available at:

sourceforge.net/projects/powerman

For more information about PowerMan, go to:

computing.llnl.gov/linux/powerman.html
8-6 Lustre 2.0 Operations Manual • April 2010

https://computing.llnl.gov/linux/powerman.html
http://sourceforge.net/projects/powerman

8.3.1.2 Power Equipment

Lustre failover also requires the use of RPC devices, which come in different
configurations. Lustre server nodes may be equipped with some kind of service
processor that allows remote power control. If a Lustre server node is not equipped
with a service processor, then a multi-port, Ethernet-addressable RPC may be used as
an alternative. For recommended products, refer to the list of supported RPC devices
on the PowerMan website.

computing.llnl.gov/linux/powerman.html

8.3.2 Setting up the Heartbeat Software
Lustre must be combined with high-availability (HA) software to enable a complete
Lustre failover solution. Lustre can be used with different HA packages, including
Heartbeat, the Linux-HA software.

For current information about Heartbeat, see linux-ha.org/wiki.

The Heartbeat package is one of the core components of the Linux-HA project.
Heartbeat is highly-portable and runs on every known Linux platform, as well as
FreeBSD and Solaris.

This section describes how to install Heartbeat v2 and configure it with and without
STONITH. Because Heartbeat v1 has simpler configuration files, which can be used
with both Heartbeat v1 and v2, the configuration examples show how to configure
Heartbeat using Heartbeat v1 configuration files.

Heartbeat v2 adds monitoring and supports more complex cluster topologies, and
the Heartbeat v2 configuration is stored as an XML file. To support users with
Heartbeat v2, this section also includes a procedure to migrate Heartbeat v1
configuration files to v2.
Chapter 8 Failover 8-7

http://linux-ha.org/wiki
https://computing.llnl.gov/linux/powerman.html

8.3.2.1 Installing Heartbeat

1. Install Lustre (see Installing Lustre).

2. Install the Heartbeat packages.

Heartbeat v2 requires several packages. This example uses Heartbeat v. 2.1.4. The
required Heartbeat packages are, in order:

■ heartbeat-stonith -> heartbeat-stonith-2.1.4-1.x86_64.rpm

■ heartbeat-pils -> heartbeat-pils-2.1.4-1.x86_64.rpm

■ heartbeat -> heartbeat-2.1.4-1.x86_64.rpm

You can download the Heartbeat packages and guides covering basic setup and
testing here:

www.sun.com/software/products/hpcsoftware/getit.jsp

Heartbeat packages are available for many Linux distributions. Additionally,
Heartbeat has some dependencies on other packages. It is recommended that you
use a package manager like yum, yast or aptitude to install the Heartbeat
packages and resolve their package dependencies.

8.3.2.2 Configuring Heartbeat

This section describes Heartbeat configuration and provides a worked example to
illustrate the configuration steps.

Note – Depending on the particular packaging, Heartbeat files may be located in a
different directory or path than indicated in the following procedures.
8-8 Lustre 2.0 Operations Manual • April 2010

http://www.sun.com/software/products/hpcsoftware/getit.jsp

For remote power control, both OSS nodes are equipped with a service processor
(SP). The SPs are accessible over the network via their hostnames. Individual node
parameters are listed below.

Configuring Heartbeat without STONITH

Note – This procedure describes Heartbeat configuration using a v1 configuration
file, which can be used with both Heartbeat v1 and v2. See (Optional) Migrating a
Heartbeat Configuration (v1 to v2) for an optional procedure to convert the v1
configuration file to an XML-formatted v2 configuration file.

Note – Depending on the particular packaging, Heartbeat files may be located in a
different directory or path than indicated in the following procedure. For example,
they may be located in /etc/ha.d/ or /var/lib/heartbeat.

Parameters Value Description

First OSS node

OSS node oss01 First OSS node in the Lustre file system

OST ost01 First OST in the Lustre file system

block device /dev/sda Block device for the first OSS node (oss01)

mount point /mnt/ost1 Mount point for the oss01 block device (/dev/sda) on the oss01 node

hostname oss01sp Hostname for the first OSS node’s SP

Second OSS node

OSS node oss02 Second OSS node in the Lustre file system

OST ost02 Second OST in the Lustre file system

block device /dev/sdb Block device for the second OSS node (oss02)

mount point /mnt/ost02 Mount point for the ost02 block device (/dev/sdb) on the oss02 node

hostname oss02sp Hostname for the second OSS node’s SP
Chapter 8 Failover 8-9

To configure Heartbeat without STONITH:

1. Create (or edit) the Heartbeat configuration file, /etc/ha.d/ha.cf.

This file must be identical on both nodes.

In this example configuration (without STONITH configuration), the
/etc/ha.d/ha.cf file looks like this:

log file settings

write debug output to /var/log/ha-debug

debugfile /var/log/ha-debug

write log messages to /var/log/ha-log

logfile /var/log/ha-log

use syslog to write to logfiles

logfacility local0

set some time-outs. these values are only recommendations, which
depend e.g. on the OSS load

send keep-alive packages every 2 seconds

keepalive 2

wait 90 seconds before declaring a node dead

deadtime 90

write a warning to the logfile after 30 seconds without an answer
from the failover node

warntime 30

wait for 120 seconds before declaring a node dead after heartbeat
is brought up

initdead 120

define communication channels

use port 12345 to communicate with fail-over node

udpport 12345

use network interfaces eth0 and ib0 to detect a failed node

bcast eth0 ib0

Use manual failback

auto_failback off

node names in this failover-pair. These names must match the
output of `hostname`

node oss01

node oss02
8-10 Lustre 2.0 Operations Manual • April 2010

2. Define the resources that will be controlled by Heartbeat by editing the
/etc/ha/d/haresources file.

This file must be identical on both nodes.

In this example configuration, the /etc/ha.d/haresources file looks like this:

oss01 Filesystem::/dev/sda::/mnt/ost01::lustre

oss02 Filesystem::/dev/sdb::/mnt/ost02::lustre

The resource definition file tells Heartbeat that one file system resource is
associated with oss01 and oss02. Each resource is defined on separate lines.

The file system resource script takes three inputs separated by "::". The first
parameter is the device name, the second is the mount point and the third is the
file system type.

Depending on the configuration, a resource can be more complex, e.g., software
RAID needs to be assembled before the file system can be mounted. In this case,
an haresources file may look like this:

oss01 Raid1::/etc/mdadm.conf.oss::/dev/md1
Filesystem::/dev/md1::/mnt/ost01::lustre

oss02 Raid1::/etc/mdadm.conf.oss::/dev/md2
Filesystem::/dev/md2::/mnt/ost02::lustre

When a resource group is started by Heartbeat, the resources start from left to
right. In this example, the RAID is assembled first, and the file system is mounted
second. If the resource group is stopped, then the file system is unmounted first
and the RAID is stopped second.

Other resource scripts can be found in the /etc/ha.d/resource.d/ folder.

3. Create the /etc/ha.d/authkeys file and fix its permissions.

This file must be identical on both nodes.

In this example configuration, the authkeys file looks like this:

auth 1

1 sha1 PutYourSuperSecretKeyHere

Make sure that the permissions for this files are set to 0600, by running chmod
0600 /etc/ha.d/authkeys on both nodes.

4. Test the Heartbeat configuration.

Run the following command on both nodes:

service heartbeat start

Check the log files on both nodes to find any problems and fix them.

After the initial deadtime interval, you should see the nodes discover each other's
state and start the Lustre resources associated with them.
Chapter 8 Failover 8-11

Configuring Heartbeat with STONITH

STONITH automates the process of power control and management. Expect scripts
are dependent on the exact set of commands provided by each hardware vendor. As
a result, any change in the power control hardware or firmware requires that
STONITH be adjusted.

Note – This procedure describes configuring Heartbeat using a v1 configuration file,
which can be used with both Heartbeat v1 and v2. See (Optional) Migrating a
Heartbeat Configuration (v1 to v2) for an optional procedure to convert the v1
configuration file to an XML-formatted v2 configuration file.

Note – Depending on the particular packaging, Heartbeat files may be located in a
different directory or path than indicated in the following procedure. For example,
they may be located in /etc/ha.d/ or /var/lib/heartbeat.

The heartbeat-stonith package comes with a number of pre-defined STONITH scripts
for different power control hardware. Additionally, Heartbeat can be configured to
run an external script. Heartbeat can be configured in two STONITH modes:

■ One STONITH command for all nodes found in ha.cf:

stonith <type> <config file>

■ One STONITH command per-node:

stonith_host <hostfrom> <stonith_type> <params...>

You can use an external script to kill each node, e.g.:

stonith_host oss01 external foo /etc/ha.d/reset-nodeB

stonith_host oss02 external foo /etc/ha.d/reset-nodeA

To get the proper STONITH syntax, run:

$ stonith -L

The above command lists supported models.

To list required parameters and specify the configuration filename, run:

$ stonith -l -t <model>

To attempt a test, run:

$ stonith -l -t <model> <fake host name>

To test STONITH, use a real hostname. To work with Heartbeat correctly, the external
STONITH scripts should take the parameters {start|stop|status} and return 0 or 1.
8-12 Lustre 2.0 Operations Manual • April 2010

To add STONITH functionality (using an ipmi service processor) to the configuration
example, add the following lines to the /etc/ha.d/ha.cf configuration file:

define how a node can be powered off in case of a failure. more
details below

stonith_host oss01 external/ipmi oss02 oss02sp root changeme lanplus

stonith_host oss02 external/ipmi oss01 oss01sp root changeme lanplus

STONITH is only invoked if one of the failover nodes is no longer responding to
Heartbeat messages and the cluster does stop resources in an orderly manner. If two
cluster nodes can communicate, they usually shut down properly. This means that
many tests do not produce a STONITH, for example:

■ Calling init 0, shutdown, or reboot on a node will cause no STONITH

■ Stopping Heartbeat on a node stops the resources cleanly and fails them over to
the other node without invoking STONITH.

8.3.2.3 (Optional) Migrating a Heartbeat Configuration (v1 to v2)

Heartbeat includes a script that enables v1 configuration files to be migrated to v2
XML configuration files. The script reads the v1 configuration files (ha.cf and
haresources), and then writes an XML file to STDOUT. The script is

$ /usr/lib/heartbeat/haresources2cib.py

or

$ /usr/lib64/heartbeat/haresources2cib.py

To redirect the script output after the cib.xml file has been generated, it is
recommended that you check the XML file and change some parameters, such as
resource-stickiness and timeouts, to more appropriate values. For example:

$ /usr/lib64/heartbeat/haresources2cib.py > cib.xml

Then the cib.xml file should than be copied to /var/lib/heartbeat/crm/cib.xml on
both failover nodes.

To test the new configuration, start Heartbeat on both nodes and check the log files.

Note – If a Heartbeat v2 configuration file is available on the system, it is not
necessary to remove the v1 configuration files, as they are ignored.
Chapter 8 Failover 8-13

8.3.3 Working with Heartbeat
After Lustre and Heartbeat are correctly configured, the following commands can be
used to control Heartbeat.

8.3.3.1 Starting Heartbeat

To start Heartbeat, run this command on both failover nodes:

service heartbeat start

After a node fails, start Heartbeat manually and analyze the cause of the problem
before taking over the failed resources. You should NOT start Heartbeat
automatically after a node failure.

8.3.3.2 Switching Resources Between Nodes

Depending on whether Heartbeat v1 or v2 configuration files are being used, there
are different ways to switch resources between nodes.

For Heartbeat v1 configuration files, two scripts are provided (hb_takeover and
hb_standby), that make it easy to switch resources between failover nodes.
Depending on your system, these scripts are located in /usr/lib/heartbeat/ or
/usr/lib64/heartbeat/.

The hb_takeover and hb_standby scripts take the following arguments:

■ all -- take/fail over all resources

■ foreign -- take/fail over foreign resources

■ local -- take/fail over local resources only

■ failback -- fail/take over foreign resources

Performing an hb_takeover on the current node is equivalent to performing an
hb_standby on the other node.

For Heartbeat v2 configuration files, the crm_resource command is used to interact
with Heartbeat's Cluster Resource Manager and switch resources between nodes. For
more information on crm_resource, see:

linux.die.net/man/8/crm_resource
8-14 Lustre 2.0 Operations Manual • April 2010

http://linux.die.net/man/8/crm_resource

To switch resources between nodes:

1. Generate a complete list of resources known to the Heartbeat cluster resource
manager. Run:

crm_resource --list

2. From the list, identify the group name for the resource to fail over.

3. Determine if and where the specified resource is running. Run:

crm_resource -W -r <resource_name>

4. Migrate the resource to the host. Run:

crm_resource -M -r <resource_name> -H <target_host_name>

5. To un-migrate a resource, run:

crm_resource -U -r <resource_name>
Chapter 8 Failover 8-15

8-16 Lustre 2.0 Operations Manual • April 2010

CHAPTER 9

Configuring Quotas

This chapter describes how to configure quotas and includes the following sections:

■ Working with Quotas

■ Enabling Disk Quotas

■ Creating Quota Files and Quota Administration

■ Quota Allocation

■ Known Issues with Quotas

■ Lustre Quota Statistics

9.1 Working with Quotas
Quotas allow a system administrator to limit the amount of disk space a user or
group can use in a directory. Quotas are set by root, and can be specified for
individual users and/or groups. Before a file is written to a partition where quotas
are set, the quota of the creator's group is checked. If a quota exists, then the file size
counts towards the group's quota. If no quota exists, then the owner's user quota is
checked before the file is written. Similarly, inode usage for specific functions can be
controlled if a user over-uses the allocated space.

Lustre quota enforcement differs from standard Linux quota support in several ways:

■ Quotas are administered via the lfs command (post-mount).

■ Quotas are distributed (as Lustre is a distributed file system), which has several
ramifications.

■ Quotas are allocated and consumed in a quantized fashion.

■ Client does not set the usrquota or grpquota options to mount. When quota is
enabled, it is enabled for all clients of the file system; started automatically using
quota_type or started manually with lfs quotaon.
9-1

Caution – Although quotas are available in Lustre, root quotas are NOT enforced.

lfs setquota -u root (limits are not enforced)

lfs quota -u root (usage includes internal Lustre data that is dynamic in size
and does not accurately reflect mount point visible block and inode usage).

9.1.1 Enabling Disk Quotas
Use this procedure to enable (configure) disk quotas in Lustre.

1. If you have re-complied your Linux kernel, be sure that CONFIG_QUOTA and
CONFIG_QUOTACTL are enabled. Also, verify that CONFIG_QFMT_V1
and/or CONFIG_QFMT_V2 are enabled.

Quota is enabled in all Linux 2.6 kernels supplied for Lustre.

2. Start the server.

3. Mount the Lustre file system on the client and verify that the lquota module has
loaded properly by using the lsmod command.

$ lsmod

[root@oss161 ~]# lsmod

Module Size Used by

obdfilter 220532 1

fsfilt_ldiskfs 52228 1

ost 96712 1

mgc 60384 1

ldiskfs 186896 2 fsfilt_ldiskfs

lustre 401744 0

lov 289064 1 lustre

lquota 107048 4 obdfilter

mdc 95016 1 lustre

ksocklnd 111812 1

The Lustre mount command no longer recognizes the usrquota and grpquota
options. If they were previously specified, remove them from /etc/fstab.

When quota is enabled, it is enabled for all file system clients (started automatically
using quota_type or manually with lfs quotaon).

Note – Lustre with the Linux kernel 2.4 does not support quotas.
9-2 Lustre 2.0 Operations Manual • April 2010

To enable quotas automatically when the file system is started, you must set the
mdt.quota_type and ost.quota_type parameters, respectively, on the MDT and
OSTs. The parameters can be set to the string u (user), g (group) or ug for both users
and groups.

You can enable quotas at mkfs time (mkfs.lustre --param mdt.quota_type=
ug) or with tunefs.lustre. As an example:

tunefs.lustre --param ost.quota_type=ug $ost_dev

Caution – If you are using mkfs.lustre --param mdt.quota_type=ug or
tunefs.lustre --param ost.quota_type=ug, be sure to run the command on
all OSTs and the MDT. Otherwise, abnormal results may occur.

9.1.1.1 Administrative and Operational Quotas

Lustre has two kinds of quota files:

■ Administrative quotas (for the MDT), which contain limits for users/groups for
the entire cluster.

■ Operational quotas (for the MDT and OSTs), which contain quota information
dedicated to a cluster node.

Lustre 1.6.5 introduced the v2 file format for administrative quota files, with
continued support for the old file format (v1). The mdt.quota_type parameter also
handles ‘1’ and ‘2’ options, to specify the Lustre quota versions that will be used. For
example:

--param mdt.quota_type=ug1

--param mdt.quota_type=u2

Lustre 1.6.6 introduced the v2 file format for operational quotas, with continued
support for the old file format (v1). The ost.quota_type parameter handles ‘1’ and
‘2’ options, to specify the Lustre quota versions that will be used. For example:

--param ost.quota_type=ug2

--param ost.quota_type=u1

For more information about the v1 and v2 formats, see Quota File Formats.
Chapter 9 Configuring Quotas 9-3

9.1.2 Creating Quota Files and Quota Administration
Once each quota-enabled file system is remounted, it is capable of working with disk
quotas. However, the file system is not yet ready to support quotas. If umount has
been done regularly, run the lfs command with the quotaon option. If umount has
not been done, perform these steps:

1. Take Lustre ''offline''. That is, verify that no write operations (append, write,
truncate, create or delete) are being performed (preparing to run lfs
quotacheck). Operations that do not change Lustre files (such as read or
mount) are okay to run.

Caution – When lfs quotacheck is run, Lustre must NOT be performing any
write operations. Failure to follow this caution may cause the statistic information of
quota to be inaccurate. For example, the number of blocks used by OSTs for users or
groups will be inaccurate, which can cause unexpected quota problems.

2. Run the lfs command with the quotacheck option:

lfs quotacheck -ug /mnt/lustre

By default, quota is turned on after quotacheck completes. Available options are:

■ u — checks the user disk quota information

■ g — checks the group disk quota information

The lfs quotacheck command checks all objects on all OSTs and the MDS to
sum up for every UID/GID. It reads all Lustre metadata and re-computes the
number of blocks/inodes that each UID/GID has used. If there are many files in
Lustre, it may take a long time to complete.

Note – User and group quotas are separate. If either quota limit is reached, a process
with the corresponding UID/GID cannot allocate more space on the file system.

Note – When lfs quotacheck runs, it creates a quota file -- a sparse file with a size
proportional to the highest UID in use and UID/GID distribution. As a general rule,
if the highest UID in use is large, then the sparse file will be large, which may affect
functions such as creating a snapshot.
9-4 Lustre 2.0 Operations Manual • April 2010

Note – For Lustre 1.6 releases before version 1.6.5, and 1.4 releases before version
1.4.12, if the underlying ldiskfs file system has not unmounted gracefully (due to a
crash, for example), re-run quotacheck to obtain accurate quota information. Lustre
1.6.5 and 1.4.12 use journaled quota, so it is not necessary to run quotacheck after
an unclean shutdown.

In certain failure situations (e.g., when a broken Lustre installation or build is used),
re-run quotacheck after checking the server kernel logs and fixing the root problem.

The lfs command includes several command options to work with quotas:

■ quotaon — enables disk quotas on the specified file system. The file system quota
files must be present in the root directory of the file system.

■ quotaoff — disables disk quotas on the specified file system.

■ quota — displays general quota information (disk usage and limits)

■ setquota — specifies quota limits and tunes the grace period. By default, the
grace period is one week.

Usage:

lfs quotaon [-ugf] <filesystem>

lfs quotaoff [-ug] <filesystem>

lfs quota [-q] [-v] [-o obd_uuid] [-u|-g <uname>|uid|gname|gid>]
<filesystem>

lfs quota -t <-u|-g> <filesystem>

lfs setquota <-u|--user|-g|--group> <username|groupname>
[-b <block-softlimit>] [-B <block-hardlimit>] [-i <inode-softlimit>]
[-I <inode-hardlimit>] <filesystem>

Examples:

In all of the examples below, the file system is /mnt lustre.

To turn on user and group quotas, run:

$ lfs quotaon -ug /mnt/lustre

To turn off user and group quotas, run:

$ lfs quotaoff -ug /mnt/lustre

To display general quota information (disk usage and limits) for the user running the
command and his primary group, run:

$ lfs quota /mnt/lustre
Chapter 9 Configuring Quotas 9-5

To display general quota information for a specific user ("bob" in this example), run:

$ lfs quota -u bob /mnt/lustre

To display general quota information for a specific user ("bob" in this example) and
detailed quota statistics for each MDT and OST, run:

$ lfs quota -u bob -v /mnt/lustre

To display general quota information for the group to which a specific user ("bob" in
this example) belongs, run:

$ lfs quota -g bob /mnt/lustre

To display general quota information for a specific group ("eng" in this example),
run:

$ lfs quota -g eng /mnt/lustre

To display block and inode grace times for user quotas, run:

$ lfs quota -t -u /mnt/lustre

To set user and group quotas for a specific user ("bob" in this example), run:

$ lfs setquota -u bob 307200 309200 10000 11000 /mnt/lustre

In this example, the quota for user "bob" is set to 300 MB (309200*1024) and the
hard limit is 11,000 files. Therefore, the inode hard limit should be 11000.

Note – For the Lustre command $ lfs setquota/quota ... the qunit for block is KB
(1024) and the qunit for inode is 1.

The quota command displays the quota allocated and consumed for each Lustre
device. Using the previous setquota example, running this lfs quota command:

$ lfs quota -u bob -v /mnt/lustre

displays this command output:

Disk quotas for user bob (uid 500):

Filesystem blocks quota limit grace files quota limit grace

/mnt/lustre 0 307200 309200 0 10000 11000

lustre-MDT0000_UUID 0 0 102400 0 0 5000

lustre-OST0000_UUID 0 0 102400

lustre-OST0001_UUID 0 0 102400
9-6 Lustre 2.0 Operations Manual • April 2010

9.1.3 Quota Allocation
The Linux kernel sets a default quota size of 1 MB. (For a block, the default is 128
MB. For files, the default is 5120.) Lustre handles quota allocation in a different
manner. A quota must be properly set or users may experience unnecessary failures.
The file system block quota is divided up among the OSTs within the file system.
Each OST requests an allocation which is increased up to the quota limit. The quota
allocation is then quantized to reduce the number of quota-related request traffic. By
default, Lustre supports both user and group quotas to limit disk usage and file
counts.

The quota system in Lustre is completely compatible with the quota systems used on
other file systems. The Lustre quota system distributes quotas from the quota master.
Generally, the MDS is the quota master for both inodes and blocks. All OSTs and the
MDS are quota slaves to the OSS nodes. The minimum transfer unit is 100 MB, to
avoid performance impacts for quota adjustments. The file system block quota is
divided up among the OSTs and the MDS within the file system. Only the MDS uses
the file system inode quota.

This means that the minimum quota for block is 100 MB* (the number of OSTs + the
number of MDSs), which is 100 MB* (number of OSTs + 1). The minimum quota for
inode is the inode qunit. If you attempt to assign a smaller quota, users maybe not be
able to create files. The default is established at file system creation time, but can be
tuned via /proc values (described below). The inode quota is also allocated in a
quantized manner on the MDS.
Chapter 9 Configuring Quotas 9-7

This sets a much smaller granularity. It is specified to request a new quota in units of
100 MB and 500 inodes, respectively. If we look at the setquota example again,
running this lfs quota command:

lfs quota -u bob -v /mnt/lustre

displays this command output:

Disk quotas for user bob (uid 500):

Filesystem blocks quota limit grace files quota limit grace

/mnt/lustre 207432 307200 30920 1041 10000 11000

lustre-MDT0000_UUID 992 0 102400 1041 05000

lustre-OST0000_UUID 103204* 0 102400

lustre-OST0001_UUID 103236* 0 102400

The total quota of 30,920 is allotted to user bob, which is further distributed to two
OSTs and one MDS with a 102,400 block quota.

Note – Values appended with “*” show the limit that has been over-used (exceeding
the quota), and receives this message Disk quota exceeded. For example:
\
$ cp: writing `/mnt/lustre/var/cache/fontconfig/
beeeeb3dfe132a8a0633a017c99ce0-x86.cache’: Disk quota exceeded.

The requested quota of 300 MB is divided across the OSTs. Each OST has an initial
allocation of 100 MB blocks, with iunit limiting to 5000.

Note – It is very important to note that the block quota is consumed per OST and
the MDS per block and inode (there is only one MDS for inodes). Therefore, when
the quota is consumed on one OST, the client may not be able to create files
regardless of the quota available on other OSTs.
9-8 Lustre 2.0 Operations Manual • April 2010

Additional information:

Grace period — The period of time (in seconds) within which users are allowed to
exceed their soft limit. There are four types of grace periods:

■ user block soft limit

■ user inode soft limit

■ group block soft limit

■ group inode soft limit

The grace periods are applied to all users. The user block soft limit is for all users
who are using a blocks quota.

Soft limit — Once you are beyond the soft limit, the quota module begins to time,
but you still can write block and inode. When you are always beyond the soft limit
and use up your grace time, you get the same result as the hard limit. For inodes and
blocks, it is the same. Usually, the soft limit MUST be less than the hard limit; if not,
the quota module never triggers the timing. If the soft limit is not needed, leave it as
zero (0).

Hard limit — When you are beyond the hard limit, you get -EQUOTA and cannot
write inode/block any more. The hard limit is the absolute limit. When a grace
period is set, you can exceed the soft limit within the grace period if are under the
hard limits.

Lustre quota allocation is controlled by two values quota_bunit_sz and
quota_iunit_sz referring to KBs and inodes respectively. These values can be
accessed on the MDS as /proc/fs/lustre/mds/*/quota_* and on the OST as
/proc/fs/lustre/obdfilter/*/quota_*. The /proc values are bounded by
two other variables quota_btune_sz and quota_itune_sz. By default, the
*tune_sz variables are set at 1/2 the *unit_sz variables, and you cannot set
*tune_sz larger than *unit_sz. You must set bunit_sz first if it is increasing by
more than 2x, and btune_sz first if it is decreasing by more than 2x.

Total number of inodes — To determine the total number of inodes, use lfs df -i
(and also /proc/fs/lustre/*/*/filestotal). For more information on using
the lfs df -i command and the command output, see Querying File System Space.

Unfortunately, the statfs interface does not report the free inode count directly, but
instead reports the total inode and used inode counts. The free inode count is
calculated for df from (total inodes - used inodes).

It is not critical to know a file system’s total inode count. Instead, you should know
(accurately), the free inode count and the used inode count for a file system. Lustre
manipulates the total inode count in order to accurately report the other two values.

The values set for the MDS must match the values set on the OSTs.
Chapter 9 Configuring Quotas 9-9

The quota_bunit_sz parameter displays bytes, however lfs setquota uses KBs.
The quota_bunit_sz parameter must be a multiple of 1024. A proper minimum KB
size for lfs setquota can be calculated as:

Size in KBs = (quota_bunit_sz * (number of OSTS + 1)) / 1024

We add one (1) to the number of OSTs as the MDS also consumes KBs. As inodes are
only consumed on the MDS, the minimum inode size for lfs setquota is equal to
quota_iunit_sz.

Note – Setting the quota below this limit may prevent the user from all file creation.

9.1.4 Known Issues with Quotas
Using quotas in Lustre can be complex and there are several known issues.

9.1.4.1 Granted Cache and Quota Limits

In Lustre, granted cache does not respect quota limits. In this situation, OSTs grant
cache to Lustre client to accelerate I/O. Granting cache causes writes to be successful
in OSTs, even if they exceed the quota limits, and will overwrite them.

The sequence is:

1. A user writes files to Lustre.

2. If the Lustre client has enough granted cache, then it returns ‘success’ to users
and arranges the writes to the OSTs.

3. Because Lustre clients have delivered success to users, the OSTs cannot fail
these writes.

Because of granted cache, writes always overwrite quota limitations. For example, if
you set a 400 GB quota on user A and use IOR to write for user A from a bundle of
clients, you will write much more data than 400 GB, and cause an out-of-quota error
(-EDQUOT).
9-10 Lustre 2.0 Operations Manual • April 2010

Note – The effect of granted cache on quota limits can be mitigated, but not
eradicated. Reduce the max_dirty_buffer in the clients (can be set from 0 to 512).
To set max_dirty_buffer to 0:

* In releases after Lustre 1.6.5, lctl set_param osc.*.max_dirty_mb=0.

* In releases before Lustre 1.6.5, proc/fs/lustre/osc/*/max_dirty_mb; do
echo 512 > $O

9.1.4.2 Quota Limits

Available quota limits depend on the Lustre version you are using.

■ Lustre version 1.4.11 and earlier (for 1.4.x releases) and Lustre version 1.6.4 and
earlier (for 1.6.x releases) support quota limits less than 4 TB.

■ Lustre versions 1.4.12, 1.6.5 and later support quota limits of 4 TB and greater in
Lustre configurations with OST storage limits of 4 TB and less.

■ Future Lustre versions are expected to support quota limits of 4 TB and greater
with no OST storage limits.

Lustre Version Quota Limit Per User/Per Group OST Storage Limit

1.4.11 and earlier < 4TB n/a

1.4.12 => 4TB <= 4TB of storage

1.6.4 and earlier < 4TB n/a

1.6.5 => 4TB <= 4TB of storage

Future Lustre versions => 4TB No storage limit
Chapter 9 Configuring Quotas 9-11

9.1.4.3 Quota File Formats

Lustre 1.6.5 introduced the v2 file format for administrative quotas, with 64-bit limits
that support large-limits handling. The old quota file format (v1), with 32-bit limits,
is also supported. Lustre 1.6.6 introduced the v2 file format for operational quotas. A
few notes regarding the current quota file formats:

Lustre 1.6.5 and later use mdt.quota_type to force a specific administrative quota
version (v2 or v1).

■ For the v2 quota file format, (OBJECTS/admin_quotafile_v2.{usr,grp})

■ For the v1 quota file format, (OBJECTS/admin_quotafile.{usr,grp})

Lustre 1.6.6 and later use ost.quota_type to force a specific operational quota
version (v2 or v1).

■ For the v2 quota file format, (lquota_v2.{user,group})

■ For the v1 quota file format, (lquota.{user,group})

The quota_type specifier can be used to set different combinations of
administrative/operational quota file versions on a Lustre node:

■ "1" - v1 (32-bit) administrative quota file, v1 (32-bit) operational quota file (default
in releases before Lustre 1.6.5)

■ "2" - v2 (64-bit) administrative quota file, v1 (32-bit) operational quota file (default
in Lustre 1.6.5)

■ "3" - v2 (64-bit) administrative quota file, v2 (64-bit) operational quota file (default
in releases after Lustre 1.6.5)

If quotas do not exist or look broken, then quotacheck creates quota files of a
required name and format.

If Lustre is using the v2 quota file format when only v1 quota files exist, then
quotacheck converts old v1 quota files to new v2 quota files. This conversion is
triggered automatically, and is transparent to users. If an old quota file does not exist
or looks broken, then the new v2 quota file will be empty. In case of an error, details
can be found in the kernel log of the corresponding MDS/OST. During conversion of
a v1 quota file to a v2 quota file, the v2 quota file is marked as broken, to avoid it
being used if a crash occurs. The quota module does not use broken quota files
(keeping quota off).

In most situations, Lustre administrators do not need to set specific versioning
options. Upgrading Lustre without using quota_type to force specific quota file
versions results in quota files being upgraded automatically to the latest version. The
option ensures backward compatibility, preventing a quota file upgrade to a version
which is not supported by earlier Lustre versions.
9-12 Lustre 2.0 Operations Manual • April 2010

9.1.5 Lustre Quota Statistics
Lustre includes statistics that monitor quota activity, such as the kinds of quota RPCs
sent during a specific period, the average time to complete the RPCs, etc. These
statistics are useful to measure performance of a Lustre file system.

Each quota statistic consists of a quota event and min_time, max_time and
sum_time values for the event.

Quota Event Description

sync_acq_req Quota slaves send a acquiring_quota request and
wait for its return.

sync_rel_req Quota slaves send a releasing_quota request and
wait for its return.

async_acq_req Quota slaves send an acquiring_quota request and
do not wait for its return.

async_rel_req Quota slaves send a releasing_quota request and do
not wait for its return.

wait_for_blk_quota
(lquota_chkquota)

Before data is written to OSTs, the OSTs check if the
remaining block quota is sufficient. This is done in
the lquota_chkquota function.

wait_for_ino_quota
(lquota_chkquota)

Before files are created on the MDS, the MDS checks
if the remaining inode quota is sufficient. This is
done in the lquota_chkquota function.

wait_for_blk_quota
(lquota_pending_commit)

After blocks are written to OSTs, relative quota
information is updated. This is done in the
lquota_pending_commit function.

wait_for_ino_quota
(lquota_pending_commit)

After files are created, relative quota information is
updated. This is done in the
lquota_pending_commit function.

wait_for_pending_blk_quota_req
(qctxt_wait_pending_dqacq)

On the MDS or OSTs, there is one thread sending a
quota request for a specific UID/GID for block
quota at any time. At that time, if other threads
need to do this too, they should wait. This is done
in the qctxt_wait_pending_dqacq function.

wait_for_pending_ino_quota_req
(qctxt_wait_pending_dqacq)

On the MDS, there is one thread sending a quota
request for a specific UID/GID for inode quota at
any time. If other threads need to do this too, they
should wait. This is done in the
qctxt_wait_pending_dqacq function.
Chapter 9 Configuring Quotas 9-13

9.1.5.1 Interpreting Quota Statistics

Quota statistics are an important measure of a Lustre file system’s performance.
Interpreting these statistics correctly can help you diagnose problems with quotas,
and may indicate adjustments to improve system performance.

For example, if you run this command on the OSTs:

cat /proc/fs/lustre/lquota/lustre-OST0000/stats

You will get a result similar to this:

snapshot_time 1219908615.506895 secs.usecs
async_acq_req 1 samples [us]32 32 32
async_rel_req 1 samples [us]5 5 5
nowait_for_pending_blk_quota_req(qctxt_wait_pending_dqacq) 1 samples [us] 2 2 2
quota_ctl 4 samples [us]80 3470 4293
adjust_qunit 1 samples [us]70 70 70
....

In the first line, snapshot_time indicates when the statistics were taken. The
remaining lines list the quota events and their associated data.

In the second line, the async_acq_req event occurs one time. The min_time,
max_time and sum_time statistics for this event are 32, 32 and 32, respectively. The
unit is microseconds (s).

In the fifth line, the quota_ctl event occurs four times. The min_time, max_time
and sum_time statistics for this event are 80, 3470 and 4293, respectively. The unit is
microseconds (s).

nowait_for_pending_blk_quota_req
(qctxt_wait_pending_dqacq)

On the MDS or OSTs, there is one thread sending a
quota request for a specific UID/GID for block
quota at any time. When threads enter
qctxt_wait_pending_dqacq, they do not need to
wait. This is done in the qctxt_wait_pending_dqacq
function.

nowait_for_pending_ino_quota_req
(qctxt_wait_pending_dqacq)

On the MDS, there is one thread sending a quota
request for a specific UID/GID for inode quota at
any time. When threads enter
qctxt_wait_pending_dqacq, they do not need to
wait. This is done in the qctxt_wait_pending_dqacq
function.

quota_ctl The quota_ctl statistic is generated when lfs
setquota, lfs quota and so on, are issued.

adjust_qunit Each time qunit is adjusted, it is counted.

Quota Event Description
9-14 Lustre 2.0 Operations Manual • April 2010

Involving Lustre Support in Quotas Analysis

Quota statistics are collected in /proc/fs/lustre/lquota/.../stats. Each
MDT and OST has one statistics proc file. If you have a problem with quotas, but
cannot successfully diagnose the issue, send the statistics files in the folder to Lustre
Support for analysis. To prepare the files:

1. Initialize the statistics data to 0 (zero). Run:

lctl set_param lquota.${FSNAME}-MDT*.stats=0

lctl set_param lquota.${FSNAME}-OST*.stats=0

2. Perform the quota operation that causes the problem or degraded performance.

3. Collect all statistics in /proc/fs/lustre/lquota/ and send them to Lustre Support.
Note the following:

■ Proc quota entries are collected in these folders:

/proc/fs/lustre/obdfilter/lustre-OSTXXXX/quota*

- AND -

/proc/fs/lustre/mds/lustre-MDTXXXX/quota*

Proc quota entries are copied to /proc/fs/lustre/lquota.

■ To maintain compatibility, old quota proc entries in the following folders are
not deleted in the current Lustre release (although they may be deprecated in
the future):

/proc/fs/lustre/obdfilter/lustre-OSTXXXX/

- AND -

/proc/fs/lustre/mds/lustre-MDTXXXX/

■ Only use the quota entries in /proc/fs/lustre/lquota/.
Chapter 9 Configuring Quotas 9-15

9-16 Lustre 2.0 Operations Manual • April 2010

CHAPTER 10

RAID

This chapter describes software and hardware RAID, and includes the following
sections:

■ Considerations for Backend Storage

■ Insights into Disk Performance Measurement

■ Lustre Software RAID Support
10-1

10.1 Considerations for Backend Storage
Lustre's architecture allows it to use any kind of block device as backend storage. The
characteristics of such devices, particularly in the case of failures vary significantly
and have an impact on configuration choices.

This section surveys issues and recommendations regarding backend storage.

10.1.1 Selecting Storage for the MDS or OSTs

MDS

The MDS does a large amount of small writes. For this reason, we recommend that
you use RAID1 for MDT storage. If you require more capacity for an MDT than one
disk provides, we recommend RAID1 + 0 or RAID10. LVM is not recommended at
this time for performance reasons.

OST

A quick calculation (shown below), makes it clear that without further redundancy,
RAID5 is not acceptable for large clusters and RAID6 is a must.

Take a 1 PB file system (2,000 disks of 500 GB capacity). The MTTF1 of a disk is about
1,000 days. This means that the expected failure rate is 2000/1000 = 2 disks per day.
Repair time at 10% of disk bandwidth is close to 1 day (500 GB at 5 MB/sec = 100,000
sec = 1 day).

If we have a RAID 5 stripe that is 10 disks wide, then during 1 day of rebuilding, the
chance that a second disk in the same array fails is about 9 / 1000 ~= 1/100. This
means that, in the expected period of 50 days, a double failure in a RAID 5 stripe
leads to data loss.

So, RAID 6 or another double parity algorithm is necessary for OST storage.

For better performance, we recommend that you create RAID sets with no more than
8 data disks (+1 or +2 parity disks) as this will provide more IOPS from having
multiple independent RAID sets.

1. Mean Time to Failure
10-2 Lustre 2.0 Operations Manual • April 2010

File system: Use RAID5 with 5 or 9 disks or RAID6 with 6 or 10 disks, each on a
different controller. The stripe width is the optimal minimum I/O size. Ideally, the
RAID configuration should allow 1 MB Lustre RPCs to fit evenly on a single RAID
stripe without an expensive read-modify-write cycle. Use this formula to determine
the stripe_width.

<stripe_width> = <chunksize> * (<disks> - <parity_disks>) <= 1 MB

where <parity_disks> is 1 for RAID5/RAID-Z and 2 for RAID6/RAID-Z2. If the
RAID configuration does not allow <chunksize> to fit evenly into 1 MB, select
<chunksize>, such that <stripe_width> is close to 1 MB, but not larger.

For example, RAID6 with 6 disks has 4 data and 2 parity disks, so we get:

<chunksize> <= 1024kB/4; either 256kB, 128kB or 64kB

The <stripe_width> value must equal <chunksize> * (<disks> -
<parity_disks>). Use it for OST file systems only (not MDT file systems).

$ mkfs.lustre --mountfsoptions="stripe=<stripe_width_blocks>" ...

External journal: Use RAID1 with two partitions of 400 MB (or more), each from
disks on different controllers.

To set up the journal device (/dev/mdJ), run:

$ 'mke2fs -O journal_dev -b 4096 /dev/mdJ'

Then run --reformat on the file system device (/dev/mdX), specifying the RAID
geometry to the underlying ldiskfs file system, where:

<chunk_blocks> = <chunksize> / 4096
<stripe_width_blocks> = <stripe_width> / 4096:

$ mkfs.lustre --reformat ...
--mkfsoptions "-j -J device=/dev/mdJ -E stride=<chunk_blocks>" /dev/mdX

10.1.2 Reliability Best Practices
It is considered mandatory that you use disk monitoring software, so rebuilds
happen without any delay.

We recommend backups of the metadata file systems. This can be done with LVM
snapshots or using raw partition backups.
Chapter 10 RAID 10-3

10.1.3 Understanding Double Failures with Hardware
and Software RAID5
Software RAID does not offer the hard consistency guarantees of top-end enterprise
RAID arrays. Hardware RAID guarantees that the value of any block is exactly the
before or after value and that ordering of writes is preserved. With software RAID,
an interrupted write operation that spans multiple blocks can frequently leave a
stripe in an inconsistent state that is not restored to either the old or the new value.
Normally, such interruptions are caused by an abrupt shutdown of the system.

If the array functions without disk failures, but experiences sudden power-down
incidents, such as interrupted writes on journal file systems, these events can affect
file data and data in the journal. Metadata itself is re-written from the journal during
recovery and is correct. Because the journal uses a single block to indicate a complete
transaction has committed after other journal writes have completed, the journal
remains valid. File data can be corrupted when overwriting file data; this is a known
problem with incomplete writes and caches. Recovery of the disk file systems with
software RAID is similar to recovery without software RAID. Using Lustre servers
with disk file systems does not change these guarantees.

Problems can arise if, after an abrupt shutdown, a disk fails on restart. In this case,
even single block writes provide no guarantee that (as an example), the journal will
not be corrupted. Follow these requirements:

■ If the power down of a system using software RAID is followed by a disk failure
before the RAID array can be re-synchronized, the disk file system needs a file
system check and any data that was being written during the power loss may be
corrupted.

■ If a RAID array does not guarantee before/after semantics, the same requirement
holds.

We consider this to be a requirement for most arrays that are used with Lustre,
including the successful and popular DDN arrays.

With RAID6 this check is not required with a single disk failure, but is required
with a double failure upon reboot after an abrupt interruption of the system.
10-4 Lustre 2.0 Operations Manual • April 2010

10.1.4 Performance Tradeoffs
Writeback cache can dramatically increase write performance on any type of RAID
array.2 Unfortunately, unless the RAID array has battery-backed cache (a feature only
found in some higher-priced hardware RAID arrays), interrupting the power to the
array may result in out-of-sequence writes. This causes problems for journaling.

If writeback cache is enabled, a file system check is required after the array loses
power. Data may also be lost because of this.

Therefore, we recommend against the use of writeback cache when data integrity is
critical. You should carefully consider whether the benefits of using writeback cache
outweigh the risks.

10.1.5 Formatting Options for RAID Devices
When formatting a file system on a RAID device, it is beneficial to specify additional
parameters at the time of formatting. This ensures that the file system is optimized
for the underlying disk geometry. Use the --mkfsoptions parameter to specify
these options when formatting the OST or MDT.

For RAID 5, RAID 6, RAID 1+0 storage, specifying the -E stride = <chunksize>
option improves the layout of the file system metadata ensuring that no single disk
contains all of the allocation bitmaps. The <chunksize> parameter is in units of
4096-byte blocks and represents the amount of contiguous data written to a single
disk before moving to the next disk. This is applicable to both MDS and OST file
systems.

For more information on how to override the defaults while formatting MDS or OST
file systems, see Options for Formatting the MDT and OSTs.

2. Client writeback cache improves performance for many small files or for a single, large file alike. However, if
the cache is filled with small files, cache flushing is likely to be much slower (because of less data being sent
per RPC), so there may be a drop-off in total throughput.
Chapter 10 RAID 10-5

10.1.5.1 Creating an External Journal

If you have configured a RAID array and use it directly as an OST, it houses both
data and metadata. For better performance3, we recommend putting OST metadata
on another journal device, by creating a small RAID 1 array and using it as an
external journal for the OST.

It is not known if external journals improve performance of MDTs. Currently, we
recommend against using them for MDTs to reduce complexity.

No more than 102,400 file system blocks will ever be used for a journal. For Lustre's
standard 4 KB block size, this corresponds to a 400 MB journal. A larger partition can
be created, but only the first 400 MB will be used. Additionally, a copy of the journal
is kept in RAM on the OSS. Therefore, make sure you have enough memory available
to hold copies of all the journals.

To create an external journal, perform these steps for each OST on the OSS:

1. Create a 400 MB (or larger) journal partition (RAID 1 is recommended).

In this example, /dev/sdb is a RAID 1 device, run:

$ sfdisk -uC /dev/sdb << EOF

> ,50,L

> EOF

2. Create a journal device on the partition. Run:

$ mke2fs -b 4096 -O journal_dev /dev/sdb1

3. Create the OST.

In this example, /dev/sdc is the RAID 6 device to be used as the OST, run:

$ mkfs.lustre --ost --mgsnode=mds@osib \
--mkfsoptions="-J device=/dev/sdb1" /dev/sdc

4. Mount the OST as usual.

3. Performance is affected because, while writing large sequential data, small I/O writes are done to update
metadata. This small-sized I/O can affect performance of large sequential I/O with disk seeks.
10-6 Lustre 2.0 Operations Manual • April 2010

10.1.6 Handling Degraded RAID Arrays
Lustre 2.0 include functionality that notifies Lustre if an external RAID array has
degraded performance (resulting in a degraded OST), either because a disk has failed
and not been replaced, or because a disk was replaced and is undergoing a rebuild.
To avoid a global performance slowdown due to a degraded OST, the MDS can
avoid the OST for new object allocation if it is notified of the degraded state.

The new file (called "degraded"), in /proc/fs/lustre/obdfilter/{OST}, marks
the OST as degraded if it is written with a "1" (or any non-zero value), until a "0" is
written to it. Therefore, "1" should be written to the file when the array becomes
degraded and "0" should be written when the array becomes healthy.

If the OST is remounted due to a reboot or other condition, the flag resets to "0".

10.2 Insights into Disk Performance
Measurement
Several tips and insights for disk performance measurement are provided below.
Some of this information is specific to RAID arrays and/or the Linux RAID
implementation.

■ Performance is limited by the slowest disk.

Before creating a software RAID array, benchmark all disks individually. We have
frequently encountered situations where drive performance was not consistent for
all devices in the array. Replace any disks that are significantly slower than the
rest.

■ Disks and arrays are very sensitive to request size.

To identify the optimal request size for a given disk, benchmark the disk with
different record sizes ranging from 4 KB to 1 to 2 MB.

Note – Try to avoid sync writes; probably subsequent write would make the stripe
full and no reads will be needed. Try to configure RAID arrays and the application so
that most of the writes are full-stripe and stripe-aligned.
Chapter 10 RAID 10-7

■ (Suggested) MDT setup for maximum performance.

RAID1 with an internal journal and two disks from different controllers.

If you need a larger MDT, create multiple RAID1 devices from pairs of disks, and
then make a RAID0 array of the RAID1 devices. This ensures maximum reliability
because multiple disk failures only have a small chance of hitting both disks in the
same RAID1 device.

Doing the opposite (RAID1 of a pair of RAID0 devices) has a 50% chance that
even two disk failures can cause the loss of the whole MDT device. The first
failure disables an entire half of the mirror and the second failure has a 50%
chance of disabling the remaining mirror.

10.3 Lustre Software RAID Support
A number of Linux kernels offer software RAID support, by which the kernel
organizes disks into a RAID array. All Lustre-supported kernels have software RAID
capability, but Lustre has added performance improvements to the RHEL 4 and
RHEL 5 kernels that make operations even faster4. Therefore, if you are using
software RAID functionality, we recommend that you use a Lustre-patched RHEL 4
or 5 kernel to take advantage of these performance improvements, rather than a SLES
kernel.

10.3.0.1 Enabling Software RAID on Lustre

This procedure describes how to set up software RAID on a Lustre system. It requires
use of mdadm, a third-party tool to manage devices using software RAID.

1. Install Lustre, but do not configure it yet. See Installing Lustre.

2. Create the RAID array with the mdadm command.

The mdadm command is used to create and manage software RAID arrays in
Linux, as well as to monitor the arrays while they are running. To create a RAID
array, use the --create option and specify the MD device to create, the array
components, and the options appropriate to the array.

Note – For best performance, we generally recommend using disks from as many
controllers as possible in one RAID array.

4. These enhancements have mostly improved write performance.
10-8 Lustre 2.0 Operations Manual • April 2010

To illustrate how to create a software RAID array for Lustre, the steps below
include a worked example that creates a 10-disk RAID 6 array from disks
/dev/dsk/c0t0d0 through c0tod4 and /dev/dsk/c1t0d0 through c1tod4.
This RAID array has no spares.

For the 10-disk RAID 6 array, there are 8 active disks. The chunk size must be
chosen such that <chunksize> <= 1024KB/8. Therefore, the largest valid chunk
size is 128KB.

a. Create a RAID array for an OST. On the OSS, run:

$ mdadm --create <array_device> -c <chunksize> -l \
<raid_level> -n <active_disks> -x <spare_disks> <block_devices>

where:

For the worked example, the command is:

$ mdadm --create /dev/md10 -c 128 -l 6 -n 10 -x 0 \
/dev/dsk/c0t0d[01234] /dev/dsk/c1t0d[01234]

This command output displays:

mdadm: array /dev/md10 started.

We also want an external journal on a RAID 1 device. We create this from two
400MB partitions on separate disks: /dev/dsk/c9t0d20p1 and
/dev/dsk/c1t0d20p1

<array_device> RAID array to create, in the form of /dev/mdX

<chunksize> Size of each stripe piece on the array’s disks (in KB);
discussed above.

<raid_level> Architecture of the RAID array. RAID 5 and RAID 6 are
commonly used for OSTs.

<active_disks> Number of active disks in the array, including parity disks.

<spare_disks> Number of spare disks initially assigned to the array. More
disks may be brought in via spare pooling (see below).

<block_devices
>

List of the block devices used for the RAID array; wildcards
may be used.
Chapter 10 RAID 10-9

b. Create a RAID array for an external journal. On the OSS, run:

$ mdadm --create <array_device> -l <raid_level> -n \
<active_devices> -x <spare_devices> <block_devices>

where:

For the worked example, the command is:

$ mdadm --create /dev/md20 -l 1 -n 2 -x 0 /dev/dsk/c0t0d20p1 \
/dev/dsk/c1t0d20p1

This command output displays:

mdadm: array /dev/md20 started.

We now have two arrays - a RAID 6 array for the OST (/dev/md20), and a RAID
1 array for the external journal (/dev/md20).

The arrays will now be re-synced, a process which re-synchronizes the various
disks in the array so their contents match. The arrays may be used during the
re-sync process (including formatting the OSTs), but performance will not be as
high as usual. The re-sync progress may be monitored by reading the
/proc/mdstat file.

Next, you need to create a RAID array for an MDT. In this example, a RAID 10
array is created with 4 disks: /dev/dsk/c0t0d1, c0t0d3, c1t0d1, and c1t0d3.
For smaller arrays, RAID 1 could be used.

<array_device> RAID array to create, in the form of /dev/mdX

<raid_level> Architecture of the RAID array. RAID 1 is
recommended for external journals.

<active_devices> Number of active disks in the RAID array, including
mirrors.

<spare_devices> Number of spare disks initially assigned to the RAID
array. More disks may be brought in via spare pooling
(see below).

<block_devices> List of the block devices used for the RAID array;
wildcards may be used.
10-10 Lustre 2.0 Operations Manual • April 2010

c. Create a RAID array for an MDT. On the MDT, run:

$ mdadm --create <array_device> -l <raid_level> -n \
<active_devices> -x <spare_devices> <block_devices>

where:

For the worked example, the command is:

$ mdadm --create -l 10 -n 4 -x 0 /dev/md10 /dev/dsk/c[01]t0d[13]

This command output displays:

mdadm: array /dev/md10 started.

If you creating many arrays across many servers, we recommend scripting this
process.

Note – Do not use the --assume-clean option when creating arrays. This could
lead to data corruption on RAID 5 and will cause array checks to show errors with all
RAID types.

<array_device> RAID array to create, in the form of /dev/mdX

<raid_level> Architecture of the RAID array. RAID 1 or RAID 10 is
recommended for MDTs.

<active_devices> Number of active disks in the RAID array, including
mirrors.

<spare_devices> Number of spare disks initially assigned to the RAID
array. More disks may be brought in via spare pooling
(see below).

<block_devices> List of the block devices used for the RAID array;
wildcards may be used.
Chapter 10 RAID 10-11

3. Set up the mdadm tool.

The mdadm tool enables you to monitor disks for failures (you will receive a
notification). It also enables you to manage spare disks. When a disk fails, you can
use mdadm to make a spare disk active, until such time as the failed disk is
replaced.

Here is an example mdadm.conf from an OSS with 7 OSTs including external
journals. Note how spare groups are configured, so that OSTs without spares still
benefit from the spare disks assigned to other OSTs.

ARRAY /dev/md10 level=raid6 num-devices=10

 UUID=e8926d28:0724ee29:65147008:b8df0bd1 spare-group=raids

ARRAY /dev/md11 level=raid6 num-devices=10 spares=1

 UUID=7b045948:ac4edfc4:f9d7a279:17b468cd spare-group=raids

ARRAY /dev/md12 level=raid6 num-devices=10 spares=1

 UUID=29d8c0f0:d9408537:39c8053e:bd476268 spare-group=raids

ARRAY /dev/md13 level=raid6 num-devices=10

 UUID=1753fa96:fd83a518:d49fc558:9ae3488c spare-group=raids

ARRAY /dev/md14 level=raid6 num-devices=10 spares=1

 UUID=7f0ad256:0b3459a4:d7366660:cf6c7249 spare-group=raids

ARRAY /dev/md15 level=raid6 num-devices=10

 UUID=09830fd2:1cac8625:182d9290:2b1ccf2a spare-group=raids

ARRAY /dev/md16 level=raid6 num-devices=10

 UUID=32bf1b12:4787d254:29e76bd7:684d7217 spare-group=raids

ARRAY /dev/md20 level=raid1 num-devices=2 spares=1

 UUID=bcfb5f40:7a2ebd50:b3111587:8b393b86 spare-group=journals

ARRAY /dev/md21 level=raid1 num-devices=2 spares=1

 UUID=6c82d034:3f5465ad:11663a04:58fbc2d1 spare-group=journals

ARRAY /dev/md22 level=raid1 num-devices=2 spares=1

 UUID=7c7274c5:8b970569:03c22c87:e7a40e11 spare-group=journals

ARRAY /dev/md23 level=raid1 num-devices=2 spares=1

 UUID=46ecd502:b39cd6d9:dd7e163b:dd9b2620 spare-group=journals

ARRAY /dev/md24 level=raid1 num-devices=2 spares=1

 UUID=5c099970:2a9919e6:28c9b741:3134be7e spare-group=journals

ARRAY /dev/md25 level=raid1 num-devices=2 spares=1

 UUID=b44a56c0:b1893164:4416e0b8:75beabc4 spare-group=journals

ARRAY /dev/md26 level=raid1 num-devices=2 spares=1

 UUID=2adf9d0f:2b7372c5:4e5f483f:3d9a0a25 spare-group=journals

Email address to notify of events (e.g. disk failures)

MAILADDR admin@example.com
10-12 Lustre 2.0 Operations Manual • April 2010

4. Set up periodic checks of the RAID array.

We recommend checking the software RAID arrays monthly for consistency. This
can be done using cron and should be scheduled for an idle period so
performance is not affected.

To start a check, write "check" into /sys/block/[ARRAY]/md/sync_action.
For example, to check /dev/md10, run this command on the Lustre server:

$ echo check > /sys/block/md10/md/sync_action

5. Format the OSTs and MDT, and continue with normal Lustre setup and
configuration.

For configuration information, see Configuring Lustre.

Note – Per Bugzilla 18475, we recommend that stripe_cache_size be set to 16KB
(instead of 2KB).

These additional resources may be helpful when enabling software RAID on Lustre:

■ md(4), mdadm(8), mdadm.conf(5) manual pages

■ Linux software RAID wiki: http://linux-raid.osdl.org/

■ Kernel documentation: Documentation/md.txt
Chapter 10 RAID 10-13

http://linux-raid.osdl.org/

10-14 Lustre 2.0 Operations Manual • April 2010

CHAPTER 11

Kerberos

This chapter describes how to use Kerberos with Lustre and includes the following
sections:

■ What is Kerberos?

■ Lustre Setup with Kerberos

11.1 What is Kerberos?
Kerberos is a mechanism for authenticating all entities (such as users and services) on
an “unsafe” network. Users and services, known as "principals", share a secret
password (or key) with the Kerberos server. This key enables principals to verify that
messages from the Kerberos server are authentic. By trusting the Kerberos server,
users and services can authenticate one another.

Note – Kerberos is a preview feature in Lustre 2.0.
11-1

11.2 Lustre Setup with Kerberos
Setting up Lustre with Kerberos can provide advanced security protections for the
Lustre network. Broadly, Kerberos offers three types of benefit:

■ Allows Lustre connection peers (MDS, OSS and clients) to authenticate one
another.

■ Protects the integrity of the PTLRPC message from being modified during
network transfer.

■ Protects the privacy of the PTLRPC message from being eavesdropped during
network transfer.

Kerberos uses the “kernel keyring” client upcall mechanism.

11.2.1 Configuring Kerberos for Lustre
This section describes supported Kerberos distributions and how to set up and
configure Kerberos on Lustre.

11.2.1.1 Kerberos Distributions Supported on Lustre

Lustre supports the following Kerberos distributions:

■ MIT Kerberos 1.3.x

■ MIT Kerberos 1.4.x

■ MIT Kerberos 1.5.x

■ MIT Kerberos 1.6 (not yet verified)

On a number of operating systems, the Kerberos RPMs are installed when the
operating system is first installed. To determine if Kerberos RPMs are installed on
your OS, run:

rpm -qa | grep krb

If Kerberos is installed, the command returns a list like this:

krb5-devel-1.4.3-5.1

krb5-libs-1.4.3-5.1

krb5-workstation-1.4.3-5.1

pam_krb5-2.2.6-2.2
11-2 Lustre 2.0 Operations Manual • April 2010

Note – The Heimdal implementation of Kerberos is not currently supported on
Lustre, although it support will be added in an upcoming release.

11.2.1.2 Preparing to Set Up Lustre with Kerberos

To set up Lustre with Kerberos:

1. Configure NTP to synchronize time across all machines.

2. Configure DNS with zones.

3. Verify that there are fully-qualified domain names (FQDNs), that are resolvable
in both forward and reverse directions for all servers. This is required by
Kerberos.

4. On every node, install flowing packages:

■ libgssapi (version 0.10 or higher)

Some newer Linux distributions include libgssapi by default. If you do not have
libgssapi, build and install it from source:
http://www.citi.umich.edu/projects/nfsv4/linux/libgssapi/libssapi-0.10.tar.gz

■ keyutils
Chapter 11 Kerberos 11-3

http://www.citi.umich.edu/projects/nfsv4/linux/libgssapi/libgssapi-0.10.tar.gz

11.2.1.3 Configuring Lustre for Kerberos

To configure Lustre for Kerberos:

1. Configure the client nodes.

a. For each client node, create a lustre_root principal and generate the keytab.

kadmin> addprinc -randkey lustre_root/client_host.domain@REALM

kadmin> ktadd -e aes128-cts:normal lustre_root/client_host.domain@REALM

b. Install the keytab on the client node.

Note – For each client-OST pair, there is only one security context, shared by all
users on the client. This protects data written by one user to be passed to an OST by
another user due to asynchronous bulk I/O. The client-OST connection only
guarantees message integrity or privacy; it does not authenticate users.

2. Configure the MDS nodes.

a. For each MDS node, create a lustre_mds principal and generate the keytab.

kadmin> addprinc -randkey lustre_mds/mdthost.domain@REALM
kadmin> ktadd -e aes128-cts:normal lustre_mds/mdthost.domain@REALM

b. Install the keytabl on the MDS node.

3. Configure the OSS nodes.

a. For each OSS node, create a lustre_oss principal and generate the keytab.

kadmin> addprinc -randkey lustre_oss/osthost.domain@REALM
kadmin> ktadd -e aes128-cts:normal lustre_oss/osshost.domain@REALM

b. Install the keytab on the OSS node.

Tip – To avoid assigning a unique keytab to each client node, create a general
lustre_root principal and keytab, and install the keytab on as many client nodes as
needed.

kadmin> addprinc -randkey lustre_root@REALM
kadmin> ktadd -e aes128-cts:normal lustre_root@REALM

Remember that if you use a general keytab, then one compromised client means that
all client nodes are insecure.
11-4 Lustre 2.0 Operations Manual • April 2010

General Installation Notes
■ The host.domain should be the FQDN in your network. Otherwise, the server may

not recognize any GSS request.

■ To install a keytab entry on a node, use the ktutil1 utility.

■ Lustre supports these encryption types for MIT Kerberos 5, v1.4 and higher:

■ des-cbc-crc

■ des-cbc-md5

■ des3-hmac-sha1

■ aes128-cts

■ aes256-cts

■ arcfour-hmac-md5

For MIT Kerberos 1.3.x, only des-cbc-md5 works because of a known issue
between libgssapi and the Kerberos library.

Note – The encryption type (or enctype) is an identifier specifying the encryption,
mode and hash algorithms. Each Kerberos key has an associated enctype that
identifies the cryptographic algorithm and mode used when performing
cryptographic operations with the key. It is important that the enctypes requested by
the client are actually supported on the system hosting the client. This is the case if
the defaults that control enctypes are not overridden.

1. Kerberos keytab file maintenance utility.
Chapter 11 Kerberos 11-5

11.2.1.4 Configuring Kerberos

To configure Kerberos to work with Lustre:

1. Modify the files for Kerberos:

$ /etc/krb5.conf

[libdefaults]

default_realm = CLUSTERFS.COM

[realms]

CLUSTERFS.COM = {

kdc = mds16.clustrefs.com

admin_server = mds16.clustrefs.com

}

[domain_realm]

.clustrefs.com = CLUSTERFS.COM

clustrefs.com = CLSUTREFS.COM

[logging]

default = FILE:/var/log/kdc.log

2. Prepare the Kerberos database.

3. Create service principals so Lustre supports Kerberos authentication.

Note – You can create service principals when configuring your other services to
support Kerberos authentication.
11-6 Lustre 2.0 Operations Manual • April 2010

4. Configure the client nodes. For each client node:

a. Create a lustre_root principal and generate the keytab:

kadmin> addprinc -randkey lustre_root/client_host.domain@REALM

kadmin> ktadd -e aes128-cts:normal

lustre_root/client_host.domain@REALM

This process populates /etc/krb5.keytab, which is not human-readable. Use
the ktutil program to read and modify it.

b. Install the keytab.

Note – There is only one security context for each client-OST pair, shared by all
users on the client. This protects data written by one user to be passed to an OST by
another user due to asynchronous bulk I/O. The client-OST connection only
guarantees message integrity or privacy; it does not authenticate users.

5. Configure the MDS nodes. For each MDT node, create a lustre_mds principal,
and generate and install the keytab.

kadmin> addprinc -randkey lustre_mds/mdthost.domain@REALM

kadmin> ktadd -e aes128-cts:normal

lustre_mds/mdthost.domain@REALM

6. Configure the OSS nodes. For each OST node, create a lustre_oss principal, and
generate and install the keytab.

kadmin> addprinc -randkey lustre_oss/oss_host.domain@REALM

kadmin> ktadd -e aes128-cts:normal
lustre_oss/oss_host.domain@REALM

To save the trouble of assigning a unique keytab for each client node, create a general
lustre_root principal and its keytab, and then install the keytab on as many client
nodes as needed.

kadmin> addprinc -randkey lustre_root@REALM

kadmin> ktadd -e aes128-cts:normal lustre_root@REALM

Note – If one client is compromised, all client nodes become insecure.

For more detailed information on installing and configuring Kerberos, see:

http://web.mit.edu/Kerberos/krb5-1.6/#documentation
Chapter 11 Kerberos 11-7

http://web.mit.edu/Kerberos/krb5-1.6/#documentation

11.2.1.5 Setting the Environment

Perform the following steps to configure the system and network to use Kerberos.

System-wide Configuration

1. On each MDT, OST, and client node, add the following line to /etc/fstab to
mount them automatically.

nfsd /proc/fs/nfsd nfsd defaults 0 0

2. On each MDT and client node, dd the following line to /etc/request-key.conf.

create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S

Networking

If your network is not using SOCKLND or InfiniBand (and uses Quadrics, Elan or
Myrinet, for example), configure a /etc/lustre/nid2hostname (simple script that
translates a NID to a hostname) on each server node (MDT and OST). This is an
example on an Elan cluster:

#!/bin/bash

set -x

exec 2>/tmp/$(basename $0).debug

convert a NID for a LND to a hostname, for GSS for example

called with three arguments: lnd netid nid

$lnd will be string "QSWLND", "GMLND", etc.

$netid will be number in hex string format, like "0x16", etc.

$nid has the same format as $netid

output the corresponding hostname, or error message leaded by a '@'
for error logging.

lnd=$1

netid=$2

nid=$3
11-8 Lustre 2.0 Operations Manual • April 2010

uppercase the hex

nid=$(echo $nid | tr '[abcdef]' '[ABCDEF]')

and convert to decimal

nid=$(echo -e "ibase=16\n${nid/#0x}" | bc)

case $lnd in

QSWLND) # simply stick "mtn" on the front

echo "mtn$nid"

;;

*) echo "@unknown LND: $lnd"

;;

esac

11.2.1.6 Building Lustre

If you are compiling the kernel from the source, enable GSS during configuration:

./configure --with-linux=path_to_linux_source --enable-gss - \
other-options

When you enable Lustre with GSS, the configuration script checks all dependencies,
like Kerberos and libgssapi installation, and in-kernel Sun RPC-related facilities.
When you install lustre-xxx.rpm on target machines, RPM again checks for
dependencies like Kerberos and libgssapi.
Chapter 11 Kerberos 11-9

11.2.1.7 Running GSS Daemons

If you turn on GSS between an MDT-OST or MDT-MDT, GSS treats the MDT as a
client. You should run lgssd on the MDT.

There are two types of GSS daemons: lgssd and lsvcgssd. Before starting Lustre,
make sure they are running on each node:

■ OST: lsvcgssd

■ MDT: lsvcgssd

■ CLI: none

Note – Verbose logging can help you make sure Kerberos is set up correctly. To use
verbose logging and run it in the foreground, run lsvcgssd -vvv -f

-v increases the verbose level of a debugging message by 1. For example, to set the
verbose level to 3, run lsvcgssd -v -v -v

-f runs lsvcgssd in the foreground, instead of as daemon.

We are maintaining a patch against nfs-utils, and bringing necessary patched files
into the Lustre tree. After a successful build, GSS daemons are built under
lustre/utils/gss and are part of lustre-xxxx.rpm.
11-10 Lustre 2.0 Operations Manual • April 2010

11.2.2 Types of Lustre-Kerberos Flavors
There are three major flavors in which you can configure Lustre with Kerberos:

■ Basic Flavors

■ Security Flavor

■ Customized Flavor

Select a flavor depending on your priorities and preferences.

11.2.2.1 Basic Flavors

Currently, we support six basic flavors: null, plain, krb5n, krb5a, krb5i, and krb5p.

Basic Flavor Authentication
RPC Message
Protection

Bulk Data
Protection Remarks

null N/A N/A N/A* Almost no performance
overhead. The on-wire RPC
data is compatible with old
versions of Lustre (1.4.x,
1.6.x).

plain N/A null checksum
(adler32)

Carries checksum (which
only protects data mutating
during transfer, cannot
guarantee the genuine
author because there is no
actual authentication).

krb5n GSS/Kerberos5 null checksum
(adler32)

No protection of the RPC
message, adler32 checksum
protection of bulk data;
light performance
overhead.
Chapter 11 Kerberos 11-11

11.2.2.2 Security Flavor

A security flavor is a string that describes what kind of security transform is
performed on a given PTLRPC connection. It covers two parts of messages, the RPC
message and BULK data. You can set either part in one of the following modes:

■ null – No protection

■ integrity – Data integrity protection (checksum or signature)

■ privacy – Data privacy protection (encryption)

krb5a GSS/Kerberos5 partial
integrity

checksum
(adler32)

Only the header of the RPC
message is integrity
protected, adler32
checksum protection of
bulk data, more
performance overhead
compared to krb5n.

krb5i GSS/Kerberos5 integrity integrity
[sha1]

RPC message integrity
protection algorithm is
determined by actual
Kerberos algorithms in use;
heavy performance
overhead.

krb5p GSS/Kerberos5 privacy privacy
[sha1/aes128]

RPC message privacy
protection algorithm is
determined by actual
Kerberos algorithms in use;
heaviest performance
overhead.

* In Lustre 1.6.5, bulk data checksumming is enabled (by default) to provide integrity checking using the adler32
mechanism if the OSTs support it. Adler32 checksums offer lower CPU overhead than CRC32.

Basic Flavor Authentication
RPC Message
Protection

Bulk Data
Protection Remarks
11-12 Lustre 2.0 Operations Manual • April 2010

11.2.2.3 Customized Flavor

In most situations, you do not need a customized flavor, a basic flavor is sufficient for
regular use. But to some extent, you can customize the flavor string. The flavor string
format is:

base_flavor[-bulk{nip}[:hash_alg[/cipher_alg]]]

Here are some examples of customized flavors:

plain-bulkn

Use plain on the RPC message (null protection), and no protection on the bulk
transfer.

krb5i-bulkn

Use krb5i on the RPC message, but do not protect the bulk transfer.

krb5p-bulki

Use krb5p on the RPC message, and protect data integrity of the bulk transfer.

krb5p-bulkp:sha512/aes256

Use krb5p on the RPC message, and protect data privacy of the bulk transfer by
algorithm SHA512 and AES256.

Currently, Lustre supports these bulk data cryptographic algorithms:

■ Hash:

■ adler32

■ crc32

■ md5

■ sha1 / sha256 / sha384 / sha512

■ wp256 / wp384 / wp512

■ Cipher:

■ arc4

■ aes128 / aes192 / aes256

■ cast128 / cast256

■ twofish128 / twofish256
Chapter 11 Kerberos 11-13

11.2.2.4 Specifying Security Flavors

If you have not specified a security flavor, the CLIENT-MDT connection defaults to
plain, and all other connections use null.

Specifying Flavors by Mount Options

When mounting OST or MDT devices, add the mount option (shown below) to
specify the security flavor:

mount -t lustre -o sec=plain /dev/sda1 /mnt/mdt/

This means all connections to this device will use the plain flavor. You can split this
sec=flavor as:

mount -t lustre -o sec_mdt={flavor1},sec_cli={flavor1}/dev/sda \
/mnt/mdt/

This means connections from other MDTs to this device will use flavor1, and
connections from all clients to this device will use flavor2.

Specifying Flavors by On-Disk Parameters

You can also specify the security flavors by specifying on-disk parameters on OST
and MDT devices:

tune2fs -o security.rpc.mdt=flavor1 -o security.rpc.cli=flavor2 \
device

On-disk parameters are overridden by mount options.

11.2.2.5 Mounting Clients

Root on client node mounts Lustre without any special tricks.
11-14 Lustre 2.0 Operations Manual • April 2010

11.2.2.6 Rules, Syntax and Examples

The general rules and syntax for using Kerberos are:

<target>.srpc.flavor.<network>[.<direction>]=flavor

■ <target>: This could be file system name or specific MDT/OST device name. For
example, lustre, lustre-MDT0000, lustre-OST0001.

■ <network>: LNET network name of the RPC initiator. For example, tcp0, elan1,
o2ib0.

■ <direction>: This could be one of cli2mdt, cli2ost, mdt2mdt, or mdt2ost. In
most cases, you do not need to specify the <direction> part.

Examples:

■ Apply krb5i on ALL connections:

mgs> lctl conf_param lustre.srpc.flavor.default=krb5i

■ For nodes in network tcp0, use krb5p. All other nodes use null.

mgs> lctl conf_param lustre.srpc.flavor.tcp0=krb5p

mgs> lctl conf_param lustre.srpc.flavor.default=null

■ For nodes in network tcp0, use krb5p; for nodes in elan1, use plain; Among other
nodes, clients use krb5i to MDT/OST, MDT use null to other MDTs, MDT use
plain to OSTs.

mgs> lctl conf_param lustre.srpc.flavor.tcp0=krb5p

mgs> lctl conf_param lustre.srpc.flavor.elan1=plain

mgs> lctl conf_param lustre.srpc.flavor.default.cli2mdt=krb5i

mgs> lctl conf_param lustre.srpc.flavor.default.cli2ost=krb5i

mgs> lctl conf_param lustre.srpc.flavor.default.mdt2mdt=null

mgs> lctl conf_param lustre.srpc.flavor.default.mdt2ost=plain
Chapter 11 Kerberos 11-15

11.2.2.7 Authenticating Normal Users

On client nodes, non-root users must use kinit to access Lustre (just like other
Kerberized applications). kinit is used to obtain and cache Kerberos ticket-granting
tickets. Two requirements to authenticating users:

■ Before kinit is run, the user must be registered as a principal with the Kerberos
server (the Key Distribution Center or KDC). In KDC, the username is noted as
username@REALM.

■ The client and MDT nodes should have the same user database.

To destroy the established security contexts before logging out, run lfs flushctx:

lfs flushctx [-k]

Here -k also means destroy the on-disk Kerberos credential cache. It is equivalent to
kdestroy. Otherwise, it only destroys established contexts in the Lustre kernel.
11-16 Lustre 2.0 Operations Manual • April 2010

CHAPTER 12

Bonding

This chapter describes how to set up bonding with Lustre, and includes the following
sections:

■ Network Bonding

■ Requirements

■ Using Lustre with Multiple NICs versus Bonding NICs

■ Bonding Module Parameters

■ Setting Up Bonding

■ Configuring Lustre with Bonding

12.1 Network Bonding
Bonding, also known as link aggregation, trunking and port trunking, is a method of
aggregating multiple physical network links into a single logical link for increased
bandwidth.

Several different types of bonding are supported in Linux. All these types are
referred to as “modes,” and use the bonding kernel module.

Modes 0 to 3 provide support for load balancing and fault tolerance by using
multiple interfaces. Mode 4 aggregates a group of interfaces into a single virtual
interface where all members of the group share the same speed and duplex settings.
This mode is described under IEEE spec 802.3ad, and it is referred to as either “mode
4” or “802.3ad.”

(802.3ad refers to mode 4 only. The detail is contained in Clause 43 of the IEEE 8 - the
larger 802.3 specification. For more information, consult IEEE.)
12-1

12.2 Requirements
The most basic requirement for successful bonding is that both endpoints of the
connection must support bonding. In a normal case, the non-server endpoint is a
switch. (Two systems connected via crossover cables can also use bonding.) Any
switch used must explicitly support 802.3ad Dynamic Link Aggregation.

The kernel must also support bonding. All supported Lustre kernels have bonding
functionality. The network driver for the interfaces to be bonded must have the
ethtool support. To determine slave speed and duplex settings, ethtool support is
necessary. All recent network drivers implement it.

To verify that your interface supports ethtool, run:

which ethtool

/sbin/ethtool

ethtool eth0

Settings for eth0:

Supported ports: [TP MII]

Supported link modes: 10baseT/Half 10baseT/Full/

100baseT/Half 100baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

Advertised auto-negotiation: Yes

Speed: 100Mb/s

Duplex: Full

Port: MII

PHYAD: 1

Transceiver: internal

Auto-negotiation: on

Supports Wake-on: pumbg

Wake-on: d

Current message level: 0x00000001 (1)

Link detected: yes
12-2 Lustre 2.0 Operations Manual • April 2010

ethtool eth1

Settings for eth1:

Supported ports: [TP MII]

Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

Advertised auto-negotiation: Yes

Speed: 100Mb/s

Duplex: Full

Port: MII

PHYAD: 32

Transceiver: internal

Auto-negotiation: on

Supports Wake-on: pumbg

Wake-on: d

Current message level: 0x00000007 (7)

Link detected: yes

To quickly check whether your kernel supports bonding, run:

grep ifenslave /sbin/ifup

which ifenslave

/sbin/ifenslave

Note – Bonding and ethtool have been available since 2000. All Lustre-supported
kernels include this functionality.
Chapter 12 Bonding 12-3

12.3 Using Lustre with Multiple NICs versus
Bonding NICs
Lustre can use multiple NICs without bonding. There is a difference in performance
when Lustre uses multiple NICs versus when it uses bonding NICs.

Whether an aggregated link actually yields a performance improvement proportional
to the number of links provided, depends on network traffic patterns and the
algorithm used by the devices to distribute frames among aggregated links.
Performance with bonding depends on:

■ Out-of-order packet delivery

This can trigger TCP congestion control. To avoid this, some bonding drivers
restrict a single TCP conversation to a single adapter within the bonded group.

■ Load balancing between devices in the bonded group.

Consider a scenario with a two CPU node with two NICs. If the NICs are bonded,
Lustre establishes a single bundle of sockets to each peer. Since ksocklnd bind
sockets to CPUs, only one CPU moves data in and out of the socket for a
uni-directional data flow to each peer. If the NICs are not bonded, Lustre
establishes two bundles of sockets to the peer. Since ksocklnd spreads traffic
between sockets, and sockets between CPUs, both CPUs move data.
12-4 Lustre 2.0 Operations Manual • April 2010

12.4 Bonding Module Parameters
Bonding module parameters control various aspects of bonding.

Outgoing traffic is mapped across the slave interfaces according to the transmit hash
policy. For Lustre, we recommend that you set the xmit_hash_policy option to the
layer3+4 option for bonding. This policy uses upper layer protocol information if
available to generate the hash. This allows traffic to a particular network peer to span
multiple slaves, although a single connection does not span multiple slaves.

$ xmit_hash_policy=layer3+4

The miimon option enables users to monitor the link status. (The parameter is a time
interval in milliseconds.) It makes an interface failure transparent to avoid serious
network degradation during link failures. A reasonable default setting is 100
milliseconds; run:

$ miimon=100

For a busy network, increase the timeout.

12.5 Setting Up Bonding
To set up bonding:

1. Create a virtual 'bond' interface by creating a configuration file in:

/etc/sysconfig/network-scripts/ # vi /etc/sysconfig/ \
network-scripts/ifcfg-bond0

2. Append the following lines to the file.

DEVICE=bond0

IPADDR=192.168.10.79 # Use the free IP Address of your network

NETWORK=192.168.10.0

NETMASK=255.255.255.0

USERCTL=no

BOOTPROTO=none

ONBOOT=yes
Chapter 12 Bonding 12-5

3. Attach one or more slave interfaces to the bond interface. Modify the eth0 and
eth1 configuration files (using a VI text editor).

a. Use the VI text editor to open the eth0 configuration file.

vi /etc/sysconfig/network-scripts/ifcfg-eth0

b. Modify/append the eth0 file as follows:

DEVICE=eth0

USERCTL=no

ONBOOT=yes

MASTER=bond0

SLAVE=yes

BOOTPROTO=none

c. Use the VI text editor to open the eth1 configuration file.

vi /etc/sysconfig/network-scripts/ifcfg-eth1

d. Modify/append the eth1 file as follows:

DEVICE=eth1

USERCTL=no

ONBOOT=yes

MASTER=bond0

SLAVE=yes

BOOTPROTO=none

4. Set up the bond interface and its options in /etc/modprobe.conf. Start the slave
interfaces by your normal network method.

vi /etc/modprobe.conf

a. Append the following lines to the file.

alias bond0 bonding

options bond0 mode=balance-alb miimon=100

b. Load the bonding module.

modprobe bonding

ifconfig bond0 up

ifenslave bond0 eth0 eth1

5. Start/restart the slave interfaces (using your normal network method).

Note – You must modprobe the bonding module for each bonded interface. If you
wish to create bond0 and bond1, two entries in modprobe.conf are required.
12-6 Lustre 2.0 Operations Manual • April 2010

The examples below are from RedHat systems. For setup use:
/etc/sysconfig/networking-scripts/ifcfg-* The OSDL website referenced
below includes detailed instructions for other configuration methods, instructions to
use DHCP with bonding, and other setup details. We strongly recommend you use
this website.

http://linux-net.osdl.org/index.php/Bonding

6. Check /proc/net/bonding to determine status on bonding. There should be a file
there for each bond interface.

cat /proc/net/bonding/bond0

Ethernet Channel Bonding Driver: v3.0.3 (March 23, 2006)

Bonding Mode: load balancing (round-robin)

MII Status: up

MII Polling Interval (ms): 0

Up Delay (ms): 0

Down Delay (ms): 0

Slave Interface: eth0

MII Status: up

Link Failure Count: 0

Permanent HW addr: 4c:00:10:ac:61:e0

Slave Interface: eth1

MII Status: up

Link Failure Count: 0

Permanent HW addr: 00:14:2a:7c:40:1d
Chapter 12 Bonding 12-7

http://linux-net.osdl.org/index.php/Bonding

7. Use ethtool or ifconfig to check the interface state. ifconfig lists the first bonded
interface as “bond0.”

ifconfig

bond0 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

inet addr:192.168.10.79 Bcast:192.168.10.255 \
Mask:255.255.255.0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1

RX packets:3091 errors:0 dropped:0 overruns:0 frame:0

TX packets:880 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:314203 (306.8 KiB) TX bytes:129834 (126.7 KiB)

eth0 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:1581 errors:0 dropped:0 overruns:0 frame:0

TX packets:448 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:162084 (158.2 KiB) TX bytes:67245 (65.6 KiB)

Interrupt:193 Base address:0x8c00

eth1 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:1513 errors:0 dropped:0 overruns:0 frame:0

TX packets:444 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:152299 (148.7 KiB) TX bytes:64517 (63.0 KiB)

Interrupt:185 Base address:0x6000
12-8 Lustre 2.0 Operations Manual • April 2010

12.5.1 Examples
This is an example of modprobe.conf for bonding Ethernet interfaces eth1 and eth2
to bond0:

cat /etc/modprobe.conf

alias eth0 8139too

alias scsi_hostadapter sata_via

alias scsi_hostadapter1 usb-storage

alias snd-card-0 snd-via82xx

options snd-card-0 index=0

options snd-via82xx index=0

alias bond0 bonding

options bond0 mode=balance-alb miimon=100

options lnet networks=tcp

alias eth1 via-rhine

cat /etc/sysconfig/network-scripts/ifcfg-bond0

DEVICE=bond0

BOOTPROTO=none

NETMASK=255.255.255.0

IPADDR=192.168.10.79 # (Assign here the IP of the bonded interface.)

ONBOOT=yes

USERCTL=no

ifcfg-ethx

cat /etc/sysconfig/network-scripts/ifcfg-eth0

TYPE=Ethernet

DEVICE=eth0

HWADDR=4c:00:10:ac:61:e0

BOOTPROTO=none

ONBOOT=yes

USERCTL=no

IPV6INIT=no

PEERDNS=yes

MASTER=bond0

SLAVE=yes
Chapter 12 Bonding 12-9

In the following example, the bond0 interface is the master (MASTER) while eth0
and eth1 are slaves (SLAVE).

Note – All slaves of bond0 have the same MAC address (Hwaddr) – bond0. All
modes, except TLB and ALB, have this MAC address. TLB and ALB require a unique
MAC address for each slave.

$ /sbin/ifconfig

bond0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0

UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1

RX packets:7224794 errors:0 dropped:0 overruns:0 frame:0

TX packets:3286647 errors:1 dropped:0 overruns:1 carrier:0

collisions:0 txqueuelen:0

eth0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:3573025 errors:0 dropped:0 overruns:0 frame:0

TX packets:1643167 errors:1 dropped:0 overruns:1 carrier:0

collisions:0 txqueuelen:100

Interrupt:10 Base address:0x1080

eth1Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:3651769 errors:0 dropped:0 overruns:0 frame:0

TX packets:1643480 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

Interrupt:9 Base address:0x1400
12-10 Lustre 2.0 Operations Manual • April 2010

12.6 Configuring Lustre with Bonding
Lustre uses the IP address of the bonded interfaces and requires no special
configuration. It treats the bonded interface as a regular TCP/IP interface. If needed,
specify “bond0” using the Lustre networks parameter in /etc/modprobe

options lnet networks=tcp(bond0)

12.6.1 Bonding References
We recommend the following bonding references:

In the Linux kernel source tree, see documentation/networking/bonding.txt

http://linux-ip.net/html/ether-bonding.html

http://www.sourceforge.net/projects/bonding

This is the bonding SourceForge website:

http://linux-net.osdl.org/index.php/Bonding

This is the most extensive reference and we highly recommend it. This website
includes explanations of more complicated setups, including the use of DHCP with
bonding.
Chapter 12 Bonding 12-11

http://www.sourceforge.net/projects/bonding
http://linux-net.osdl.org/index.php/Bonding
http://linux-ip.net/html/ether-bonding.html

12-12 Lustre 2.0 Operations Manual • April 2010

CHAPTER 13

Lustre SNMP Module

The Lustre SNMP module reports information about Lustre components and system
status, and generates traps if an LBUG occurs. The Lustre SNMP module works with
the net-snmp. The module consists of a plug-in (lustresnmp.so), which is loaded by
the snmpd daemon, and a MIB file (Lustre-MIB.txt).

This chapter describes how to install and use the Lustre SNMP module, and includes
the following sections:

■ Installing the Lustre SNMP Module

■ Building the Lustre SNMP Module

■ Using the Lustre SNMP Module
13-1

13.1 Installing the Lustre SNMP Module
To install the Lustre SNMP module:

1. Locate the SNMP plug-in (lustresnmp.so) in the base Lustre RPM and install it.

/usr/lib/lustre/snmp/lustresnmp.so

2. Locate the MIB (Lustre-MIB.txt) in /usr/share/lustre/snmp/mibs/Lustre-MIB.txt
and append the following line to snmpd.con.

dlmod lustresnmp /usr/lib/lustre/snmp/lustresnmp.so

3. You may need to copy Lustre-MIB.txt to a different location to use few tools. For
this, use either of these commands.

~/.snmp/mibs

/usr/local/share/snmp/mibs

13.2 Building the Lustre SNMP Module
To build the Lustre SNMP module, you need the net-snmp-devel package. The
default net-snmp install includes a snmpd.conf file.

1. Complete the net-snmp setup by checking and editing the snmpd.conf file,
located in /etc/snmp

/etc/snmp/snmpd.conf

2. Build the Lustre SNMP module from the Lustre src.rpm

■ Install the Lustre source

■ Run ./configure

■ Add the --enable-snmp option
13-2 Lustre 2.0 Operations Manual • April 2010

13.3 Using the Lustre SNMP Module
Once the Lustre SNMP module in installed and built, use it for purposes:

■ For all Lustre components, the SNMP module reports a number and total and free
capacity (usually in bytes).

■ Depending on the component type, SNMP also reports total or free numbers for
objects like OSD and OSC or other files (LOV, MDC, and so on).

■ The Lustre SNMP module provides one read/write variable, sysStatus, which
starts and stops Lustre.

■ The sysHealthCheck object reports status either as healthy' or 'not healthy' and
provides information for the failure.

■ The Lustre SNMP module generates traps on the detection of LBUG
(lustrePortalsCatastropeTrap), and detection of various OBD-specific healthchecks
(lustreOBDUnhealthyTrap).
Chapter 13 Lustre SNMP Module 13-3

13-4 Lustre 2.0 Operations Manual • April 2010

CHAPTER 14

Backup and Restore

Lustre provides backups at the file system-level, device-level and file-level. This
chapter describes how to backup and restore on Lustre, and includes the following
sections:

■ Backing up a File System

■ Backing up a Device (MDS or OST)

■ Backing up Files

■ Restoring from a File-level Backup

■ Using LVM Snapshots with Lustre

14.1 Backing up a File System
Backing up a complete file system gives you full control over the files to back up, and
allows restoration of individual files as needed. File system-level backups are also
the easiest to integrate into existing backup solutions.

File system backups are performed from a Lustre client (or many clients working
parallel in different directories) rather than on individual server nodes; this is no
different than backing up any other file system.

However, due to the large size of most Lustre file systems, it is not always possible to
get a complete backup. We recommend that you back up subsets of a file system.
This includes subdirectories of the entire file system, filesets for a single user, files
incremented by date, and so on.
14-1

14.1.1 Lustre_rsync
Lustre 2.0 introduces the lustre_rsync feature, which keeps the entire file system in
sync on a backup by replicating the file system’s changes to a second file system.
Lustre_rsync uses Lustre changelogs to efficiently synchronize the file systems
without having to scan (directory walk) the Lustre file system1. This efficiency is
critically important for large file systems, and distinguishes the Lustre lustre_rsync
feature from other replication/backup solutions.

14.1.1.1 Using Lustre_rsync

The lustre_rsync feature works by periodically running lustre_rsync, a userspace
program used to synchronize changes in the Lustre file system onto the target file
system. The lustre_rsync utility keeps a status file, which enables it to be safely
interrupted and restarted without losing synchronization between the file systems.

The first time that lustre_rsync is run, the user must specify a set of parameters for
the program to use. These parameters are described in the following table and the
lustre_rsync man page. On subsequent runs, these parameters are stored in the the
status file, and only the name of the status file needs to be passed to lustre_rsync.

Before using lustre_rsync:

■ Register the changelog user. For details, see the changelog_register parameter in
the lctl man page.

- AND -

■ Verify that the Lustre file system (source) and the replica file system (target) are
identical before registering the changelog user. If the file systems are discrepant,
use a utility, e.g. regular rsync (not lustre_rsync), to make them identical.

1. The second file system need not be a Lustre file system, but it must be sufficiently large.
14-2 Lustre 2.0 Operations Manual • April 2010

The lustre_rsync utility uses the following parameters:

Parameter Description

--source=<src> The path to the root of the Lustre file system (source) which will be
synchronized. This is a mandatory option if a valid status log created
during a previous synchronization operation (--statuslog) is not
specified.

--target=<tgt> The path to the root where the source file system will be
synchronized (target). This is a mandatory option if the status log
created during a previous synchronization operation (--statuslog)
is not specified. This option can be repeated if multiple
synchronization targets are desired.

--mdt=<mdt> The metadata device to be synchronized. A changelog user must be
registered for this device. This is a mandatory option if a valid status
log created during a previous synchronization operation (--statuslog)
is not specified.

--user=<user id> The changelog user ID for the specified MDT. To use lustre_rsync,
the changelog user must be registered. For details, see the
changelog_register parameter in the lctl man page. This is a
mandatory option if a valid status log created during a previous
synchronization operation (--statuslog) is not specified.

--statuslog=<log> A log file to which synchronization status is saved. When the
lustre_rsync utility starts, if the status log from a previous
synchronization operation is specified, then the state is read from the
log and otherwise mandatory --source, --target and --mdt options can
be skipped. Specifying the --source, --target and/or --mdt options, in
addition to the --statuslog option, causes the specified parameters in
the status log to be overriden. Command line options take
precedence over options in the status log.

--xattr <yes|no> Specifies whether extended attributes (xattrs) are synchronized or
not. The default is to synchronize extended attributes.
NOTE: Disabling xattrs causes Lustre striping information not to be
synchronized.

--verbose Produces verbose output.

--dry-run Shows the output of lustre_rsync commands (copy, mkdir, etc.)
on the target file system without actually executing them.

--abort-on-err Stops processing the lustre_rsync operation if an error occurs.
The default is to continue the operation.
Chapter 14 Backup and Restore 14-3

14.1.1.2 Lustre_rsync Examples

Sample lustre_rsync commands are listed below.

Register a changelog user for an MDT (e.g. lustre-MDT0000).

lctl --device lustre-MDT0000 changelog_register lustre-MDT0000
Registered changelog userid 'cl1'

Synchronize a Lustre file system (/mnt/lustre) to a target file system (/mnt/target).

$ lustre_rsync --source=/mnt/lustre --target=/mnt/target \

--mdt=lustre-MDT0000 --user=cl1 \

--statuslog sync.log --verbose

Lustre filesystem: lustre

MDT device: lustre-MDT0000

Source: /mnt/lustre

Target: /mnt/target

Statuslog: sync.log

Changelog registration: cl1

Starting changelog record: 0

Errors: 0

lustre_rsync took 1 seconds

Changelog records consumed: 22

After the file system undergoes changes, synchronize the changes onto the target file
system. Only the statuslog name needs to be specified, as it has all the parameters
passed earlier.

$ lustre_rsync --statuslog sync.log --verbose

Replicating Lustre filesystem: lustre

MDT device: lustre-MDT0000

Source: /mnt/lustre

Target: /mnt/target

Statuslog: sync.log

Changelog registration: cl1

Starting changelog record: 22

Errors: 0

lustre_rsync took 2 seconds

Changelog records consumed: 42

To synchronize a Lustre file system (/mnt/lustre) to two target file systems
(/mnt/target1 and /mnt/target2).

$ lustre_rsync --source=/mnt/lustre \

--target=/mnt/target1 --target=/mnt/target2 \

--mdt=lustre-MDT0000 --user=cl1

--statuslog sync.log
14-4 Lustre 2.0 Operations Manual • April 2010

14.2 Backing up a Device (MDS or OST)
In some cases, it is useful to do a full, device-level backup of an individual device
(MDS or OST), before replacing hardware, performing maintenance, etc. Doing full
device-level backups ensures that all of the data is preserved in the original state and
is the easiest method of doing a backup.

Note – A device-level backup of the MDS is especially important because, if it fails
permanently, the entire file system would need to be restored.

If hardware replacement is the reason for the backup or if a spare storage device is
available, it is possible to do a raw copy of the MDS or OST from one block device to
the other, as long as the new device is at least as large as the original device. To do
this, run:

dd if=/dev/{original} of=/dev/{new} bs=1M

If hardware errors cause read problems on the original device, use the command
below to allow as much data as possible to be read from the original device while
skipping sections of the disk with errors:

dd if=/dev/{original} of=/dev/{new} bs=4k conv=sync,noerror count=
{original size in 4kB blocks}

Even in the face of hardware errors, the ext3 file system is very robust and it may be
possible to recover the file system data after running e2fsck -f on the new device.

14.2.1 Backing Up the MDS
This procedure provides another way to back up the MDS.

1. Make a mount point for the file system. Run:

mkdir -p /mnt/mds

2. Mount the file system. Run:

mount -t ldiskfs {mdsdev} /mnt/mds

3. Change to the mount point being backed up. Run:

cd /mnt/mds
Chapter 14 Backup and Restore 14-5

4. Back up the EAs. Run:

getfattr -R -d -m '.*' -P . > ea.bak

Note – In most distributions, the getfattr command is part of the "attr" package. If
the getfattr command returns errors like Operation not supported, then the
kernel does not correctly support EAs. Stop and use a different backup method or
contact us for assistance.

5. Verify that the ea.bak file has properly backed up the EA data on the MDS.
Without this EA data, the backup is not useful. Look at this file with "more" or
a text editor. For each file, it should have an item similar to this:

file: ROOT/mds_md5sum3.txt

trusted.lov=
0s0AvRCwEAAABXoKUCAAAAAAAAAAAAAAAAAAAQAAEAAADD5QoAAAAAAAAAAAAAAAAA
AAAAAAEAAAA=

6. Back up all file system data. Run:

tar czvf {backup file}.tgz --sparse .

Note – In Lustre 1.6.7 and later, the --sparse option reduces the size of the
backup file. Be sure to use it so the tar command does not mistakenly create an
archive full of zeros.

7. Change directory out of the mounted file system. Run:

cd -

8. Unmount the file system. Run:

umount /mnt/mds

Note – When restoring an MDT backup on a different node as part of an MDT
migration, you also have to change server NIDs and use the --writeconf
command to re-generate the configuration logs. See Changing a Server NID and
osc.myth-OST0004-osc-ffff88006dd20000.filesfree=129651.

14.2.2 Backing Up an OST
Follow the same procedure as Backing Up the MDS (except skip Step 5) and, for each
OST device file system, replace mds with ost in the commands.
14-6 Lustre 2.0 Operations Manual • April 2010

14.3 Backing up Files
In other cases, it is desirable to back up only the file data on an MDS or OST instead
of the entire device, e.g., if the device is very large but has little data in it, if the
configuration of the parameters of the ext3 filesystem need to be changed, to use less
space for the backup, etc.

In this situation, it is possible to mount the ext3 filesystem directly from the storage
device, and do a file-level backup. Lustre MUST STOP be stopped on this node.

14.3.1 Backing up Extended Attributes
In Lustre, each OST object has an extended attribute (EA) that contains the MDT
inode number and stripe index for the object. The EA’s striping information includes
the location of file data on the OSTs and OST pool membership. The EA data must be
backed up or the file backup will not be useful. Current backup tools do not properly
save the EA data, so the following extra steps are required.

1. Make a mountpoint for the file system.

mkdir /mnt/mds

2. Mount the filesystem.

mount -t ldiskfs {olddev} /mnt/mds

3. Change to the mountpoint being backed up.

cd /mnt/mds

4. Back up the extended attributes.

getfattr -R -d -m '.*' -P . > ea.bak

In most distributions, the getfattr command is part of the "attr" package. If the
getfattr command returns errors like "Operation not supported", then your
kernel does not support EAs correctly. Stop and use a different backup method or
submit a Bugzilla ticket.

5. Verify that the ea.bak file has properly backed up the EA data on the MDS. You
can look at this file with "more" or a text editor. For each file, it should have an
item similar to this

file: ROOT/mds_md5sum3.txt

trusted.lov=0s0AvRCwEAAABXoKUCAAAAAAAAQAAEAAADD5QoAAAAAAAAAAEAAAA=
Chapter 14 Backup and Restore 14-7

6. Back up all file system data.

tar czvf {backup file}.tgz --sparse .

7. Change out of the mounted file system.

cd -

8. Unmount the file system.

umount /mnt/mds

9. Print the file system label and write it down.

e2label {olddev}

The same process should be followed on each MDS or OST file system.

14.4 Restoring from a File-level Backup
To restore data from a file-level backup, you need to format the device, restore the
file data and then restore the EA data.

1. Format the new device. Run:

mkfs.lustre {--mdt|--ost} {other options} {newdev}

2. Mount the file system. Run:

mount -t ldiskfs {newdev} /mnt/mds

3. Change to the new file system mount point. Run:

cd /mnt/mds

4. Restore the file system backup. Run:

tar xzvpf {backup file} --sparse

5. Restore the file system extended attributes. Run:

setfattr --restore=ea.bak

6. Verify that the extended attributes were restored. If this is not correct, then all
data in the files will be lost, and would show up as all files in the filesystem
having zero length.

getfattr -d -m ".*" ROOT/mds_md5sum3.txt

trusted.lov=0s0AvRCwEAAABXoKUCAAAAAAAAQAAEAAADD5QoAAAAAAAAAEAAAA=
14-8 Lustre 2.0 Operations Manual • April 2010

7. Remove the (now invalid) recovery logs. Run:

rm OBJECTS/* CATALOGS

8. Change out of the MDS file system.

cd -

9. Unmount the MDS file system.

umount /mnt/mds

If the file system was used between the time the backup was made and when it was
restored, then the lfsck tool (part of Lustre e2fsprogs) can be run to ensure the file
system is coherent. If all of the device file systems were backed up at the same time
after the entire Lustre file system was stopped, this is not necessary. The file system
should be immediately usable even if lfsck is not run, though there will be I/O
errors reading from files that are present on the MDS but not the OSTs, and files that
were created after the MDS backup will not be accessible/visible.

14.5 Using LVM Snapshots with Lustre
If you want to perform disk-based backups (because, for example, access to the
backup system needs to be as fast as to the primary Lustre file system), you can use
the Linux LVM snapshot tool to maintain multiple, incremental file system backups.

Because LVM snapshots cost CPU cycles as new files are written, taking snapshots of
the main Lustre file system will probably result in unacceptable performance losses.
You should create a new, backup Lustre file system and periodically (e.g., nightly)
back up new/changed files to it. Periodic snapshots can be taken of this backup file
system to create a series of "full" backups.

Note – Creating an LVM snapshot is not as reliable as making a separate backup,
because the LVM snapshot shares the same disks as the primary MDT device, and
depends on the primary MDT device for much of its data. If the primary MDT device
becomes corrupted, this may result in the snapshot being corrupted.
Chapter 14 Backup and Restore 14-9

14.5.1 Creating an LVM-based Backup File System
Use this procedure to create a backup Lustre file system for use with the LVM
snapshot mechanism.

1. Create LVM volumes for the MDT and OSTs.

Create LVM devices for your MDT and OST targets. Make sure not to use the
entire disk for the targets; save some room for the snapshots. The snapshots start
out as 0 size, but grow as you make changes to the current file system. If you
expect to change 20% of the file system between backups, the most recent
snapshot will be 20% of the target size, the next older one will be 40%, etc. Here is
an example:

cfs21:~# pvcreate /dev/sda1

Physical volume "/dev/sda1" successfully created

cfs21:~# vgcreate volgroup /dev/sda1

Volume group "volgroup" successfully created

cfs21:~# lvcreate -L200M -nMDT volgroup

Logical volume "MDT" created

cfs21:~# lvcreate -L200M -nOST0 volgroup

Logical volume "OST0" created

cfs21:~# lvscan

ACTIVE '/dev/volgroup/MDT' [200.00 MB] inherit

ACTIVE '/dev/volgroup/OST0' [200.00 MB] inherit

2. Format the LVM volumes as Lustre targets.

In this example, the backup file system is called “main” and designates the
current, most up-to-date backup.

cfs21:~# mkfs.lustre --mdt --fsname=main /dev/volgroup/MDT

 No management node specified, adding MGS to this MDT.

 Permanent disk data:

 Target: main-MDTffff

 Index: unassigned

 Lustre FS: main

 Mount type: ldiskfs

 Flags: 0x75

 (MDT MGS needs_index first_time update)

 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

 Parameters:

checking for existing Lustre data

 device size = 200MB

 formatting backing filesystem ldiskfs on /dev/volgroup/MDT

 target name main-MDTffff

 4k blocks 0

 options -i 4096 -I 512 -q -O dir_index -F
14-10 Lustre 2.0 Operations Manual • April 2010

mkfs_cmd = mkfs.ext2 -j -b 4096 -L main-MDTffff -i 4096 -I 512 -q
-O dir_index -F /dev/volgroup/MDT

 Writing CONFIGS/mountdata

cfs21:~# mkfs.lustre --ost --mgsnode=cfs21 --fsname=main
/dev/volgroup/OST0

 Permanent disk data:

 Target: main-OSTffff

Index: unassigned

 Lustre FS: main

 Mount type: ldiskfs

 Flags: 0x72

 (OST needs_index first_time update)

 Persistent mount opts: errors=remount-ro,extents,mballoc

 Parameters: mgsnode=192.168.0.21@tcp

checking for existing Lustre data

 device size = 200MB

 formatting backing filesystem ldiskfs on /dev/volgroup/OST0

 target name main-OSTffff

 4k blocks 0

 options -I 256 -q -O dir_index -F

 mkfs_cmd = mkfs.ext2 -j -b 4096 -L main-OSTffff -I 256 -q -O
dir_index -F /dev/ volgroup/OST0

 Writing CONFIGS/mountdata

cfs21:~# mount -t lustre /dev/volgroup/MDT /mnt/mdt

cfs21:~# mount -t lustre /dev/volgroup/OST0 /mnt/ost

cfs21:~# mount -t lustre cfs21:/main /mnt/main

14.5.2 Backing up New/Changed Files to the Backup
File System
At periodic intervals e.g., nightly, back up new and changed files to the LVM-based
backup file system.

cfs21:~# cp /etc/passwd /mnt/main

cfs21:~# cp /etc/fstab /mnt/main

cfs21:~# ls /mnt/main

fstab passwd
Chapter 14 Backup and Restore 14-11

14.5.3 Creating Snapshot Volumes
Whenever you want to make a "checkpoint" of the main Lustre file system, create
LVM snapshots of all target MDT and OSTs in the LVM-based backup file system.
You must decide the maximum size of a snapshot ahead of time, although you can
dynamically change this later. The size of a daily snapshot is dependent on the
amount of data changed daily in the main Lustre file system. It is likely that a
two-day old snapshot will be twice as big as a one-day old snapshot.

You can create as many snapshots as you have room for in the volume group. If
necessary, you can dynamically add disks to the volume group.

The snapshots of the target MDT and OSTs should be taken at the same point in time.
Make sure that the cronjob updating the backup file system is not running, since that
is the only thing writing to the disks. Here is an example:

cfs21:~# modprobe dm-snapshot

cfs21:~# lvcreate -L50M -s -n MDTb1 /dev/volgroup/MDT

 Rounding up size to full physical extent 52.00 MB

 Logical volume "MDTb1" created

cfs21:~# lvcreate -L50M -s -n OSTb1 /dev/volgroup/OST0

 Rounding up size to full physical extent 52.00 MB

 Logical volume "OSTb1" created

After the snapshots are taken, you can continue to back up new/changed files to
"main". The snapshots will not contain the new files.

cfs21:~# cp /etc/termcap /mnt/main

cfs21:~# ls /mnt/main

fstab passwd termcap
14-12 Lustre 2.0 Operations Manual • April 2010

14.5.4 Restoring the File System From a Snapshot
Use this procedure to restore the file system from an LVM snapshot.

1. Rename the LVM snapshot.

Rename the file system snapshot from "main" to "back" so you can mount it
without unmounting "main". This is recommended, but not required. Use the
--reformat flag to tunefs.lustre to force the name change. For example:

cfs21:~# tunefs.lustre --reformat --fsname=back --writeconf
/dev/volgroup/MDTb1

 checking for existing Lustre data

 found Lustre data

 Reading CONFIGS/mountdata

Read previous values:

 Target: main-MDT0000

 Index: 0

 Lustre FS: main

 Mount type: ldiskfs

 Flags: 0x5

 (MDT MGS)

 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

 Parameters:

Permanent disk data:

 Target: back-MDT0000

 Index: 0

 Lustre FS: back

 Mount type: ldiskfs

 Flags: 0x105

 (MDT MGS writeconf)

 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

 Parameters:

Writing CONFIGS/mountdata

cfs21:~# tunefs.lustre --reformat --fsname=back --writeconf
/dev/volgroup/OSTb1

 checking for existing Lustre data

 found Lustre data

 Reading CONFIGS/mountdata

Read previous values:

 Target: main-OST0000

 Index: 0

 Lustre FS: main

 Mount type: ldiskfs

 Flags: 0x2

 (OST)
Chapter 14 Backup and Restore 14-13

 Persistent mount opts: errors=remount-ro,extents,mballoc

 Parameters: mgsnode=192.168.0.21@tcp

Permanent disk data:

 Target: back-OST0000

 Index: 0

 Lustre FS: back

 Mount type: ldiskfs

 Flags: 0x102

 (OST writeconf)

 Persistent mount opts: errors=remount-ro,extents,mballoc

 Parameters: mgsnode=192.168.0.21@tcp

Writing CONFIGS/mountdata

When renaming an FS, we must also erase the last_rcvd file from the
snapshots

cfs21:~# mount -t ldiskfs /dev/volgroup/MDTb1 /mnt/mdtback

 cfs21:~# rm /mnt/mdtback/last_rcvd

 cfs21:~# umount /mnt/mdtback

 cfs21:~# mount -t ldiskfs /dev/volgroup/OSTb1 /mnt/ostback

 cfs21:~# rm /mnt/ostback/last_rcvd

 cfs21:~# umount /mnt/ostback

2. Mount the file system from the LVM snapshot.

For example:

cfs21:~#mount-tlustre/dev/volgroup/MDTb1/mnt/mdtback

 cfs21:~# mount -t lustre /dev/volgroup/OSTb1 /mnt/ostback

 cfs21:~# mount -t lustre cfs21:/back /mnt/back

3. Note the old directory contents, as of the snapshot time.

For example:

cfs21:~/cfs/b1_5/lustre/utils# ls /mnt/back

 fstab passwds
14-14 Lustre 2.0 Operations Manual • April 2010

14.5.5 Deleting Old Snapshots
To reclaim disk space, you can erase old snapshots as your backup policy dictates.
Run:

lvremove /dev/volgroup/MDTb1

14.5.6 Changing Snapshot Volume Size
You can also extend or shrink snapshot volumes if you find your daily deltas are
smaller or larger than expected. Run:

lvextend -L10G /dev/volgroup/MDTb1

Note – Extending snapshots seems to be broken in older LVM. It is working in LVM
v2.02.01.
Chapter 14 Backup and Restore 14-15

14-16 Lustre 2.0 Operations Manual • April 2010

CHAPTER 15

POSIX

This chapter describes how to install and run the POSIX compliance suite of file
system tests and includes the following sections:

■ Introduction to POSIX

■ Installing POSIX

■ Building and Running a POSIX-Compliant Test Suite on Lustre

■ Isolating and Debugging Failures

15.1 Introduction to POSIX
Portable Operating System Interface (POSIX) is a set of standard, operating system
interfaces based on the Unix OS. POSIX defines file system behavior on single UNIX
node. Although used mainly with UNIX systems, the POSIX standard can apply to
any operating system.

POSIX specifies the user and software interfaces to the OS. Required program-level
services include basic I/O (file, terminal, and network) services. POSIX also defines a
standard threading library API which is supported by most modern operating
systems.

POSIX in a cluster means that most of the operations are atomic. Clients cannot see
the metadata. POSIX offers strict mandatory locking which gives guarantee of
semantics. Users do not have control on these locks.

Note – Lustre is not completely POSIX-compliant, so test results may show some
errors. If you have questions about test results, contact our QE and Test Team
(lustre-koala-team@sun.com).
15-1

15.2 Installing POSIX
Several quick start versions of the POSIX compliance suite are available to download.
Each version is gcc- and architecture-specific. You need to determine which version
of gcc you are running locally ({{{gcc -v}}}) and then download the appropriate
tarball.

If a package is not available for your particular combination of gcc+architecture, see
Building and Running a POSIX-Compliant Test Suite on Lustre.

The following quick start versions are provided:

■ one-step-gcc2.96-i686.tgz

■ one-step-gcc2.96-ia64.tgz

■ one-step-gcc3.04-i686.tgz

■ one-step-gcc3.2-i686.tgz

15.2.1 POSIX Installation Using a Quick Start Version
Use this procedure to install POSIX using a quick start version.

1. Download the POSIX scripts into /usr/src/posix.

■ Test script: one-step-gcc<gcc version>-<arch>.tgz

■ Quick start script: one-step-setup.sh

Both scripts are available at:

http://downloads.lustre.org/public/tools/benchmarks/posix/

2. Launch the setup script. Run:

cd /usr/src/posix

sh one-step-setup.sh

3. Edit the configuration file /mnt/lustre/TESTROOT/tetexec.cfg with
appropriate values for your system.
15-2 Lustre 2.0 Operations Manual • April 2010

http://downloads.lustre.org/public/tools/benchmarks/posix/
http://downloads.lustre.org/public/tools/benchmarks/posix/one-step-gcc2.96-i686.tgz
http://downloads.lustre.org/public/tools/benchmarks/posix//one-step-gcc2.96-ia64.tgz
http://downloads.lustre.org/public/tools/benchmarks/posix/one-step-gcc3.04-i686.tgz
http://downloads.lustre.org/public/tools/benchmarks/posix/one-step-gcc3.2-i686.tgz
http://downloads.lustre.org/public/tools/benchmarks/posix/

4. Save the TESTROOT for running Lustre tests. Run:

cd /mnt/lustre

tar zcvf /usr/src/posix/TESTROOT.tgz TESTROOT

Note – The quick start installation procedure only works with the paths /home/tet
and /mnt/lustre. If you want to change the paths, follow the steps in Building and
Running a POSIX-Compliant Test Suite on Lustre and create a new tarball.

5. Launch the test suite. Run:

su - vxs0

. ../profile

tcc -e -a /mnt/lustre/TESTROOT -s scen.exec -p

15.3 Building and Running a
POSIX-Compliant Test Suite on Lustre
This section describes how to build and run a POSIX compliance test suite for a
compiler and architecture for which we do not provide a quick start package.

15.3.1 Building the Test Suite from Scratch
This section describes building a POSIX compliance suite to test a Lustre file system.

1. Download all POSIX files in
http://downloads.lustre.org/public/tools/benchmarks/posix

■ tet_vsxgen_3.02.tgz

■ lts_vsx-pcts2.0beta2.tgz

■ install.sh

■ myscen.bld

■ myscen.exec

Note – We now use the latest release of the LSB-VSX POSIX test suite
(lts_vsx-pcts2.0beta2.tgz) and the generic TET/VSXgen framework
(tet_vsxgen_3.02.tgz). In this release, the issue of "getgroups() did not return
NGROUPS_MAX" has been fixed.
Chapter 15 POSIX 15-3

http://downloads.lustre.org/public/tools/benchmarks/posix/

2. DO NOT configure or mount a Lustre file system yet.

3. Run the {{{install.sh}}} script and select /home/tet for the root directory
for the test suite installation. Say 'y' to install the users and groups. Accept the
defaults to install the packages.

4. Create a temporary directory to hold the POSIX tests while they are being built.
Run:

mkdir -p /mnt/lustre/TESTROOT;chown vsx0.vsxg0 !$

5. Log in as the test user. Run:

su - vsx0

6. Build the test suite. Run:

../setup.sh

Most of the default answers are correct, except the root directory from which to
run the testsets. For this you should specify /mnt/lustre/TESTROOT. For
"Install pseudolanguages?", answer 'n'.

7. When the script prompts "Install scripts into TESTROOT/BIN..?", do not stop
the script from running (this does not work). Instead, use another terminal to
replace the existing files with the downloaded files. Enter:

cp .../myscen.bld /home/tet/test_sets/scen.bld

cp .../myscen.exec /home/tet/test_sets/scen.exec

This confines the tests that are run to those relevant for file systems, avoiding
hours of running other tests on sockets, math, stdio, libc, shell, etc.

8. Continue with the installation at this point. Answer 'y' to the "Build
testsets" question.

The script builds and installs all file system tests and then runs them all. Although
the script is running the files on a local file system, this is a valuable baseline for
comparison with the behavior of Lustre.

The results are put into /home/tet/test_sets/results/0002e/journal. It
is suggested that you rename or symlink this directory to
/home/tet/test_sets/results/ext3/journal (or the name of the local file
system that the test was run on).

Running the full test should only take about 5 minutes.
15-4 Lustre 2.0 Operations Manual • April 2010

9. Answer 'n' to re-running just the failed tests.

The results (in a table) are in /home/tet/test_sets/results/report.

10. Save the test suite for later use, to run additional tests on a Lustre file system.
Tar up the tests to avoid rebuilding them each time. Enter:

tar cvzf TESTROOT.tgz -C /mnt/lustre TESTROOT

Tip – At this time, you probably want to remove the installed tests, to save a bit of
space and, more importantly, to avoid confusion if you forget to mount your Lustre
file system before running the tests.

15.3.2 Running the Test Suite Against Lustre
1. As root, set up your Lustre file system, mounted on /mnt/lustre (e.g., sh

llmount.sh) and untar the POSIX tests back to their home. Enter:

tar --same-owner -xzpvf /path/to/tarball/TESTROOT.tgz -C
/mnt/lustre

2. As the vsx0 user, you can re-run the tests as many times as necessary. If you are
newly su'd or logged in as the vsx0 user, you need to source the environment
with '. profile' so your path and other environment is set up correctly. To run the
tests, enter:

. /home/tet/profile

tcc -e -s scen.exec -a /mnt/lustre/TESTROOT -p

Each new result is put in a new directory under
/home/tet/test_sets/results and given a directory name similar to 0004e,
an increasing number that ends with e for test execution or b for building the
tests).

3. To look at a formatted report, enter:

vrpt results/0004e/journal | less

Some tests are "Unsupported", "Untested", or "Not In Use", which does not
necessarily indicate a problem.
Chapter 15 POSIX 15-5

4. To compare two test results, run:

vrptm results/ext3/journal results/0004e/journal | less

This is more interesting than looking at the result of a single test, since it helps
find test failures that are specific to the file system instead of the Linux VFS or
kernel. Up to 6 test results can be compared at one time.

It is often useful to rename the results directory to have more meaningful names
(such as before_unlink_fix).

15.4 Isolating and Debugging Failures
When failures occur, you need to gather information about what is happening at
runtime. For example, some tests may cause kernel panics depending on your
configuration.

■ The POSIX compliance suite does not have debugging enabled by default, so it is
useful to turn on the debugging options of VSX. Two important debug options
reside in the tetexec.cfg configuration file, under the TESTROOT directory:

■ VSX_DBUG_FILE=output_file - If you are running the test under UML with
hostfs support, use a file on the hostfs as the debug output file. In the case of a
crash, the debug output is then be safely written to the debug file.

Note – The default value for this option puts the debug log under your test directory
in /mnt/lustre/TESTROOT, which may not be useful if you experience a kernel
panic and lustre (or your machine) crashes.

■ VSX_DBUG_FLAGS=xxxxx - For detailed information about debug flags, refer
to the documentation included with the POSIX test suite. The following
example causes VSX to output all debug messages:

VSX_DBUG_FLAGS=t:d:n:f:F:L:l,2:p:P

■ VSX is based on the TET framework which provides common libraries for VSX.
You can have TET print verbose debug messages by inserting the -T option when
running the tests:

tcc -Tall5 -e -s scen.exec -a /mnt/lustre/TESTROOT -p 2>&1 | tee
/tmp/POSIX-command-line-output.log

■ VSX prints detailed messages in the report for failed tests. This includes the test
strategy, the kind of operations done by the test suite, and what is going wrong.
15-6 Lustre 2.0 Operations Manual • April 2010

Each subtest (e.g., 'access', 'create') usually contains a number of single tests. The
report shows exactly which single test fails. In this case, you can find more
information directly from the VSX source code. For example, if the fifth single test of
subtest chmod failed, you could look at the source:

/home/tet/test_sets/tset/POSIX.os/files/chmod/chmod.c

...which contains a single test array:

public struct tet_testlist tet_testlist[] = {

test1, 1,

test2, 2,

test3, 3,

test4, 4,

test5, 5,

test6, 6,

test7, 7,

test8, 8,

test9, 9,

test10, 10,

test11, 11,

test12, 12,

test13, 13,

test14, 14,

test15, 15,

test16, 16,

test17, 17,

test18, 18,

test19, 19,

test20, 20,

test21, 21,

test22, 22,

test23, 23,

NULL, 0

};

If this single test is causing problems, as in the case of a kernel panic, or if you are
trying to isolate a single failure, it may be useful to edit the tet_testlist array
down to the single test in question and then recompile the test suite. Then, you can
create a new tarball of the resulting TESTROOT directory, named appropriately (e.g,
TESTROOT-chmod-5-only.tgz) and re-run the POSIX suite using the steps above.

It may also be helpful to edit the scen.exec file to run only the test set in question:

all

"total tests in POSIX.os 1"

/tset/POSIX.os/files/chmod/T.chmod
Chapter 15 POSIX 15-7

Note – Rebuilding individual POSIX tests is not straightforward due to the reliance
on tcc. One option is to substitute edited source files into the source tree while
following the manual installation procedure described above and let the existing
POSIX install scripts do the work. The installation scripts (specifically
/home/tet/test_sets/run_testsets.sh), contain relevant commands to build
the test suite -- something akin to tcc -p -b -s $HOME/scen.bld $* -- but
these commands may not work outside the scripts. Let us know if you get better
mileage rebuilding these tests.
15-8 Lustre 2.0 Operations Manual • April 2010

CHAPTER 16

Benchmarking

The benchmarking process involves identifying the highest standard of excellence
and performance, learning and understanding these standards, and finally adapting
and applying them to improve the performance. Benchmarks are most often used to
provide an idea of how fast any software or hardware runs.

Complex interactions between I/O devices, caches, kernel daemons, and other OS
components result in behavior that is difficult to analyze. Moreover, systems have
different features and optimizations, so no single benchmark is always suitable. The
variety of workloads that these systems experience also adds in to this difficulty. One
of the most widely researched areas in storage subsystem is file system design,
implementation, and performance.

This chapter describes benchmark suites to test Lustre and includes the following
sections:

■ Bonnie++ Benchmark

■ IOR Benchmark

■ IOzone Benchmark
16-1

16.1 Bonnie++ Benchmark
Bonnie++ is a benchmark suite that having aim of performing a number of simple
tests of hard drive and file system performance. Then you can decide which test is
important and decide how to compare different systems after running it. Each
Bonnie++ test gives a result of the amount of work done per second and the
percentage of CPU time utilized.

There are two sections to the program's operations. The first is to test the I/O
throughput in a fashion that is designed to simulate some types of database
applications. The second is to test creation, reading, and deleting many small files in
a fashion similar to the usage patterns.

Bonnie++ is a benchmark tool that test hard drive and file system performance by
sequential I/O and random seeks. Bonnie++ tests file system activity that has been
known to cause bottlenecks in I/O-intensive applications.

To install and run the Bonnie++ benchmark:

1. Download the most recent version of the Bonnie++ software:

http://www.coker.com.au/bonnie++/

2. Install and run the Bonnie++ software (per the ReadMe file accompanying the
software).

Sample output:

Version 1.03 --Sequential Output-- --Sequential Input- --Random--

-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--

MachineSize K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec
%CP

mds 2G 3811822 21245 10 51967 10 90.00

------Sequential Create------ --------Random Create--------

-Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--

files /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP

16 510 0 +++++ +++ 283 1 465 0 +++++ +++ 291 1

mds,2G,,,38118,22,21245,10,,,51967,10,90.0,0,16,510,0,+++++,+++,28
3,1,465,0,+++++,+++,291,1
16-2 Lustre 2.0 Operations Manual • April 2010

http://www.coker.com.au/bonnie++/

Version 1.03 --Sequential Output-- --Sequential Input- --Random--

-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--

MachineSize K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec
%CP

mds 2G 27460 92 41450 25 21474 10 19673 60 52871
10 88.0 0

------Sequential Create------ --------Random Create--------

-Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--

files /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP

16 29681 99 +++++ +++ 30412 90 29568 99 +++++ +++ 28077 82

mds,2G,27460,92,41450,25,21474,10,19673,60,52871,10,88.0,0,16,2968
1,99,+++++,+++,30412,90,29568,99,+++++,+++,28077,82

16.2 IOR Benchmark
The IOR_survey script tests the performance of the Lustre file system. It uses IOR
(Interleaved or Random), a script used for testing performance of parallel file
systems using various interfaces and access patterns. IOR uses MPI for process
synchronization.

Under the control of compile-time defined constants (and, to a lesser extent,
environment variables), I/O is done via MPI-IO. The data are written and read using
independent parallel transfers of equal-sized blocks of contiguous bytes that cover
the file with no gaps and that do not overlap each other. The test consists of creating
a new file, writing it with data, then reading the data back.

The IOR benchmark, developed by LLNL, tests system performance by focusing on
parallel/sequential read/write operations that are typical of scientific applications.

To install and run the IOR benchmark:

1. Satisfy the prerequisites to run IOR.

a. Download lam 7.0.6 (local area multi-computer):

http://www.lam-mpi.org/7.0/download.php

b. Obtain a Fortran compiler for the Fedora Core 4 operating system.

c. Download the most recent version of the IOR software:

http://sourceforge.net/projects/ior-sio
Chapter 16 Benchmarking 16-3

http://www.lam-mpi.org/7.0/download.php
http://sourceforge.net/projects/ior-sio

2. Install the IOR software (per the ReadMe file and User Guide accompanying
the software).

3. Run the IOR software. In user mode, use the lamboot command to start the lam
service and use appropriate Lustre-specific commands to run IOR (described in
the IOR User Guide).

Sample Output:

IOR-2.9.0: MPI Coordinated Test of Parallel I/O

Run began: Fri Sep 29 11:43:56 2006

Command line used: ./IOR -w -r -k -O lustrestripecount 10 –o test

Machine: Linux mds

Summary:

api = POSIX

test filename = test

access = single-shared-file

clients = 1 (1 per node)

repetitions = 1

xfersize = 262144 bytes

blocksize = 1 MiB

aggregate filesize= 1 MiB

access bw(MiB/s) block(KiB)xfer(KiB) open(s)wr/rd(s)close(s)iter

------ --------- --------- -------- --------------------------

write 173.89 1024.00 256.00 0.0000300.0057010.0000160

read 278.49 1024.00 256.00 0.0000090.0035660.0000120

Max Write: 173.89 MiB/sec (182.33 MB/sec)

Max Read: 278.49 MiB/sec (292.02 MB/sec)

Run finished: Fri Sep 29 11:43:56 2006
16-4 Lustre 2.0 Operations Manual • April 2010

16.3 IOzone Benchmark
IOZone is a file system benchmark tool which generates and measures a variety of
file operations. Iozone has been ported to many machines and runs under many
operating systems. Iozone is useful to perform a broad file system analysis of a
vendor’s computer platform. The benchmark tests file I/O performance for the
operations like read, write, re-read, re-write, read backwards, read strided, fread,
fwrite, random read/write, pread/pwrite variants, aio_read, aio_write, mm, etc.

The IOzone benchmark tests file I/O performance for the following operations: read,
write, re-read, re-write, read backwards, read strided, fread, fwrite, random
read/write, pread/pwrite variants, aio_read, aio_write, and mmap.

To install and run the IOzone benchmark:

1. Download the most recent version of the IOZone software from this location:

http://www.iozone.org

2. Install the IOZone software (per the ReadMe file accompanying the IOZone
software).
Chapter 16 Benchmarking 16-5

http://www.lam-mpi.org/7.0/download.php

3. Run the IOZone software (per the ReadMe file accompanied with the IOZone
software).

Sample Output

Iozone: Performance Test of File I/O

Version $Revision: 3.263 $

Compiled for 32 bit mode.

Build: linux

Contributors:William Norcott, Don Capps, Isom Crawford,

Kirby Collins, Al Slater, Scott Rhine, Mike Wisner,

Ken Goss, Steve Landherr, Brad Smith, Mark Kelly,

Dr. Alain CYR, Randy Dunlap, Mark Montague, Dan Million,

Jean-Marc Zucconi, Jeff Blomberg, Erik Habbinga,

Kris Strecker, Walter Wong.

Run began: Fri Sep 29 15:37:07 2006

Network distribution mode enabled.

Command line used: ./iozone -+m test.txt

Output is in Kbytes/sec

Time Resolution = 0.000001 seconds.

Processor cache size set to 1024 Kbytes.

Processor cache line size set to 32 bytes.

File stride size set to 17 * record size.

random random bkwd record stride KB reclen write
rewrite read reread read write read rewrite read
fwrite frewrite fread freread

512 4 194309 406651 728276 792701 715002 498592
638351 700365 587235 190554 378448 686267 765201

iozone test complete.
16-6 Lustre 2.0 Operations Manual • April 2010

CHAPTER 17

Lustre I/O Kit

This chapter describes the Lustre I/O kit and PIOS performance tool, and includes
the following sections:

■ Lustre I/O Kit Description and Prerequisites

■ Running I/O Kit Tests

■ PIOS Test Tool

■ LNET Self-Test

17.1 Lustre I/O Kit Description and
Prerequisites
The Lustre I/O kit is a collection of benchmark tools for a Lustre cluster. The I/O kit
can be used to validate the performance of the various hardware and software layers
in the cluster and also as a way to find and troubleshoot I/O issues.

The I/O kit contains three tests. The first surveys basic performance of the device
and bypasses the kernel block device layers, buffer cache and file system. The
subsequent tests survey progressively higher layers of the Lustre stack. Typically
with these tests, Lustre should deliver 85-90% of the raw device performance.

It is very important to establish performance from the “bottom up” perspective. First,
the performance of a single raw device should be verified. Once this is complete,
verify that performance is stable within a larger number of devices. Frequently, while
troubleshooting such performance issues, we find that array performance with all
LUNs loaded does not always match the performance of a single LUN when tested in
isolation. After the raw performance has been established, other software layers can
be added and tested in an incremental manner.
17-1

17.1.1 Downloading an I/O Kit
You can download the I/O kit from:

http://downloads.clusterfs.com/public/tools/lustre-iokit/

In this directory, you will find two packages:

■ lustre-iokit consists of a set of developed and supported by the Lustre group.

■ scali-lustre-iokit is a Python tool maintained by Scali team, and is not
discussed in this manual.

17.1.2 Prerequisites to Using an I/O Kit
The following prerequisites must be met to use the Lustre I/O kit:

■ password-free remote access to nodes in the system (normally obtained via ssh or
rsh)

■ Lustre file system software

■ sg3_utils for the sgp_dd utility

17.2 Running I/O Kit Tests
As mentioned above, the I/O kit contains these test tools:

■ sgpdd_survey

■ obdfilter_survey

■ ost_survey

■ stats-collect
17-2 Lustre 2.0 Operations Manual • April 2010

http://downloads.clusterfs.com/public/tools/lustre-iokit/

17.2.1 sgpdd_survey
Use the sgpdd_survey tool to test bare metal performance, while bypassing as
much of the kernel as possible. This script requires the sgp_dd package, although it
does not require Lustre software. This survey may be used to characterize the
performance of a SCSI device by simulating an OST serving multiple stripe files. The
data gathered by this survey can help set expectations for the performance of a
Lustre OST exporting the device.

The script uses sgp_dd to carry out raw sequential disk I/O. It runs with variable
numbers of sgp_dd threads to show how performance varies with different request
queue depths.

The script spawns variable numbers of sgp_dd instances, each reading or writing a
separate area of the disk to demonstrate performance variance within a number of
concurrent stripe files.

The device(s) used must meet one of the two tests described below:

SCSI device:

Must appear in the output of sg_map (make sure the kernel module "sg" is loaded)

Raw device:

Must appear in the output of raw -qa

If you need to create raw devices in order to use the sgpdd_survey tool, note that
raw device 0 cannot be used due to a bug in certain versions of the "raw" utility
(including that shipped with RHEL4U4.)

You may not mix raw and SCSI devices in the test specification.

Caution – The sgpdd_survey script overwrites the device being tested, which
results in the LOSS OF ALL DATA on that device. Exercise caution when selecting
the device to be tested.
Chapter 17 Lustre I/O Kit 17-3

The sgpdd_survey script must be customized according to the particular device
being tested and also according to the location where it should keep its working files.
Customization variables are described explicitly at the start of the script.

When the sgpdd_survey script runs, it creates a number of working files and a pair
of result files. All files start with the prefix given by the script variable ${rslt}.

${rslt}_<date/time>.summary same as stdout

${rslt}_<date/time>_* tmp files

${rslt}_<date/time>.detail collected tmp files for post-mortem

The summary file and stdout should contain lines like this:

total_size 8388608K rsz 1024 thr 1 crg 1 180.45 MB/s 1 x 180.50 \
=/ 180.50 MB/s

The number immediately before the first MB/s is bandwidth, computed by
measuring total data and elapsed time. The remaining numbers are a check on the
bandwidths reported by the individual sgp_dd instances.

If there are so many threads that the sgp_dd script is unlikely to be able to allocate
I/O buffers, then "ENOMEM" is printed.

If one or more sgp_dd instances do not successfully report a bandwidth number,
then "failed" is printed.
17-4 Lustre 2.0 Operations Manual • April 2010

17.2.2 obdfilter_survey
The obdfilter_survey script processes sequential I/O with varying numbers of
threads and objects (files) by using lctl to drive the echo_client connected to
local or remote obdfilter instances or remote obdecho instances. It can be used to
characterize the performance of the following Lustre components:

OSTs

The script exercises one or more instances of obdfilter directly. The script may run on
one or more nodes, for example, when the nodes are all attached to the same
multi-ported disk subsystem.

Tell the script the names of all obdfilter instances (which should be up and running
already). If some instances are on different nodes, specify their hostnames too (for
example, node1:ost1). Alternately, you can pass parameter case=disk to the
script. (The script automatically detects the local obdfilter instances.)

All obdfilter instances are driven directly. The script automatically loads the obdecho
module (if required) and creates one instance of echo_client for each obdfilter
instance.

Network

The script drives one or more instances of the obdecho server via instances of
echo_client running on one or more nodes. Pass the parameters case=network
and target=''<hostname/ip_of_server>'' to the script. For each nework case,
the script does the required setup.

Striped File System Over the Network

The script drives one or more instances of obdfilter via instances of echo_client
running on one or more nodes.

Tell the script the names of the OSCs (which should be up and running). Alternately,
you can pass the parameter case=netdisk to the script. The script will use all of the
local OSCs.

Note – The obdfilter_survey script is NOT scalable to 100s of nodes since it is
only intended to measure individual servers, not the scalability of the entire system.
Chapter 17 Lustre I/O Kit 17-5

Note – The obdfilter_survey script must be customized, depending on the
components under test and where the script’s working files should be kept.
Customization variables are clearly described in the script (Customization Variables
section). In particular, refer to the maximum supported value ranges for
customization variables.

17.2.2.1 Running obdfilter_survey Against a Local Disk

The obdfilter_survey script supports automatic and manual runs against a local disk.
Obdfilter-survey profiles the overall throughput of storage hardware1, by sending
ranges of workloads to the OSTs (varied in thread counts and I/O sizes).

When the obdfilter_survey script is complete, it provides information on the
performance abilities of the storage hardware and shows the saturation points. If you
use plot scripts on the data, this information is shown graphically.

To run the obdfilter_survey script, create a normal Lustre configuration; no special
setup is needed.

To perform an automatic run:

1. Set up the Lustre file system.

2. Verify that the obdecho.ko module is present.

3. Run the obdfilter_survey script with the parameter case=disk. For example:

$ nobjhi=2 thrhi=2 size=1024 case=disk sh obdfilter-survey

To perform a manual run:

1. List all OSTs you want to test. (You do not have to specify an MDS or LOV.)

2. On all OSSs, run:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

Caution – Write tests are destructive. This test should be run before the Lustre file
system is started. If you do this, you will not need to reformat to restart Lustre
system. However, if the obdfilter_survey test is terminated before it completes, you
may have to remove objects from the disk.

1. The sgpdd-survey profiles individual disks. This script is destructive, and should not be run anywhere you
want to preserve existing data.
17-6 Lustre 2.0 Operations Manual • April 2010

3. Determine the obdfilter instance names on all Lustre clients. The device names
appear in the fourth column of the lctl dl command output. For example:

$ pdsh -w oss[01-02] lctl dl |grep obdfilter |sort

oss01: 0 UP obdfilter oss01-sdb oss01-sdb_UUID 3

oss01: 2 UP obdfilter oss01-sdd oss01-sdd_UUID 3

oss02: 0 UP obdfilter oss02-sdi oss02-sdi_UUID 3

...

In this example, the obdfilter instance names are oss01-sdb, oss01-sdd, and
oss02-sdi. Since you are driving obdfilter instances directly, set the shell array
variable, targets, to the names of the obdfilter instances. For example:

targets='oss01:oss01-sdb oss01:oss01-sdd oss02:oss02-sdi'\
./obdfilter-survey

17.2.2.2 Running obdfilter_survey Against a Network

The obdfilter_survey script can only be run automatically against a network; no
manual test is supported.

To run the network test, a specific Lustre setup is needed. Make sure that these
configuration requirements have been met.

■ Install all Lustre modules, including obdecho.

■ Start lctl and check the device list, which must be empty.

■ Use a password-less entry between the client and server machines, to avoid
having to type the password.

To perform an automatic run:

1. Run the obdfilter_survey script with the parameters case=netdisk and targets=
''<hostname/ip_of_server>''. For example:

$ nobjhi=2 thrhi=2 size=1024 targets="<hostname/ip_of_server>" \
case=network sh obdfilter-survey

On the server side, you can see the statistics at:

/proc/fs/lustre/obdecho/<echo_srv>/stats

where 'echo_srv' is the obdecho server created by the script.
Chapter 17 Lustre I/O Kit 17-7

17.2.2.3 Running obdfilter_survey Against a Network Disk

The obdfilter_survey script can be run automatically or manually against a network
disk.

To run the network disk test, create a Lustre configuration using normal methods; no
special setup is needed.

To perform an automatic run:

1. Set up the Lustre file system with the required OSTs.

2. Verify that the obdecho.ko module is present.

3. Run the obdfilter_survey script with the parameter case=netdisk. For example:

$ nobjhi=2 thrhi=2 size=1024 case=netdisk sh obdfilter-survey

To perform a manual run:

1. Run the obdfilter_survey script and tell the script the names of all echo_client
instances (which should be up and running already).

$ nobjhi=2 thrhi=2 size=1024 targets="<osc_name> ..." \ sh
obdfilter-survey
17-8 Lustre 2.0 Operations Manual • April 2010

17.2.2.4 Output Files

When the obdfilter_survey script runs, it creates a number of working files and a pair
of result files. All files start with the prefix given by ${rslt}.

The obdfilter_survey script iterates over the given number of threads and objects
performing the specified tests and checks that all test processes have completed
successfully.

Note – The obdfilter_survey script may not clean up properly if it is aborted or
if it encounters an unrecoverable error. In this case, a manual cleanup may be
required, possibly including killing any running instances of 'lctl' (local or remote),
removing echo_client instances created by the script and unloading obdecho.

File Description

${rslt}.summary Same as stdout

${rslt}.script_* Per-host test script files

${rslt}.detail_tmp* Per-OST result files

${rslt}.detail Collected result files for post-mortem
Chapter 17 Lustre I/O Kit 17-9

17.2.2.5 Script Output

The summary file and stdout of the obdfilter_survey script contain lines such as:

ost 8 sz 67108864K rsz 1024 obj 8 thr 8 write 613.54 [64.00, 82.00]

Where:

Note – Although the numbers of threads and objects are specified per-OST in the
customization section of the script, the reported results are aggregated over all OSTs.

17.2.2.6 Visualizing Results

It is useful to import the obdfilter_survey script summary data (it is fixed width) into
Excel (or any graphing package) and graph the bandwidth versus the number of
threads for varying numbers of concurrent regions. This shows how the OSS
performs for a given number of concurrently-accessed objects (files) with varying
numbers of I/Os in flight.

It is also extremely useful to record average disk I/O sizes during each test. These
numbers help locate pathologies in the system when the file system block allocator
and the block device elevator.

The plot-obdfilter script (included) is an example of processing output files to a
.csv format and plotting a graph using gnuplot.

Variable Supported Type

ost8 Total number of OSTs being tested.

sz 67108864K Total amount of data read or written (in KB).

rsz 1024 Record size (size of each echo_client I/O, in KB).

obj 8 Total number of objects over all OSTs.

thr 8 Total number of threads over all OSTs and objects.

write Test name. If more tests have been specified, they all appear on the same
line.

613.54 Aggregate bandwidth over all OSTs (measured by dividing the total
number of MB by the elapsed time).

[64, 82.00] Minimum and maximum instantaneous bandwidths on an individual OST.
17-10 Lustre 2.0 Operations Manual • April 2010

17.2.3 ost_survey
The ost_survey tool is a shell script that uses lfs setstripe to perform I/O
against a single OST. The script writes a file (currently using dd) to each OST in the
Lustre file system, and compares read and write speeds. The ost_survey tool is
used to detect misbehaving disk subsystems.

Note – We have frequently discovered wide performance variations across all LUNs
in a cluster.

To run the ost_survey script, supply a file size (in KB) and the Lustre mount point.
For example, run:

$./ost-survey.sh 10 /mnt/lustre

Average read Speed: 6.73

Average write Speed: 5.41

read - Worst OST indx 0 5.84 MB/s

write - Worst OST indx 0 3.77 MB/s

read - Best OST indx 1 7.38 MB/s

write - Best OST indx 1 6.31 MB/s

3 OST devices found

Ost index 0 Read speed 5.84 Write speed 3.77

Ost index 0 Read time 0.17 Write time 0.27

Ost index 1 Read speed 7.38 Write speed 6.31

Ost index 1 Read time 0.14 Write time 0.16

Ost index 2 Read speed 6.98 Write speed 6.16

Ost index 2 Read time 0.14 Write time 0.16
Chapter 17 Lustre I/O Kit 17-11

17.2.4 stats-collect
The stats-collect utility contains the following scripts used to collect application
profiling information from Lustre clients and servers:

■ lstat.sh - script for a single node that is run on each profile node

■ gather_stats_everywhere.sh - script that collect statistics

■ config.sh - script that contains customized configuration descriptions

The stats-collect utility requires:

■ Lustre to be installed and set up on your cluster

■ SSH and SCP access to these nodes without requiring a password

Configuring stats-collect

Configuring the stats-collect utility is simple - all of the profiling configuration
VARs are in the config.sh script.

XXXX_INTERVAL is the profiling interval where the value of interval means:

■ 0 - gather statistics at start and stop only

■ N - gather statistics every N seconds

If XXX_INTERVAL is not specified, then XXX statistics are not collected. XXX can be
VMSTAT, SERVICE, BRW, SDIO, MBALLOC, IO, JBD, CLIENT

Running stats-collect

The gather_stats_everywhere.sh script should be run in three phases:

■ sh gather_stats_everywhere.sh config.sh start

Starts statistics collection on each node specified in the config.sh script.

■ sh gather_stats_everywhere.sh config.sh stop <log_name.tgz>

Stops collecting statistics on each node. If <log_name.tgz> is provided, it creates a
profile tarball /tmp/<log_name.tgz>.

■ sh gather_stats_everywhere.sh config.sh analyse
log_tarball.tgz csv

Analyzes the log_tarball and create a csv tarball for this profiling tarball.
17-12 Lustre 2.0 Operations Manual • April 2010

Examples

To collect profile information:

1. Start the collect profile daemon on each node.

sh gather_stats_everywhere.sh config.sh start

2. Run your test.

3. Stop the collect profile daemon on each node, clean up the temporary file and
create a profiling tarball.

sh gather_stats_everywhere.sh config.sh stop log_tarball.tgz

4. Create a csv file according to the profile.

sh gather_stats_everywhere.sh config.sh analyse log_tarball.tgz csv
Chapter 17 Lustre I/O Kit 17-13

17.3 PIOS Test Tool
The PIOS test tool is a parallel I/O simulator for Linux and Solaris. PIOS generates
I/O on file systems, block devices and zpools similar to what can be expected from a
large Lustre OSS server when handling the load from many clients. The program
generates and executes the I/O load in a manner substantially similar to an OSS, that
is, multiple threads take work items from a simulated request queue. It forks a CPU
load generator to simulate running on a system with additional load.

PIOS can read/write data to a single shared file or multiple files (default is a single
file). To specify multiple files, use the --fpp option. (It is better to measure with both
single and multiple files.) If the final argument is a file, block device or zpool, PIOS
writes to RegionCount regions in one file. PIOS issues I/O commands of size
ChunkSize. The regions are spaced apart Offset bytes (or, in the case of many files,
the region starts at Offset bytes). In each region, RegionSize bytes are written or
read, one ChunkSize I/O at a time. Note that:

ChunkSize <= Regionsize <= Offset

Multiple runs can be specified with comma separated lists of values for ChunkSize,
Offset, RegionCount, ThreadCount, and RegionSize. Multiple runs can also be
specified by giving a starting (low) value, increase (in percent) and high value for
each of these arguments. If a low value is given, no value list or value may be
supplied.

Every run is given a timestamp, and the timestamp and offset are written with every
chunk (to allow verification). Before every run, PIOS executes the pre-run shell
command. After every run, PIOS executes the post-run command. Typically, this is
used to clear and collect statistics for the run, or to start and stop statistics gathering
during the run. The timestamp is passed to both pre-run and post-run.

For convenience, PIOS understands byte specifiers and uses:

K,k for kilobytes (2<<10)

M,m for megabytes (2<<20)

G,g for gigabytes (2<<30)

T,t for terabytes (2<<40)

Download the PIOS test tool at:

http://downloads.clusterfs.com/public/tools/benchmarks/pios/
17-14 Lustre 2.0 Operations Manual • April 2010

http://downloads.clusterfs.com/public/tools/benchmarks/pios/

17.3.1 Synopsis
pios

[--chunksize|-c =values, (--chunksize_low|-a =value

--chunksize_high|-b =value --chunksize_incr|-g =value)]

[--offset|-o =values, (--offset_low|-m =value --offset_high|-q =value

--offset_incr|-r =value)]

[--regioncount|-n =values, (--regioncount_low|-i =value

--regioncount_high|-j =value --regioncount_incr|-k =value)]

[--threadcount|-t =values, (--threadcount_low|-l =value

--threadcount_high|-h =value --threadcount_incr|-e =value)]

[--regionsize|-s =values, (--regionsize_low|-A =value

--regionsize_high|-B =value --regionsize_incr|-C =value)]

[--directio|-d, --posixio|-x, --cowio|-w} [--cleanup|-L

--threaddelay|-T =ms --regionnoise|-I ==shift

--chunknoise|-N =bytes -fpp|-F]

[--verify|-V =values]

[--prerun|-P =pre-command --postrun|-R =post-command]

[--path|-p =output-file-path]
Chapter 17 Lustre I/O Kit 17-15

17.3.2 PIOS I/O Modes
There are several supported PIOS I/O modes:

POSIX I/O:

This is the default operational mode where I/O is done using standard POSIX calls,
such as pwrite/pread. This mode is valid on both Linux and Solaris.

DIRECT I/O:

This mode corresponds to the O_DIRECT flag in open(2) system call, and it is
currently applicable only to Linux. Use this mode when using PIOS on the ldiskfs file
system on an OSS.

COW I/O:

This mode corresponds to the copy overwrite operation where file system blocks that
are being overwritten were copied to shadow files. Only use this mode if you want to
see overhead of preserving existing data (in case of overwrite). This mode is valid on
both Linux and Solaris.
17-16 Lustre 2.0 Operations Manual • April 2010

17.3.3 PIOS Parameters
PIOS has five basic parameters to determine the amount of data that is being written.

ChunkSize(c):

Amount of data that a thread writes in one attempt. ChunkSize should be a multiple
of file system block size.

RegionSize(s):

Amount of data required to fill up a region. PIOS writes a chunksize of data
continuously until it fills the regionsize. RegionSize should be a multiple of
ChunkSize.

RegionCount(n):

Number of regions to write in one or multiple files. The total amount of data written
by PIOS is RegionSize x RegionCount.

ThreadCount(t):

Number of threads working on regions.
Chapter 17 Lustre I/O Kit 17-17

Offset(o):

Distance between two successive regions when all threads are writing to the same
file. In the case of multiple files, threads start writing in files at Offset bytes.

Parameter Description

--chunknoise = N N is a byte specifier. When performing an I/O task, add a
random signed integer in the range [-N,N] to the chunksize.
All regions are still fully written. This randomizes the I/O
size to some extent.

--chunksize = N[,N2,N3...] N is a byte specifier and performs I/O in chunks of N kilo-,
mega-, giga- or terabyte. You can give a comma separated
list of multiple values. This argument is mutually exclusive
with --chunksize_low. Note that each thread allocates a
buffer of size chunksize + chunknoise for use during the
run.

--chunksize_low=L
--chunksize_high=H
--chunksize_incr=F

Performs a sequence of operations starting with a chunksize
of L, increasing it by F% each time until chunksize exceeds
H.

--cleanup Removes files that were created during the run. If there is an
encounter for existing files, they are over-written.

--directio
--posixio
--cowio

One of these arguments must be passed to indicate if
DIRECT I/O, POSIX I/O or COW I/O is used.

--offset=O[,O2,O3...] The argument is a byte specifier or a list of specifiers. Each
run uses regions at offset multiple of O in a single file. If the
run targets multiple files, then the I/O writes at offset O in
each file.

--offset_low=OL
--offset_high=OH
--offset_inc=PH

The arguments are byte specifiers. They generate runs with a
range of offsets starting at OL, increasing P% until the
region size exceeds OH. Each of these arguments is
exclusive with the offset argument.

--prerun=”pre-command” Before each run, executes the pre-command as a shell
command through the system(3) call. The timestamp of the
run is appended as the last argument to the pre-command
string. Typically, this is used to clear statistics or start a data
collection script when the run starts.

--postrun=”post-command” After each run, executes the post-command as a shell
command through the system(3) call. The timestamp of the
run is appended as the last argument to the pre-command
string. Typically, this is used to append statistics for the run
or close an open data collection script when the run
completes.
17-18 Lustre 2.0 Operations Manual • April 2010

--regioncount=N[,N2,N3...] PIOS writes to N regions in a single file or block device or to
N files.

--regioncount_low=RL
--regioncount_high=RH
--regioncount_inc=P

Generate runs with a range of region counts starting at TL,
increasing P% until the thread count exceeds RH. Each of
these arguments is exclusive with the regioncount argument.

--regionnoise=k When generating the next I/O task, do not select the next
chunk in the next stream, but shift a random number with a
maximum noise of shifting k regions ahead. The run will
complete when all regions are fully written or read. This
merely introduces a randomization of the ordering.

--regionsize=S[,S2,S3...] The argument is a byte specifier or a list of byte specifiers.
During the run(s), write S bytes to each region.

--regionsize_low=RL
--regionsize_high=RH
--regionsize_inc=P

The arguments are byte specifiers. Generate runs with a
range of region sizes starting at TL, increasing P% until the
region size exceeds RH. Each argument is exclusive with the
regionsize argument.

--threadcount=T[,T2,T3...] PIOS runs with T threads performing I/O. A sequence of
values may be given.

--threadcount_low=TL
--threadcount_high=TH
--threadcount_inc=TP

Generate runs with a range of thread counts starting at TL,
increasing TP% until the thread count exceeds TH. Each of
these arguments is exclusive with the threadcount argument.

--threaddelay=ms A random amount of noise not exceeding ms is inserted
between the time that a thread identifies as the next chunk it
needs to read or write and the time it starts the I/O.

--fpp Where threads write to files:
• fpp indicates files per process behavior where threads

write to multiple files.
• sff indicates single shared files where all threads write to

the same file.

--verify-V=timestamp
[,timestamp2,timestamp3]|-
-verify|-V

Verify a written file or set of files. A single timestamp or
sequence of timestamps can be given for each run,
respectively. If no argument is passed, the verification is
done from timestamps read from the first location of files
previously written in the test. If sequence is given, then each
run verifies the timestamp accordingly. If a single timestamp
is given, then it is verified with all files written.

Parameter Description
Chapter 17 Lustre I/O Kit 17-19

17.3.4 PIOS Examples
To create a 1 GB load with a different number of threads:

In one file:

pios -t 1,2,4, 8,16, 32, 64, 128 -n 128 -c 1M -s 8M -o 8M \
--load=posixio -p /mnt/lustre

In multiple files:

pios -t 1,2,4, 8,16, 32, 64, 128 -n 128 -c 1M -s 8M -o 8M \
--load=posixio,fpp -p /mnt/lustre

To create a 1 GB load with a different number of chunksizes on ldiskfs with direct
I/O:

In one file:

pios -t 32 -n 128 -c 128K, 256K, 512K, 1M, 2M, 4M -s 8M -o 8M \
--load=directio -p /mnt/lustre

In multiple files:

pios -t 32 -n 128 -c 128K, 256K, 512K, 1M, 2M, 4M -s 8M -o 8M \
--load=directio,fpp -p /mnt/lustre

To create a 32 MB to 128 MB load with different RegionSizes on a Solaris zpool:

In one file:

pios -t 8 -n 16 -c 1M -A 2M -B 8M -C 100 -o 8M --load=posixio -p \
/myzpool/

In multiple files:

pios -t 8 -n 16 -c 1M -A 2M -B 8M -C 100 -o 8M --load=posixio, \
fpp -p /myzpool/

To read and verify timestamps:

Create a load with PIOS:

pios -t 40 -n 1024 -c 256K -s 4M -o 8M --load=posixio -p
/mnt/lustre

Keep the same parameters to read:

pios -t 40 -n 1024 -c 256K -s 4M -o 8M --load=posixio -p \
/mnt/lustre --verify
17-20 Lustre 2.0 Operations Manual • April 2010

17.4 LNET Self-Test
LNET self-test helps site administrators confirm that Lustre Networking (LNET) has
been properly installed and configured, and that underlying network software and
hardware are performing according to expectations.

LNET self-test is a kernel module that runs over LNET and LNDs. It is designed to:

■ Test the connection ability of the Lustre network

■ Run regression tests of the Lustre network

■ Test performance of the Lustre network

Note – Apart from the performance impact, LNET self-test is invisible to Lustre.

17.4.1 Basic Concepts of LNET Self-Test
This section describes basic concepts of LNET self-test, utilities and a sample script.

17.4.1.1 Modules

To run LNET self-test, these modules must be loaded: libcfs, lnet, lnet_selftest and
one of the klnds (i.e, ksocklnd, ko2iblnd...). To load all necessary modules, run
modprobe lnet_selftest (recursively loads the modules on which LNET self-test
depends.

The LNET self-test cluster has two types of nodes:

■ Console node - A single node that controls and monitors the test cluster. It can be
any node in the test cluster.

■ Test nodes - The nodes that run tests. Test nodes are controlled by the user via the
console node; the user does not need to log into them directly.

The console and test nodes require all previously-listed modules to be loaded. (The
userspace test node does not require these modules.)
Chapter 17 Lustre I/O Kit 17-21

Note – Test nodes can be in either kernel or userspace. A console user can invite a
kernel test node to join the test session by running lst add_group NID, but the
user cannot actively add a userspace test node to the test-session. However, the
console user can passively accept a test node to the test session while the test node
runs lstclient to connect to the console.

17.4.1.2 Utilities

LNET self-test has two user utilities, lst and lstclient.

■ lst - The user interface for the self-test console (run on the console node). It
provides a list of commands to control the entire test system, such as create
session, create test groups, etc.

■ lstclient - The userspace LNET self-test program (run on a test node). lstclient is
linked with userspace LNDs and LNET. lstclient is not needed if a user just wants
to use kernel space LNET and LNDs.

17.4.1.3 Session

In the context of LNET self-test, a session is a test node that can be associated with
only one session at a time, to ensure that the session has exclusive use. Almost all
operations should be performed in a session context. From the console node, a user
can only operate nodes in his own session. If a session ends, the session context in all
test nodes is destroyed.

The console node can be used to create, change or destroy a session (new_session,
end_session, show_session). For more information, see Session.

17.4.1.4 Console

The console node is the user interface of the LNET self-test system, and can be any
node in the test cluster. All self-test commands are entered from the console node.
From the console node, a user can control and monitor the status of the entire test
cluster (session). The console node is exclusive, meaning that a user cannot control
two different sessions (LNET self-test clusters) on one node.
17-22 Lustre 2.0 Operations Manual • April 2010

17.4.1.5 Group

An LNET self-test group is just a named collection of nodes. There are no restrictions
on group membership, i.e., a node can be included in any number of groups, and any
number of groups can exist in a single LNET self-test session.

Each node in a group has a rank, determined by the order in which it was added to
the group, which is used to establish test traffic patterns.

A user can only control nodes in his/her session. To allocate nodes to the session, the
user needs to add nodes to a group (of the session). All nodes in a group can be
referenced by group's name. A node can be allocated to multiple groups of a session.

Note – A console user can associate kernel space test nodes with the session by
running lst add_group NIDs, but a userspace test node cannot be actively added
to the session. However, the console user can passively "accept" a test node to
associate with test session while the test node running lstclient connects to the
console node, i.e: lstclient --sesid CONSOLE_NID --group NAME).

17.4.1.6 Test

A test generates network load between two arbitrary groups of nodes - the test's
"from" and "to" groups. When a test is running, each node in the "from" group sends
requests to nodes in the "to" group, and receive responses in return. This activity is
designed to mimic Lustre RPC traffic, i.e. the "from" group acts like a set of clients
and the "to" group acts like a set of servers.

The traffic pattern and test intensity is determined several properties, including test
type, distribution of test nodes, concurrency of test, RDMA operation type, etc.
Several of the available test parameters are described below.

■ Type: The test type determines the message pattern for a single request/response.
Supported types are:

■ Ping: Small request / small response. Pings only generate small messages. They
are useful to determine latency and small message overhead, and to simulate
Lustre metadata traffic.

■ brw: Small request / bulk / small response. Brws include an additional phase
where bulk data is either fetched from the request sender (brw write) or sent
back to it (brw read) before the response is returned. The size of the bulk
transfer is a test parameter. Brw tests are useful to determine network
bandwidth and to simulate Lustre I/O traffic.
Chapter 17 Lustre I/O Kit 17-23

■ Distribution: Determines which nodes in the "to" group communicate with
each node in the "from" group. It allows you to specify a wide range of
topologies, including one-to-one and all-to-all. Distribution divides the "from"
group into subsets, which are paired with equivalent subsets from the "to"
group so only nodes in matching subsets communicate. For example:

--distribute 1:1 This is the default setting. Each "from" node communicates with
the same rank (modules "to" group size) "to" node. Note that if there are more
"from" nodes than "to" nodes, some "from" nodes may share the same "to"
nodes. Also, if there are more "to" nodes than "from" nodes, some
higher-ranked "to" nodes will be idle.

--distribute 1:n (where 'n' is the size of the "to" group). Each "from" node
communicates with every node in the "to" group.

■ Concurrency: Determines how many requests each "from" node in a test keeps on
the wire.

17.4.1.7 Batch

A batch is an arbitrary collection of tests which are started and stopped together;
they run in parallel. Each test should belong to a batch; tests should not exist
individually. Users can control a test batch (run, stop); they cannot control individual
tests. Tests in a batch are non-destructive to the file system, and can be run in a
normal Lustre environment (provided the performance impact is acceptable).

The simplest batch might contain only a single test - running brw to determine
whether network bandwidth will be an I/O bottleneck. In this example, the "to"
group is comprised of Lustre OSSes and the "from" group includes the compute
nodes. Adding an second test to perform pings from a login node to the MDS could
tell you how much checkpointing would affect the ls -l process.
17-24 Lustre 2.0 Operations Manual • April 2010

17.4.1.8 Sample Script

These are the steps to run a sample LNET self-test script simulating the traffic pattern
of a set of Lustre servers on a TCP network, accessed by Lustre clients on an
InfiniBand network (connected via LNET routers). In this example, half the clients
are reading and half the clients are writing.

1. Load libcfs.ko, lnet.ko, ksocklnd.ko and lnet_selftest.ko on all test nodes and
the console node.

2. Run this script on the console node:

#!/bin/bash

export LST_SESSION=$$

lst new_session read/write

lst add_group servers 192.168.10.[8,10,12-16]@tcp

lst add_group readers 192.168.1.[1-253/2]@o2ib

lst add_group writers 192.168.1.[2-254/2]@o2ib

lst add_batch bulk_rw

lst add_test --batch bulk_rw --from readers --to servers \

brw read check=simple size=1M

lst add_test --batch bulk_rw --from writers --to servers \

brw write check=full size=4K

start running

lst run bulk_rw

display server stats for 30 seconds

lst stat servers & sleep 30; kill $!

tear down

lst end_session

Note – This script can be easily adapted to pass the group NIDs by shell variables or
command line arguments (making it good for general-purpose use).
Chapter 17 Lustre I/O Kit 17-25

17.4.2 LNET Self-Test Commands
The LNET self-test (lst) utility is used to issue LNET self-test commands. The lst
utility takes a number of command line arguments. The first argument is the
command name and subsequent arguments are command-specific.

17.4.2.1 Session

This section lists lst session commands.

Process Environment (LST_SESSION)

The lst utility uses the LST_SESSION environmental variable to identify the session
locally on the self-test console node. This should be a numeric value that uniquely
identifies all session processes on the node. It is convenient to set this to the process
ID of the shell both for interactive use and in shell scripts. Almost all lst commands
require LST_SESSION to be set.

new_session [--timeout SECONDS] [--force] NAME

Creates a new session.

–-timeout SECONDS Console timeout value of the session. The session ends
automatically if it remains idle (i.e., no commands are issued) for
this period.

--force Ends conflicting sessions. This determines who “wins” when one
session conflicts with another. For example, if there is already an
active session on this node, then this attempt to create a new
session fails unless the -force flag is specified. However, if the
-force flag is specified, then the other session is ended. Similarly,
if this session attempts to add a node that is already “owned” by
another session, the -force flag allows this session to “steal” the
node.

name A human-readable string to print when listing sessions or
reporting session conflicts.

$ export LST_SESSION=$$

$ lst new_session --force liangzhen
17-26 Lustre 2.0 Operations Manual • April 2010

end_session

Stops all operations and tests in the current session and clears the session’s status.

$ lst end_session

show_session

Shows the session information. This command prints information about the current
session. It does not require LST_SESSION to be defined in the process environment.

$ lst show_session

17.4.2.2 Group

This section lists lst group commands.

add_group NAME NIDs [NIDs...]

Creates the group and adds a list of test nodes to the group.

update_group NAME [--refresh] [--clean STATE] [--remove NIDs]

Updates the state of nodes in a group or adjusts a group’s membership. This
command is useful if some nodes have crashed and should be excluded from the
group.

NAME Name of the group.

NIDs A string that may be expanded into one or more LNET NIDs.

$ lst add_group servers 192.168.10.[35,40-45]@tcp
$ lst add_group clients 192.168.1.[10-100]@tcp 192.168.[2,4].\
[10-20]@tcp

–-refresh Refreshes the state of all inactive nodes in the group.

–-clean STATUS Removes nodes with a specified status from the group. Status may be:

active The node is in the current session.

busy The node is now owned by another session.

down The node has been marked down.
Chapter 17 Lustre I/O Kit 17-27

list_group [NAME] [--active] [--busy] [--down] [--unknown] [--all]

Prints information about a group or lists all groups in the current session if no group
is specified.

unknown The node’s status has yet to be determined.

invalid Any state but active.

–-remove NIDs Removes specified nodes from the group.

$ lst update_group clients --refresh
$ lst update_group clients --clean busy
$ lst update_group clients --clean invalid // \
invalid == busy || down || unknown
$ lst update_group clients --remove 192.168.1.[10-20]@tcp

NAME The name of the group.

–-active Lists the active nodes.

–-busy Lists the busy nodes.

–-down Lists the down nodes.

–-unknown Lists unknown nodes.

–-all Lists all nodes.

$ lst list_group

1) clients

2) servers

Total 2 groups

$ lst list_group clients

ACTIVE BUSY DOWN UNKNOWN TOTAL

3 1 2 0 6

$ lst list_group clients --all

192.168.1.10@tcp Active

192.168.1.11@tcp Active

192.168.1.12@tcp Busy

192.168.1.13@tcp Active

192.168.1.14@tcp DOWN

192.168.1.15@tcp DOWN

Total 6 nodes

$ lst list_group clients --busy

192.168.1.12@tcp Busy

Total 1 node
17-28 Lustre 2.0 Operations Manual • April 2010

del_group NAME

Removes a group from the session. If the group is referred to by any test, then the
operation fails. If nodes in the group are referred to only by this group, then they are
kicked out from the current session; otherwise, they are still in the current session.

$ lst del_group clients

Userland client (lstclient --sesid NID --group NAME)

Use lstclient to run the userland self-test client. lstclient should be executed after
creating a session on the console. There are only two mandatory options for lstclient:

Also, lstclient has a mandatory option that enforces LNET to behave as a server (start
acceptor if the underlying NID needs it, use privileged ports, etc.):

--server_mode

For example:

Client1 $ lstclient --sesid 192.168.1.52@tcp |--group clients --server_mode

Note – Only the super user is allowed to use the --server_mode option.

–-sesid NID The first console’s NID.

–-group NAME The test group to join.

Console $ lst new_session testsession
Client1 $ lstclient --sesid 192.168.1.52@tcp --group clients
Chapter 17 Lustre I/O Kit 17-29

17.4.2.3 Batch and Test

This section lists lst batch and test commands.

add_batch NAME

The default batch (named “batch”) is created when the session is started. However,
the user can specify a batch name by using add_batch:

$ lst add_batch bulkperf

add_test --batch BATCH [--loop #] [--concurrency #] [--distribute #:#]
from GROUP --to GROUP TEST ...

Adds a test to batch. For now, TEST can be brw and ping:

–-loop # Loop count of the test.

–-concurrency # Concurrency of the test.

–-from GROUP The source group (test client).

–-to GROUP The target group (test server).

–-distribute #:# The distribution of nodes in clients and servers. The first number of
distribute is a subset of client (count of nodes in the “from” group). The
second number of distribute is a subset of server (count of nodes in the
“to” group); only nodes in two correlative subsets will talk. The
following examples are illustrative:

Clients: (C1, C2, C3, C4, C5, C6)

Server: (S1, S2, S3)

--distribute 1:1

(C1->S1), (C2->S2), (C3->S3), (C4->S1), (C5->S2), (C6->S3)
\ /* -> means test conversation */
--distribute 2:1

(C1,C2->S1), (C3,C4->S2), (C5,C6->S3)

--distribute 3:1

(C1,C2,C3->S1), (C4,C5,C6->S2), (NULL->S3)

--distribute 3:2

(C1,C2,C3->S1,S2), (C4,C5,C6->S3,S1)

--distribute 4:1

(C1,C2,C3,C4->S1), (C5,C6->S2), (NULL->S3)

--distribute 4:2

(C1,C2,C3,C4->S1,S2), (C5, C6->S3, S1)

--distribute 6:3

(C1,C2,C3,C4,C5,C6->S1,S2,S3)
17-30 Lustre 2.0 Operations Manual • April 2010

There are only two test types:

list_batch [NAME] [--test INDEX] [--active] [--invalid] [--server]

Lists batches in the current session or lists client|server nodes in a batch or a test.

–-ping There are no private parameters for the ping test.

–-brw The brw test can have several options:

read | write Read or write. The default is read.

size=# | #K | #M I/O size can be bytes, KB or MB (i.e., size=1024, size=4K,
size=1M. The default is 4K bytes.

check=full | simple A data validation check (checksum of data). The default is
no-check. As an example:

$ lst add_group clients 192.168.1.[10-17]@tcp
$ lst add_group servers 192.168.10.[100-103]@tcp
$ lst add_batch bulkperf
$ lst add_test --batch bulkperf --loop 100 \
--concurrency 4 --distribute 4:2 --from clients \
brw WRITE size=16K
// add brw (WRITE, 16 KB) test to batch bulkperf, \
the test will run in 4 workitem, each
// 192.168.1.[10-13] will write to
192.168.10.[100,101]
// 192.168.1.[14-17] will write to
192.168.10.[102,103]

–-test INDEX Lists tests in a batch. If no option is used, all tests in the batch are listed. If
the option is used, only specified tests in the batch are listed.

$ lst list_batch

bulkperf

$ lst list_batch bulkperf

Batch: bulkperf Tests: 1 State: Idle

ACTIVE BUSY DOWN UNKNOWN TOTAL

client 8 0 0 0 8

server 4 0 0 0 4

Test 1(brw) (loop: 100, concurrency: 4)

ACTIVE BUSY DOWN UNKNOWN TOTAL

client 8 0 0 0 8

server 4 0 0 0 4

$ lst list_batch bulkperf --server --active

192.168.10.100@tcp Active

192.168.10.101@tcp Active

192.168.10.102@tcp Active

192.168.10.103@tcp Active
Chapter 17 Lustre I/O Kit 17-31

run NAME

Runs the batch.

$ lst run bulkperf

stop NAME

Stops the batch.

$ lst stop bulkperf

query NAME [--test INDEX] [--timeout #] [--loop #] [--delay #] [--all]

Queries the batch status.

–-test INDEX Only queries the specified test. The test INDEX starts from 1.

–-timeout # The timeout value to wait for RPC. The default is 5 seconds.

–-loop # The loop count of the query.

–-delay # The interval of each query. The default is 5 seconds.

–-all The list status of all nodes in a batch or a test.

$ lst run bulkperf
$ lst query bulkperf --loop 5 --delay 3

Batch is running

Batch is running

Batch is running

Batch is running

Batch is running

$ lst query bulkperf --all

192.168.1.10@tcp Running

192.168.1.11@tcp Running

192.168.1.12@tcp Running

192.168.1.13@tcp Running

192.168.1.14@tcp Running

192.168.1.15@tcp Running

192.168.1.16@tcp Running

192.168.1.17@tcp Running

$ lst stop bulkperf

$ lst query bulkperf

Batch is idle
17-32 Lustre 2.0 Operations Manual • April 2010

17.4.2.4 Other Commands

This section lists other lst commands.

ping [-session] [--group NAME] [--nodes NIDs] [--batch name] [--server] [--timeout #]

Sends a “hello” query to the nodes.

–-session Pings all nodes in the current session.

–-group NAME Pings all nodes in a specified group.

–-nodes NIDs Pings all specified nodes.

–-batch NAME Pings all client nodes in a batch.

–-server Sends RPC to all server nodes instead of client nodes. This option is only
used with batch NAME.

–-timeout # The RPC timeout value.

$ lst ping 192.168.10.[15-20]@tcp
192.168.1.15@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.16@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.17@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.18@tcp Busy [session: Isaac id: 192.168.10.10@tcp]
192.168.1.19@tcp Down [session: <NULL> id: LNET_NID_ANY]
192.168.1.20@tcp Down [session: <NULL> id: LNET_NID_ANY]
Chapter 17 Lustre I/O Kit 17-33

stat [--bw] [--rate] [--read] [--write] [--max] [--min] [--avg] " " [--timeout #] [--delay #]
GROUP|NIDs [GROUP|NIDs]

The collection performance and RPC statistics of one or more nodes.

Specifying a group name (GROUP) causes statistics to be gathered for all nodes in a
test group. For example:

$ lst stat servers

where servers is the name of a test group created by lst add_group

Specifying a NID range (NIDs) causes statistics to be gathered for selected nodes. For
example:

$ lst stat 192.168.0.[1-100/2]@tcp

Currently, only LNET performance statistics are available.2 By default, all statistics
information is displayed. Users can specify additional information with these
options.

2. In the future, more statistics will be supported.

–-bw Displays the bandwidth of the specified group/nodes.

–-rate Displays the rate of RPCs of the specified group/nodes.

–-read Displays the read statistics of the specified group/nodes.

–-write Displays the write statistics of the specified group/nodes.

–-max Displays the maximum value of the statistics.

–-min Displays the minimum value of the statistics.

–-avg Displays the average of the statistics.

–-timeout # The timeout of the statistics RPC. The default is 5 seconds.

–-delay # The interval of the statistics (in seconds).

$ lst run bulkperf
$ lst stat clients
[LNet Rates of clients]
[W] Avg: 1108 RPC/s Min: 1060 RPC/s Max: 1155 RPC/s
[R] Avg: 2215 RPC/s Min: 2121 RPC/s Max: 2310 RPC/s
[LNet Bandwidth of clients]
[W] Avg: 16.60 MB/s Min: 16.10 MB/s Max: 17.1 MB/s
[R] Avg: 40.49 MB/s Min: 40.30 MB/s Max: 40.68 MB/s
17-34 Lustre 2.0 Operations Manual • April 2010

show_error [--session] [GROUP]|[NIDs] ...

Lists the number of failed RPCs on test nodes.

–-session Lists errors in the current test session. With this option, historical RPC errors are
not listed.
$ lst show_error clients
clients

12345-192.168.1.15@tcp: [Session: 1 brw errors, 0 ping errors] \
[RPC: 20 errors, 0 dropped,
12345-192.168.1.16@tcp: [Session: 0 brw errors, 0 ping errors] \
[RPC: 1 errors, 0 dropped, Total 2 error nodes in clients

$ lst show_error --session clients

clients

12345-192.168.1.15@tcp: [Session: 1 brw errors, 0 ping errors]

Total 1 error nodes in clients
Chapter 17 Lustre I/O Kit 17-35

17-36 Lustre 2.0 Operations Manual • April 2010

CHAPTER 18

Lustre Recovery

This chapter describes how to recover Lustre, and includes the following sections:

■ Recovery Overview

■ Metadata Replay

■ Reply Reconstruction

■ Version-based Recovery

■ Commit on Share

■ Recovering from Corruption in the Lustre File System
18-1

18.1 Recovery Overview
Lustre's recovery support is responsible for dealing with node or network failure and
returning the cluster to a consistent, performant state. Because Lustre allows servers
to perform asynchronous update operations to the on-disk file system (i.e., the server
can reply without waiting for the update to synchronously commit to disk), the
clients may have state in memory that is newer than what the server can recover
from disk after a crash.

A handful of different types of failures can cause recovery to occur:

■ Client (compute node) failure

■ MDS failure (and failover)

■ OST failure (and failover)

■ Transient network partition

Currently, all Lustre failure and recovery operations are based on the concept of
connection failure; all imports or exports associated with a given connection are
considered to fail if any of them fail.

For information on Lustre recovery, see Metadata Replay. For information on
recovering from a corrupt file system, see Commit on Share. For information on
resolving orphaned objects, a common issue after recovery, see Working with
Orphaned Objects.

18.1.1 Client Failure
Lustre's support for recovery from client failure is based on lock revocation and other
resources, so surviving clients can continue their work uninterrupted. If a client fails
to timely respond to a blocking lock callback from the Distributed Lock Manager
(DLM) or fails to communicate with the server in a long period of time (i.e., no
pings), the client is forcibly removed from the cluster (evicted). This enables other
clients to acquire locks blocked by the dead client's locks, and also frees resources
(file handles, export data) associated with that client. Note that this scenario can be
caused by a network partition, as well as an actual client node system failure.
Network Partition describes this case in more detail.
18-2 Lustre 2.0 Operations Manual • April 2010

18.1.2 Client Eviction
If a client is not behaving properly from the server's point of view, it will be evicted.
This ensures that the whole file system can continue to function in the presence of
failed or misbehaving clients. An evicted client must invalidate all locks, which in
turn, results in all cached inodes becoming invalidated and all cached data being
flushed.

Reasons why a client might be evicted:

■ Failure to respond to a server request in a timely manner

■ Blocking lock callback (i.e., client holds lock that another client/server wants)

■ Lock completion callback (i.e., client is granted lock previously held by another
client)

■ Lock glimpse callback (i.e., client is asked for size of object by another client)

■ Server shutdown notification (with simplified interoperability)

■ Failure to ping the server in a timely manner, unless the server is receiving no RPC
traffic at all (which may indicate a network partition).

18.1.3 MDS Failure (Failover)
Highly-available (HA) Lustre operation requires that the metadata server have a peer
configured for failover, including the use of a shared storage device for the MDT
backing file system. The actual mechanism for detecting peer failure, power off
(STONITH) of the failed peer (to prevent it from continuing to modify the shared
disk), and takeover of the Lustre MDS service on the backup node depends on
external HA software such as Heartbeat. It is also possible to have MDS recovery
with a single MDS node. In this case, recovery will take as long as is needed for the
single MDS to be restarted.

When clients detect an MDS failure (either by timeouts of in-flight requests or
idle-time ping messages), they connect to the new backup MDS and use the Metadata
Replay protocol. Metadata Replay is responsible for ensuring that the backup MDS
re-acquires state resulting from transactions whose effects were made visible to
clients, but which were not committed to the disk.

The reconnection to a new (or restarted) MDS is managed by the file system
configuration loaded by the client when the file system is first mounted. If a failover
MDS has been configured (using the --failnode= option to mkfs.lustre or
tunefs.lustre), the client tries to reconnect to both the primary and backup MDS
until one of them responds that the failed MDT is again available. At that point, the
client begins recovery. For more information, see Metadata Replay.
Chapter 18 Lustre Recovery 18-3

Transaction numbers are used to ensure that operations are replayed in the order
they were originally performed, so that they are guaranteed to succeed and present
the same filesystem state as before the failure. In addition, clients inform the new
server of their existing lock state (including locks that have not yet been granted). All
metadata and lock replay must complete before new, non-recovery operations are
permitted. In addition, only clients that were connected at the time of MDS failure
are permitted to reconnect during the recovery window, to avoid the introduction of
state changes that might conflict with what is being replayed by
previously-connected clients.

18.1.4 OST Failure (Failover)
When an OST fails or has communication problems with the client, the default action
is that the corresponding OSC enters recovery, and I/O requests going to that OST
are blocked waiting for OST recovery or failover. It is possible to administratively
mark the OSC as inactive on the client, in which case file operations that involve the
failed OST will return an IO error (-EIO). Otherwise, the application waits until the
OST has recovered or the client process is interrupted (e.g. ,with CTRL-C).

The MDS (via the LOV) detects that an OST is unavailable and skips it when
assigning objects to new files. When the OST is restarted or re-establishes
communication with the MDS, the MDS and OST automatically perform orphan
recovery to destroy any objects that belong to files that were deleted while the OST
was unavailable. For more information, see Working with Orphaned Objects.

While the OSC to OST operation recovery protocol is the same as that between the
MDC and MDT using the Metadata Replay protocol, typically the OST commits bulk
write operations to disk synchronously and each reply indicates that the request is
already committed and the data does not need to be saved for recovery. In some
cases, the OST replies to the client before the operation is committed to disk (e.g.
truncate, destroy, setattr, and I/O operations in very new versions of Lustre), and
normal replay and resend handling is done, including resending of the bulk writes.
In this case, the client keeps a copy of the data available in memory until the server
indicates that the write has committed to disk.

To force an OST recovery, unmount the OST and then mount it again. If the OST was
connected to clients before it failed, then a recovery process starts after the remount,
enabling clients to reconnect to the OST and replay transactions in their queue. When
the OST is in recovery mode, all new client connections are refused until the recovery
finishes. The recovery is complete when either all previously-connected clients
reconnect and their transactions are replayed or a client connection attempt times
out. If a connection attempt times out, then all clients waiting to reconnect (and their
transactions) are lost.
18-4 Lustre 2.0 Operations Manual • April 2010

Note – If you know an OST will not recover a previously-connected client (if, for
example, the client has crashed), you can manually abort the recovery using this
command:

lctl --device <OST device number> abort_recovery

To determine an OST’s device number and device name, run the lctl dl command.
Sample lctl dl command output is shown below:

7 UP obdfilter ddn_data-OST0009 ddn_data-OST0009_UUID 1159

In this example, 7 is the OST device number. The device name is
ddn_data-OST0009. In most instances, the device name can be used in place of the
device number.

18.1.5 Network Partition
Network failures may be transient. To avoid invoking recovery, the client tries,
initially, to re-send any timed out request to the server. If the resend also fails, the
client tries to re-establish a connection to the server. Clients can detect harmless
partition upon reconnect if the server has not had any reason to evict the client.

If a request was processed by the server, but the reply was dropped (i.e., did not
arrive back at the client), the server must reconstruct the reply when the client
resends the request, rather than performing the same request twice.

18.1.6 Failed Recovery
In the case of failed recovery, a client is evicted by the server and must reconnect
after having flushed its saved state related to that server, as described in Client
Eviction, above. Failed recovery might occur for a number of reasons, including:

■ Failure of recovery

■ Recovery fails if the operations of one client directly depend on the operations
of another client that failed to participate in recovery. Otherwise, Version Based
Recovery (VBR) allows recovery to proceed for all of the connected clients, and
only missing clients are evicted.

■ Manual abort of recovery

■ Manual eviction by the administrator
Chapter 18 Lustre Recovery 18-5

18.2 Metadata Replay
Highly available Lustre operation requires that the MDS have a peer configured for
failover, including the use of a shared storage device for the MDS backing file
system. When a client detects an MDS failure, it connects to the new MDS and uses
the metadata replay protocol to replay its requests.

Metadata replay ensures that the failover MDS re-accumulates state resulting from
transactions whose effects were made visible to clients, but which were not
committed to the disk.

18.2.1 XID Numbers
Each request sent by the client contains an XID number, which is a client-unique,
monotonically increasing 64-bit integer. The initial value of the XID is chosen so that
it is highly unlikely that the same client node reconnecting to the same server after a
reboot would have the same XID sequence. The XID is used by the client to order all
of the requests that it sends, until such a time that the request is assigned a
transaction number. The XID is also used in Reply Reconstruction to uniquely
identify per-client requests at the server.

18.2.2 Transaction Numbers
Each client request processed by the server that involves any state change (metadata
update, file open, write, etc., depending on server type) is assigned a transaction
number by the server that is a target-unique, monontonically increasing, server-wide
64-bit integer. The transaction number for each file system-modifying request is sent
back to the client along with the reply to that client request. The transaction numbers
allow the client and server to unambiguously order every modification to the file
system in case recovery is needed.

Each reply sent to a client (regardless of request type) also contains the last
committed transaction number that indicates the highest transaction number
committed to the file system. The backing file systems that Lustre uses (ext3/4, ZFS)
enforce the requirement that any earlier disk operation will always be committed to
disk before a later disk operation, so the last committed transaction number also
reports that any requests with a lower transaction number have been committed to
disk.
18-6 Lustre 2.0 Operations Manual • April 2010

18.2.3 Replay and Resend
Lustre recovery can be separated into two distinct types of operations: replay and
resend.

Replay operations are those for which the client received a reply from the server that
the operation had been successfully completed. These operations need to be redone
in exactly the same manner after a server restart as had been reported before the
server failed. Replay can only happen if the server failed; otherwise it will not have
lost any state in memory.

Resend operations are those for which the client never received a reply, so their final
state is unknown to the client. The client sends unanswered requests to the server
again in XID order, and again awaits a reply for each one. In some cases, resent
requests have been handled and committed to disk by the server (possibly also
having dependent operations committed), in which case, the server performs reply
reconstruction for the lost reply. In other cases, the server did not receive the lost
request at all and processing proceeds as with any normal request. These are what
happen in the case of a network interruption. It is also possible that the server
received the request, but was unable to reply or commit it to disk before failure.

18.2.4 Client Replay List
All file system-modifying requests have the potential to be required for server state
recovery (replay) in case of a server failure. Replies that have an assigned transaction
number that is higher than the last committed transaction number received in any
reply from each server are preserved for later replay in a per-server replay list. As
each reply is received from the server, it is checked to see if it has a higher last
committed transaction number than the previous highest last committed number.
Most requests that now have a lower transaction number can safely be removed from
the replay list. One exception to this rule is for open requests, which need to be saved
for replay until the file is closed so that the MDS can properly reference count
open-unlinked files.
Chapter 18 Lustre Recovery 18-7

18.2.5 Server Recovery
A server enters recovery if it was not shut down cleanly. If, upon startup, if any client
entries are in the last_rcvd file for any previously connected clients, the server enters
recovery mode and waits for these previously-connected clients to reconnect and
begin replaying or resending their requests. This allows the server to recreate state
that was exposed to clients (a request that completed successfully) but was not
committed to disk before failure.

In the absence of any client connection attempts, the server waits indefinitely for the
clients to reconnect. This is intended to handle the case where the server has a
network problem and clients are unable to reconnect and/or if the server needs to be
restarted repeatedly to resolve some problem with hardware or software. Once the
server detects client connection attempts - either new clients or previously-connected
clients - a recovery timer starts and forces recovery to finish in a finite time regardless
of whether the previously-connected clients are available or not.

If no client entries are present in the last_rcvd file, or if the administrator manually
aborts recovery, the server does not wait for client reconnection and proceeds to
allow all clients to connect.

As clients connect, the server gathers information from each one to determine how
long the recovery needs to take. Each client reports its connection UUID, and the
server does a lookup for this UUID in the last_rcvd file to determine if this client was
previously connected. If not, the client is refused connection and it will retry until
recovery is completed. Each client reports its last seen transaction, so the server
knows when all transactions have been replayed. The client also reports the amount
of time that it was previously waiting for request completion so that the server can
estimate how long some clients might need to detect the server failure and reconnect.

If the client times out during replay, it attempts to reconnect. If the client is unable to
reconnect, REPLAY fails and it returns to DISCON state. It is possible that clients will
timeout frequently during REPLAY, so reconnection should not delay an already
slow process more than necessary. We can mitigate this by increasing the timeout
during replay.
18-8 Lustre 2.0 Operations Manual • April 2010

18.2.6 Request Replay
If a client was previously connected, it gets a response from the server telling it that
the server is in recovery and what the last committed transaction number on disk is.
The client can then iterate through its replay list and use this last committed
transaction number to prune any previously-committed requests. It replays any
newer requests to the server in transaction number order, one at a time, waiting for a
reply from the server before replaying the next request.

Open requests that are on the replay list may have a transaction number lower than
the server's last committed transaction number. The server processes those open
requests immediately. The server then processes replayed requests from all of the
clients in transaction number order, starting at the last committed transaction
number to ensure that the state is updated on disk in exactly the same manner as it
was before the crash. As each replayed request is processed, the last committed
transaction is incremented. If the server receives a replay request from a client that is
higher than the current last committed transaction, that request is put aside until
other clients provide the intervening transactions. In this manner, the server replays
requests in the same sequence as they were previously executed on the server until
either all clients are out of requests to replay or there is a gap in a sequence.

18.2.7 Gaps in the Replay Sequence
In some cases, a gap may occur in the reply sequence. This might be caused by lost
replies, where the request was processed and committed to disk but the reply was
not received by the client. It can also be caused by clients missing from recovery due
to partial network failure or client death.

In the case where all clients have reconnected, but there is a gap in the replay
sequence the only possibility is that some requests were processed by the server but
the reply was lost. Since the client must still have these requests in its resend list,
they are processed after recovery is finished.

In the case where all clients have not reconnected, it is likely that the failed clients
had requests that will no longer be replayed. The VBR feature is used to determine if
a request following a transaction gap is safe to be replayed. Each item in the file
system (MDS inode or OST object) stores on disk the number of the last transaction
in which it was modified. Each reply from the server contains the previous version
number of the objects that it affects. During VBR replay, the server matches the
previous version numbers in the resend request against the current version number.
If the versions match, the request is the next one that affects the object and can be
safely replayed. For more information, see Version-based Recovery.
Chapter 18 Lustre Recovery 18-9

18.2.8 Lock Recovery
If all requests were replayed successfully and all clients reconnected, clients then do
lock replay locks -- that is, every client sends information about every lock it holds
from this server and its state (whenever it was granted or not, what mode, what
properties and so on), and then recovery completes successfully. Currently, Lustre
does not do lock verification and just trusts clients to present an accurate lock state.
This does not impart any security concerns since Lustre 1.x clients are trusted for
other information (e.g. user ID) during normal operation also.

After all of the saved requests and locks have been replayed, the client sends an
MDS_GETSTATUS request with last-replay flag set. The reply to that request is held
back until all clients have completed replay (sent the same flagged getstatus request),
so that clients don't send non-recovery requests before recovery is complete.

18.2.9 Request Resend
Once all of the previously-shared state has been recovered on the server (the target
file system is up-to-date with client cache and the server has recreated locks
representing the locks held by the client), the client can resend any requests that did
not receive an earlier reply. This processing is done like normal request processing,
and, in some cases, the server may do reply reconstruction.
18-10 Lustre 2.0 Operations Manual • April 2010

18.3 Reply Reconstruction
When a reply is dropped, the MDS needs to be able to reconstruct the reply when the
original request is re-sent. This must be done without repeating any non-idempotent
operations, while preserving the integrity of the locking system. In the event of MDS
failover, the information used to reconstruct the reply must be serialized on the disk
in transactions that are joined or nested with those operating on the disk.

18.3.1 Required State
For the majority of requests, it is sufficient for the server to store three pieces of data
in the last_rcvd file:

■ XID of the request

■ Resulting transno (if any)

■ Result code (req->rq_status)

For open requests, the "disposition" of the open must also be stored.

18.3.2 Reconstruction of Open Replies
An open reply consists of up to three pieces of information (in addition to the
contents of the "request log"):

■ File handle

■ Lock handle

■ mds_body with information about the file created (for O_CREAT)

The disposition, status and request data (re-sent intact by the client) are sufficient to
determine which type of lock handle was granted, whether an open file handle was
created, and which resource should be described in the mds_body.
Chapter 18 Lustre Recovery 18-11

Finding the File Handle

The file handle can be found in the XID of the request and the list of per-export open
file handles. The file handle contains the resource/FID.

Finding the Resource/fid

The file handle contains the resource/fid.

Finding the Lock Handle

The lock handle can be found by walking the list of granted locks for the resource
looking for one with the appropriate remote file handle (present in the re-sent
request). Verify that the lock has the right mode (determined by performing the
disposition/request/status analysis above) and is granted to the proper client.
18-12 Lustre 2.0 Operations Manual • April 2010

18.4 Version-based Recovery
The Version-based Recovery (VBR) feature improves Lustre reliability in cases where
client requests (RPCs) fail to replay during recovery1.

In pre-VBR versions of Lustre, if the MGS or an OST went down and then recovered,
a recovery process was triggered in which clients attempted to replay their requests.
Clients were only allowed to replay RPCs in serial order. If a particular client could
not replay its requests, then those requests were lost as well as the requests of clients
later in the sequence. The ''downstream'' clients never got to replay their requests
because of the wait on the earlier client’s RPCs. Eventually, the recovery period
would time out (so the component could accept new requests), leaving some number
of clients evicted and their requests and data lost.

With VBR, the recovery mechanism does not result in the loss of clients or their data,
because changes in inode versions are tracked, and more clients are able to
reintegrate into the cluster. With VBR, inode tracking looks like this:

■ Each inode2 stores a version, that is, the number of the last transaction (transno) in
which the inode was changed.

■ When an inode is about to be changed, a pre-operation version of the inode is
saved in the client’s data.

■ The client keeps the pre-operation inode version and the post-operation version
(transaction number) for replay, and sends them in the event of a server failure.

■ If the pre-operation version matches, then the request is replayed. The
post-operation version is assigned on all inodes modified in the request.

Note – An RPC can contain up to four pre-operation versions, because several
inodes can be involved in an operation. In the case of a ''rename'' operation, four
different inodes can be modified.

1. There are two scenarios under which client RPCs are not replayed:

(1) Non-functioning or isolated clients do not reconnect, and they cannot replay their RPCs, causing a gap in
the replay sequence. These clients get errors and are evicted.

(2) Functioning clients connect, but they cannot replay some or all of their RPCs that occurred after the gap
caused by the non-functioning/isolated clients. These clients get errors (caused by the failed clients). With
VBR, these requests have a better chance to replay because the "gaps" are only related to specific files that the
missing client(s) changed.

2. Usually, there are two inodes, a parent and a child.
Chapter 18 Lustre Recovery 18-13

During normal operation, the server:

■ Updates the versions of all inodes involved in a given operation

■ Returns the old and new inode versions to the client with the reply

When the recovery mechanism is underway, VBR follows these steps:

1. VBR only allows clients to replay transactions if the affected inodes have the
same version as during the original execution of the transactions, even if there
is gap in transactions due to a missed client.

2. The server attempts to execute every transaction that the client offers, even if it
encounters a re-integration failure.

3. When the replay is complete, the client and server check if a replay failed on
any transaction because of inode version mismatch. If the versions match, the
client gets a successful re-integration message. If the versions do not match,
then the client is evicted.

VBR recovery is fully transparent to users. It may lead to slightly longer recovery
times if the cluster loses several clients during server recovery.

18.4.1 VBR Messages
The VBR feature is built into the Lustre recovery functionality. It cannot be disabled.
These are some VBR messages that may be displayed:

DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");

This message indicates why the client was evicted. No action is needed.

CWARN("%s: version recovery fails, reconnecting\n");

This message indicates why the recovery failed. No action is needed.

18.4.2 Tips for Using VBR
VBR will be successful for clients which do not share data with other client.
Therefore, the strategy for reliable use of VBR is to store a client’s data in its own
directory, where possible. VBR can recover these clients, even if other clients are lost.
18-14 Lustre 2.0 Operations Manual • April 2010

18.5 Commit on Share
Lustre 2.0 introduces the commit-on-share (COS) feature, which makes Lustre
recovery more reliable by preventing missing clients from causing cascading
evictions of other clients. With COS enabled, if some Lustre clients miss the recovery
window after a reboot or a server failure, the remaining clients are not evicted.

Note – The commit-on-share feature is enabled, by default.

18.5.1 Working with Commit on Share
To illustrate how COS works, let's first look at the old recovery scenario. After a
service restart, the MDS would boot and enter recovery mode. Clients began
reconnecting and replaying their uncommitted transactions. Clients could replay
transactions independently as long as their transactions did not depend on each
other (one client's transactions did not depend on a different client's transactions).
The MDS is able to determine whether one transaction is dependent on another
transaction via the Version-based Recovery feature.

If there was a dependency between client transactions (for example, creating and
deleting the same file), and one or more clients did not reconnect in time, then some
clients may have been evicted because their transactions depended on transactions
from the missing clients. Evictions of those clients caused more clients to be evicted
and so on, resulting in "cascading" client evictions.

COS addresses the problem of cascading evictions by eliminating dependent
transactions between clients. It ensures that one transaction is committed to disk if
another client performs a transaction dependent on the first one. With no dependent,
uncommitted transactions to apply, the clients replay their requests independently
without the risk of being evicted.
Chapter 18 Lustre Recovery 18-15

18.5.2 Tuning Commit On Share
Commit on Share can be enabled or disabled using the mdt.commit_on_sharing
tunable (0/1). This tunable can be set when the MDS is created (mkfs.lustre) or when
the Lustre file system is active, using the lctl set/get_param or lctl
conf_param commands.

To set a default value for COS (disable/enable) when the file system is created, use:

--param mdt.commit_on_sharing=0/1

To disable or enable COS when the file system is running, use:

lctl set_param mdt.*.commit_on_sharing=0/1

Note – Enabling COS may cause the MDS to do a large number of synchronous disk
operations, hurting performance. Placing the ldiskfs journal on a low-latency external
device may improve file system performance.

18.6 Recovering from Errors or Corruption on
a Backing File System
When an OSS, MDS, or MGS server crash occurs, it is not necessary to run e2fsck on
the file system. Ext3 journaling ensures that the file system remains coherent. The
backing file systems are never accessed directly from the client, so client crashes are
not relevant.

The only time it is REQUIRED that e2fsck be run on a device is when an event causes
problems that ext3 journaling is unable to handle, such as a hardware device failure
or I/O error. If the ext3 kernel code detects corruption on the disk, it mounts the file
system as read-only to prevent further corruption, but still allows read access to the
device. This appears as error "-30" (EROFS) in the syslogs on the server, e.g.:

Dec 29 14:11:32 mookie kernel: LDISKFS-fs error (device sdz):
ldiskfs_lookup: unlinked inode 5384166 in dir #145170469

Dec 29 14:11:32 mookie kernel: Remounting filesystem read-only

In such a situation, it is normally required that e2fsck only be run on the bad device
before placing the device back into service.

In the vast majority of cases, Lustre can cope with any inconsistencies it finds on the
disk and between other devices in the file system.
18-16 Lustre 2.0 Operations Manual • April 2010

Note – lfsck is rarely required for Lustre operation.

For problem analysis, it is strongly recommended that e2fsck be run under a logger,
like script, to record all of the output and changes that are made to the file system in
case this information is needed later.

If time permits, it is also a good idea to first run e2fsck in non-fixing mode (-n
option) to assess the type and extent of damage to the file system. The drawback is
that in this mode, e2fsck does not recover the file system journal, so there may
appear to be file system corruption when none really exists.

To address concern about whether corruption is real or only due to the journal not
being replayed, you can briefly mount and unmount the ext3 filesystem directly on
the node with Lustre stopped (NOT via Lustre), using a command similar to:

mount -t ldiskfs /dev/{ostdev} /mnt/ost; umount /mnt/ost

This causes the journal to be recovered.

The e2fsck utility works well when fixing file system corruption (better than similar
file system recovery tools and a primary reason why ext3 was chosen over other file
systems for Lustre). However, it is often useful to identify the type of damage that
has occurred so an ext3 expert can make intelligent decisions about what needs
fixing, in place of e2fsck.

root# {stop lustre services for this device, if running}

root# script /tmp/e2fsck.sda

Script started, file is /tmp/e2fsck.sda

root# mount -t ldiskfs /dev/sda /mnt/ost

root# umount /mnt/ost

root# e2fsck -fn /dev/sda # don't fix file system, just check for
corruption

:

[e2fsck output]

:

root# e2fsck -fp /dev/sda # fix filesystem using "prudent" answers
(usually 'y')

In addition, the e2fsprogs package contains the lfsck tool, which does distributed
coherency checking for the Lustre file system after e2fsck has been run. Running
lfsck is NOT required in a large majority of cases, at a small risk of having some
leaked space in the file system. To avoid a lengthy downtime, it can be run (with
care) after Lustre is started.
Chapter 18 Lustre Recovery 18-17

18.7 Recovering from Corruption in the
Lustre File System
In cases where the MDS or an OST becomes corrupt, you can run a distributed check
on the file system to determine what sort of problems exist. Use lfsck to correct any
defects found.

1. Stop the Lustre file system.

2. Run e2fsck -f on the individual MDS / OST that had problems to fix any
local file system damage.

We recommend running e2fsck under script, to create a log of changes made to the
file system in case it is needed later. After e2fsck is run, bring up the file system, if
necessary, to reduce the outage window.

3. Run a full e2fsck of the MDS to create a database for lfsck. It is critical to use
the -n option for a mounted file system, otherwise you will corrupt the file
system.

e2fsck -n -v --mdsdb /tmp/mdsdb /dev/{mdsdev}

The mdsdb file can grow fairly large, depending on the number of files in the file
system (10 GB or more for millions of files, though the actual file size is larger
because the file is sparse). It is quicker to write the file to a local file system due to
seeking and small writes. Depending on the number of files, this step can take
several hours to complete.

Example

e2fsck -n -v --mdsdb /tmp/mdsdb /dev/sdb

e2fsck 1.39.cfs1 (29-May-2006)

Warning: skipping journal recovery because doing a read-only
filesystem check.

lustre-MDT0000 contains a file system with errors, check forced.

Pass 1: Checking inodes, blocks, and sizes

MDS: ost_idx 0 max_id 288

MDS: got 8 bytes = 1 entries in lov_objids

MDS: max_files = 13

MDS: num_osts = 1

mds info db file written

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

Free blocks count wrong (656160, counted=656058).
18-18 Lustre 2.0 Operations Manual • April 2010

Fix? no

Free inodes count wrong (786419, counted=786036).

Fix? no

Pass 6: Acquiring information for lfsck

MDS: max_files = 13

MDS: num_osts = 1

MDS: 'lustre-MDT0000_UUID' mdt idx 0: compat 0x4 rocomp 0x1 incomp
0x4

lustre-MDT0000: ******* WARNING: Filesystem still has errors

13 inodes used (0%)

2 non-contiguous inodes (15.4%)

of inodes with ind/dind/tind blocks: 0/0/0

130272 blocks used (16%)

0 bad blocks

1 large file

296 regular files

91 directories

0 character device files

0 block device files

0 fifos

0 links

0 symbolic links (0 fast symbolic links)

0 sockets

387 files

4. Make this file accessible on all OSTs, either by using a shared file system or
copying the file to the OSTs. The pdcp command is useful here.

The pdcp command (installed with pdsh), can be used to copy files to groups of
hosts. Pdcp is available here:

http://sourceforge.net/projects/pdsh

5. Run a similar e2fsck step on the OSTs. The e2fsck --ostdb command can be
run in parallel on all OSTs.

e2fsck -n -v --mdsdb /tmp/mdsdb --ostdb /tmp/{ostNdb} \
/dev/{ostNdev}

The mdsdb file is read-only in this step; a single copy can be shared by all OSTs.

Note – If the OSTs do not have shared file system access to the MDS, a stub mdsdb
file, {mdsdb}.mdshdr, is generated. This can be used instead of the full mdsdb file.
Chapter 18 Lustre Recovery 18-19

http://sourceforge.net/projects/pdsh

Example:

[root@oss161 ~]# e2fsck -n -v --mdsdb /tmp/mdsdb --ostdb \
/tmp/ostdb /dev/sda

e2fsck 1.39.cfs1 (29-May-2006)

Warning: skipping journal recovery because doing a read-only
filesystem check.

lustre-OST0000 contains a file system with errors, check forced.

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

Free blocks count wrong (989015, counted=817968).

Fix? no

Free inodes count wrong (262088, counted=261767).

Fix? no

Pass 6: Acquiring information for lfsck

OST: 'lustre-OST0000_UUID' ost idx 0: compat 0x2 rocomp 0 incomp 0x2

OST: num files = 321

OST: last_id = 321

lustre-OST0000: ******* WARNING: Filesystem still has errors

56 inodes used (0%)

27 non-contiguous inodes (48.2%)

of inodes with ind/dind/tind blocks: 13/0/0

59561 blocks used (5%)

0 bad blocks

1 large file

329 regular files

39 directories

0 character device files

0 block device files

0 fifos

0 links

0 symbolic links (0 fast symbolic links)

0 sockets

368 files
18-20 Lustre 2.0 Operations Manual • April 2010

6. Make the mdsdb file and all ostdb files available on a mounted client and run
lfsck to examine the file system. Optionally, correct the defects found by lfsck.

script /root/lfsck.lustre.log

lfsck -n -v --mdsdb /tmp/mdsdb --ostdb /tmp/{ost1db} /tmp/{ost2db}
... /lustre/mount/point

Example:

script /root/lfsck.lustre.log

lfsck -n -v --mdsdb /home/mdsdb --ostdb /home/{ost1db} \
/mnt/lustre/client/

MDSDB: /home/mdsdb

OSTDB[0]: /home/ostdb

MOUNTPOINT: /mnt/lustre/client/

MDS: max_id 288 OST: max_id 321

lfsck: ost_idx 0: pass1: check for duplicate objects

lfsck: ost_idx 0: pass1 OK (287 files total)

lfsck: ost_idx 0: pass2: check for missing inode objects

lfsck: ost_idx 0: pass2 OK (287 objects)

lfsck: ost_idx 0: pass3: check for orphan objects

[0] uuid lustre-OST0000_UUID

[0] last_id 288

[0] zero-length orphan objid 1

lfsck: ost_idx 0: pass3 OK (321 files total)

lfsck: pass4: check for duplicate object references

lfsck: pass4 OK (no duplicates)

lfsck: fixed 0 errors

By default, lfsck reports errors, but it does not repair any inconsistencies found.
lfsck checks for three kinds of inconsistencies:

■ Inode exists but has missing objects (dangling inode). This normally happens if
there was a problem with an OST.

■ Inode is missing but OST has unreferenced objects (orphan object). Normally,
this happens if there was a problem with the MDS.

■ Multiple inodes reference the same objects. This can happen if the MDS is
corrupted or if the MDS storage is cached and loses some, but not all, writes.

If the file system is in use and being modified while the --mdsdb and --ostdb
steps are running, lfsck may report inconsistencies where none exist due to files
and objects being created/removed after the database files were collected.
Examine the lfsck results closely. You may want to re-run the test.
Chapter 18 Lustre Recovery 18-21

18.7.1 Working with Orphaned Objects
The easiest problem to resolve is that of orphaned objects. When the -l option for
lfsck is used, these objects are linked to new files and put into lost+found in the
Lustre file system, where they can be examined and saved or deleted as necessary. If
you are certain the objects are not useful, run lfsck with the -d option to delete
orphaned objects and free up any space they are using.

To fix dangling inodes, use lfsck with the -c option to create new, zero-length
objects on the OSTs. These files read back with binary zeros for stripes that had
objects re-created. Even without lfsck repair, these files can be read by entering:

dd if=/lustre/bad/file of=/new/file bs=4k conv=sync,noerror

Because it is rarely useful to have files with large holes in them, most users delete
these files after reading them (if useful) and/or restoring them from backup.

Note – You cannot write to the holes of such files without having lfsck re-create
the objects. Generally, it is easier to delete these files and restore them from backup.

To fix inodes with duplicate objects, use lfsck with the -c option to copy the
duplicate object to a new object and assign it to a file. One file will be okay and the
duplicate will likely contain garbage. By itself, lfsck cannot tell which file is the
usable one.
18-22 Lustre 2.0 Operations Manual • April 2010

PART III Lustre Tuning, Monitoring and
Troubleshooting

The part includes chapters describing how to tune, debug and troubleshoot Lustre.

CHAPTER 19

Lustre Tuning

This chapter contains information to tune Lustre for better performance and includes
the following sections:

■ Module Options

■ LNET Tunables

■ Options for Formatting the MDT and OSTs

■ Large-Scale Tuning for Cray XT and Equivalents

■ Lockless I/O Tunables

■ Data Checksums
19-1

19.1 Module Options
Many options in Lustre are set by means of kernel module parameters. These
parameters are contained in the modprobe.conf file (On SuSE, this may be
modprobe.conf.local).

19.1.1 OSS Service Thread Count
The oss_num_threads parameter enables the number of OST service threads to be
specified at module load time on the OSS nodes:

options ost oss_num_threads={N}

After startup, the minimum and maximum number of OSS thread counts can be set
via the {service}.thread_{min,max,started} tunable. To change the tunable
at runtime, run:

lctl {get,set}_param {service}.thread_{min,max,started}

For details, see Setting MDS and OSS Thread Counts.

19.1.1.1 Optimizing the Number of Service Threads

An OSS can have a minimum of 2 service threads and a maximum of 512 service
threads. The number of service threads is a function of how much RAM and how
many CPUs are on each OSS node (1 thread / 128MB * num_cpus). If the load on the
OSS node is high, new service threads will be started in order to process more
requests concurrently, up to 4x the initial number of threads (subject to the maximum
of 512). For a 2GB 2-CPU system, the default thread count is 32 and the maximum
thread count is 128.

Increasing the size of the thread pool may help when:

■ Several OSTs are exported from a single OSS

■ Back-end storage is running synchronously

■ I/O completions take excessive time due to slow storage

Decreasing the size of the thread pool may help if:

■ Clients are overwhelming the storage capacity

■ There are lots of "slow I/O" or similar messages
19-2 Lustre 2.0 Operations Manual • April 2010

Increasing the number of I/O threads allows the kernel and storage to aggregate
many writes together for more efficient disk I/O. The OSS thread pool is
shared—each thread allocates approximately 1.5 MB (maximum RPC size + 0.5 MB)
for internal I/O buffers.

It is very important to consider memory consumption when increasing the thread
pool size. Drives are only able to sustain a certain amount of parallel I/O activity
before performance is degraded, due to the high number of seeks and the OST
threads just waiting for I/O. In this situation, it may be advisable to decrease the
load by decreasing the number of OST threads.

The optimum number of OST threads varies for each particular configuration.
Variables include the number of OSTs on each OSS, number and speed of disks,
RAID configuration, and available RAM. You may want to start with a number of
OST threads equal to twice the number of actual disks on the node. If you use RAID5
or RAID6, subtract any disks used for parity (1 for RAID5, 2 for RAID6). Monitor the
aggregate OSS I/O performance and increase the number of OST service threads
(with lctl set_param ost.OSS.ost_io.threads_max=N) until throughput is
maximized. Note that if there are too many threads, the latency for individual I/O
requests can become very high and should be avoided. Set the desired maximum
thread count permanently using the method described above.

19.1.2 MDS Service Thread Count
The mds_num_threads parameter enables the number of MDS service threads to be
specified at module load time on the MDS node:

options mds mds_num_threads={N}

After startup, the minimum and maximum number of MDS thread counts can be set
via the {service}.thread_{min,max,started} tunable. To change the tunable
at runtime, run:

lctl {get,set}_param {service}.thread_{min,max,started}

For details, see Setting MDS and OSS Thread Counts.

At this time, we have not tested to determine the optimal number of MDS threads
are. The default value varies, based on server size, up to a maximum of 32. The
maximum number of threads (MDS_MAX_THREADS) is 512.

Note – The OSS and MDS automatically start new service threads dynamically, in
response to server load, within a factor of 4. The default is calculated the same way
as before (as explained in OSS Service Thread Count). Setting the _mu_threads
module parameter disables automatic thread creation behavior.
Chapter 19 Lustre Tuning 19-3

19.1.2.1 I/O Scheduler

Benchmark all I/O schedulers and select the one that works best for your Lustre
environment.

The Deadline scheduler is most likely to work well for Lustre OSTs, but NOOP could
be considered for OSTs that are CPU-limited and use hardware RAID devices with
lots of cache. For some workloads, the CFQ scheduler may also improve
performance.

For more information on I/O schedulers, see:

http://www.linuxjournal.com/article/6931

http://www.redhat.com/magazine/008jun05/features/schedulers/

19.2 LNET Tunables
This section describes LNET tunables.

19.2.0.1 Transmit and receive buffer size:

With Lustre release 1.4.7 and later, ksocklnd now has separate parameters for the
transmit and receive buffers.

options ksocklnd tx_buffer_size=0 rx_buffer_size=0

If these parameters are left at the default value (0), the system automatically tunes
the transmit and receive buffer size. In almost every case, this default produces the
best performance. Do not attempt to tune these parameters unless you are a network
expert.

19.2.0.2 irq_affinity

By default, this parameter is on. In the normal case on an SMP system, we would like
network traffic to remain local to a single CPU. This helps to keep the processor
cache warm and minimizes the impact of context switches. This is especially helpful
when an SMP system has more than one network interface and ideal when the
number of interfaces equals the number of CPUs.

If you have an SMP platform with a single fast interface such as 10GB Ethernet and
more than two CPUs, you may see performance improve by turning this parameter
off, as always test to compare the impact.
19-4 Lustre 2.0 Operations Manual • April 2010

http://www.linuxjournal.com/article/6931
http://www.redhat.com/magazine/008jun05/features/schedulers/

19.3 Options for Formatting the MDT and
OSTs
The backing file systems on an MDT and OSTs are independent of one another, so the
formatting parameters for them should not be same. The size of the MDS backing file
system depends solely on how many inodes you want in the total Lustre file system.
It is not related to the size of the aggregate OST space.

19.3.1 Planning for Inodes
Each time you create a file on a Lustre file system, it consumes one inode on the MDT
and one inode for each OST object that the file is striped over. Normally, it is based
on the stripe count used for files, either from the file system-wide default set with
--param lov.stripecount=N at mkfs.lustre time, or from the per-file or per-directory
stripe count set with lfs --count=N. In ext3/ldiskfs file systems, inodes are
pre-allocated, so creating a new file does not consume any of the free blocks.
However, this also means that the format-time options should be conservative, as it is
not possible to increase the number of inodes after the file system is formatted. If
there is a shortage of inodes or space on the OSTs, it is possible to add OSTs to the
file system.

To be on the safe side, plan for 4 KB per inode on the MDT (the default). For the OST,
the amount of space taken by each object depends entirely upon the usage pattern of
the users/applications running on the system. Lustre, by necessity, defaults to a very
conservative estimate for the object size (16 KB per object). You can almost always
increase this value for file system installations. Many Lustre file systems have
average file sizes over 1 MB per object.

19.3.2 Sizing the MDT
When calculating the MDT size, the only important factor is the average size of files
to be stored in the file system. If the average file size is, for example, 5 MB and you
have 100 TB of usable OST space, then you need at least (100 TB * 1024 GB/TB * 1024
MB/GB / 5 MB/inode) = 20 million inodes. We recommend that you have twice the
minimum (40 million inodes in this example). At the default 4 KB per inode, this
works out to only 160 GB of space for the MDT.

Conversely, if you have a very small average file size (4 KB for example), Lustre is
not very efficient. This is because you consume as much space on the MDT as on the
OSTs. This is not a very common configuration for Lustre.
Chapter 19 Lustre Tuning 19-5

19.4 Overriding Default Formatting Options
To override the default formatting options for any of the Lustre backing filesystems,
use the --mkfsoptions='backing fs options' argument to mkfs.lustre to
pass formatting options to the backing mkfs. For all options to format backing ext3
and ldiskfs filesystems, see the mke2fs(8) man page; this section only discusses
some Lustre-specific options.

19.4.1 Number of Inodes for the MDT
The number of inodes on the MDT is determined at format time based on the total
size of the filesystem to be created. The default MDT inode ratio is one inode for
every 4096 bytes of filesystem space. To override the inode ratio, use the option -i
<bytes per inode>. For example, use --mkfsoptions="-i 2048" to create one inode per
2048 bytes of file system space. You should not specify the -i option with an inode
ratio below one inode per 1024 bytes in order to avoid running out of space in the
MDT filesystem for directories and Lustre internal metadata.

Alternately, to specify an total number of inodes, use the -N<number of inodes>
option. It is still important to avoid specifying a total number of inodes that would
consume too much space in the MDT filesystem with inode tables and not leave
enough space for other filesystem metadata.

For example, a 2 TB MDS by default will have 512M inodes. The largest
currently-supported file system size is 16 TB, which would hold 4B inodes, the
maximum possible number of inodes with ldiskfs. Using an MDS inode ratio of 1024
bytes per inode, a 2 TB MDS would hold 2B inodes, and a 4 TB MDS would hold 4B
inodes.

Reducing the inode ratio will also reduce the number of drives needed to hold a
given number of inodes. For spinning disks this may be a disadvantage, since the
number of IO operations per second (IOPS) will decrease proportionately and hurt
MDS performance. For solid-state disks (SSDs) this can be advantageous, since the
cost of SSDs is still quite high, and the number of IOPS per SSD is already very high.
19-6 Lustre 2.0 Operations Manual • April 2010

19.4.2 Inode Size for the MDT
Lustre uses "large" inodes on backing file systems to efficiently store Lustre metadata
with each file. On the MDT, each inode is at least 512 bytes in size (by default), while
on the OST each inode is 256 bytes in size.

The inode size is specified at format time. Specifying a larger inode size may be
useful in case the default Lustre stripe count is expected to increase in the future, or
in case widespread use of Access Control Lists (ACLs) or user Extended Attributes
(EAs) is anticipated. To increase the inode size, add the "-I<inodesize>" option to
--mkfsoptions at format time.

We do NOT recommend specifying a smaller-than-default inode size, as this can lead
to serious performance problems. If the inode size is too small, the MDS needs to
make an indirect allocation to hold the Lustre striping EAs, and others, which
permanently impacts performance due to additional seeks for accessing each file. The
inode ratio must always be larger than the inode size as specified by the "-i" option
previously discussed.

19.4.3 Number of Inodes for an OST
For OST file systems, it is normally advantageous to take local file system usage into
account. Try to minimize the number of inodes on each OST. This helps reduce the
format and e2fsck time, and makes more space available for data.

Note – In addition to the number of inodes, e2fsck runtime on OSTs is affected by
a number of other variables: size of the file system, number of allocated blocks,
distribution of allocated blocks on the disk, disk speed, CPU speed, and amount of
RAM on the server. Reasonable e2fsck runtimes (without serious file system
problems), are expected to take five minutes to two hours.

Presently, Lustre has 1 inode per 16 KB of space in the OST file system (by default).
In many environments, this is too many inodes for the average file size. As a general
guideline, OSTs should have at least a number of inodes indicated by this formula:

num_ost_inodes = 4 * <num_mds_inodes> * <default_stripe_count> <number_osts>

To specify the number of inodes on OST file systems, use the -N<num_inodes>
option to --mkfsoptions. Alternately, if you know the average file size, you can
also specify the OST inode count for the OST file systems using: -i
<average_file_size / (number_of_stripes * 4)>. For example, if the
average file size is 16 MB and there are, by default, 4 stripes per file then
--mkfsoptions=-i 1048576 would be appropriate.) .
Chapter 19 Lustre Tuning 19-7

For more details on formatting MDT and OST file systems, see Formatting Options
for RAID Devices.

19.5 Large-Scale Tuning for Cray XT and
Equivalents
This section only applies to Cray XT3 Catamount nodes, and explains parameters
used with the kptllnd module. If it does not apply to your setup, ignore it.

19.5.1 Network Tunables
With a large number of clients and servers possible on these systems, tuning various
request pools becomes important. We are making changes to the ptllnd module.

Parameter Description

max_nodes max_nodes is the maximum number of queue pairs, and, therefore,
the maximum number of peers with which the LND instance can
communicate. Set max_nodes to a value higher than the product of
the total number of nodes and maximum processes per node.
Max nodes > (Total # Nodes) * (max_procs_per_node)
Setting max_nodes to a lower value than described causes Lustre to
throw an error. Setting max_nodes to a higher value, causes excess
memory to be consumed.

max_procs_per_node max_procs_per_node is the maximum number of cores (CPUs), on a
single Catamount node. Portals must know this value to properly
clean up various queues. LNET is not notified directly when a
Catamount process aborts. The first information LNET receives is
when a new Catamount process with the same Cray portals NID
starts and sends a connection request. If the number of processes
with that Cray portals NID exceeds the max_procs_per_node
value, LNET removes the oldest one to make space for the new one.
19-8 Lustre 2.0 Operations Manual • April 2010

19.6 Lockless I/O Tunables
The lockless I/O tunable feature allows servers to ask clients to do lockless I/O
(liblustre-style where the server does the locking) on contended files.

The lockless I/O patch introduces these tunables:

■ OST-side:

/proc/fs/lustre/ldlm/namespaces/filter-lustre-*

contended_locks - If the number of lock conflicts in the scan of granted and
waiting queues at contended_locks is exceeded, the resource is considered to
be contended.

contention_seconds - The resource keeps itself in a contended state as set in
the parameter.

max_nolock_bytes - Server-side locking set only for requests less than the
blocks set in the max_nolock_bytes parameter. If this tunable is set to zero (0), it
disables server-side locking for read/write requests.

■ Client-side:

/proc/fs/lustre/llite/lustre-*

contention_seconds - llite inode remembers its contended state for the time
specified in this parameter.

These two tunables combine to set the size of the ptllnd request buffer pool. The buffer pool
must never drop an incoming message, so proper sizing is very important.

Ntx Ntx helps to size the transmit (tx) descriptor pool. A tx descriptor is
used for each send and each passive RDMA. The max number of
concurrent sends == 'credits'. Passive RDMA is a response to a PUT
or GET of a payload that is too big to fit in a small message buffer.
For servers, this only happens on large RPCs (for instance, where a
long file name is included), so the MDS could be under pressure in
a large cluster. For routers, this is bounded by the number of
servers. If the tx pool is exhausted, a console error message appears.

Credits Credits determine how many sends are in-flight at once on ptllnd.
Optimally, there are 8 requests in-flight per server. The default
value is 128, which should be adequate for most applications.

Parameter Description
Chapter 19 Lustre Tuning 19-9

■ Client-side statistics:

The /proc/fs/lustre/llite/lustre-*/stats file has new rows for lockless
I/O statistics.

lockless_read_bytes and lockless_write_bytes - To count the total bytes
read or written, the client makes its own decisions based on the request size. The
client does not communicate with the server if the request size is smaller than the
min_nolock_size, without acquiring locks by the client.

19.7 Data Checksums
To avoid the risk of data corruption on the network, a Lustre client can perform
end-to-end data checksums1. Be aware that at high data rates, checksumming can
impact Lustre performance.

1. This feature computes a 32-bit checksum of data read or written on both the client and server, and ensures that
the data has not been corrupted in transit over the network.
19-10 Lustre 2.0 Operations Manual • April 2010

CHAPTER 20

LustreProc

This chapter describes Lustre /proc entries and includes the following sections:

■ Proc Entries for Lustre

■ Lustre I/O Tunables

■ Debug Support

The proc file system acts as an interface to internal data structures in the kernel. Proc
variables can be used to control aspects of Lustre performance and provide
information.
20-1

20.1 Proc Entries for Lustre
This section describes /proc entries for Lustre.

20.1.1 Locating Lustre File Systems and Servers
Use the proc files on the MGS to locate the following:

■ All known file systems

cat /proc/fs/lustre/mgs/MGS/filesystems

spfs

lustre

■ The server names participating in a file system (for each file system that has at
least one server running)

cat /proc/fs/lustre/mgs/MGS/live/spfs

fsname: spfs

flags: 0x0 gen: 7

spfs-MDT0000

spfs-OST0000

All servers are named according to this convention: <fsname>-<MDT|OST><XXXX>
This can be shown for live servers under /proc/fs/lustre/devices:

cat /proc/fs/lustre/devices

0 UP mgs MGS MGS 11

1 UP mgc MGC192.168.10.34@tcp 1f45bb57-d9be-2ddb-c0b0-5431a49226705

2 UP mdt MDS MDS_uuid 3

3 UP lov lustre-mdtlov lustre-mdtlov_UUID 4

4 UP mds lustre-MDT0000 lustre-MDT0000_UUID 7

5 UP osc lustre-OST0000-osc lustre-mdtlov_UUID 5

6 UP osc lustre-OST0001-osc lustre-mdtlov_UUID 5

7 UP lov lustre-clilov-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa04

8 UP mdc lustre-MDT0000-mdc-ce63ca00
08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05

9 UP osc lustre-OST0000-osc-ce63ca00
08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05

10 UP osc lustre-OST0001-osc-ce63ca00
08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05
20-2 Lustre 2.0 Operations Manual • April 2010

Or from the device label at any time:

e2label /dev/sda

lustre-MDT0000

20.1.2 Lustre Timeouts
Lustre uses two types of timeouts.

■ LND timeouts that ensure point-to-point communications complete in finite time
in the presence of failures. These timeouts are logged with the S_LND flag set.
They may not be printed as console messages, so you should check the Lustre log
for D_NETERROR messages, or enable printing of D_NETERROR messages to the
console (echo + neterror > /proc/sys/lnet/printk).

Congested routers can be a source of spurious LND timeouts. To avoid this,
increase the number of LNET router buffers to reduce back-pressure and/or
increase LND timeouts on all nodes on all connected networks. You should also
consider increasing the total number of LNET router nodes in the system so that
the aggregate router bandwidth matches the aggregate server bandwidth.

■ Lustre timeouts that ensure Lustre RPCs complete in finite time in the presence of
failures. These timeouts should always be printed as console messages. If Lustre
timeouts are not accompanied by LNET timeouts, then you need to increase the
lustre timeout on both servers and clients.

Specific Lustre timeouts are described below.

/proc/sys/lustre/timeout

This is the time period that a client waits for a server to complete an RPC (default is
100s). Servers wait half of this time for a normal client RPC to complete and a quarter
of this time for a single bulk request (read or write of up to 1 MB) to complete. The
client pings recoverable targets (MDS and OSTs) at one quarter of the timeout, and
the server waits one and a half times the timeout before evicting a client for being
"stale."

Note – Lustre sends periodic ‘PING’ messages to servers with which it had no
communication for a specified period of time. Any network activity on the file
system that triggers network traffic toward servers also works as a health check.

/proc/sys/lustre/ldlm_timeout

This is the time period for which a server will wait for a client to reply to an initial
AST (lock cancellation request) where default is 20s for an OST and 6s for an MDS. If
the client replies to the AST, the server will give it a normal timeout (half of the client
timeout) to flush any dirty data and release the lock.
Chapter 20 LustreProc 20-3

/proc/sys/lustre/fail_loc

This is the internal debugging failure hook.

See lustre/include/linux/obd_support.h for the definitions of individual
failure locations. The default value is 0 (zero).

sysctl -w lustre.fail_loc=0x80000122 # drop a single reply

/proc/sys/lustre/dump_on_timeout

This triggers dumps of the Lustre debug log when timeouts occur. The default value
is 0 (zero).

/proc/sys/lustre/dump_on_eviction

This triggers dumps of the Lustre debug log when an eviction occurs. The default
value is 0 (zero). By default, debug logs are dumped to the /tmp folder; this location
can be changed via /proc.
20-4 Lustre 2.0 Operations Manual • April 2010

20.1.3 Adaptive Timeouts
Lustre offers an adaptive mechanism to set RPC timeouts. The adaptive timeouts
feature (enabled, by default) causes servers to track actual RPC completion times,
and to report estimated completion times for future RPCs back to clients. The clients
use these estimates to set their future RPC timeout values. If server request
processing slows down for any reason, the RPC completion estimates increase, and
the clients allow more time for RPC completion.

If RPCs queued on the server approach their timeouts, then the server sends an early
reply to the client, telling the client to allow more time. In this manner, clients avoid
RPC timeouts and disconnect/reconnect cycles. Conversely, as a server speeds up,
RPC timeout values decrease, allowing faster detection of non-responsive servers and
faster attempts to reconnect to a server's failover partner.

In previous Lustre versions, the static obd_timeout (/proc/sys/lustre/timeout)
value was used as the maximum completion time for all RPCs; this value also
affected the client-server ping interval and initial recovery timer. Now, with adaptive
timeouts, obd_timeout is only used for the ping interval and initial recovery
estimate. When a client reconnects during recovery, the server uses the client's
timeout value to reset the recovery wait period; i.e., the server learns how long the
client had been willing to wait, and takes this into account when adjusting the
recovery period.
Chapter 20 LustreProc 20-5

20.1.3.1 Configuring Adaptive Timeouts

One of the goals of adaptive timeouts is to relieve users from having to tune the
obd_timeout value. In general, obd_timeout should no longer need to be
changed. However, there are several parameters related to adaptive timeouts that
users can set. In most situations, the default values should be used.

The following parameters can be set persistently system-wide using lctl
conf_param on the MGS. For example, lctl conf_param work1.sys.at_max=
1500 sets the at_max value for all servers and clients using the work1 file system.

Note – Nodes using multiple Lustre file systems must use the same at_* values for
all file systems.)

Parameter Description

at_min Sets the minimum adaptive timeout (in seconds). Default value is 0.
The at_min parameter is the minimum processing time that a server
will report. Clients base their timeouts on this value, but they do not
use this value directly. If you experience cases in which, for unknown
reasons, the adaptive timeout value is too short and clients time out
their RPCs (usually due to temporary network outages), then you
can increase the at_min value to compensate for this. Ideally, users
should leave at_min set to its default.

at_max Sets the maximum adaptive timeout (in seconds). The at_max
parameter is an upper-limit on the service time estimate, and is used
as a 'failsafe' in case of rogue/bad/buggy code that would lead to
never-ending estimate increases. If at_max is reached, an RPC
request is considered 'broken' and should time out.
Setting at_max to 0 causes adaptive timeouts to be disabled and the
old fixed-timeout method (obd_timeout) to be used. This is the
default value in Lustre 1.6.5.

NOTE: It is possible that slow hardware might validly cause the
service estimate to increase beyond the default value of at_max. In
this case, you should increase at_max to the maximum time you are
willing to wait for an RPC completion.

at_history Sets a time period (in seconds) within which adaptive timeouts
remember the slowest event that occurred. Default value is 600.
20-6 Lustre 2.0 Operations Manual • April 2010

Adaptive timeouts are enabled, by default. To disable adaptive timeouts, at run time,
set at_max to 0. On the MGS, run:

$ lctl conf_param <fsname>.sys.at_max=0

Note – Changing adaptive timeouts status at runtime may cause transient timeout,
reconnect, recovery, etc.

at_early_margin Sets how far before the deadline Lustre sends an early reply. Default
value is 5*.

at_extra Sets the incremental amount of time that a server asks for, with each
early reply. The server does not know how much time the RPC will
take, so it asks for a fixed value. Default value is 30†. When a server
finds a queued request about to time out (and needs to send an early
reply out), the server adds the at_extra value. If the time expires,
the Lustre client enters recovery status and reconnects to restore it to
normal status.
If you see multiple early replies for the same RPC asking for multiple
30-second increases, change the at_extra value to a larger number
to cut down on early replies sent and, therefore, network load.

ldlm_enqueue_min Sets the minimum lock enqueue time. Default value is 100. The
ldlm_enqueue time is the maximum of the measured enqueue
estimate (influenced by at_min and at_max parameters), multiplied
by a weighting factor, and the ldlm_enqueue_min setting. LDLM
lock enqueues were based on the obd_timeout value; now they
have a dedicated minimum value. Lock enqueues increase as the
measured enqueue times increase (similar to adaptive timeouts).

* This default was chosen as a reasonable time in which to send a reply from the point at which it was sent.

† This default was chosen as a balance between sending too many early replies for the same RPC and overesti-
mating the actual completion time.

Parameter Description
Chapter 20 LustreProc 20-7

20.1.3.2 Interpreting Adaptive Timeouts Information

Adaptive timeouts information can be read from /proc/fs/lustre/*/timeouts
files (for each service and client) or with the lctl command.

This is an example from the /proc/fs/lustre/*/timeouts files:

cfs21:~# cat /proc/fs/lustre/ost/OSS/ost_io/timeouts

This is an example using the lctl command:

$ lctl get_param -n ost.*.ost_io.timeouts

This is the sample output:

service : cur 33 worst 34 (at 1193427052, 0d0h26m40s ago) 1 1 33 2

The ost_io service on this node is currently reporting an estimate of 33 seconds.
The worst RPC service time was 34 seconds, and it happened 26 minutes ago.

The output also provides a history of service times. In the example, there are 4 "bins"
of adaptive_timeout_history, with the maximum RPC time in each bin
reported. In 0-150 seconds, the maximum RPC time was 1, with the same result in
150-300 seconds. From 300-450 seconds, the worst (maximum) RPC time was 33
seconds, and from 450-600s the worst time was 2 seconds. The current estimated
service time is the maximum value of the 4 bins (33 seconds in this example).

Service times (as reported by the servers) are also tracked in the client OBDs:

cfs21:# lctl get_param osc.*.timeouts
last reply : 1193428639, 0d0h00m00s ago
network : cur 1 worst 2 (at 1193427053, 0d0h26m26s ago) 1 1 1 1
portal 6 : cur 33 worst 34 (at 1193427052, 0d0h26m27s ago) 33 33 33 2
portal 28 : cur 1 worst 1 (at 1193426141, 0d0h41m38s ago) 1 1 1 1
portal 7 : cur 1 worst 1 (at 1193426141, 0d0h41m38s ago) 1 0 1 1
portal 17 : cur 1 worst 1 (at 1193426177, 0d0h41m02s ago) 1 0 0 1

In this case, RPCs to portal 6, the OST_IO_PORTAL (see
lustre/include/lustre/lustre_idl.h), shows the history of what the ost_io
portal has reported as the service estimate.
20-8 Lustre 2.0 Operations Manual • April 2010

Server statistic files also show the range of estimates in the normal
min/max/sum/sumsq manner.

cfs21:~# lctl get_param mdt.*.mdt.stats

...

req_timeout 6 samples [sec] 1 10 15 105

...

20.1.4 LNET Information
This section describes /proc entries for LNET information.

/proc/sys/lnet/peers

Shows all NIDs known to this node and also gives information on the queue state.

cat /proc/sys/lnet/peers

nid refs state max rtr min tx min queue

0@lo 1 ~rtr 0 0 0 0 0 0

192.168.10.35@tcp1 ~rtr 8 8 8 8 6 0

192.168.10.36@tcp1 ~rtr 8 8 8 8 6 0

192.168.10.37@tcp1 ~rtr 8 8 8 8 6 0

The fields are explained below:

Field Description

refs A reference count (principally used for debugging)

state Only valid to refer to routers. Possible values:
• ~ rtr (indicates this node is not a router)
• up/down (indicates this node is a router)
• auto_fail must be enabled

max Maximum number of concurrent sends from this peer

rtr Routing buffer credits.

min Minimum routing buffer credits seen.

tx Send credits.

min Minimum send credits seen.

queue Total bytes in active/queued sends.
Chapter 20 LustreProc 20-9

Credits work like a semaphore. At start they are initialized to allow a certain number
of operations (8 in this example). LNET keeps a track of the minimum value so that
you can see how congested a resource was.

If rtr/tx is less than max, there are operations in progress. The number of
operations is equal to rtr or tx subtracted from max.

If rtr/tx is greater that max, there are operations blocking.

LNET also limits concurrent sends and router buffers allocated to a single peer so
that no peer can occupy all these resources.

/proc/sys/lnet/nis

cat /proc/sys/lnet/nis

nid refs peer max tx min

0@lo 3 0 0 0 0

192.168.10.34@tcp 4 8 256 256 252

Shows the current queue health on this node. The fields are explained below:

Subtracting max – tx yields the number of sends currently active. A large or
increasing number of active sends may indicate a problem.

cat /proc/sys/lnet/nis

nid refs peer max tx min

0@lo 2 0 0 0 0

10.67.73.173@tcp 4 8 256 256 253

Field Description

nid Network interface

refs Internal reference counter

peer Number of peer-to-peer send credits on this NID. Credits are used to
size buffer pools

max Total number of send credits on this NID.

tx Current number of send credits available on this NID.

min Lowest number of send credits available on this NID.

queue Total bytes in active/queued sends.
20-10 Lustre 2.0 Operations Manual • April 2010

20.1.5 Free Space Distribution
Free-space stripe weighting, as set, gives a priority of "0" to free space (versus trying
to place the stripes "widely" -- nicely distributed across OSSs and OSTs to maximize
network balancing). To adjust this priority (as a percentage), use the
qos_prio_free proc tunable:

$ cat /proc/fs/lustre/lov/<fsname>-mdtlov/qos_prio_free

Currently, the default is 90%. You can permanently set this value by running this
command on the MGS:

$ lctl conf_param <fsname>-MDT0000.lov.qos_prio_free=90

Setting the priority to 100% means that OSS distribution does not count in the
weighting, but the stripe assignment is still done via weighting. If OST 2 has twice as
much free space as OST 1, it is twice as likely to be used, but it is NOT guaranteed to
be used.

Also note that free-space stripe weighting does not activate until two OSTs are
imbalanced by more than 20%. Until then, a faster round-robin stripe allocator is
used. (The new round-robin order also maximizes network balancing.)

20.1.5.1 Managing Stripe Allocation

The MDS uses two methods to manage stripe allocation and determine which OSTs
to use for file object storage:

■ QOS

Quality of Service (QOS) considers an OST’s available blocks, speed, and the
number of existing objects, etc. Using these criteria, the MDS selects OSTs with
more free space more often than OSTs with less free space.

■ RR

Round-Robin (RR) allocates objects evenly across all OSTs. The RR stripe allocator
is faster than QOS, and used often because it distributes space usage/load best in
most situations, maximizing network balancing and improving performance.

Whether QOS or RR is used depends on the setting of the qos_threshold_rr proc
tunable. The qos_threshold_rr variable specifies a percentage threshold where
the use of QOS or RR becomes more/less likely. The qos_threshold_rr tunable
can be set as an integer, from 0 to 100, and results in this stripe allocation behavior:

■ If qos_threshold_rr is set to 0, then QOS is always used

■ If qos_threshold_rr is set to 100, then RR is always used

■ The larger the qos_threshold_rr setting, the greater the possibility that RR
is used instead of QOS
Chapter 20 LustreProc 20-11

20.2 Lustre I/O Tunables
The section describes I/O tunables.

/proc/fs/lustre/llite/<fsname>-<uid>/max_cache_mb

cat /proc/fs/lustre/llite/lustre-ce63ca00/max_cached_mb 128

This tunable is the maximum amount of inactive data cached by the client (default is
3/4 of RAM).

20.2.1 Client I/O RPC Stream Tunables
The Lustre engine always attempts to pack an optimal amount of data into each I/O
RPC and attempts to keep a consistent number of issued RPCs in progress at a time.
Lustre exposes several tuning variables to adjust behavior according to network
conditions and cluster size. Each OSC has its own tree of these tunables. For example:

$ ls -d /proc/fs/lustre/osc/OSC_client_ost1_MNT_client_2 /localhost

/proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost

/proc/fs/lustre/osc/OSC_uml0_ost2_MNT_localhost

/proc/fs/lustre/osc/OSC_uml0_ost3_MNT_localhost

$ ls /proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost

blocksizefilesfreemax_dirty_mb ost_server_uuid stats

... and so on.

RPC stream tunables are described below.

/proc/fs/lustre/osc/<object name>/max_dirty_mb

This tunable controls how many MBs of dirty data can be written and queued up in
the OSC. POSIX file writes that are cached contribute to this count. When the limit is
reached, additional writes stall until previously-cached writes are written to the
server. This may be changed by writing a single ASCII integer to the file. Only values
between 0 and 512 are allowable. If 0 is given, no writes are cached. Performance
suffers noticeably unless you use large writes (1 MB or more).

/proc/fs/lustre/osc/<object name>/cur_dirty_bytes

This tunable is a read-only value that returns the current amount of bytes written
and cached on this OSC.
20-12 Lustre 2.0 Operations Manual • April 2010

/proc/fs/lustre/osc/<object name>/max_pages_per_rpc

This tunable is the maximum number of pages that will undergo I/O in a single RPC
to the OST. The minimum is a single page and the maximum for this setting is
platform dependent (256 for i386/x86_64, possibly less for ia64/PPC with larger
PAGE_SIZE), though generally amounts to a total of 1 MB in the RPC.

/proc/fs/lustre/osc/<object name>/max_rpcs_in_flight

This tunable is the maximum number of concurrent RPCs in flight from an OSC to its
OST. If the OSC tries to initiate an RPC but finds that it already has the same number
of RPCs outstanding, it will wait to issue further RPCs until some complete. The
minimum setting is 1 and maximum setting is 32. If you are looking to improve small
file I/O performance, increase the max_rpcs_in_flight value.

To maximize performance, the value for max_dirty_mb is recommended to be 4 *
max_pages_per_rpc * max_rpcs_in_flight.

Note – The <object name> varies depending on the specific Lustre configuration.
For <object name> examples, refer to the sample command output.
Chapter 20 LustreProc 20-13

20.2.2 Watching the Client RPC Stream
The same directory contains a rpc_stats file with a histogram showing the
composition of previous RPCs. The histogram can be cleared by writing any value
into the rpc_stats file.

cat /proc/fs/lustre/osc/spfs-OST0000-osc-c45f9c00/rpc_stats

snapshot_time: 1174867307.156604 (secs.usecs)

read RPCs in flight: 0

write RPCs in flight: 0

pending write pages: 0

pending read pages: 0

read write

pages per rpc rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

rpcs in flight rpcs % cum % | rpcs % cum %

0: 0 0 0 | 0 0 0

read write

offset rpcs % cum % | rpcs % cum %

0: 0 0 0 | 0 0 0

Where:

Field Description

{read,write} RPCs in flight Number of read/write RPCs issued by the OSC, but not
complete at the time of the snapshot. This value should
always be less than or equal to max_rpcs_in_flight.

pending {read,write} pages Number of pending read/write pages that have been queued
for I/O in the OSC.
20-14 Lustre 2.0 Operations Manual • April 2010

20.2.3 Client Read-Write Offset Survey
The offset_stats parameter maintains statistics for occurrences where a series of
read or write calls from a process did not access the next sequential location. The
offset field is reset to 0 (zero) whenever a different file is read/written.

Read/write offset statistics are off, by default. The statistics can be activated by
writing anything into the offset_stats file.

Example:

cat /proc/fs/lustre/llite/lustre-f57dee00/rw_offset_stats

snapshot_time: 1155748884.591028 (secs.usecs)

R/W PID RANGE STARTRANGE ENDSMALLEST EXTENTLARGEST EXTENTOFFSET

R 8385 0 128 128 128 0

R 8385 0 224 224 224 -128

W 8385 0 250 50 100 0

W 8385 100 1110 10 500 -150

W 8384 0 5233 5233 5233 0

R 8385 500 600 100 100 -610

pages per RPC When an RPC is sent, the number of pages it consists of is
recorded (in order). A single page RPC increments the 0: row.

RPCs in flight When an RPC is sent, the number of other RPCs that are
pending is recorded. When the first RPC is sent, the 0: row is
incremented. If the first RPC is sent while another is pending,
the 1: row is incremented and so on. As each RPC
completes, the number of pending RPCs is not tabulated.

This table is a good way to visualize the concurrency of the
RPC stream. Ideally, you will see a large clump around the
max_rpcs_in_flight value, which shows that the network
is being kept busy.

offset

Field Description
Chapter 20 LustreProc 20-15

Where:

Field Description

R/W Whether the non-sequential call was a read or write

PID Process ID which made the read/write call.

Range Start/Range End Range in which the read/write calls were sequential.

Smallest Extent Smallest extent (single read/write) in the corresponding range.

Largest Extent Largest extent (single read/write) in the corresponding range.

Offset Difference from the previous range end to the current range start.
For example, Smallest-Extent indicates that the writes in the
range 100 to 1110 were sequential, with a minimum write of 10
and a maximum write of 500. This range was started with an
offset of -150. That means this is the difference between the last
entry’s range-end and this entry’s range-start for the same file.
The rw_offset_stats file can be cleared by writing to it:

echo >
/proc/fs/lustre/llite/lustre-f57dee00/rw_offset_stats
20-16 Lustre 2.0 Operations Manual • April 2010

20.2.4 Client Read-Write Extents Survey
Client-Based I/O Extent Size Survey

The rw_extent_stats histogram in the llite directory shows you the statistics for
the sizes of the read-write I/O extents. This file does not maintain the per-process
statistics.

Example:

$ cat /proc/fs/lustre/llite/lustre-ee5af200/extents_stats

snapshot_time: 1213828728.348516 (secs.usecs)

read | write

extents calls % cum% | calls % cum%

0K - 4K : 0 0 0 | 2 2 2

4K - 8K : 0 0 0 | 0 0 2

8K - 16K : 0 0 0 | 0 0 2

16K - 32K : 0 0 0 | 20 23 26

32K - 64K : 0 0 0 | 0 0 26

64K - 128K : 0 0 0 | 51 60 86

128K - 256K : 0 0 0 | 0 0 86

256K - 512K : 0 0 0 | 0 0 86

512K - 1024K : 0 0 0 | 0 0 86

1M - 2M : 0 0 0 | 11 13 100

The file can be cleared by issuing the following command:

$ echo > cat /proc/fs/lustre/llite/lustre-ee5af200/extents_stats
Chapter 20 LustreProc 20-17

Per-Process Client I/O Statistics

The extents_stats_per_process file maintains the I/O extent size statistics on a
per-process basis. So you can track the per-process statistics for the last
MAX_PER_PROCESS_HIST processes.

Example:

$ cat /proc/fs/lustre/llite/lustre-ee5af200/extents_stats_per_process

snapshot_time: 1213828762.204440 (secs.usecs)

read | write

extents calls % cum% | calls % cum%

PID: 11488

0K - 4K : 0 0 0 | 0 0 0

4K - 8K : 0 0 0 | 0 0 0

8K - 16K : 0 0 0 | 0 0 0

16K - 32K : 0 0 0 | 0 0 0

32K - 64K : 0 0 0 | 0 0 0

64K - 128K : 0 0 0 | 0 0 0

128K - 256K : 0 0 0 | 0 0 0

256K - 512K : 0 0 0 | 0 0 0

512K - 1024K :0 0 0 | 0 0 0

1M - 2M : 0 0 0 | 10 100 100

PID: 11491

0K - 4K : 0 0 0 | 0 0 0

4K - 8K : 0 0 0 | 0 0 0

8K - 16K : 0 0 0 | 0 0 0

16K - 32K : 0 0 0 | 20 100 100

PID: 11424

0K - 4K : 0 0 0 | 0 0 0

4K - 8K : 0 0 0 | 0 0 0

8K - 16K : 0 0 0 | 0 0 0

16K - 32K : 0 0 0 | 0 0 0

32K - 64K : 0 0 0 | 0 0 0

64K - 128K : 0 0 0 | 16 100 100

PID: 11426

0K - 4K : 0 0 0 | 1 100 100

PID: 11429

0K - 4K : 0 0 0 | 1 100 100
20-18 Lustre 2.0 Operations Manual • April 2010

20.2.5 Watching the OST Block I/O Stream
Similarly, there is a brw_stats histogram in the obdfilter directory which shows you
the statistics for number of I/O requests sent to the disk, their size and whether they
are contiguous on the disk or not.

cat /proc/fs/lustre/obdfilter/lustre-OST0000/brw_stats

snapshot_time: 1174875636.764630 (secs:usecs)

read write

pages per brw brws % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

discont pages rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

discont blocks rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

dio frags rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

disk ios in flight rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

io time (1/1000s) rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

disk io size rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

The fields are explained below:

Field Description

pages per brw Number of pages per RPC request, which should match aggregate client
rpc_stats.

discont pages Number of discontinuities in the logical file offset of each page in a
single RPC.

discont blocks Number of discontinuities in the physical block allocation in the file
system for a single RPC.
Chapter 20 LustreProc 20-19

For each Lustre service, the following information is provided:

■ Number of requests

■ Request wait time (avg, min, max and std dev)

■ Service idle time (% of elapsed time)

Additionally, data on each Lustre service is provided by service type:

■ Number of requests of this type

■ Request service time (avg, min, max and std dev)

20.2.6 Using File Readahead and Directory Statahead
Lustre 1.6.5.1 introduced file readahead and directory statahead functionality that
read data into memory in anticipation of a process actually requesting the data. File
readahead functionality reads file content data into memory. Directory statahead
functionality reads metadata into memory. When readahead and/or statahead work
well, a data-consuming process finds that the information it needs is available when
requested, and it is unnecessary to wait for network I/O.

20.2.6.1 Tuning File Readahead

File readahead is triggered when two or more sequential reads by an application fail
to be satisfied by the Linux buffer cache. The size of the initial readahead is 1 MB.
Additional readaheads grow linearly, and increment until the readahead cache on the
client is full at 40 MB.

/proc/fs/lustre/llite/<fsname>-<uid>/max_read_ahead_mb

This tunable controls the maximum amount of data readahead on a file. Files are read
ahead in RPC-sized chunks (1 MB or the size of read() call, if larger) after the second
sequential read on a file descriptor. Random reads are done at the size of the read()
call only (no readahead). Reads to non-contiguous regions of the file reset the
readahead algorithm, and readahead is not triggered again until there are sequential
reads again. To disable readahead, set this tunable to 0. The default value is 40 MB.

/proc/fs/lustre/llite/<fsname>-<uid>/max_read_ahead_whole_mb

This tunable controls the maximum size of a file that is read in its entirety, regardless
of the size of the read().
20-20 Lustre 2.0 Operations Manual • April 2010

20.2.6.2 Tuning Directory Statahead

When the ls -l process opens a directory, its process ID is recorded. When the first
directory entry is ''stated'' with this recorded process ID, a statahead thread is
triggered which stats ahead all of the directory entries, in order. The ls -l process
can use the stated directory entries directly, improving performance.

/proc/fs/lustre/llite/*/statahead_max

This tunable controls whether directory statahead is enabled and the maximum
statahead count. By default, statahead is active.

To disable statahead, set this tunable to:

echo 0 > /proc/fs/lustre/llite/*/statahead_max

To set the maximum statahead count (n), set this tunable to:

echo n > /proc/fs/lustre/llite/*/statahead_max

The maximum value of n is 8192.

/proc/fs/lustre/llite/*/statahead_status

This is a read-only interface that indicates the current statahead status.
Chapter 20 LustreProc 20-21

20.2.7 OSS Read Cache
The OSS read cache feature provides read-only caching of data on an OSS. This
functionality uses the regular Linux page cache to store the data. Just like caching
from a regular filesytem in Linux, OSS read cache uses as much physical memory as
is allocated.

OSS read cache improves Lustre performance in these situations:

■ Many clients are accessing the same data set (as in HPC applications and when
diskless clients boot from Lustre)

■ One client is storing data while another client is reading it (essentially exchanging
data via the OST)

■ A client has very limited caching of its own

OSS read cache offers these benefits:

■ Allows OSTs to cache read data more frequently

■ Improves repeated reads to match network speeds instead of disk speeds

■ Provides the building blocks for OST write cache (small-write aggregation)

20.2.7.1 Using OSS Read Cache

OSS read cache is implemented on the OSS, and does not require any special support
on the client side. Since OSS read cache uses the memory available in the Linux page
cache, you should use I/O patterns to determine the appropriate amount of memory
for the cache; if the data is mostly reads, then more cache is required than for writes.

OSS read cache is enabled, by default, and managed by the following tunables:

■ read_cache_enable controls whether data read from disk during a read request
is kept in memory and available for later read requests for the same data, without
having to re-read it from disk. By default, read cache is enabled
(read_cache_enable = 1).

When the OSS receives a read request from a client, it reads data from disk into its
memory and sends the data as a reply to the requests. If read cache is enabled, this
data stays in memory after the client’s request is finished, and the OSS skips
reading data from disk when subsequent read requests for the same are received.
The read cache is managed by the Linux kernel globally across all OSTs on that
OSS, and the least recently used cache pages will be dropped from memory when
the amount of free memory is running low.

If read cache is disabled (read_cache_enable = 0), then the OSS will discard the
data after the client’s read requests are serviced and, for subsequent read requests,
the OSS must read the data from disk.
20-22 Lustre 2.0 Operations Manual • April 2010

To disable read cache on all OSTs of an OSS, run:

root@oss1# lctl set_param obdfilter.*.read_cache_enable=0

To re-enable read cache on one OST, run:

root@oss1# lctl set_param obdfilter.{OST_name}.read_cache_enable=1

To check if read cache is enabled on all OSTs on an OSS, run:

root@oss1# lctl get_param obdfilter.*.read_cache_enable

■ writethrough_cache_enable controls whether data sent to the OSS as a write
request is kept in the read cache and available for later reads, or if it is discarded
from cache when the write is completed. By default, writethrough cache is enabled
(writethrough_cache_enable = 1).

When the OSS receives write requests from a client, it receives data from the client
into its memory and writes the data to disk. If writethrough cache is enabled, this
data stays in memory after the write request is completed, allowing the OSS to
skip reading this data from disk if a later read request, or partial-page write
request, for the same data is received.

If writethrough cache is disabled (writethrough_cache_enabled = 0), then the
OSS discards the data after the client’s write request is completed, and for
subsequent read request, or partial-page write request, the OSS must re-read the
data from disk.

Enabling writethrough cache is advisable if clients are doing small or unaligned
writes that would cause partial-page updates, or if the files written by one node
are immediately being accessed by other nodes. Some examples where this might
be useful include producer-consumer I/O models or shared-file writes with a
different node doing I/O not aligned on 4096-byte boundaries. Disabling
writethrough cache is advisable in the case where files are mostly written to the
file system but are not re-read within a short time period, or files are only written
and re-read by the same node, regardless of whether the I/O is aligned or not.

To disable writethrough cache on all OSTs of an OSS, run:

root@oss1# lctl set_param obdfilter.*.writethrough_cache_enable=0

To re-enable writethrough cache on one OST, run:

root@oss1# lctl set_param \
obdfilter.{OST_name}.writethrough_cache_enable=1

To check if writethrough cache is

root@oss1# lctl set_param obdfilter.*.writethrough_cache_enable=1
Chapter 20 LustreProc 20-23

■ readcache_max_filesize controls the maximum size of a file that both the
read cache and writethrough cache will try to keep in memory. Files larger than
readcache_max_filesize will not be kept in cache for either reads or writes.

This can be very useful for workloads where relatively small files are repeatedly
accessed by many clients, such as job startup files, executables, log files, etc., but
large files are read or written only once. By not putting the larger files into the
cache, it is much more likely that more of the smaller files will remain in cache for
a longer time.

When setting readcache_max_filesize, the input value can be specified in
bytes, or can have a suffix to indicate other binary units such as Kilobytes,
Megabytes, Gigabytes, Terabytes, or Petabytes.

To limit the maximum cached file size to 32MB on all OSTs of an OSS, run:

root@oss1# lctl set_param obdfilter.*.readcache_max_filesize=32M

To disable the maximum cached file size on an OST, run:

root@oss1# lctl set_param \
obdfilter.{OST_name}.readcache_max_filesize=-1

To check the current maximum cached file size on all OSTs of an OSS, run:

root@oss1# lctl get_param obdfilter.*.readcache_max_filesize
20-24 Lustre 2.0 Operations Manual • April 2010

20.2.8 mballoc History
/proc/fs/ldiskfs/sda/mb_history

Multi-Block-Allocate (mballoc), enables Lustre to ask ext3 to allocate multiple blocks
with a single request to the block allocator. Typically, an ext3 file system allocates
only one block per time. Each mballoc-enabled partition has this file. This is sample
output:

pid inode goal result found grpscr \ merge tailbroken
2838 139267 17/12288/1 17/12288/1 1 0 0 \ M 1 8192
2838 139267 17/12289/1 17/12289/1 1 0 0 \ M 0 0
2838 139267 17/12290/1 17/12290/1 1 0 0 \ M 1 2
2838 24577 3/12288/1 3/12288/1 1 0 0 \ M 1 8192
2838 24578 3/12288/1 3/771/1 1 1 1 \ 0 0
2838 32769 4/12288/1 4/12288/1 1 0 0 \ M 1 8192
2838 32770 4/12288/1 4/12289/1 13 1 1 \ 0 0
2838 32771 4/12288/1 5/771/1 26 2 1 \ 0 0
2838 32772 4/12288/1 5/896/1 31 2 1 \ 1 128
2838 32773 4/12288/1 5/897/1 31 2 1 \ 0 0
2828 32774 4/12288/1 5/898/1 31 2 1 \ 1 2
2838 32775 4/12288/1 5/899/1 31 2 1 \ 0 0
2838 32776 4/12288/1 5/900/1 31 2 1 \ 1 4
2838 32777 4/12288/1 5/901/1 31 2 1 \ 0 0
2838 32778 4/12288/1 5/902/1 31 2 1 \ 1 2

The parameters are described below:

Parameter Description

pid Process that made the allocation.

inode inode number allocated blocks

goal Initial request that came to mballoc (group/block-in-group/number-of-blocks)

result What mballoc actually found for this request.

found Number of free chunks mballoc found and measured before the final decision.

grps Number of groups mballoc scanned to satisfy the request.

cr Stage at which mballoc found the result:
0 - best in terms of resource allocation. The request was 1MB or larger and was
satisfied directly via the kernel buddy allocator.
1 - regular stage (good at resource consumption)
2 - fs is quite fragmented (not that bad at resource consumption)
3 - fs is very fragmented (worst at resource consumption)

queue Total bytes in active/queued sends.
Chapter 20 LustreProc 20-25

Most customers are probably interested in found/cr. If cr is 0 1 and found is less
than 100, then mballoc is doing quite well.

Also, number-of-blocks-in-request (third number in the goal triple) can tell the
number of blocks requested by the obdfilter. If the obdfilter is doing a lot of small
requests (just few blocks), then either the client is processing input/output to a lot of
small files, or something may be wrong with the client (because it is better if client
sends large input/output requests). This can be investigated with the OSC
rpc_stats or OST brw_stats mentioned above.

Number of groups scanned (grps column) should be small. If it reaches a few dozen
often, then either your disk file system is pretty fragmented or mballoc is doing
something wrong in the group selection part.

merge Whether the request hit the goal. This is good as extents code can now merge
new blocks to existing extent, eliminating the need for extents tree growth.

tail Number of blocks left free after the allocation breaks large free chunks.

broken How large the broken chunk was.

Parameter Description
20-26 Lustre 2.0 Operations Manual • April 2010

20.2.9 mballoc3 Tunables
Lustre version 1.6.1 and later includes mballoc3, which was built on top of mballoc2.
By default, mballoc3 is enabled, and adds these features:

■ Pre-allocation for single files (helps to resist fragmentation)

■ Pre-allocation for a group of files (helps to pack small files into large, contiguous
chunks)

■ Stream allocation (helps to decrease the seek rate)

The following mballoc3 tunables are available:

Field Description

stats Enables/disables the collection of statistics. Collected statistics can be found
in /proc/fs/ldiskfs2/<dev>/mb_history.

max_to_scan Maximum number of free chunks that mballoc finds before a final decision
to avoid livelock.

min_to_scan Minimum number of free chunks that mballoc finds before a final decision.
This is useful for a very small request, to resist fragmentation of big free
chunks.

order2_req For requests equal to 2^N (where N >= order2_req), a very fast search via
buddy structures is used.

stream_req Requests smaller or equal to this value are packed together to form large
write I/Os.
Chapter 20 LustreProc 20-27

The following tunables, providing more control over allocation policy, will be
available in the next version:

Field Description

stats Enables/disables the collection of statistics. Collected statistics can be
found in /proc/fs/ldiskfs2/<dev>/mb_history.

max_to_scan Maximum number of free chunks that mballoc finds before a final
decision to avoid livelock.

min_to_scan Minimum number of free chunks that mballoc finds before a final
decision. This is useful for a very small request, to resist fragmentation of
big free chunks.

order2_req For requests equal to 2^N (where N >= order2_req), a very fast search via
buddy structures is used.

small_req All requests are divided into 3 categories:
< small_req (packed together to form large, aggregated requests)
< large_req (allocated mostly in linearly)
> large_req (very large requests so the arm seek does not matter)

The idea is that we try to pack small requests to form large requests, and
then place all large requests (including compound from the small ones)
close to one another, causing as few arm seeks as possible.

large_req

prealloc_table The amount of space to preallocate depends on the current file size. The
idea is that for small files we do not need 1 MB preallocations and for
large files, 1 MB preallocations are not large enough; it is better to
preallocate 4 MB.

group_prealloc The amount of space preallocated for small requests to be grouped.
20-28 Lustre 2.0 Operations Manual • April 2010

20.2.10 Locking
/proc/fs/lustre/ldlm/ldlm/namespaces/<OSC name|MDCname>/lru_size

The lru_size parameter is used to control the number of client-side locks in an
LRU queue. LRU size is dynamic, based on load. This optimizes the number of locks
available to nodes that have different workloads (e.g., login/build nodes vs. compute
nodes vs. backup nodes).

The total number of locks available is a function of the server’s RAM. The default
limit is 50 locks/1 MB of RAM. If there is too much memory pressure, then the LRU
size is shrunk. The number of locks on the server is limited to {number of OST/MDT
on node} * {number of clients} * {client lru_size}.

■ To enable automatic LRU sizing, set the lru_size parameter to 0. In this case, the
lru_size parameter shows the current number of locks being used on the export.
(In Lustre 1.6.5.1 and later, LRU sizing is enabled, by default.)

■ To specify a maximum number of locks, set the lru_size parameter to a value >
0 (former numbers are okay, 100 * CPU_NR). We recommend that you only
increase the LRU size on a few login nodes where users access the file system
interactively.

To clear the LRU on a single client, and as a result flush client cache, without
changing the lru_size value:

$ lctl set_param ldlm.namespaces.<osc_name|mdc_name>.lru_size=clear

If you shrink the LRU size below the number of existing unused locks, then the
unused locks are canceled immediately. Use echo clear to cancel all locks without
changing the value.

Note – Currently, the lru_size parameter can only be set temporarily with lctl
set_param; it cannot be set permanently.

To disable LRU sizing, run this command on the Lustre clients:

$ lctl set_param ldlm.namespaces.*osc*.lru_size=$((NR_CPU*100))

Replace NR_CPU value with the number of CPUs on the node.

To determine the number of locks being granted:

$ lctl get_param ldlm.namespaces.*.pool.limit
Chapter 20 LustreProc 20-29

20.2.11 Setting MDS and OSS Thread Counts
MDS and OSS thread counts (minimum and maximum) can be set via the
{min,max}_thread_count tunable. For each service, a new
/proc/fs/lustre/{service}/*/thread_{min,max,started} entry is created.
The tunable, {service}.thread_{min,max,started}, can be used to set the
minimum and maximum thread counts or get the current number of running threads
for the following services.

■ To temporarily set this tunable, run:

lctl {get,set}_param {service}.thread_{min,max,started}

■ To permanently set this tunable, run:

lctl conf_param {service}.thread_{min,max,started}

The following examples show how to set thread counts and get the number of
running threads for the ost_io service.

■ To get the number of running threads, run:

lctl get_param ost.OSS.ost_io.threads_started

The command output will be similar to this:

ost.OSS.ost_io.threads_started=128

■ To set the maximum number of threads (512), run:

lctl get_param ost.OSS.ost_io.threads_max

The command output will be:

ost.OSS.ost_io.threads_max=512

Service Description

mdt.MDS.mds normal metadata ops

mdt.MDS.mds_readpage metadata readdir

mdt.MDS.mds_setattr metadata setattr

ost.OSS.ost normal data

ost.OSS.ost_io bulk data IO

ost.OSS.ost_create OST object pre-creation service

ldlm.services.ldlm_canceld DLM lock cancel

ldlm.services.ldlm_cbd DLM lock grant
20-30 Lustre 2.0 Operations Manual • April 2010

■ To set the maximum thread count to 256 instead of 512 (to avoid overloading the
storage or for an array with requests), run:

lctl set_param ost.OSS.ost_io.threads_max=256

The command output will be:

ost.OSS.ost_io.threads_max=256

■ To check if the new threads_max setting is active, run:

lctl get_param ost.OSS.ost_io.threads_max

The command output will be similar to this:

ost.OSS.ost_io.threads_max=256

Note – Currently, the maximum thread count setting is advisory because Lustre does
not reduce the number of service threads in use, even if that number exceeds the
threads_max value. Lustre does not stop service threads once they are started.
Chapter 20 LustreProc 20-31

20.3 Debug Support
/proc/sys/lnet/debug

By default, Lustre generates a detailed log of all operations to aid in debugging. The
level of debugging can affect the performance or speed you achieve with Lustre.
Therefore, it is useful to reduce this overhead by turning down the debug level1 to
improve performance. Raise the debug level when you need to collect the logs for
debugging problems. The debugging mask can be set with "symbolic names" instead
of the numerical values that were used in prior releases. The new symbolic format is
shown in the examples below.

Note – All of the commands below must be run as root; note the # nomenclature.

To verify the debug level used by examining the sysctl that controls debugging, run:

sysctl lnet.debug

lnet.debug = ioctl neterror warning error emerg ha config console

To turn off debugging (except for network error debugging), run this command on all
concerned nodes:

sysctl -w lnet.debug="neterror"

lnet.debug = neterror

To turn off debugging completely, run this command on all concerned nodes:

sysctl -w lnet.debug=0

lnet.debug = 0

To set an appropriate debug level for a production environment, run:

sysctl -w lnet.debug="warning dlmtrace error emerg ha rpctrace
vfstrace"

lnet.debug = warning dlmtrace error emerg ha rpctrace vfstrace

The flags above collect enough high-level information to aid debugging, but they do
not cause any serious performance impact.

To clear all flags and set new ones, run:

sysctl -w lnet.debug="warning"

lnet.debug = warning

1. This controls the level of Lustre debugging kept in the internal log buffer. It does not alter the level of
debugging that goes to syslog.
20-32 Lustre 2.0 Operations Manual • April 2010

To add new flags to existing ones, prefix them with a "+":

sysctl -w lnet.debug="+neterror +ha"

lnet.debug = +neterror +ha

sysctl lnet.debug

lnet.debug = neterror warning ha

To remove flags, prefix them with a "-":

sysctl -w lnet.debug="-ha"

lnet.debug = -ha

sysctl lnet.debug

lnet.debug = neterror warning

You can verify and change the debug level using the /proc interface in Lustre. To use
the flags with /proc, run:

cat /proc/sys/lnet/debug

neterror warning

echo "+ha" > /proc/sys/lnet/debug

cat /proc/sys/lnet/debug

neterror warning ha

echo "-warning" > /proc/sys/lnet/debug

cat /proc/sys/lnet/debug

neterror ha
Chapter 20 LustreProc 20-33

/proc/sys/lnet/subsystem_debug

This controls the debug logs3 for subsystems (see S_* definitions).

/proc/sys/lnet/debug_path

This indicates the location where debugging symbols should be stored for gdb. The
default is set to /r/tmp/lustre-log-localhost.localdomain.

These values can also be set via sysctl -w lnet.debug={value}

Note – The above entries only exist when Lustre has already been loaded.

/proc/sys/lnet/panic_on_lbug

This causes Lustre to call ''panic'' when it detects an internal problem (an LBUG);
panic crashes the node. This is particularly useful when a kernel crash dump utility
is configured. The crash dump is triggered when the internal inconsistency is
detected by Lustre.

/proc/sys/lnet/upcall

This allows you to specify the path to the binary which will be invoked when an
LBUG is encountered. This binary is called with four parameters. The first one is the
string ''LBUG''. The second one is the file where the LBUG occurred. The third one is
the function name. The fourth one is the line number in the file.
20-34 Lustre 2.0 Operations Manual • April 2010

20.3.1 RPC Information for Other OBD Devices
Some OBD devices maintain a count of the number of RPC events that they process.
Sometimes these events are more specific to operations of the device, like llite, than
actual raw RPC counts.

$ find /proc/fs/lustre/ -name stats

/proc/fs/lustre/osc/lustre-OST0001-osc-ce63ca00/stats

/proc/fs/lustre/osc/lustre-OST0000-osc-ce63ca00/stats

/proc/fs/lustre/osc/lustre-OST0001-osc/stats

/proc/fs/lustre/osc/lustre-OST0000-osc/stats

/proc/fs/lustre/mdt/MDS/mds_readpage/stats

/proc/fs/lustre/mdt/MDS/mds_setattr/stats

/proc/fs/lustre/mdt/MDS/mds/stats

/proc/fs/lustre/mds/lustre-MDT0000/exports/ab206805-0630-6647-8543-d
24265c91a3d/stats

/proc/fs/lustre/mds/lustre-MDT0000/exports/08ac6584-6c4a-3536-2c6d-b
36cf9cbdaa0/stats

/proc/fs/lustre/mds/lustre-MDT0000/stats

/proc/fs/lustre/ldlm/services/ldlm_canceld/stats

/proc/fs/lustre/ldlm/services/ldlm_cbd/stats

/proc/fs/lustre/llite/lustre-ce63ca00/stats
Chapter 20 LustreProc 20-35

20.3.1.1 Interpreting OST Statistics

The OST .../stats files can be used to track client statistics (client activity) for
each OST. It is possible to get a periodic dump of values from these file (for example,
every 10 seconds), that show the RPC rates (similar to iostat) by using the
llstat.pl tool:

llstat /proc/fs/lustre/osc/lustre-OST0000-osc/stats

/usr/bin/llstat: STATS on 09/14/07
/proc/fs/lustre/osc/lustre-OST0000-osc/stats on 192.168.10.34@tcp

snapshot_time 1189732762.835363

ost_create 1

ost_get_info 1

ost_connect 1

ost_set_info 1

obd_ping 212

To clear the statistics, give the -c option to llstat.pl. To specify how frequently
the statistics should be cleared (in seconds), use an integer for the -i option. This is
sample output with -c and -i10 options used, providing statistics every 10s):

$ llstat -c -i10 /proc/fs/lustre/ost/OSS/ost_io/stats

/usr/bin/llstat: STATS on 06/06/07 /proc/fs/lustre/ost/OSS/ost_io/ stats on
192.168.16.35@tcp
snapshot_time 1181074093.276072

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074103.284895
Name Cur.CountCur.Rate#EventsUnit\ last min avg max stddev
req_waittime8 0 8 [usec] 2078\ 34 259.75 868 317.49
req_qdepth 8 0 8 [reqs] 1\ 0 0.12 1 0.35
req_active 8 0 8 [reqs] 11\ 1 1.38 2 0.52
reqbuf_avail8 0 8 [bufs] 511\ 63 63.88 64 0.35
ost_write 8 0 8 [bytes]1697677\72914212209.6238757991874.29

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074113.290180
Name Cur.CountCur.Rate#EventsUnit \ lastmin avg max stddev
req_waittime31 3 39 [usec] 30011\ 34 822.79 12245 2047.71
req_qdepth 31 3 39 [reqs] 0\ 0 0.03 1 0.16
req_active 31 3 39 [reqs] 58\ 1 1.77 3 0.74
reqbuf_avail31 3 39 [bufs] 1977\ 63 63.79 64 0.41
ost_write 30 3 38 [bytes]10284679\15019315325.16910694197776.51

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074123.325560
Name Cur.CountCur.Rate#Events Unit \ last minavgmax stddev
req_waittime21 2 60 [usec] 14970\ 34784.32122451878.66
req_qdepth 21 2 60 [reqs] 0\ 0 0.02 1 0.13
req_active 21 2 60 [reqs] 33\ 1 1.70 3 0.70
reqbuf_avail21 2 60 [bufs] 1341\ 6363.82 64 0.39
ost_write 21 2 59 [bytes]7648424\ 15019332725.08910694
180397.87
20-36 Lustre 2.0 Operations Manual • April 2010

Where:

The events common to all services are:

Some service-specific events of interest are:

Parameter Description

Cur. Count Number of events of each type sent in the last interval (in this example,
10s)

Cur. Rate Number of events per second in the last interval

#Events Total number of such events since the system started

Unit Unit of measurement for that statistic (microseconds, requests, buffers)

last Average rate of these events (in units/event) for the last interval during
which they arrived. For instance, in the above mentioned case of
ost_destroy it took an average of 736 microseconds per destroy for the 400
object destroys in the previous 10 seconds.

min Minimum rate (in units/events) since the service started

avg Average rate

max Maximum rate

stddev Standard deviation (not measured in all cases)

Parameter Description

req_waittime Amount of time a request waited in the queue before being handled by an
available server thread.

req_qdepth Number of requests waiting to be handled in the queue for this service.

req_active Number of requests currently being handled.

reqbuf_avail Number of unsolicited lnet request buffers for this service.

Parameter Description

ldlm_enqueue Time it takes to enqueue a lock (this includes file open on the MDS)

mds_reint Time it takes to process an MDS modification record (includes create,
mkdir, unlink, rename and setattr)
Chapter 20 LustreProc 20-37

20.3.1.2 llobdstat

The llobdstat utility displays statistics for the activity of a specific OST on an OSS:

/proc/fs/lustre/<ost_name>/stats

Use llobdstat to monitor changes in statistics over time, and I/O rates for all OSTs
on a server. the llobdstat utility provides utilization graphs for selectable
time-scales.

Usage:

#llobdstat <ost_name> [<interval>]

Example:

llobdstat lustre-OST0000 2

20.3.1.3 Interpreting MDT Statistics

The MDT .../stats files can be used to track MDT statistics for the MDS. Here is
sample output for an MDT stats file:

cat /proc/fs/lustre/mds/*-MDT0000/stats

snapshot_time 1244832003.676892 secs.usecs

open 2 samples [reqs]

close 1 samples [reqs]

getxattr 3 samples [reqs]

process_config 1 samples [reqs]

connect 2 samples [reqs]

disconnect 2 samples [reqs]

statfs 3 samples [reqs]

setattr 1 samples [reqs]

getattr 3 samples [reqs]

llog_init 6 samples [reqs]

notify 16 samples [reqs]

Parameter Description

ost_name The OST name under /proc/fs/lustre/obdfilter

interval Sample interval (in seconds)
20-38 Lustre 2.0 Operations Manual • April 2010

CHAPTER 21

Lustre Troubleshooting

This chapter provides information to troubleshoot Lustre, submit a Lustre bug, and
Lustre performance tips. It includes the following sections:

■ Troubleshooting Lustre

■ Reporting a Lustre Bug

■ Common Lustre Problems and Performance Tips
21-1

21.1 Troubleshooting Lustre
Several resources are available to help use troubleshoot Lustre. This section describes
error numbers, error messages and logs.

21.1.1 Error Numbers
Error numbers for Lustre come from the Linux errno.h, and are located in
/usr/include/asm/errno.h. Lustre does not use all of the available Linux error
numbers. The exact meaning of an error number depends on where it is used. Here is
a summary of the basic errors that Lustre users may encounter.

Error Number Error Name Description

-1 -EPERM Permission is denied.

-2 -ENOENT The requested file or directory does not exist.

-4 -EINTR The operation was interrupted (usually CTRL-C or a killing
process).

-5 -EIO The operation failed with a read or write error.

-19 -ENODEV No such device is available. The server stopped or failed
over.

-22 -EINVAL The parameter contains an invalid value.

-28 -ENOSPC The file system is out-of-space or out of inodes. Use lfs df
(query the amount of file system space) or lfs df -i
(query the number of inodes).

-30 -EROFS The file system is read-only, likely due to a detected error.

-43 -EIDRM The UID/GID does not match any known UID/GID on the
MDS. Update etc/hosts and etc/group on the MDS to add
the missing user or group.

-107 -ENOTCONN The client is not connected to this server.

-110 -ETIMEDOUT The operation took too long and timed out.
21-2 Lustre 2.0 Operations Manual • April 2010

21.1.2 Error Messages
As Lustre code runs on the kernel, single-digit error codes display to the application;
these error codes are an indication of the problem. Refer to the kernel console log
(dmesg) for all recent kernel messages from that node. On the node,
/var/log/messages holds a log of all messages for at least the past day.

21.1.3 Lustre Logs
The error message initiates with "LustreError" in the console log and provides a short
description of:

■ What the problem is

■ Which process ID had trouble

■ Which server node it was communicating with, and so on.

Lustre logs are dumped to /proc/sys/lnet/debug_path.

Collect the first group of messages related to a problem, and any messages that
precede "LBUG" or "assertion failure" errors. Messages that mention server nodes
(OST or MDS) are specific to that server; you must collect similar messages from the
relevant server console logs.

Another Lustre debug log holds information for Lustre action for a short period of
time which, in turn, depends on the processes on the node to use Lustre. Use the
following command to extract debug logs on each of the nodes, run

$ lctl dk <filename>

Note – LBUG freezes the thread to allow capture of the panic stack. A system reboot
is needed to clear the thread.
Chapter 21 Lustre Troubleshooting 21-3

21.2 Reporting a Lustre Bug
If, after troubleshooting your Lustre system, you cannot resolve the problem,
consider reporting a Lustre bug. To do this, you will need an account on Bugzilla
(defect tracking system used for Lustre), and download the Lustre diagnostics tool to
run and capture the diagnostics output.

Note – Create a Lustre Bugzilla account. Download the Lustre diagnostics tool and
install it on the affected nodes. Make sure you are using the most recent version of
the diagnostics tool.

1. Once you have a Lustre Bugzilla account, open a new bug and describe the
problem you having.

2. Run the Lustre diagnostics tool, using one of the following commands:

lustre-diagnostics -t <bugzilla bug #>

lustre-diagnostics.

In case you need to use it later, the output of the bug is sent directly to the terminal.
Normal file redirection can be used to send the output to a file which you can
manually attach to this bug, if necessary.
21-4 Lustre 2.0 Operations Manual • April 2010

https://bugzilla.lustre.org/createaccount.cgi
http://downloads.lustre.org/public/tools/lustre-diagnostics/

21.3 Common Lustre Problems and
Performance Tips
This section describes common issues encountered with Lustre, as well as tips to
improve Lustre performance.

21.3.1 Recovering from an Unavailable OST
One of the most common problems encountered in a Lustre environment is when an
OST becomes unavailable, because of a network partition, OSS node crash, etc. When
this happens, the OST’s clients pause and wait for the OST to become available again,
either on the primary OSS or a failover OSS. When the OST comes back online,
Lustre starts a recovery process to enable clients to reconnect to the OST. Lustre
servers put a limit on the time they will wait in recovery for clients to reconnect1.

During recovery, clients reconnect and replay their requests, serially, in the same
order they were done originally.2 Periodically, a progress message prints to the log,
stating how_many/expected clients have reconnected. If the recovery is aborted, this
log shows how many clients managed to reconnect. When all clients have completed
recovery, or if the recovery timeout is reached, the recovery period ends and the OST
resumes normal request processing.

If some clients fail to replay their requests during the recovery period, this will not
stop the recovery from completing. You may have a situation where the OST
recovers, but some clients are not able to participate in recovery (e.g. network
problems or client failure), so they are evicted and their requests are not replayed.
This would result in any operations on the evicted clients failing, including
in-progress writes, which would cause cached writes to be lost. This is a normal
outcome; the recovery cannot wait indefinitely, or the file system would be hung any
time a client failed. The lost transactions are an unfortunate result of the recovery
process.

1. The timeout length is determined by the obd_timeout parameter.

2. Until a client receives a confirmation that a given transaction has been written to stable storage, the client
holds on to the transaction, in case it needs to be replayed.
Chapter 21 Lustre Troubleshooting 21-5

Note – The version-based recovery (VBR) feature enables a failed client to be
''skipped'', so remaining clients can replay their requests, resulting in a more
successful recovery from a downed OST. For more information about the VBR
feature, see Version-based Recovery.

In Lustre 1.6 and earlier, the success of the recovery process was limited by
uncommitted client requests that are unable to be replayed. Because clients
attempted to replay their requests to the OST and MDT in serial order, a client that
could not replay its requests causes the recovery stream to stop, and left the
remaining clients without an opportunity to reconnect and replay their requests.

21.3.2 Write Performance Better Than Read Performance
Typically, the performance of write operations on a Lustre cluster is better than read
operations. When doing writes, all clients are sending write RPCs asynchronously.
The RPCs are allocated, and written to disk in the order they arrive. In many cases,
this allows the back-end storage to aggregate writes efficiently.

In the case of read operations, the reads from clients may come in a different order
and need a lot of seeking to get read from the disk. This noticeably hampers the read
throughput.

Currently, there is no readahead on the OSTs themselves, though the clients do
readahead. If there are lots of clients doing reads it would not be possible to do any
readahead in any case because of memory consumption (consider that even a single
RPC (1 MB) readahead for 1000 clients would consume 1 GB of RAM).

For file systems that use socklnd (TCP, Ethernet) as interconnect, there is also
additional CPU overhead because the client cannot receive data without copying it
from the network buffers. In the write case, the client CAN send data without the
additional data copy. This means that the client is more likely to become CPU-bound
during reads than writes.
21-6 Lustre 2.0 Operations Manual • April 2010

21.3.3 OST Object is Missing or Damaged
If the OSS fails to find an object or finds a damaged object, this message appears:

OST object missing or damaged (OST "ost1", object 98148, error -2)

If the reported error is -2 (-ENOENT, or "No such file or directory"), then the object is
missing. This can occur either because the MDS and OST are out of sync, or because
an OST object was corrupted and deleted.

If you have recovered the file system from a disk failure by using e2fsck, then
unrecoverable objects may have been deleted or moved to /lost+found on the raw
OST partition. Because files on the MDS still reference these objects, attempts to
access them produce this error.

If you have recovered a backup of the raw MDS or OST partition, then the restored
partition is very likely to be out of sync with the rest of your cluster. No matter
which server partition you restored from backup, files on the MDS may reference
objects which no longer exist (or did not exist when the backup was taken); accessing
those files produces this error.

If neither of those descriptions is applicable to your situation, then it is possible that
you have discovered a programming error that allowed the servers to get out of sync.
Please report this condition to the Lustre group, and we will investigate.

If the reported error is anything else (such as -5, "I/O error"), it likely indicates a
storage failure. The low-level file system returns this error if it is unable to read from
the storage device.

Suggested Action

If the reported error is -2, you can consider checking in /lost+found on your raw
OST device, to see if the missing object is there. However, it is likely that this object
is lost forever, and that the file that references the object is now partially or
completely lost. Restore this file from backup, or salvage what you can and delete it.

If the reported error is anything else, then you should immediately inspect this
server for storage problems.
Chapter 21 Lustre Troubleshooting 21-7

21.3.4 OSTs Become Read-Only
If the SCSI devices are inaccessible to Lustre at the block device level, then ext3
remounts the device read-only to prevent file system corruption. This is a normal
behavior. The status in /proc/fs/lustre/healthcheck also shows "not healthy"
on the affected nodes.

To determine what caused the "not healthy" condition:

■ Examine the consoles of all servers for any error indications

■ Examine the syslogs of all servers for any LustreErrors or LBUG

■ Check the health of your system hardware and network. (Are the disks working as
expected, is the network dropping packets?)

■ Consider what was happening on the cluster at the time. Does this relate to a
specific user workload or a system load condition? Is the condition reproducible?
Does it happen at a specific time (day, week or month)?

To recover from this problem, you must restart Lustre services using these file
systems. There is no other way to know that the I/O made it to disk, and the state of
the cache may be inconsistent with what is on disk.

21.3.5 Identifying a Missing OST
If an OST is missing for any reason, you may need to know what files are affected.
Although an OST is missing, the files system should be operational. From any
mounted client node, generate a list of files that reside on the affected OST. It is
advisable to mark the missing OST as ’unavailable’ so clients and the MDS do not
time out trying to contact it.

1. Generate a list of devices and determine the OST’s device number. Run:

$ lctl dl

The lctl dl command output lists the device name and number, along with the
device UUID and the number of references on the device.

2. Deactivate the OST (on the OSS at the MDS). Run:

$ lctl --device <OST device name or number> deactivate

The OST device number or device name is generated by the lctl dl command.

The deactivate command prevents clients from creating new objects on the
specified OST, although you can still access the OST for reading.
21-8 Lustre 2.0 Operations Manual • April 2010

Note – If the OST later becomes available it needs to be reactivated, run:

lctl --device <OST device name or number> activate

3. Determine all the files that are striped over the missing OST, run:

lfs find -R -o {OST_UUID} /mountpoint

This returns a simple list of filenames from the affected file system.

4. If necessary, you can read the valid parts of a striped file, run:

dd if=filename of=new_filename bs=4k conv=sync,noerror

5. You can delete these files with the unlink or munlink command.

unlink|munlink filename {filename ...}

Note – There is no functional difference between the unlink and munlink
commands. The unlink command is for newer Linux distributions. You can run
munlink if unlink is not available.

When you run the unlink or munlink command, the file on the MDS is
permanently removed.

6. If you need to know, specifically, which parts of the file are missing data, then
you first need to determine the file layout (striping pattern), which includes the
index of the missing OST). Run:

lfs getstripe -v {filename}

7. Use this computation is to determine which offsets in the file are affected:
[(C*N + X)*S, (C*N + X)*S + S - 1], N = { 0, 1, 2, ...}

where:

C = stripe count

S = stripe size

X = index of bad OST for this file

For example, for a 2 stripe file, stripe size = 1M, the bad OST is at index 0, and you
have holes in the file at: [(2*N + 0)*1M, (2*N + 0)*1M + 1M - 1], N = { 0, 1, 2, ...}

If the file system cannot be mounted, currently there is no way that parses metadata
directly from an MDS. If the bad OST does not start, options to mount the file system
are to provide a loop device OST in its place or replace it with a newly-formatted
OST. In that case, the missing objects are created and are read as zero-filled.
Chapter 21 Lustre Troubleshooting 21-9

21.3.6 Improving Lustre Performance When Working
with Small Files
A Lustre environment where an application writes small file chunks from many
clients to a single file will result in bad I/O performance. To improve Lustre’s
performance with small files:

■ Have the application aggregate writes some amount before submitting them to
Lustre. By default, Lustre enforces POSIX coherency semantics, so it results in lock
ping-pong between client nodes if they are all writing to the same file at one time.

■ Have the application do 4kB O_DIRECT sized I/O to the file and disable locking
on the output file. This avoids partial-page IO submissions and, by disabling
locking, you avoid contention between clients.

■ Have the application write contiguous data.

■ Add more disks or use SSD disks for the OSTs. This dramatically improves the
IOPS rate. Consider creating larger OSTs rather than many smaller OSTs due to
less overhead (journal, connections, etc).

■ Use RAID-1+0 OSTs instead of RAID-5/6. There is RAID parity overhead for
writing small chunks of data to disk.

21.3.7 Default Striping
These are the default striping settings:

lov.stripesize=<bytes>

lov.stripecount=<count>

lov.stripeoffset=<offset>

To change the default striping information.

■ On the MGS:

$ lctl conf_param testfs-MDT0000.lov.stripesize=4M

■ On the MDT and clients:

$ mdt/cli> cat /proc/fs/lustre/lov/testfs-{mdt|cli}lov/stripe*
21-10 Lustre 2.0 Operations Manual • April 2010

21.3.8 Erasing a File System
If you want to erase a file system, run this command on your targets:

$ "mkfs.lustre –reformat"

If you are using a separate MGS and want to keep other file systems defined on that
MGS, then set the writeconf flag on the MDT for that file system. The writeconf
flag causes the configuration logs to be erased; they are regenerated the next time the
servers start.

To set the writeconf flag on the MDT:

1. Unmount all clients/servers using this file system, run:

$ umount /mnt/lustre

2. Erase the file system and, presumably, replace it with another file system, run:

$ mkfs.lustre –reformat --fsname spfs --mdt --mgs /dev/sda

3. If you have a separate MGS (that you do not want to reformat), then add the
"writeconf" flag to mkfs.lustre on the MDT, run:

$ mkfs.lustre --reformat --writeconf –fsname spfs --mdt \
--mgs /dev/sda

Note – If you have a combined MGS/MDT, reformatting the MDT reformats the
MGS as well, causing all configuration information to be lost; you can start building
your new file system. Nothing needs to be done with old disks that will not be part
of the new file system, just do not mount them.

21.3.9 Reclaiming Reserved Disk Space
All current Lustre installations run the ext3 file system internally on service nodes.
By default, the ext3 reserves 5% of the disk space for the root user. In order to
reclaim this space, run the following command on your OSSs:

tune2fs [-m reserved_blocks_percent] [device]

You do not need to shut down Lustre before running this command or restart it
afterwards.
Chapter 21 Lustre Troubleshooting 21-11

21.3.10 Considerations in Connecting a SAN with Lustre
Depending on your cluster size and workload, you may want to connect a SAN with
Lustre. Before making this connection, consider the following:

■ In many SAN file systems without Lustre, clients allocate and lock blocks or
inodes individually as they are updated. The Lustre design avoids the high
contention that some of these blocks and inodes may have.

■ Lustre is highly scalable and can have a very large number of clients. SAN
switches do not scale to a large number of nodes, and the cost per port of a SAN is
generally higher than other networking.

■ File systems that allow direct-to-SAN access from the clients have a security risk
because clients can potentially read any data on the SAN disks, and misbehaving
clients can corrupt the file system for many reasons like improper file system,
network, or other kernel software, bad cabling, bad memory, and so on. The risk
increases with increase in the number of clients directly accessing the storage.
21-12 Lustre 2.0 Operations Manual • April 2010

21.3.11 Handling/Debugging "Bind: Address already in
use" Error
During startup, Lustre may report a bind: Address already in use error and
reject to start the operation. This is caused by a portmap service (often NFS locking)
which starts before Lustre and binds to the default port 988. You must have port 988
open from firewall or IP tables for incoming connections on the client, OSS, and MDS
nodes. LNET will create three outgoing connections on available, reserved ports to
each client-server pair, starting with 1023, 1022 and 1021.

Unfortunately, you cannot set sunprc to avoid port 988. If you receive this error, do
the following:

■ Start Lustre before starting any service that uses sunrpc.

■ Use a port other than 988 for Lustre. This is configured in /etc/modprobe.conf
as an option to the LNET module. For example:

options lnet accept_port=988

■ Add modprobe ptlrpc to your system startup scripts before the service that
uses sunrpc. This causes Lustre to bind to port 988 and sunrpc to select a different
port.

Note – You can also use the sysctl command to mitigate the NFS client from
grabbing the Lustre service port. However, this is a partial workaround as other
user-space RPC servers still have the ability to grab the port.
Chapter 21 Lustre Troubleshooting 21-13

21.3.12 Replacing An Existing OST or MDS
The OST file system is an ldiskfs file system, which is simply a normal ext3 file
system plus some performance enhancements—making if very close, in fact, to ext4.
To copy the contents of an existing OST to a new OST (or an old MDS to a new
MDS), use one of these methods:

■ Connect the old OST disk and new OST disk to a single machine, mount both, and
use rsync to copy all data between the OST file systems.

For example:

mount -t ldiskfs /dev/old /mnt/ost_old

mount -t ldiskfs /dev/new /mnt/ost_new

rsync -aSv /mnt/ost_old/ /mnt/ost_new

note trailing slash on ost_old/

■ If you are unable to connect both sets of disk to the same computer, use rsync to
copy over the network using rsh (or ssh with -e ssh):

rsync -aSvz /mnt/ost_old/ new_ost_node:/mnt/ost_new

■ Use the same procedure for the MDS, with one additional step:

cd /mnt/mds_old; getfattr -R -e base64 -d . > /tmp/mdsea; \
<copy all MDS files as above>; cd /mnt/mds_new; setfattr \
--restore=/tmp/mdsea

21.3.13 Handling/Debugging Error "- 28"
Linux error -28 is -ENOSPC and indicates that the file system has run out of space.
You need to create larger file systems for the OSTs. Normally, Lustre reports this to
your application. If the application is checking the return code from its function calls,
then it decodes it into a textual error message like "No space left on device." It also
appears in the system log messages.

During a "write" or "sync" operation, the file in question resides on an OST which is
already full. New files that are created do not use full OSTs, but existing files
continue to use the same OST. You need to expand the specific OST or copy/stripe
the file over to an OST with more space available. You encounter this situation
occasionally when creating files, which may indicate that your MDS has run out of
inodes and needs to be enlarged. To check this, use df -i
21-14 Lustre 2.0 Operations Manual • April 2010

You may also receive this error if the MDS runs out of free blocks. Since the output
of df is an aggregate of the data from the MDS and all of the OSTs, it may not show
that the file system is full when one of the OSTs has run out of space. To determine
which OST or MDS is running out of space, check the free space and inodes on a
client:

grep '[0-9]' /proc/fs/lustre/osc/*/kbytes{free,avail,total}

grep '[0-9]' /proc/fs/lustre/osc/*/files{free,total}

grep '[0-9]' /proc/fs/lustre/mdc/*/kbytes{free,avail,total}

grep '[0-9]' /proc/fs/lustre/mdc/*/files{free,total}

You can find other numeric error codes in /usr/include/asm/errno.h along with
their short name and text description.

21.3.14 Triggering Watchdog for PID NNN
In some cases, a server node triggers a watchdog timer and this causes a process
stack to be dumped to the console along with a Lustre kernel debug log being
dumped into /tmp (by default). The presence of a watchdog timer does NOT mean
that the thread OOPSed, but rather that it is taking longer time than expected to
complete a given operation. In some cases, this situation is expected.

For example, if a RAID rebuild is really slowing down I/O on an OST, it might
trigger watchdog timers to trip. But another message follows shortly thereafter,
indicating that the thread in question has completed processing (after some number
of seconds). Generally, this indicates a transient problem. In other cases, it may
legitimately signal that a thread is stuck because of a software error (lock inversion,
for example).

Lustre: 0:0:(watchdog.c:122:lcw_cb())

The above message indicates that the watchdog is active for pid 933:

It was inactive for 100000ms:

Lustre: 0:0:(linux-debug.c:132:portals_debug_dumpstack())

Showing stack for process:

933 ll_ost_25 D F896071A 0 933 1 934 932 (L-TLB)
f6d87c60 00000046 00000000 f896071a f8def7cc 00002710 00001822 2da48cae
0008cf1a f6d7c220 f6d7c3d0 f6d86000 f3529648 f6d87cc4 f3529640 f8961d3d
00000010 f6d87c9c ca65a13c 00001fff 00000001 00000001 00000000 00000001
Chapter 21 Lustre Troubleshooting 21-15

Call trace:

filter_do_bio+0x3dd/0xb90 [obdfilter]

default_wake_function+0x0/0x20

filter_direct_io+0x2fb/0x990 [obdfilter]

filter_preprw_read+0x5c5/0xe00 [obdfilter]

lustre_swab_niobuf_remote+0x0/0x30 [ptlrpc]

ost_brw_read+0x18df/0x2400 [ost]

ost_handle+0x14c2/0x42d0 [ost]

ptlrpc_server_handle_request+0x870/0x10b0 [ptlrpc]

ptlrpc_main+0x42e/0x7c0 [ptlrpc]

21.3.15 Handling Timeouts on Initial Lustre Setup
If you come across timeouts or hangs on the initial setup of your Lustre system,
verify that name resolution for servers and clients is working correctly. Some
distributions configure /etc/hosts sts so the name of the local machine (as
reported by the 'hostname' command) is mapped to local host (127.0.0.1) instead of a
proper IP address.

This might produce this error:

LustreError:(ldlm_handle_cancel()) received cancel for unknown lock cookie
0xe74021a4b41b954e from nid 0x7f000001 (0:127.0.0.1)
21-16 Lustre 2.0 Operations Manual • April 2010

21.3.16 Handling/Debugging "LustreError: xxx went back
in time"
Each time Lustre changes the state of the disk file system, it records a unique
transaction number. Occasionally, when committing these transactions to the disk,
the last committed transaction number displays to other nodes in the cluster to assist
the recovery. Therefore, the promised transactions remain absolutely safe on the
disappeared disk.

This situation arises when:

■ You are using a disk device that claims to have data written to disk before it
actually does, as in case of a device with a large cache. If that disk device crashes
or loses power in a way that causes the loss of the cache, there can be a loss of
transactions that you believe are committed. This is a very serious event, and you
should run e2fsck against that storage before restarting Lustre.

■ As per the Lustre requirement, the shared storage used for failover is completely
cache-coherent. This ensures that if one server takes over for another, it sees the
most up-to-date and accurate copy of the data. In case of the failover of the server,
if the shared storage does not provide cache coherency between all of its ports,
then Lustre can produce an error.

If you know the exact reason for the error, then it is safe to proceed with no further
action. If you do not know the reason, then this is a serious issue and you should
explore it with your disk vendor.

If the error occurs during failover, examine your disk cache settings. If it occurs after
a restart without failover, try to determine how the disk can report that a write
succeeded, then lose the Data Device corruption or Disk Errors.

21.3.17 Lustre Error: "Slow Start_Page_Write"
The slow start_page_write message appears when the operation takes an
extremely long time to allocate a batch of memory pages. Use these pages to receive
network traffic first, and then write to disk.
Chapter 21 Lustre Troubleshooting 21-17

21.3.18 Drawbacks in Doing Multi-client O_APPEND
Writes
It is possible to do multi-client O_APPEND writes to a single file, but there are few
drawbacks that may make this a sub-optimal solution. These drawbacks are:

■ Each client needs to take an EOF lock on all the OSTs, as it is difficult to know
which OST holds the end of the file until you check all the OSTs. As all the clients
are using the same O_APPEND, there is significant locking overhead.

■ The second client cannot get all locks until the end of the writing of the first client,
as the taking serializes all writes from the clients.

■ To avoid deadlocks, the taking of these locks occurs in a known, consistent order.
As a client cannot know which OST holds the next piece of the file until the client
has locks on all OSTS, there is a need of these locks in case of a striped file.

21.3.19 Slowdown Occurs During Lustre Startup
When Lustre starts, the Lustre file system needs to read in data from the disk. For the
very first mdsrate run after the reboot, the MDS needs to wait on all the OSTs for
object pre-creation. This causes a slowdown to occur when Lustre starts up.

After the file system has been running for some time, it contains more data in cache
and hence, the variability caused by reading critical metadata from disk is mostly
eliminated. The file system now reads data from the cache.

21.3.20 Log Message ‘Out of Memory’ on OST
When planning the hardware for an OSS node, consider the memory usage of several
components in the Lustre system. If insufficient memory is available, an ‘out of
memory’ message can be logged.

During normal operation, several conditions indicate insufficient RAM on a server
node:

■ kernel "Out of memory" and/or "oom-killer" messages

■ Lustre "kmalloc of 'mmm' (NNNN bytes) failed..." messages

■ Lustre or kernel stack traces showing processes stuck in "try_to_free_pages"

For information on determining the MDS memory and OSS memory requirements,
see Memory Requirements.
21-18 Lustre 2.0 Operations Manual • April 2010

21.3.21 Number of OSTs Needed for Sustained
Throughput
The number of OSTs required for sustained throughput depends on your hardware
configuration. If you are adding an OST that is identical to an existing OST, you can
use the speed of the existing OST to determine how many more OSTs to add.

Keep in mind that adding OSTs affects resource limitations, such as bus bandwidth
in the OSS and network bandwidth of the OSS interconnect. You need to understand
the performance capability of all system components to develop an overall design
that meets your performance goals and scales to future system requirements.

Note – For best performance, put the MGS and MDT on separate devices.

21.3.22 Setting SCSI I/O Sizes
Some SCSI drivers default to a maximum I/O size that is too small for good Lustre
performance. we have fixed quite a few drivers, but you may still find that some
drivers give unsatisfactory performance with Lustre. As the default value is
hard-coded, you need to recompile the drivers to change their default. On the other
hand, some drivers may have a wrong default set.

If you suspect bad I/O performance and an analysis of Lustre statistics indicates that
I/O is not 1 MB, check /sys/block/<device>/queue/max_sectors_kb. If the
max_sectors_kb value is less than 1024, set it to at least 1024 to improve
performance. If changing max_sectors_kb does not change the I/O size as reported
by Lustre, you may want to examine the SCSI driver code.
Chapter 21 Lustre Troubleshooting 21-19

21.3.23 Identifying Which Lustre File an OST Object
Belongs To
Use this procedure to identify the file containing a given object on a given OST.

1. On the OST (as root), run debugfs to display the FID3 of the file associated with
the object.

For example, if the object is 34976 on /dev/lustre/ost_test2, the debug command
is:

debugfs -c -R "stat /O/0/d$((34976 %32))/34976" /dev/lustre/ost_test2

The command output is:

debugfs 1.41.5.sun2 (23-Apr-2009)

/dev/lustre/ost_test2: catastrophic mode - not reading inode or
group bitmaps

Inode: 352365 Type: regular Mode: 0666 Flags: 0x80000

Generation: 1574463214 Version: 0xea020000:00000000

User: 500 Group: 500 Size: 260096

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 512

Fragment: Address: 0 Number: 0 Size: 0

ctime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009

atime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009

mtime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009

crtime: 0x4a216b3c:975870dc -- Sat May 30 13:22:04 2009

Size of extra inode fields: 24

Extended attributes stored in inode body:

fid = "e2 00 11 00 00 00 00 00 25 43 c1 87 00 00 00 00 a0 88 00 00
00 00 00 00 00 00 00 00 00 00 00 00 " (32)

BLOCKS:

(0-63):47968-48031

TOTAL: 64

3. The FID is the file identifier.
21-20 Lustre 2.0 Operations Manual • April 2010

2. Note the FID’s EA and apply it to the osd_inode_id mapping.

In this example, the FID’s EA is:

e2001100000000002543c18700000000a0880000000000000000000000000000

struct osd_inode_id {

__u64 oii_ino; /* inode number */

__u32 oii_gen; /* inode generation */

__u32 oii_pad; /* alignment padding */

};

After swapping, you get an inode number of 0x001100e2 and generation of 0.

3. On the MDT (as root), use debugfs to find the file associated with the inode.

debugfs -c -R "ncheck 0x001100e2" /dev/lustre/mdt_test

Here is the command output:

debugfs 1.41.5.sun2 (23-Apr-2009)
/dev/lustre/mdt_test: catastrophic mode - not reading inode or group bitmaps
Inode Pathname
1114338 /ROOT/brian-laptop-guest/clients/client11/~dmtmp/PWRPNT/ZD16.BMP

The command lists the inode and pathname associated with the object.

Note – Debugfs' ''ncheck'' is a brute-force search that may take a long time to
complete.

Note – To find the Lustre file from a disk LBA, follow the steps listed in the
document at this URL: http://smartmontools.sourceforge.net/badblockhowto.html.
Then, follow the steps above to resolve the Lustre filename.
Chapter 21 Lustre Troubleshooting 21-21

21-22 Lustre 2.0 Operations Manual • April 2010

CHAPTER 22

Lustre Monitoring

This chapter provides information on monitoring Lustre and includes the following
sections:

■ Lustre Changelogs

■ Lustre Monitoring Tool

■ Red Hat Cluster Manager

■ SNMP Monitoring

■ CollectL
22-1

22.1 Lustre Changelogs
Lustre 2.0 introduces the changelogs feature which records events that change the file
system namespace or file metadata. Changes such as file creation, deletion, renaming,
attribute changes, etc. are recorded with the target and parent file identifiers (FIDs),
the name of the target, and a timestamp. These records can be used for a variety of
purposes:

■ Capture recent changes to feed into an archiving system.

■ Use changelog entries to exactly replicate changes in a file system mirror.

■ Set up "watch scripts" that take action on certain events or directories.

■ Maintain a rough audit trail (file/directory changes with timestamps, but no user
information).

Changelogs record types are:

FID-to-full-pathname and pathname-to-FID functions are also included to map target
and parent FIDs into the file system namespace.

Value Description

MARK Internal recordkeeping

CREAT Regular file creation

MKDIR Directory creation

HLINK Hard link

SLINK Soft link

MKNOD Other file creation

UNLNK Regular file removal

RMDIR Directory removal

RNMFM Rename, original

RNMTO Rename, final

IOCTL ioctl on file or directory

TRUNC Regular file truncated

SATTR Attribute change

XATTR Extended attribute change

UNKNW Unknown operation
22-2 Lustre 2.0 Operations Manual • April 2010

22.1.1 Working with Changelogs
Several commands are available to work with changelogs.

lctl changelog_register

Because changelog records take up space on the MDT, the system administration
must register changelog users. The registrants specify which records they are "done
with", and the system purges up to the greatest common record.

To register a new changelog user, run:

lctl --device <mdt_device> changelog_register

Changelog entries are not purged beyond a registered user’s set point (see lfs
changelog_clear).

lfs changelog

To display the metadata changes on an MDT (the changelog records), run:

lfs changelog <MDT name> [startrec [endrec]]

It is optional whether to specify the start and end records.

These are sample changelog records:

2 02MKDIR 4298396676 0x0 t=[0x200000405:0x15f9:0x0] p=
[0x13:0x15e5a7a3:0x0] pics

3 01CREAT 4298402264 0x0 t=[0x200000405:0x15fa:0x0] p=
[0x200000405:0x15f9:0x0] chloe.jpg

4 06UNLNK 4298404466 0x0 t=[0x200000405:0x15fa:0x0] p=
[0x200000405:0x15f9:0x0] chloe.jpg

5 07RMDIR 4298405394 0x0 t=[0x200000405:0x15f9:0x0] p=
[0x13:0x15e5a7a3:0x0] pics
Chapter 22 Lustre Monitoring 22-3

lfs changelog_clear

To clear old changelog records for a specific user (records that the user no longer
needs), run:

lfs changelog_clear <MDT name> <user ID> <endrec>

The changelog_clear command indicates that changelog records previous to
<endrec> are no longer of interest to a particular user <user ID>, potentially
allowing the MDT to free up disk space. An <endrec> value of 0 indicates the
current last record. To run changelog_clear, the changelog user must be registered
on the MDT node using lctl.

When all changelog users are done with records < X, the records are deleted.

lctl changelog_deregister

To deregister (unregister) a changelog user, run:

lctl --device <mdt_device> changelog_deregister <user ID>

If the user’s "clear" record number is the minimum for the device,
changelog_deregister cl1 effectively does a changelog_clear cl1 0 as it
deregisters.

22.1.2 Changelog Examples
This section provides examples of different changelog commands.

Registering a Changelog User

To register a new changelog user for a device (lustre-MDT0000):

lctl --device lustre-MDT0000 changelog_register

lustre-MDT0000: Registered changelog userid 'cl1'
22-4 Lustre 2.0 Operations Manual • April 2010

Displaying Changelog Records

To display changelog records on an MDT (lustre-MDT0000):

$ lfs changelog lustre-MDT0000

1 00MARK 19:08:20.890432813 2010.03.24 0x0 t=[0x10001:0x0:0x0] p=
[0:0x0:0x0] mdd_obd-lustre-MDT0000-0

2 02MKDIR 19:10:21.509659173 2010.03.24 0x0 t=[0x200000420:0x3:0x0]
p=[0x61b4:0xca2c7dde:0x0] mydir

3 14SATTR 19:10:27.329356533 2010.03.24 0x0 t=[0x200000420:0x3:0x0]

4 01CREAT 19:10:37.113847713 2010.03.24 0x0 t=[0x200000420:0x4:0x0]
p=[0x200000420:0x3:0x0] hosts

Changelog records follow this format:

4 01CREAT 19:10:37.113847713 2010.03.24 0x0 t=[0x200000420:0x4:0x0]
p=[0x200000420:0x3:0x0] hosts

rec# operation_type(numerical/text) timestamp datestamp flags t=target_FID p=
parent_FID target_name

Clearing Changelog Records

To notify a device that a specific user (cl1) no longer needs records (up to and
including 3):

$ lfs changelog_clear lustre-MDT0000 cl1 3

To confirm that the changelog_clear operation was successful, run lfs
changelog; only records after id-3 are listed:

$ lfs changelog lustre-MDT0000

4 01CREAT 19:10:37.113847713 2010.03.24 0x0 t=[0x200000420:0x4:0x0]
p=[0x200000420:0x3:0x0] hosts
Chapter 22 Lustre Monitoring 22-5

Deregistering a Changelog User

To deregister a changelog user (cl1) for a specific device (lustre-MDT0000):

lctl --device lustre-MDT0000 changelog_deregister cl1

lustre-MDT0000: Deregistered changelog user 'cl1'

The deregistration operation clears all changelog records for the specified user (cli).

$ lfs changelog lustre-MDT0000

5 00MARK 19:13:40.858292517 2010.03.24 0x0 t=[0x40001:0x0:0x0] p=
[0:0x0:0x0] mdd_obd-lustre-MDT0000-0

Note – MARK records typically indicate changelog recording status changes.

Displaying the Changelog Index and Registered Users

To display the current, maximum changelog index and registered changelog users for
a specific device (lustre-MDT0000):

lctl get_param mdd.lustre-MDT0000.changelog_users

mdd.lustre-MDT0000.changelog_users=current index: 8

ID index

cl2 8

Displaying the Changelog Mask

To show the current changelog mask on a specific device (lustre-MDT0000):

lctl get_param mdd.lustre-MDT0000.changelog_mask

mdd.lustre-MDT0000.changelog_mask=

MARK CREAT MKDIR HLINK SLINK MKNOD UNLNK RMDIR RNMFM RNMTO OPEN CLOSE
IOCTL TRUNC SATTR XATTR HSM
22-6 Lustre 2.0 Operations Manual • April 2010

Setting the Changelog Mask

To set the current changelog mask on a specific device (lustre-MDT0000):

lctl set_param mdd.lustre-MDT0000.changelog_mask=HLINK

mdd.lustre-MDT0000.changelog_mask=HLINK

$ lfs changelog_clear lustre-MDT0000 cl1 0

$ mkdir /mnt/lustre/mydir/foo

$ cp /etc/hosts /mnt/lustre/mydir/foo/file

$ ln /mnt/lustre/mydir/foo/file /mnt/lustre/mydir/myhardlink

Only item types that are in the mask show up in the changelog.

$ lfs changelog lustre-MDT0000

9 03HLINK 19:19:35.171867477 2010.03.24 0x0 t=[0x200000420:0x6:0x0]
p=[0x200000420:0x3:0x0] myhardlink
Chapter 22 Lustre Monitoring 22-7

22.2 Lustre Monitoring Tool
The Lustre Monitoring Tool (LMT1) is a Python-based, distributed system that
provides a ''top'' like display of activity on server-side nodes2 (MDS, OSS and portals
routers) on one or more Lustre file systems. For more information on LMT, including
the setup procedure, see:

http://code.google.com/p/lmt/

LMT questions can be directed to:

lmt-discuss@googlegroups.com

22.3 Red Hat Cluster Manager
The Red Hat Cluster Manager provides high availability features that are essential
for data integrity, application availability and uninterrupted service under various
failure conditions. You can use the Cluster Manager to test MDS/OST failure in
Lustre clusters.

To use Cluster Manager to test MDS failover, specific hardware is required - a
compute node, OSTs and two machines (to act as the active and failover MDSs). The
MDS nodes need to be able to see the same shared storage, so you need to prepare a
shared disk for the Cluster Manager and the MDSs. Several RPM packages are also
required3, along with certain configuration changes.

For more information on the Cluster Manager (bundled in the Red Hat Cluster Suite),
see the Red Hat Cluster Suite. Supporting documentation is available to the Red Hat
Cluster Suite Overview.

For more information on installing and configuring Cluster Manager for Lustre
failover, and testing MDS failover, see Cluster Manager.

1. LMT was developed by Lawrence Livermore National Lab (LLNL) and continues to be maintained by LLNL.

2. Lustre client monitoring is not supported.

3. The Lustre Group has made several scripts available for MDS failover testing.
22-8 Lustre 2.0 Operations Manual • April 2010

http://code.google.com/p/lmt/
mailto:lmt-discuss@googlegroups.com
http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.2/html/Cluster_Suite_Overview/index.html
http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.2/html/Cluster_Suite_Overview/index.html
http://wiki.lustre.org/index.php?title=Clu_Manager
http://www.redhat.com/cluster_suite/

22.4 SNMP Monitoring
Lustre has a native SNMP module, which enables you to use various standard SNMP
monitoring packages (anything using RRDTool as a backend) to track performance.
For more information in installing, building and using the SNMP module, see Lustre
SNMP Module.

22.5 CollectL
CollectL is another tool that can be used to monitor Lustre. You can run CollectL on
a Lustre system that has any combination of MDSs, OSTs and clients. The collected
data can be written to a file for continuous logging and played back at a later time. It
can also be converted to a format suitable for plotting.

For more information about CollectL, see:

http://collectl.sourceforge.net

Lustre-specific documentation is also available. See:

http://collectl.sourceforge.net/Tutorial-Lustre.html

Other Monitoring Options

Another option is to script a simple monitoring solution which looks at various
reports from ipconfig, as well as the procfs files generated by Lustre.
Chapter 22 Lustre Monitoring 22-9

http://collectl.sourceforge.net
http://collectl.sourceforge.net/Tutorial-Lustre.html

22-10 Lustre 2.0 Operations Manual • April 2010

CHAPTER 23

Lustre Debugging

This chapter describes tips and information to debug Lustre, and includes the
following sections:

■ Lustre Debug Messages

■ Tools for Lustre Debugging

■ Troubleshooting with strace

■ Looking at Disk Content

■ Ptlrpc Request History

Lustre is a complex system that requires a rich debugging environment to help locate
problems.
23-1

23.1 Lustre Debug Messages
Each Lustre debug message has the tag of the subsystem it originated in, the message
type, and the location in the source code. The subsystems and debug types used in
Lustre are as follows:

■ Standard Subsystems:

mdc, mds, osc, ost, obdclass, obdfilter, llite, ptlrpc, portals, lnd, ldlm, lov

■ Debug Types:

Types Description

trace Entry/Exit markers

dlmtrace Locking-related information

inode

super

ext2 Anything from the ext2_debug

malloc Print malloc or free information

cache Cache-related information

info General information

ioctl IOCTL-related information

blocks Ext2 block allocation information

net Networking

warning

buffs

other

dentry

portals Entry/Exit markers

page Bulk page handling

error Error messages

emerg

rpctrace For distributed debugging

ha Failover and recovery-related information
23-2 Lustre 2.0 Operations Manual • April 2010

23.1.1 Format of Lustre Debug Messages
Lustre uses the CDEBUG and CERROR macros to print the debug or error messages.
To print the message, the CDEBUG macro uses portals_debug_msg
(portals/linux/oslib/debug.c). The message format is described below, along
with an example.

Parameter Description

subsystem 800000

debug mask 000010

smp_processor_id 0

sec.used 10818808
47.677302

stack size 1204:

pid 2973:

host pid (if uml) or zero 31070:

(file:line #:functional()) (as_dev.c:144:create_write_buffers())

debug message kmalloced '*obj': 24 at a375571c (tot 17447717)
Chapter 23 Lustre Debugging 23-3

23.2 Tools for Lustre Debugging
A variety of diagnostic and analysis tools are available to debug issues with the
Lustre software. Some of these are provided in Linux distributions, while others have
been developed and are made available by the Lustre project.

Lustre Debugging Tools

The following in-kernel debug mechanisms are incorporated into the Lustre software:

■ Debug logs: A circular debug buffer to which Lustre internal debug messages are
written (in contrast to error messages, which are printed to the syslog or console).
Entries to the Lustre debug log are controlled by the mask set by
/proc/sys/lnet/debug. The log size defaults to 5 MB per CPU but can be
increased as a busy system will quickly overwrite 5 MB. When the buffer fills, the
oldest information is discarded.

■ Debug daemon: The debug daemon controls logging of debug messages.

■ /proc/sys/lnet/debug: This file contains a mask that can be used to delimit the
debugging information written out to the kernel debug logs.

The following tools are also provided with the Lustre software:

■ lctl: This tool is used with the debug_kernel option to manually dump the
Lustre debugging log or post-process debugging logs that are dumped
automatically.

■ Lustre subsystem asserts: A panic-style assertion (LBUG) in the kernel causes
Lustre to dump the debug log to the file /tmp/lustre-log.<timestamp> where it
can be retrieved after a reboot.

■ lfs: This utility provides access to the extended attributes (EAs) of a Lustre file
(along with other information).
23-4 Lustre 2.0 Operations Manual • April 2010

External Debugging Tools

The tools described in this section are provided in the Linux kernel or are available at
an external website.

Some general debugging tools provided as a part of the standard Linux distro are:

■ strace. This tool allows a system call to be traced.

■ /var/log/messages. syslogd prints fatal or serious messages at this log.

■ Crash dumps. On crash-dump enabled kernels, sysrq c produces a crash dump.
Lustre enhances this crash dump with a log dump (the last 64 KB of the log) to the
console.

■ debugfs. Interactive file system debugger.

The following logging and data collection tools can be used to collect information for
debugging Lustre kernel issues:

■ kdump. A Linux kernel crash utility useful for debugging a system running Red
Hat Enterprise Linux. For more information about kdump, see the Red Hat
knowledge base article How do I configure kexec/kdump on Red Hat Enterprise
Linux 5?. To download kdump, go to the Fedora Project Download site.

■ netconsole. Supports kernel-level network logging over UDP. A system requires
(SysRq) allows users to collect relevant data through netconsole.

■ netdump. A crash dump utility from Red Hat that allows memory images to be
dumped over a network to a central server for analysis. The netdump utility was
replaced by kdump in RHEL 5. For more information about netdump, see Red
Hat, Inc.'s Network Console and Crash Dump Facility.

The tools described in this section may be useful for debugging Lustre in a
development environment.

Of general interest is:

■ leak_finder.pl. This program provided with Lustre is useful for finding memory
leaks in the code.

A virtual machine is often used to create an isolated development and test
environment. Some commonly-used virtual machines are:

■ VirtualBox Open Source Edition. Provides enterprise-class virtualization
capability for all major platforms and is available free at Get Sun VirtualBox.

■ VMware Server. Virtualization platform available as free introductory software at
Download VMware Server.

■ Xen. A para-virtualized environment with virtualization capabilities similar to
VMware Server and Virtual Box. However, Xen allows the use of modified kernels
to provide near-native performance and the ability to emulate shared storage. For
more information, go to xen.org.

A variety of debuggers and analysis tools are available including:
Chapter 23 Lustre Debugging 23-5

http://kbase.redhat.com/faq/docs/DOC-6039
http://kbase.redhat.com/faq/docs/DOC-6039
http://fedoraproject.org/wiki/SystemConfig/kdump#Download
http://www.redhat.com/support/wpapers/redhat/netdump/
http://www.redhat.com/support/wpapers/redhat/netdump/
http://www.sun.com/software/products/virtualbox/get.jsp?intcmp=2945
http://downloads.vmware.com/d/info/datacenter_downloads/vmware_server/2_0
http://xen.org/

■ kgdb. The Linux Kernel Source Level Debugger kgdb is used in conjunction with
the GNU Debugger gdb for debugging the Linux kernel. For more information
about using kgdb with gdb, see Chapter 6. Running Programs Under gdb in the
Red Hat Linux 4 Debugging with GDB guide.

■ crash. Used to analyze saved crash dump data when a system had panicked or
locked up or appears unresponsive. For more information about using crash to
analyze a crash dump, see:

■ Red Hat Magazine article: A quick overview of Linux kernel crash dump
analysis

■ Crash Usage: A Case Study from the white paper Red Hat Crash Utility by
David Anderson

■ Kernel Trap forum entry: Linux: Kernel Crash Dumps

■ White paper: A Quick Overview of Linux Kernel Crash Dump Analysis

23.2.1 Debug Daemon Option to lctl
The debug_daemon allows users to control the Lustre kernel debug daemon to
dump the debug_kernel buffer to a user-specified file. This functionality uses a
kernel thread on top of debug_kernel. debug_kernel, another sub-command of
lctl, continues to work in parallel with debug_daemon command.

Debug_daemon is highly dependent on file system write speed. File system writes
operation may not be fast enough to flush out all the debug_buffer if Lustre file
system is under heavy system load and continue to CDEBUG to the debug_buffer.
Debug_daemon put ’DEBUG MARKER: Trace buffer full’ into the debug_buffer to
indicate debug_buffer is overlapping itself before debug_daemon flush data to a file.

Users can use lctl control to start or stop Lustre daemon from dumping the
debug_buffer to a file. Users can also temporarily hold daemon from dumping the
file. Use of the debug_daemon sub-command to lctl can provide the same
function.
23-6 Lustre 2.0 Operations Manual • April 2010

http://www.linuxtopia.org/online_books/redhat_linux_debugging_with_gdb/running.html
http://magazine.redhat.com/2007/08/15/a-quick-overview-of-linux-kernel-crash-dump-analysis/
http://magazine.redhat.com/2007/08/15/a-quick-overview-of-linux-kernel-crash-dump-analysis/
http://people.redhat.com/anderson/crash_whitepaper/#EXAMPLES
http://kerneltrap.org/node/5758
http://www.google.com/url?sa=t&source=web&ct=res&cd=8&ved=0CCUQFjAH&url=http%3A%2F%2Fwww.kernel.sg%2Fpapers%2Fcrash-dump-analysis.pdf&rct=j&q=redhat+crash+dump&ei=6aQBS-ifK4T8tAPcjdiHCw&usg=AFQjCNEk03E3GDtAsawG3gfpwc1gGNELAg

23.2.1.1 lctl Debug Daemon Commands

This section describes lctl daemon debug commands.

$ lctl debug_daemon start [{file} {megabytes}]

Initiates the debug_daemon to start dumping debug_buffer into a file. The file can be
a system default file, as shown in /proc/sys/lnet/debug_path. After Lustre
starts, the default path is /tmp/lustre-log-$HOSTNAME. Users can specify a new
filename for debug_daemon to output debug_buffer. The new file name shows up
in /proc/sys/lnet/debug_path. Megabytes is the limitation of the file size in
MBs. The daemon wraps around and dumps data to the beginning of the file when
the output file size is over the limit of the user-specified file size. To decode the
dumped file to ASCII and order the log entries by time, run:

lctl debug_file {file} > {newfile}

The output is internally sorted by the lctl command using quicksort.

debug_daemon stop

Completely shuts down the debug_daemon operation and flushes the file output.
Otherwise, debug_daemon is shut down as part of Lustre file system shutdown
process. Users can restart debug_daemon by using start command after each stop
command issued.

This is an example using debug_daemon with the interactive mode of lctl to dump
debug logs to a 10 MB file.

#~/utils/lctl

To start daemon to dump debug_buffer into a 40 MB /tmp/dump file.

lctl > debug_daemon start /trace/log 40

To completely shut down the daemon.

lctl > debug_daemon stop

To start another daemon with an unlimited file size.

lctl > debug_daemon start /tmp/unlimited

The text message *** End of debug_daemon trace log *** appears at the
end of each output file.
Chapter 23 Lustre Debugging 23-7

23.2.2 Controlling the Kernel Debug Log
The amount of information printed to the kernel debug logs can be controlled by
masks in /proc/sys/lnet/subsystem_debug and /proc/sys/lnet/debug. The
subsystem_debug mask controls subsystems (e.g., obdfilter, net, portals, OSC, etc.)
and the debug mask controls debug types written to the log (e.g., info, error, trace,
alloc, etc.).

To turn off Lustre debugging completely:

sysctl -w lnet.debug=0

To turn on full Lustre debugging:

sysctl -w lnet.debug=-1

To turn on logging of messages related to network communications:

sysctl -w lnet.debug=net

To turn on logging of messages related to network communications and existing
debug flags:

sysctl -w lnet.debug=+net

To turn off network logging with changing existing flags:

sysctl -w lnet.debug=-net

The various options available to print to kernel debug logs are listed in
lnet/include/libcfs/libcfs.h

23.2.3 The lctl Tool
Lustre’s source code includes debug messages which are very useful for
troubleshooting. As described above, debug messages are subdivided into a number
of subsystems and types. This subdivision allows messages to be filtered, so that only
messages of interest to the user are displayed. The lctl tool is useful to enable this
filtering and manipulate the logs to extract the useful information from it. Use lctl
to obtain the necessary debug messages:

1. To obtain a list of all the types and subsystems:

lctl > debug_list <subs | types>

2. To filter the debug log:

lctl > filter <subsystem name | debug type>
23-8 Lustre 2.0 Operations Manual • April 2010

Note – When lctl filters, it removes unwanted lines from the displayed output.
This does not affect the contents of the debug log in the kernel's memory. As a result,
you can print the log many times with different filtering levels without worrying
about losing data.

3. To show debug messages belonging to certain subsystem or type:

lctl > show <subsystem name | debug type>

debug_kernel pulls the data from the kernel logs, filters it appropriately, and
displays or saves it as per the specified options

lctl > debug_kernel [output filename]

If the debugging is being done on User Mode Linux (UML), it might be useful to
save the logs on the host machine so that they can be used at a later time.

4. If you already have a debug log saved to disk (likely from a crash), to filter a log
on disk:

lctl > debug_file <input filename> [output filename]

During the debug session, you can add markers or breaks to the log for any
reason:

lctl > mark [marker text]

The marker text defaults to the current date and time in the debug log (similar to
the example shown below):

DEBUG MARKER: Tue Mar 5 16:06:44 EST 2002

5. To completely flush the kernel debug buffer:

lctl > clear

Note – Debug messages displayed with lctl are also subject to the kernel debug
masks; the filters are additive.
Chapter 23 Lustre Debugging 23-9

23.2.4 Finding Memory Leaks
Memory leaks can occur in a code where you allocate a memory, but forget to free it
when it becomes non-essential. You can use the leak_finder.pl tool to find
memory leaks. Before running this program, you must turn on the debugging to
collect all malloc and free entries. Run:

sysctl -w lnet.debug=+malloc

Dump the log into a user-specified log file using lctl (as shown in The lctl Tool). Run
the leak finder on the newly-created log dump:

perl leak_finder.pl <ascii-logname>

The output is:

malloced 8bytes at a3116744 (called pathcopy)

(lprocfs_status.c:lprocfs_add_vars:80)

freed 8bytes at a3116744 (called pathcopy)

(lprocfs_status.c:lprocfs_add_vars:80)

The tool displays the following output to show the leaks found:

Leak:32bytes allocated at a23a8fc
(service.c:ptlrpc_init_svc:144,debug file line 241)

23.2.5 Printing to /var/log/messages
To dump debug messages to the console, set the corresponding debug mask in the
printk flag:

sysctl -w lnet.printk=-1

This slows down the system dramatically. It is also possible to selectively enable or
disable this for particular flags using:

sysctl -w lnet.printk=+vfstrace

sysctl -w lnet.printk=-vfstrace

23.2.6 Tracing Lock Traffic
Lustre has a specific debug type category for tracing lock traffic. Use:

lctl> filter all_types

lctl> show dlmtrace

lctl> debug_kernel [filename]
23-10 Lustre 2.0 Operations Manual • April 2010

23.2.7 Sample lctl Run
bash-2.04# ./lctl

lctl > debug_kernel /tmp/lustre_logs/log_all

Debug log: 324 lines, 324 kept, 0 dropped.

lctl > filter trace

Disabling output of type "trace"

lctl > debug_kernel /tmp/lustre_logs/log_notrace

Debug log: 324 lines, 282 kept, 42 dropped.

lctl > show trace

Enabling output of type "trace"

lctl > filter portals

Disabling output from subsystem "portals"

lctl > debug_kernel /tmp/lustre_logs/log_noportals

Debug log: 324 lines, 258 kept, 66 dropped.

23.2.8 Adding Debugging to the Lustre Source Code
In the Lustre source code, the debug infrastructure provides a number of macros
which aid in debugging or reporting serious errors. All of these macros depend on
having the DEBUG_SUBSYSTEM variable set at the top of the file:

#define DEBUG_SUBSYSTEM S_PORTALS

Macro Description

LBUG A panic-style assertion in the kernel which causes Lustre to
dump its circular log to the /tmp/lustre-log file. This file can
be retrieved after a reboot. LBUG freezes the thread to allow
capture of the panic stack. A system reboot is needed to clear
the thread.

LASSERT Validates a given expression as true, otherwise calls LBUG.
The failed expression is printed on the console, although the
values that make up the expression are not printed.

LASSERTF Similar to LASSERT but allows a free-format message to be
printed, like printf/printk.
Chapter 23 Lustre Debugging 23-11

CDEBUG The basic, most commonly used debug macro that takes just
one more argument than standard printf - the debug type.
This message adds to the debug log with the debug mask set
accordingly. Later, when a user retrieves the log for
troubleshooting, they can filter based on this type.
CDEBUG(D_INFO, "This is my debug message: the number is
%d\n", number).

CERROR Behaves similarly to CDEBUG, but unconditionally prints the
message in the debug log and to the console. This is
appropriate for serious errors or fatal conditions:
CERROR("Something very bad has happened, and the return
code is %d.\n", rc);

ENTRY and EXIT Add messages to aid in call tracing (takes no arguments).
When using these macros, cover all exit conditions to avoid
confusion when the debug log reports that a function was
entered, but never exited.

LDLM_DEBUG and
LDLM_DEBUG_NOLOCK

Used when tracing MDS and VFS operations for locking.
These macros build a thin trace that shows the protocol
exchanges between nodes.

DEBUG_REQ Prints information about the given ptlrpc_request structure.

OBD_FAIL_CHECK Allows insertion of failure points into the Lustre code. This is
useful to generate regression tests that can hit a very specific
sequence of events. This works in conjunction with "sysctl -w
lustre.fail_loc={fail_loc}" to set a specific failure point for
which a given OBD_FAIL_CHECK will test.

OBD_FAIL_TIMEOUT Similar to OBD_FAIL_CHECK. Useful to simulate
hung, blocked or busy processes or network devices. If
the given fail_loc is hit, OBD_FAIL_TIMEOUT waits
for the specified number of seconds.

OBD_RACE Similar to OBD_FAIL_CHECK. Useful to have multiple
processes execute the same code concurrently to
provoke locking races. The first process to hit
OBD_RACE sleeps until a second process hits
OBD_RACE, then both processes continue.

OBD_FAIL_ONCE A flag set on a lustre.fail_loc breakpoint to cause the
OBD_FAIL_CHECK condition to be hit only one time.
Otherwise, a fail_loc is permanent until it is cleared
with "sysctl -w lustre.fail_loc=0".

Macro Description
23-12 Lustre 2.0 Operations Manual • April 2010

OBD_FAIL_RAND Has OBD_FAIL_CHECK fail randomly; on average
every (1 / lustre.fail_val) times.

OBD_FAIL_SKIP Has OBD_FAIL_CHECK succeed lustre.fail_val times,
and then fail permanently or once with
OBD_FAIL_ONCE.

OBD_FAIL_SOME Has OBD_FAIL_CHECK fail lustre.fail_val times, and then
succeed.

Macro Description
Chapter 23 Lustre Debugging 23-13

23.3 Troubleshooting with strace
The operating system makes strace (program trace utility) available. Use strace
to trace program execution. The strace utility pauses programs made by a process
and records the system call, arguments, and return values. This is a very useful tool,
especially when you try to troubleshoot a failed system call.

To invoke strace on a program:

$ strace <program> <args>

Sometimes, a system call may fork child processes. In this situation, use the -f
option of strace to trace the child processes:

$ strace -f <program> <args>

To redirect the strace output to a file (to review at a later time):

$ strace -o <filename> <program> <args>

Use the -ff option, along with -o, to save the trace output in filename.pid, where
pid is the process ID of the process being traced. Use the -ttt option to timestamp
all lines in the strace output, so they can be correlated to operations in the lustre
kernel debug log.

If the debugging is done in UML, save the traces on the host machine. In this
example, hostfs is mounted on /r:

$ strace -o /r/tmp/vi.strace
23-14 Lustre 2.0 Operations Manual • April 2010

23.4 Looking at Disk Content
In Lustre, the inodes on the metadata server contain extended attributes (EAs) that
store information about file striping. EAs contain a list of all object IDs and their
locations (that is, the OST that stores them). The lfs tool can be used to obtain this
information for a given file via the getstripe sub-command. Use a corresponding
lfs setstripe command to specify striping attributes for a new file or directory.

The lfs getstripe utility is written in C; it takes a Lustre filename as input and
lists all the objects that form a part of this file. To obtain this information for the file
/mnt/lustre/frog in Lustre file system, run:

$ lfs getstripe /mnt/lustre/frog

$

OBDs:

0 : OSC_localhost_UUID

1: OSC_localhost_2_UUID

2: OSC_localhost_3_UUID

obdix objid

0 17

1 4

The debugfs tool is provided by the e2fsprogs package. It can be used for interactive
debugging of an ext3/ldiskfs file system. The debugfs tool can either be used to
check status or modify information in the file system. In Lustre, all objects that
belong to a file are stored in an underlying ldiskfs file system on the OST's. The file
system uses the object IDs as the file names. Once the object IDs are known, use the
debugfs tool to obtain the attributes of all objects from different OST's. A sample run
for the /mnt/lustre/frog file used in the above example is shown here:

$ debugfs -c /tmp/ost1

debugfs: cd O

debugfs: cd 0 /* for files in group 0 */

debugfs: cd d<objid % 32>

debugfs: stat <objid> /* for getattr on object */

debugfs: quit

Suppose object id is 36, then follow the steps below:

$ debugfs /tmp/ost1

debugfs: cd O

debugfs: cd 0

debugfs: cd d4 /* objid % 32 */

debugfs: stat 36 /* for getattr on obj 4*/

debugfs: dump 36 /tmp/obj.36 /* dump contents of obj 4 */

debugfs: quit
Chapter 23 Lustre Debugging 23-15

23.4.1 Determine the Lustre UUID of an OST
To determine the Lustre UUID of an obdfilter disk (for example, if you mix up the
cables on your OST devices or the SCSI bus numbering suddenly changes and the
SCSI devices get new names), use debugfs to get the last_rcvd file.

23.4.2 Tcpdump
Lustre provides a modified version of tcpdump which helps to decode the complete
Lustre message packet. This tool has more support to read packets from clients to
OSTs, than to decode packets between clients and MDSs. The tcpdump module is
available from Lustre CVS at www.sourceforge.net

It can be checked out as:

cvs co -d :ext:<username>@cvs.lustre.org:/cvsroot/lustre tcpdump

23.5 Ptlrpc Request History
Each service always maintains request history, which is useful for first occurrence
troubleshooting. Ptlrpc history works as follows:

1. Request_in_callback() adds the new request to the service's request history.

2. When a request buffer becomes idle, add it to the service's request buffer
history list.

3. Cull buffers from the service's request buffer history if it has grown above

"req_buffer_history_max" and remove its reqs from the service's request history.

Request history is accessed/controlled via the following /proc files under the
service directory.

■ req_buffer_history_len

Number of request buffers currently in the history

■ req_buffer_history_max

Maximum number of request buffers to keep

■ req_history

The request history
23-16 Lustre 2.0 Operations Manual • April 2010

www.sourceforge.net

Requests in the history include "live" requests that are actually being handled. Each
line in "req_history" looks like:

<seq>:<target NID>:<client ID>:<xid>:<length>:<phase> <svc specific>

23.6 Using LWT Tracing
Lustre offers a very lightweight tracing facility called LWT. It prints fixed size
requests into a buffer and is much faster than LDEBUG. The LWT tracking facility is
very successful to debug difficult problems.

LWT trace-based records that are dumped contain:

■ Current CPU

■ Process counter

■ Pointer to file

■ Pointer to line in the file

■ 4 void * pointers

An lctl command dumps the logs to files.

Parameter Description

seq Request sequence number

target NID Destination NID of the incoming request

client ID Client PID and NID

xid rq_xid

length Size of the request message

phase • New (waiting to be handled or could not be unpacked)
• Interpret (unpacked or being handled)
• Complete (handled)

svc specific Service-specific request printout. Currently, the only service that does this is
the OST (which prints the opcode if the message has been unpacked
successfully
Chapter 23 Lustre Debugging 23-17

23-18 Lustre 2.0 Operations Manual • April 2010

PART IV Lustre for Users

This part includes chapters on Lustre striping and I/O options, security and
operating tips.

CHAPTER 24

Striping and I/O Options

This chapter describes file striping and I/O options, and includes the following
sections:

■ File Striping

■ Displaying Files and Directories with lfs getstripe

■ lfs setstripe – Setting File Layouts

■ Managing Free Space

■ Creating and Managing OST Pools

■ Performing Direct I/O

■ Other I/O Options

■ Striping Using llapi

24.1 File Striping
Lustre stores files of one or more objects on OSTs. When a file is comprised of more
than one object, Lustre stripes the file data across them in a round-robin fashion.
Users can configure the number of stripes, the size of each stripe, and the servers that
are used.

One of the most frequently-asked Lustre questions is “How should I stripe my files, and
what is a good default?” The short answer is that it depends on your needs. A good
rule of thumb is to stripe over as few objects as will meet those needs and no more.
24-1

24.1.1 Advantages of Striping
There are two reasons to create files of multiple stripes: bandwidth and size.

24.1.1.1 Bandwidth

There are many applications which require high-bandwidth access to a single file –
more bandwidth than can be provided by a single OSS. For example, scientific
applications which write to a single file from hundreds of nodes or a binary
executable which is loaded by many nodes when an application starts.

In cases like these, stripe your file over as many OSSs as it takes to achieve the
required peak aggregate bandwidth for that file. This strategy is known as 'large
striping', the ability to stripe across a larger number of OSSs. Large striping should
only be used when the file size is very large and/or is accessed by many nodes at a
time. Currently, Lustre files can be striped across up to 160 OSSs, the maximum
stripe count for an ext3 file system.

Large striping can improve performance if the aggregate client bandwidth exceeds
the server bandwidth, and the application reads/writes data fast enough to take
advantage of the additional OSS bandwidth. The largest useful stripe count is
bounded by the I/O rate of your clients/jobs divided by the performance per OSS.

The second reason to stripe is when a single OST does not have enough free space to
hold the entire file.

There is never an exact, one-to-one mapping between clients and OSTs. Lustre uses a
round-robin algorithm for OST stripe selection until free space on OSTs differ by
more than 20%. However, depending on actual file sizes, some stripes may be mostly
empty, while others are more full. For a more detailed description of stripe
assignments, see Managing Free Space.

After every ostcount+1 objects, Lustre skips an OST. This causes Lustre’s "starting
point" to precess around, eliminating some degenerated cases where applications
that create very regular file layouts (striping patterns) would have preferentially used
a particular OST in the sequence.
24-2 Lustre 2.0 Operations Manual • April 2010

24.1.2 Disadvantages of Striping
There are two disadvantages to striping which should deter you from choosing a
default policy that stripes over all OSTs unless you really need it: increased overhead
and increased risk.

24.1.2.1 Increased Overhead

Increased overhead comes in the form of extra network operations during common
operations such as stat and unlink, and more locks. Even when these operations are
performed in parallel, there is a big difference between doing 1 network operation
and 100 operations.

Increased overhead also comes in the form of server contention. Consider a cluster
with 100 clients and 100 OSSs, each with one OST. If each file has exactly one object
and the load is distributed evenly, there is no contention and the disks on each server
can manage sequential I/O. If each file has 100 objects, then the clients all compete
with one another for the attention of the servers, and the disks on each node seek in
100 different directions. In this case, there is needless contention.

24.1.2.2 Increased Risk

Increased risk is evident when you consider the example of striping each file across
all servers. In this case, if any one OSS catches on-fire, a small part of every file is
lost. By comparison, if each file has exactly one stripe, you lose fewer files, but you
lose them in their entirety. Most users would rather lose some of their files entirely
than all of their files partially.
Chapter 24 Striping and I/O Options 24-3

24.1.3 Stripe Size
Choosing a stripe size is a small balancing act, but there are reasonable defaults. The
stripe size must be a multiple of the page size. For safety, Lustre’s tools enforce a
multiple of 64 KB (the maximum page size on ia64 and PPC64 nodes), so users on
platforms with smaller pages do not accidentally create files which might cause
problems for ia64 clients.

Although you can create files with a stripe size of 64 KB, this is a poor choice.
Practically, the smallest recommended stripe size is 512 KB because Lustre sends 1
MB chunks over the network. This is a good amount of data to transfer at one time.
Choosing a smaller stripe size may hinder the batching.

Generally, a good stripe size for sequential I/O using high-speed networks is
between 1 MB and 4 MB. In most situations, stripe sizes larger than 4 MB do not
parallelize as effectively because Lustre tries to keep the amount of dirty cached data
below 32 MB per server (with the default configuration).

In an upcoming release, the 'wide striping' feature will be introduced, supporting
stripe sizes up to 4 GB. Wide striping can be used to improve performance with very
large files although, depending on the configuration, it can be counterproductive
after a certain stripe size.

Writes which cross an object boundary are slightly less efficient than writes which go
entirely to one server. Depending on your application's write patterns, you can assist
it by choosing a stripe size with that in mind. If the file is written in a very consistent
and aligned way, make the stripe size a multiple of the write() size.

The choice of stripe size has no effect on a single-stripe file.
24-4 Lustre 2.0 Operations Manual • April 2010

24.2 Displaying Files and Directories with lfs
getstripe
Use lfs to print the index and UUID for each OST in the file system, along with the
OST index and object ID for each stripe in the file. For directories, the default settings
for files created in that directory are printed.

lfs getstripe <filename>

Use lfs find to inspect an entire tree of files.

lfs find [--recursive | -r] <file or directory> ...

If a process creates a file, use the lfs getstripe command to determine which
OST(s) the file resides on.

Using ‘cat’ as an example, run:

$ cat > foo

In another terminal, run:

$ lfs getstripe /barn/users/jacob/tmp/foo

OBDS

You can also use ls -l /proc/<pid>/fd/ to find open files using Lustre, run:

$ lfs getstripe $(readlink /proc/$(pidof cat)/fd/1)

OBDS:
0: databarn-ost1_UUID ACTIVE

1: databarn-ost2_UUID ACTIVE

2: databarn-ost3_UUID ACTIVE

3: databarn-ost4_UUID ACTIVE

/barn/users/jacob/tmp/foo

obdidx objid objid group

2 835487 0xcbf9f 0

This shows that the file lives on obdidx 2, which is databarn-ost3. To see which node
is serving that OST, run:

$ cat /proc/fs/lustre/osc/*databarn-ost3*/ost_conn_uuid

NID_oss1.databarn.87k.net_UUID

The above condition/operation also works with connections to the MDS. For that,
replace osc with mdc and ost with mds in the above commands.
Chapter 24 Striping and I/O Options 24-5

24.3 lfs setstripe – Setting File Layouts
Use the lfs setstripe command to create new files with a specific file layout
(stripe pattern) configuration.

lfs setstripe [--size|-s stripe-size] [--count|-c stripe-cnt]

[--index|-i start-ost] <filename|dirname>

stripe-size

Stripe size is how much data to write to one OST before moving to the next OST. The
default stripe-size is 1 MB, and passing a stripe-size of 0 causes the default stripe size
to be used. Otherwise, the stripe-size must be a multiple of 64 KB.

stripe-count

Stripe count is how many OSTs to use. The default stripe-count is 1, and passing a
stripe-count of 0 causes the default stripe count to be used. A stripe-count of -1
means always stripe over all OSTs.

start-ost

Start ost is the first OST to which files are written. The default start-ost is -1, and
passing a start-ost of -1 allows the MDS to choose the starting index. This setting is
strongly recommended, as it allows space and load balancing to be done by the MDS
as needed. Otherwise, the file starts on the specified OST index, starting at zero (0).

Note – If you pass a start-ost of 0 and a stripe-count of 1, all files are written to OST
#0, until space is exhausted. This is probably not what you meant to do. If you only
want to adjust the stripe-count and keep the other parameters at their default
settings, do not specify any of the other parameters:

lfs setstripe -c <stripe-count> <file>
24-6 Lustre 2.0 Operations Manual • April 2010

24.3.1 Changing Striping for a Subdirectory
In a directory, the lfs setstripe command sets a default striping configuration
for files created in the directory. The usage is the same as lfs setstripe for a
regular file, except that the directory must exist prior to setting the default striping
configuration. If a file is created in a directory with a default stripe configuration
(without otherwise specifying striping), Lustre uses those striping parameters
instead of the file system default for the new file.

To change the striping pattern (file layout) for a sub-directory, create a directory with
desired file layout as described above. Sub-directories inherit the file layout of the
root/parent directory.

Note – Striping of new files and sub-directories is done per the striping parameter
settings of the root directory. Once you set striping on the root directory, then, by
default, it applies to any new child directories created in that root directory (unless
they have their own striping settings).

24.3.2 Using a Specific Striping Pattern/File Layout for a
Single File
To use a specific striping pattern (file layout) for a specific file:

lfs setstripe creates a file with a given stripe pattern (file layout)

lfs setstripe fails if the file already exists
Chapter 24 Striping and I/O Options 24-7

24.3.3 Creating a File on a Specific OST
You can use lfs setstripe to create a file on a specific OST. In the following
example, the file "bob" will be created on the first OST (id 0).

$ lfs setstripe --count 1 --index 0 bob

$ dd if=/dev/zero of=bob count=1 bs=100M

1+0 records in

1+0 records out

$ lfs getstripe bob

OBDS:

0: home-OST0000_UUID ACTIVE

[...]

bob

obdidx objid objid group

0 33459243 0x1fe8c2b 0
24-8 Lustre 2.0 Operations Manual • April 2010

24.4 Managing Free Space
In Lustre 1.6, the MDT assigns file stripes to OSTs based on location (which OSS) and
size considerations (free space) to optimize file system performance. Emptier OSTs
are preferentially selected for stripes, and stripes are preferentially spread out
between OSSs to increase network bandwidth utilization. The weighting factor
between these two optimizations is user-adjustable.

24.4.1 Checking File System Free Space
Free space is an important consideration in assigning file stripes. The lfs df
command shows available disk space on the mounted Lustre file system and space
consumption per OST. If multiple Lustre file systems are mounted, a path may be
specified, but is not required.

Note – The df -i and lfs df -i commands show the minimum number of inodes
that can be created in the file system. Depending on the configuration, it may be
possible to create more inodes than initially reported by df -i. Later, df -i
operations will show the current, estimated free inode count.

If the underlying file system has fewer free blocks than inodes, then the total inode
count for the file system reports only as many inodes as there are free blocks. This is
done because Lustre may need to store an external attribute for each new inode, and
it is better to report a free inode count that is the guaranteed, minimum number of
inodes that can be created.

Option Description

-h Human-readable print sizes in human readable format (for example:
1K, 234M, 5G).

-i, --inodes Lists inodes instead of block usage.
Chapter 24 Striping and I/O Options 24-9

Examples

[lin-cli1] $ lfs df
UUID 1K-blockS Used Available Use% Mounted on
mds-lustre-0_UUID 9174328 1020024 8154304 11% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 94181368 56330708 37850660 59% /mnt/lustre[OST:0]
ost-lustre-1_UUID 94181368 56385748 37795620 59% /mnt/lustre[OST:1]
ost-lustre-2_UUID 94181368 54352012 39829356 57% /mnt/lustre[OST:2]
filesystem summary:282544104167068468 39829356 57% /mnt/lustre

[lin-cli1] $ lfs df -h
UUID bytes Used Available Use% Mounted on
mds-lustre-0_UUID 8.7G 996.1M 7.8G 11% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 89.8G 53.7G 36.1G 59% /mnt/lustre[OST:0]
ost-lustre-1_UUID 89.8G 53.8G 36.0G 59% /mnt/lustre[OST:1]
ost-lustre-2_UUID 89.8G 51.8G 38.0G 57% /mnt/lustre[OST:2]
filesystem summary: 269.5G 159.3G 110.1G 59% /mnt/lustre

[lin-cli1] $ lfs df -i
UUID Inodes IUsed IFree IUse% Mounted on
mds-lustre-0_UUID 2211572 41924 2169648 1% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 737280 12183 725097 1% /mnt/lustre[OST:0]
ost-lustre-1_UUID 737280 12232 725048 1% /mnt/lustre[OST:1]
ost-lustre-2_UUID 737280 12214 725066 1% /mnt/lustre[OST:2]
filesystem summary: 2211572 41924 2169648 1% /mnt/lustre[OST:2]
24-10 Lustre 2.0 Operations Manual • April 2010

24.4.2 Using Stripe Allocations
There are two stripe allocation methods, round-robin and weighted. The allocation
method is determined by the amount of free-space imbalance on the OSTs. The
weighted allocator is used when any two OSTs are imbalanced by more than 20%.
Until then, a faster round-robin allocator is used. (The round-robin order maximizes
network balancing.)

24.4.3 Round-Robin Allocator
When OSTs have approximately the same amount of free space (within 20%), an
efficient round-robin allocator is used. The round-robin allocator alternates stripes
between OSTs on different OSSs, so the OST used for stripe 0 of each file is evenly
distributed among OSTs, regardless of the stripe count. Here are several sample
round-robin stripe orders (the same letter represents the different OSTs on a single
OSS):

24.4.4 Weighted Allocator
When the free space difference between the OSTs is significant, then a weighting
algorithm is used to influence OST ordering based on size and location. Note that
these are weightings for a random algorithm, so the "emptiest" OST is not,
necessarily, chosen every time. On average, the weighted allocator fills the emptier
OSTs faster.

3: AAA one 3-OST OSS

3x3: ABABAB two 3-OST OSSs

3x4: BBABABA one 3-OST OSS (A) and one 4-OST OSS (B)

3x5: BBABBABA

3x5x1: BBABABABC

3x5x2: BABABCBABC

4x6x2: BABABCBABABC
Chapter 24 Striping and I/O Options 24-11

24.4.5 Adjusting the Weighting Between Free Space and
Location
This priority can be adjusted via the
/proc/fs/lustre/lov/lustre-mdtlov/qos_prio_free proc file. The default
is 90%. Use the following command to permanently change this weighting on the
MGS:

lctl conf_param <fsname>-MDT0000.lov.qos_prio_free=90

Increasing the value puts more weighting on free space. When the free space priority
is set to 100%, then location is no longer used in stripe-ordering calculations, and
weighting is based entirely on free space.

Note that setting the priority to 100% means that OSS distribution does not count in
the weighting, but the stripe assignment is still done via a weighting—if OST2 has
twice as much free space as OST1, then OST2 is twice as likely to be used, but it is
not guaranteed to be used.

24.5 Handing Full OSTs
Sometimes a Lustre file system becomes unbalanced, often due to changed stripe
settings. If an OST is full and an attempt is made to write more information to the file
system, an error occurs. The procedures below describe how to handle a full OST.

24.5.1 Checking File System Usage
The example below shows an unbalanced file system:

root@LustreClient01 ~]# lfs df -h

UUID bytes Used Available Use% Mounted on

lustre-MDT0000_UUID 4.4G 214.5M 3.9G 4% /mnt/lustre[MDT:0]

lustre-OST0000_UUID 2.0G 751.3M 1.1G 37% /mnt/lustre[OST:0]

lustre-OST0001_UUID 2.0G 755.3M 1.1G 37% /mnt/lustre[OST:1]

lustre-OST0002_UUID 2.0G 1.7G 155.1M 86% /mnt/lustre[OST:2] <-

lustre-OST0003_UUID 2.0G 751.3M 1.1G 37% /mnt/lustre[OST:3]

lustre-OST0004_UUID 2.0G 747.3M 1.1G 37% /mnt/lustre[OST:4]

lustre-OST0005_UUID 2.0G 743.3M 1.1G 36% /mnt/lustre[OST:5]

filesystem summary: 11.8G 5.4G 5.8G 45% /mnt/lustre
24-12 Lustre 2.0 Operations Manual • April 2010

In this case, OST:2 is almost full and when an attempt is made to write additional
information to the file system (even with uniform striping over all the OSTs), the
write command fails as follows:

[root@LustreClient01 ~]# lfs setstripe /mnt/lustre 4M 0 -1

[root@LustreClient01 ~]# dd if=/dev/zero of=/mnt/lustre/test_3 \
bs=10M count=100

dd: writing `/mnt/lustre/test_3': No space left on device

98+0 records in

97+0 records out

1017192448 bytes (1.0 GB) copied, 23.2411 seconds, 43.8 MB/s

24.5.2 Taking a Full OST Offline
To enable continued use of the file system, the full OST has to be taken offline or,
more specifically, rendered read-only using the lctl command. This is done on the
MDS, since the MSD allocates space for writing.

1. Log into the MDS server:

[root@LustreClient01 ~]# ssh root@192.168.0.10

root@192.168.0.10's password:

Last login: Wed Nov 26 13:35:12 2008 from 192.168.0.6

2. Use the lctl dl command to show the status of all file system components:

[root@mds ~]# lctl dl

0 UP mgs MGS MGS 9

1 UP mgc MGC192.168.0.10@tcp e384bb0e-680b-ce25-7bc9-81655dd1e813 5

2 UP mdt MDS MDS_uuid 3

3 UP lov lustre-mdtlov lustre-mdtlov_UUID 4

4 UP mds lustre-MDT0000 lustre-MDT0000_UUID 5

5 UP osc lustre-OST0000-osc lustre-mdtlov_UUID 5

6 UP osc lustre-OST0001-osc lustre-mdtlov_UUID 5

7 UP osc lustre-OST0002-osc lustre-mdtlov_UUID 5

8 UP osc lustre-OST0003-osc lustre-mdtlov_UUID 5

9 UP osc lustre-OST0004-osc lustre-mdtlov_UUID 5

10 UP osc lustre-OST0005-osc lustre-mdtlov_UUID 5

3. Use lctl deactivate to take the full OST offline:

[root@mds ~]# lctl --device 7 deactivate
Chapter 24 Striping and I/O Options 24-13

4. Display the status of the file system components:

[root@mds ~]# lctl dl

0 UP mgs MGS MGS 9

1 UP mgc MGC192.168.0.10@tcp e384bb0e-680b-ce25-7bc9-81655dd1e813 5

2 UP mdt MDS MDS_uuid 3

3 UP lov lustre-mdtlov lustre-mdtlov_UUID 4

4 UP mds lustre-MDT0000 lustre-MDT0000_UUID 5

5 UP osc lustre-OST0000-osc lustre-mdtlov_UUID 5

6 UP osc lustre-OST0001-osc lustre-mdtlov_UUID 5

7 IN osc lustre-OST0002-osc lustre-mdtlov_UUID 5

8 UP osc lustre-OST0003-osc lustre-mdtlov_UUID 5

9 UP osc lustre-OST0004-osc lustre-mdtlov_UUID 5

10 UP osc lustre-OST0005-osc lustre-mdtlov_UUID 5

The device list shows that OST2 is now inactive. If a new file is now written to the
file system, the write will be successful as the stripes are allocated across the
remaining active OSTs.

24.5.3 Migrating Data within a File System
As stripes cannot be moved within the file system, data must be migrated manually
by copying and renaming the file, removing the original file, and renaming the new
file with the original file name.

1. Identify the file(s) to be moved. In the example below, output from the getstripe
command indicates that the file test_2 is located entirely on OST2:

[root@LustreClient01 ~]# lfs getstripe /mnt/lustre/test_2

OBDS:

0: lustre-OST0000_UUID ACTIVE

1: lustre-OST0001_UUID ACTIVE

2: lustre-OST0002_UUID ACTIVE

3: lustre-OST0003_UUID ACTIVE

4: lustre-OST0004_UUID ACTIVE

5: lustre-OST0005_UUID ACTIVE

/mnt/lustre/test_2

obdidx objid objid group

 2 8 0x8 0

2. Move the file(s).

[root@LustreClient01 ~]# cp /mnt/lustre/test_2 /mnt/lustre/test_2.tmp
[root@LustreClient01 ~]# rm /mnt/lustre/test_2
rm: remove regular file `/mnt/lustre/test_2'? Y
24-14 Lustre 2.0 Operations Manual • April 2010

3. Check the file system balance. The df output in the example below shows a
more balanced system compared to the df output in the example in Performing
Direct I/O.

[root@LustreClient01 ~]# lfs df -h

UUID bytes Used Available Use% Mounted on

lustre-MDT0000_UUID 4.4G 214.5M 3.9G 4% /mnt/lustre[MDT:0]

lustre-OST0000_UUID 2.0G 1.3G 598.1M 65% /mnt/lustre[OST:0]

lustre-OST0001_UUID 2.0G 1.3G 594.1M 65% /mnt/lustre[OST:1]

lustre-OST0002_UUID 2.0G 913.4M 1000.0M 45% /mnt/lustre[OST:2]

lustre-OST0003_UUID 2.0G 1.3G 602.1M 65% /mnt/lustre[OST:3]

lustre-OST0004_UUID 2.0G 1.3G 606.1M 64% /mnt/lustre[OST:4]

lustre-OST0005_UUID 2.0G 1.3G 610.1M 64% /mnt/lustre[OST:5]

filesystem summary: 11.8G 7.3G 3.9G 61% /mnt/lustre

4. Change the name of the file back to the original filename so it can be found by
clients.

[root@LustreClient01 ~]# mv test2.tmp test2

[root@LustreClient01 ~]# ls /mnt/lustre

test1 test_2 test3 test_3 test4 test_4 test_x

5. Reactivate the OST from the MDS for further writes:

[root@mds ~]# lctl --device 7 activate

[root@mds ~]# lctl dl

 0 UP mgs MGS MGS 9

1 UP mgc MGC192.168.0.10@tcp e384bb0e-680b-ce25-7bc9-816dd1e813 5

 2 UP mdt MDS MDS_uuid 3

 3 UP lov lustre-mdtlov lustre-mdtlov_UUID 4

 4 UP mds lustre-MDT0000 lustre-MDT0000_UUID 5

 5 UP osc lustre-OST0000-osc lustre-mdtlov_UUID 5

 6 UP osc lustre-OST0001-osc lustre-mdtlov_UUID 5

 7 UP osc lustre-OST0002-osc lustre-mdtlov_UUID 5

 8 UP osc lustre-OST0003-osc lustre-mdtlov_UUID 5

 9 UP osc lustre-OST0004-osc lustre-mdtlov_UUID 5

 10 UP osc lustre-OST0005-osc lustre-mdtlov_UUID
Chapter 24 Striping and I/O Options 24-15

24.6 Creating and Managing OST Pools
The OST pools feature enables users to group OSTs together to make object
placement more flexible. A 'pool' is the name associated with an arbitrary subset of
OSTs in a Lustre cluster.

OST pools follow these rules:

■ An OST can be a member of multiple pools.

■ No ordering of OSTs in a pool is defined or implied.

■ Stripe allocation within a pool follows the same rules as the normal stripe
allocator.

■ OST membership in a pool is flexible, and can change over time.

When an OST pool is defined, it can be used to allocate files. When file or directory
striping is set to a pool, only OSTs in the pool are candidates for striping. If a
stripe_index is specified which refers to an OST that is not a member of the pool,
an error is returned.

OST pools are used only at file creation. If the definition of a pool changes (an OST is
added or removed or the pool is destroyed), already-created files are not affected.

Note – An error (EINVAL) results if you create a file using an empty pool.

Note – If a directory has pool striping set and the pool is subsequently removed, the
new files created in this directory have the (non-pool) default striping pattern for that
directory applied and no error is returned.
24-16 Lustre 2.0 Operations Manual • April 2010

24.6.1 Working with OST Pools
OST pools are defined in the configuration log on the MGS. Use the lctl command
to:

■ Create/destroy a pool

■ Add/remove OSTs in a pool

■ List pools and OSTs in a specific pool

The lctl command MUST be run on the MGS. Another requirement for managing
OST pools is either to have the MDT and MGS on the same node or have a Lustre
client mounted on the MGS node if it is separate from the MDS. This is needed to
validate the pool command being run is correct.

Caution – Running the writeconf command on the MDS will erase all pools
information (as well as any other parameters set using lctl conf_param). We
recommend that the pools definitions (and conf_param settings) be executed via a
script, so they can be reproduced easily after a writeconf is performed.

To create a new pool, run:

lctl pool_new <fsname>.<poolname>

Note – The pool name is an ASCII string up to 16 characters.

To add the named OST to a pool, run:

lctl pool_add <fsname>.<poolname> <ost_list>

Where:

<ost_list> is <fsname->OST<index_range>[_UUID]

<index_range> is <ost_index_start>-<ost_index_end>[,<index_range>]
or <ost_index_start>-<ost_index_end>/<step>.

If the leading <fsname> and/or ending _UUID are missing, they are automatically
added.

For example, to add even-numbered OSTs to pool1 on file system lustre, run a
single command (add) to add many OSTs to the pool at one time:

lctl pool_add lustre.pool1 OST[0-10/2]

Note – Each time an OST is added to a pool, a new llog configuration record is
created. For convenience, you can run a single command.
Chapter 24 Striping and I/O Options 24-17

To remove a named OST from a pool, run:

lctl pool_remove <fsname>.<poolname> <ost_list>

To destroy a pool:

lctl pool_destroy <fsname>.<poolname>

Note – All OSTs must be removed from a pool before it can be destroyed.

To list pools in the named file system, run:

lctl pool_list <fsname> | <pathname>

To list OSTs in a named pool, run:

lctl pool_list <fsname>.<poolname>

24.6.1.1 Using the lfs Command with OST Pools

Several lfs commands can be run with OST pools. Use the lfs setstripe
command to associate a directory with an OST pool. This causes all new regular files
and directories in the directory to be created in the pool. The lfs command can be
used to list pools in a file system and OSTs in a named pool.

To associate a directory with a pool, so all new files and directories will be created in
the pool, run:

lfs setstripe <filename|dirname> --pool|-p pool-name

To set striping patterns, run:

lfs setstripe [--size|-s stripe_size] [--offset|-o start_ost]

[--count|-c stripe_count] [--pool|-p pool_name]

<dir|filename>

Note – If you specify striping with an invalid pool name, because the pool does not
exist or the pool name was mistyped, lfs setstripe returns an error. Run lfs
pool_list to make sure the pool exists and the pool name is entered correctly.

Note – The --pool option for lfs setstripe is compatible with other modifiers.
For example, you can set striping on a directory to use an explicit starting index.
24-18 Lustre 2.0 Operations Manual • April 2010

24.6.2 Tips for Using OST Pools
Here are several suggestions for using OST pools.

■ A directory or file can be given an extended attribute (EA), that restricts striping
to a pool.

■ Pools can be used to group OSTs with the same technology or performance
(slower or faster), and preferred for certain jobs. Examples are SATA OSTs versus
SAS OSTs or remote OSTs versus local OSTs.

■ A file created in an OST pool tracks the pool by keeping the pool name in the file
LOV EA.
Chapter 24 Striping and I/O Options 24-19

24.7 Performing Direct I/O
Starting with 1.4.7, Lustre supports the O_DIRECT flag to open.

Applications using the read() and write() calls must supply buffers aligned on a page
boundary (usually 4 K). If the alignment is not correct, the call returns -EINVAL.
Direct I/O may help performance in cases where the client is doing a large amount of
I/O and is CPU-bound (CPU utilization 100%).

24.7.1 Making File System Objects Immutable
An immutable file or directory is one that cannot be modified, renamed or removed.
To do this:

chattr +i <file>

To remove this flag, use chattr –i

24.8 Other I/O Options
This section describes other I/O options, including checksums.

24.8.1 Lustre Checksums
To guard against network data corruption, a Lustre client can perform two types of
data checksums: in-memory (for data in client memory) and wire (for data sent over
the network). For each checksum type, a 32-bit checksum of the data read or written
on both the client and server is computed, to ensure that the data has not been
corrupted in transit over the network. The ldiskfs backing file system does NOT do
any persistent checksumming, so it does not detect corruption of data in the OST file
system.

In Lustre 1.6.5 and later, the checksumming feature is enabled, by default, on
individual client nodes. If the client or OST detects a checksum mismatch, then an
error is logged in the syslog of the form:
24-20 Lustre 2.0 Operations Manual • April 2010

LustreError: BAD WRITE CHECKSUM: changed in transit before arrival at
OST: from 192.168.1.1@tcp inum 8991479/2386814769 object 1127239/0
extent [102400-106495]

If this happens, the client will re-read or re-write the affected data up to five times to
get a good copy of the data over the network. If it is still not possible, then an I/O
error is returned to the application.

To enable both types of checksums (in-memory and wire), run:

echo 1 > /proc/fs/lustre/llite/<fsname>/checksum_pages

To disable both types of checksums (in-memory and wire), run:

echo 0 > /proc/fs/lustre/llite/<fsname>/checksum_pages

To check the status of a wire checksum, run:

lctl get_param osc.*.checksums

24.8.1.1 Changing Checksum Algorithms

By default, Lustre uses the adler32 checksum algorithm, because it is robust and has
a lower impact on performance than crc32. The Lustre administrator can change the
checksum algorithm via /proc, depending on what is supported in the kernel.

To check which checksum algorithm is being used by Lustre, run:

$ cat /proc/fs/lustre/osc/<fsname>-OST<index>-osc-*/checksum_type

To change the wire checksum algorithm used by Lustre, run:

$ echo <algorithm name> /proc/fs/lustre/osc/<fsname>-OST<index>- \
osc-*/checksum_type

Note – The in-memory checksum always uses the adler32 algorithm, if available,
and only falls back to crc32 if adler32 cannot be used.
Chapter 24 Striping and I/O Options 24-21

In the following example, the cat command is used to determine that Lustre is using
the adler32 checksum algorithm. Then the echo command is used to change the
checksum algorithm to crc32. A second cat command confirms that the crc32
checksum algorithm is now in use.

$ cat /proc/fs/lustre/osc/lustre-OST0000-osc- \
ffff81012b2c48e0/checksum_type

crc32 [adler]

$ echo crc32 > /proc/fs/lustre/osc/lustre-OST0000-osc- \
ffff81012b2c48e0/checksum_type

$ cat /proc/fs/lustre/osc/lustre-OST0000-osc- \
ffff81012b2c48e0/checksum_type

[crc32] adler

24.9 Striping Using llapi
Use llapi_file_create to set Lustre properties for a new file. For a synopsis and
description of llapi_file_create and examples of how to use it, see Setting
Lustre Properties (man3).

You can set striping from inside programs like ioctl. To compile the sample program,
you need to download libtest.c and liblustreapi.c files from the Lustre
source tree.

A simple C program to demonstrate striping API – libtest.c

/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
 * vim:expandtab:shiftwidth=8:tabstop=8:
 *
 * lustredemo - simple code examples of liblustreapi functions
 */

#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <dirent.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <lustre/liblustreapi.h>
#include <lustre/lustre_user.h>
#define MAX_OSTS 1024
24-22 Lustre 2.0 Operations Manual • April 2010

#define LOV_EA_SIZE(lum, num) (sizeof(*lum) + num * sizeof(*lum->lmm_objects))
#define LOV_EA_MAX(lum) LOV_EA_SIZE(lum, MAX_OSTS)

/*
This program provides crude examples of using the liblustre API functions
*/

/* Change these definitions to suit */

#define TESTDIR "/tmp" /* Results directory */
#define TESTFILE "lustre_dummy" /* Name for the file we create/destroy */
#define FILESIZE 262144 /* Size of the file in words */
#define DUMWORD "DEADBEEF" /* Dummy word used to fill files */
#define MY_STRIPE_WIDTH 2 /* Set this to the number of OST required */
#define MY_LUSTRE_DIR "/mnt/lustre/ftest"

int close_file(int fd)
{

if (close(fd) < 0) {
fprintf(stderr, "File close failed: %d (%s)\n", errno,

strerror(errno));
return -1;

}
return 0;

}

int write_file(int fd)
{

char *stng = DUMWORD;
int cnt = 0;

for(cnt = 0; cnt < FILESIZE; cnt++) {
 write(fd, stng, sizeof(stng));

}
return 0;

}
/* Open a file, set a specific stripe count, size and starting OST
 Adjust the parameters to suit */

int open_stripe_file()
{

char *tfile = TESTFILE;
int stripe_size = 65536; /* System default is 4M */
int stripe_offset = -1; /* Start at default */
int stripe_count = MY_STRIPE_WIDTH; /*Single stripe for this

demo*/
int stripe_pattern = 0; /* only RAID 0 at this time

*/
int rc, fd;
/*
*/
rc = llapi_file_create(tfile,

stripe_size,stripe_offset,stripe_count,stripe_pattern);
Chapter 24 Striping and I/O Options 24-23

/* result code is inverted, we may return -EINVAL or an ioctl error.
We borrow an error message from sanity.c
*/
if (rc) {

 fprintf(stderr,"llapi_file_create failed: %d (%s) \n", rc,
strerror(-rc));
 return -1;
 }
 /* llapi_file_create closes the file descriptor, we must re-open */
 fd = open(tfile, O_CREAT | O_RDWR | O_LOV_DELAY_CREATE, 0644);
 if (fd < 0) {

fprintf(stderr, "Can't open %s file: %d (%s)\n", tfile, errno,
strerror(errno));

return -1;
 }
 return fd;
}

/* output a list of uuids for this file */
int get_my_uuids(int fd)
{

struct obd_uuid uuids[1024], *uuidp; /* Output var */
int obdcount = 1024;
int rc,i;

rc = llapi_lov_get_uuids(fd, uuids, &obdcount);
if (rc != 0) {

fprintf(stderr, "get uuids failed: %d (%s)\n",errno,
strerror(errno));
 }
 printf("This file system has %d obds\n", obdcount);
 for (i = 0, uuidp = uuids; i < obdcount; i++, uuidp++) {

printf("UUID %d is %s\n",i, uuidp->uuid);
 }
 return 0;
}

/* Print out some LOV attributes. List our objects */
int get_file_info(char *path)
{

struct lov_user_md *lump;
int rc;
int i;

lump = malloc(LOV_EA_MAX(lump));
if (lump == NULL) {

return -1;
 }

 rc = llapi_file_get_stripe(path, lump);

 if (rc != 0) {
24-24 Lustre 2.0 Operations Manual • April 2010

fprintf(stderr, "get_stripe failed: %d (%s)\n",errno,
strerror(errno));

return -1;
 }

printf("Lov magic %u\n", lump->lmm_magic);
printf("Lov pattern %u\n", lump->lmm_pattern);
printf("Lov object id %llu\n", lump->lmm_object_id);
printf("Lov object group %llu\n", lump->lmm_object_gr);
printf("Lov stripe size %u\n", lump->lmm_stripe_size);
printf("Lov stripe count %hu\n", lump->lmm_stripe_count);
printf("Lov stripe offset %u\n", lump->lmm_stripe_offset);
for (i = 0; i < lump->lmm_stripe_count; i++) {

printf("Object index %d Objid %llu\n",
lump->lmm_objects[i].l_ost_idx, lump->lmm_objects[i].l_object_id);
 }

free(lump);
return rc;

}
/* Ping all OSTs that belong to this filesysem */

int ping_osts()
{

DIR *dir;
struct dirent *d;
char osc_dir[100];
int rc;

sprintf(osc_dir, "/proc/fs/lustre/osc");
dir = opendir(osc_dir);
if (dir == NULL) {

printf("Can't open dir\n");
return -1;

}
while((d = readdir(dir)) != NULL) {

if (d->d_type == DT_DIR) {
if (! strncmp(d->d_name, "OSC", 3)) {

printf("Pinging OSC %s ", d->d_name);
rc = llapi_ping("osc", d->d_name);
if (rc) {

printf(" bad\n");
} else {

printf(" good\n");
}

}
}

}
return 0;

}

Chapter 24 Striping and I/O Options 24-25

int main()
{

int file;
int rc;
char filename[100];
char sys_cmd[100];

sprintf(filename, "%s/%s",MY_LUSTRE_DIR, TESTFILE);

printf("Open a file with striping\n");
file = open_stripe_file();
if (file < 0) {

printf("Exiting\n");
exit(1);

}
printf("Getting uuid list\n");
rc = get_my_uuids(file);
rintf("Write to the file\n");
rc = write_file(file);
rc = close_file(file);
printf("Listing LOV data\n");
rc = get_file_info(filename);
printf("Ping our OSTs\n");
rc = ping_osts();

/* the results should match lfs getstripe */
printf("Confirming our results with lfs getsrtipe\n");
sprintf(sys_cmd, "/usr/bin/lfs getstripe %s/%s", MY_LUSTRE_DIR,

TESTFILE);
system(sys_cmd);

printf("All done\n");
exit(rc);

}

Makefile for sample application:

gcc -g -O2 -Wall -o lustredemo libtest.c -llustreapi
clean:
rm -f core lustredemo *.o
run:
make
rm -f /mnt/lustre/ftest/lustredemo
rm -f /mnt/lustre/ftest/lustre_dummy
cp lustredemo /mnt/lustre/ftest/
24-26 Lustre 2.0 Operations Manual • April 2010

CHAPTER 25

Lustre Security

This chapter describes Lustre security and includes the following sections:

■ Using ACLs

■ Using Root Squash

25.1 Using ACLs
An access control list (ACL), is a set of data that informs an operating system about
permissions or access rights that each user or group has to specific system objects,
such as directories or files. Each object has a unique security attribute that identifies
users who have access to it. The ACL lists each object and user access privileges such
as read, write or execute.

25.1.1 How ACLs Work
Implementing ACLs varies between operating systems. Systems that support the
Portable Operating System Interface (POSIX) family of standards share a simple yet
powerful file system permission model, which should be well-known to the
Linux/Unix administrator. ACLs add finer-grained permissions to this model,
allowing for more complicated permission schemes. For a detailed explanation of
ACLs on Linux, refer to the SuSE Labs article, Posix Access Control Lists on Linux:

http://www.suse.de/~agruen/acl/linux-acls/online/

We have implemented ACLs according to this model. Lustre supports the standard
Linux ACL tools, setfacl, getfacl, and the historical chacl, normally installed with the
ACL package.
25-1

http://www.suse.de/~agruen/acl/linux-acls/online/

Note – ACL support is a system-range feature, meaning that all clients have ACL
enabled or not. You cannot specify which clients should enable ACL.

25.1.2 Using ACLs with Lustre
Lustre supports POSIX Access Control Lists (ACLs). An ACL consists of file entries
representing permissions based on standard POSIX file system object permissions
that define three classes of user (owner, group and other). Each class is associated
with a set of permissions [read (r), write (w) and execute (x)].

■ Owner class permissions define access privileges of the file owner.

■ Group class permissions define access privileges of the owning group.

■ Other class permissions define access privileges of all users not in the owner or
group class.

The ls -l command displays the owner, group, and other class permissions in the
first column of its output (for example, -rw-r- -- for a regular file with read and
write access for the owner class, read access for the group class, and no access for
others).

Minimal ACLs have three entries. Extended ACLs have more than the three entries.
Extended ACLs also contain a mask entry and may contain any number of named
user and named group entries.

Lustre ACL support depends on the MDS, which needs to be configured to enable
ACLs. Use --mountfsoptions to enable ACL support when creating your
configuration:

$ mkfs.lustre --fsname spfs --mountfsoptions=acl --mdt –mgs /dev/sda

Alternately, you can enable ACLs at run time by using the --acl option with
mkfs.lustre:

$ mount -t lustre -o acl /dev/sda /mnt/mdt

To check ACLs on the MDS:

$ lctl get_param -n mdc.home-MDT0000-mdc-*.connect_flags | grep acl
acl

To mount the client with no ACLs:

$ mount -t lustre -o noacl ibmds2@o2ib:/home /home
25-2 Lustre 2.0 Operations Manual • April 2010

Lustre ACL support is a system-wide feature; either all clients enable ACLs or none
do. Activating ACLs is controlled by MDS mount options acl / noacl
(enable/disableACLs). Client-side mount options acl/noacl are ignored. You do
not need to change the client configuration, and the “acl” string will not appear in
the client /etc/mtab. The client acl mount option is no longer needed. If a client is
mounted with that option, then this message appears in the MDS syslog:

...MDS requires ACL support but client does not

The message is harmless but indicates a configuration issue, which should be
corrected.

If ACLs are not enabled on the MDS, then any attempts to reference an ACL on a
client return an Operation not supported error.

25.1.3 Examples
These examples are taken directly from the POSIX paper referenced above. ACLs on
a Lustre file system work exactly like ACLs on any Linux file system. They are
manipulated with the standard tools in the standard manner. Below, we create a
directory and allow a specific user access.

[root@client lustre]# umask 027

[root@client lustre]# mkdir rain

[root@client lustre]# ls -ld rain

drwxr-x--- 2 root root 4096 Feb 20 06:50 rain

[root@client lustre]# getfacl rain

file: rain

owner: root

group: root

user::rwx

group::r-x

other::---

[root@client lustre]# setfacl -m user:chirag:rwx rain

[root@client lustre]# ls -ld rain

drwxrwx---+ 2 root root 4096 Feb 20 06:50 rain

[root@client lustre]# getfacl --omit-heade rain

user::rwx

user:chirag:rwx

group::r-x

mask::rwx

other::---
Chapter 25 Lustre Security 25-3

25.2 Using Root Squash
Lustre 1.6 introduced root squash functionality, a security feature which controls
super user access rights to an Lustre file system. Before the root squash feature was
added, Lustre users could run rm -rf * as root, and remove data which should not
be deleted. Using the root squash feature prevents this outcome.

The root squash feature works by re-mapping the user ID (UID) and group ID (GID)
of the root user to a UID and GID specified by the system administrator, via the
Lustre configuration management server (MGS). The root squash feature also enables
the Lustre administrator to specify a set of client for which UID/GID re-mapping
does not apply.

25.2.1 Configuring Root Squash
Root squash functionality is managed by two configuration parameters,
root_squash and nosquash_nids.

■ The root_squash parameter specifies the UID and GID with which the root user
accesses the Lustre file system.

■ The nosquash_nids parameter specifies the set of clients to which root squash
does not apply. LNET NID range syntax is used for this parameter (see the NID
range syntax rules described in Enabling and Tuning Root Squash). For example:

nosquash_nids=172.16.245.[0-255/2]@tcp

In this example, root squash does not apply to TCP clients on subnet 172.16.245.0
that have an even number as the last component of their IP address.

25.2.2 Enabling and Tuning Root Squash
The default value for nosquash_nids is NULL, which means that root squashing
applies to all clients. Setting the root squash UID and GID to 0 turns root squash off.

Root squash parameters can be set when the MDT is created (mkfs.lustre --mdt).
For example:

mkfs.lustre--reformat --fsname=Lustre --mdt --mgs \
--param "mds.root_squash=500:501" \
--param "mds.nosquash_nids='0@elan1 192.168.1.[10,11]'" /dev/sda1
25-4 Lustre 2.0 Operations Manual • April 2010

Root squash parameters can also be changed on an unmounted device with
tunefs.lustre. For example:

tunefs.lustre --param "mds.root_squash=65534:65534" \
--param "mds.nosquash_nids=192.168.0.13@tcp0" /dev/sda1

Root squash parameters can also be changed with the lctl conf_param command.
For example:

lctl conf_param Lustre.mds.root_squash="1000:100"

lctl conf_param Lustre.mds.nosquash_nids="*@tcp"

Note – When using the lctl conf_param command, keep in mind:

* lctl conf_param must be run on a live MGS
* lctl conf_param causes the parameter to change on all MDSs
* lctl conf_param is to be used once per a parameter

The nosquash_nids list can be cleared with:

lctl conf_param Lustre.mds.nosquash_nids="NONE"

- OR -

lctl conf_param Lustre.mds.nosquash_nids="clear"

If the nosquash_nids value consists of several NID ranges (e.g. 0@elan, 1@elan1),
the list of NID ranges must be quoted with single (') or double ('') quotation marks.
List elements must be separated with a space. For example:

mkfs.lustre ... --param "mds.nosquash_nids='0@elan1 1@elan2'" /dev/sda1
lctl conf_param Lustre.mds.nosquash_nids="24@elan 15@elan1"

These are examples of incorrect syntax:

mkfs.lustre ... --param "mds.nosquash_nids=0@elan1 1@elan2" /dev/sda1
lctl conf_param Lustre.mds.nosquash_nids=24@elan 15@elan1

To check root squash parameters, use the lctl get_param command:

lctl get_param mds.Lustre-MDT0000.root_squash

lctl get_param mds.Lustre-MDT000*.nosquash_nids

Note – An empty nosquash_nids list is reported as NONE.
Chapter 25 Lustre Security 25-5

25.2.3 Tips on Using Root Squash
Lustre configuration management limits root squash in several ways.

■ The lctl conf_param value overwrites the parameter’s previous value. If the
new value uses an incorrect syntax, then the system continues with the old
parameters and the previously-correct value is lost on remount. That is, be careful
doing root squash tuning.

■ mkfs.lustre and tunefs.lustre do not perform syntax checking. If the root
squash parameters are incorrect, they are ignored on mount and the default values
are used instead.

■ Root squash parameters are parsed with rigorous syntax checking. The
root_squash parameter should be specified as <decnum>':'<decnum>. The
nosquash_nids parameter should follow LNET NID range list syntax.

LNET NID range syntax:

<nidlist> :== <nidrange> [' ' <nidrange>]

<nidrange> :== <addrrange> '@' <net>

<addrrange>:== '*' |

<ipaddr_range> |

<numaddr_range>

<ipaddr_range>:==

<numaddr_range>.<numaddr_range>.<numaddr_range>.<numaddr_range>

<numaddr_range>:== <number> |

<expr_list>

<expr_list>:== '[' <range_expr> [',' <range_expr>] ']'

<range_expr>:== <number> |

<number> '-' <number> |

<number> '-' <number> '/' <number>

<net> :== <netname> | <netname><number>

<netname> :== "lo" | "tcp" | "o2ib" | "cib" | "openib" | "iib" |

"vib" | "ra" | "elan" | "gm" | "mx" | "ptl"

<number> :== <nonnegative decimal> | <hexadecimal>

Note – For networks using numeric addresses (e.g. elan), the address range must be
specified in the <numaddr_range> syntax. For networks using IP addresses, the
address range must be in the <ipaddr_range>. For example, if elan is using numeric
addresses, 1.2.3.4@elan is incorrect.
25-6 Lustre 2.0 Operations Manual • April 2010

CHAPTER 26

Lustre Operating Tips

This chapter describes tips to improve Lustre operations and includes the following
sections:

■ Adding an OST to a Lustre File System

■ A Simple Data Migration Script

■ Adding Multiple SCSI LUNs on Single HBA

■ Failures Running a Client and OST on the Same Machine

■ Improving Lustre Metadata Performance While Using Large Directories
26-1

26.1 Adding an OST to a Lustre File System
To add an OST to existing Lustre file system:

1. Add a new OST by passing on the following commands, run:

$ mkfs.lustre --fsname=spfs --ost --mgsnode=mds16@tcp0 /dev/sda

$ mkdir -p /mnt/test/ost0

$ mount -t lustre /dev/sda /mnt/test/ost0

2. Migrate the data (possibly).

The file system is quite unbalanced when new empty OSTs are added. New file
creations are automatically balanced. If this is a scratch file system or files are
pruned at a regular interval, then no further work may be needed. Files existing
prior to the expansion can be rebalanced with an in-place copy, which can be done
with a simple script.

The basic method is to copy existing files to a temporary file, then move the temp
file over the old one. This should not be attempted with files which are currently
being written to by users or applications. This operation redistributes the stripes
over the entire set of OSTs. For a sample data migration script, see A Simple Data
Migration Script.

A very clever migration script would do the following:

■ Examine the current distribution of data.

■ Calculate how much data should move from each full OST to the empty ones.

■ Search for files on a given full OST (using lfs getstripe).

■ Force the new destination OST (using lfs setstripe).

■ Copy only enough files to address the imbalance.

If a Lustre administrator wants to explore this approach further, per-OST
disk-usage statistics can be found under /proc/fs/lustre/osc/*/rpc_stats
26-2 Lustre 2.0 Operations Manual • April 2010

26.2 A Simple Data Migration Script
#!/bin/bash

set -x

A script to copy and check files.

To avoid allocating objects on one or more OSTs, they should be

deactivated on the MDS via "lctl --device {device_number}
deactivate",

where {device_number} is from the output of "lctl dl" on the MDS.

To guard against corruption, the file is chksum'd

before and after the operation.

#

CKSUM=${CKSUM:-md5sum}

usage() {

 echo "usage: $0 [-O <OST_UUID-to-empty>] <dir>" 1>&2

 echo " -O can be specified multiple times" 1>&2

 exit 1

}

while getopts "O:" opt $*; do

 case $opt in

 O) OST_PARAM="$OST_PARAM -O $OPTARG";;

 \?) usage;;

 esac

done

shift $((OPTIND - 1))

MVDIR=$1

if [$# -ne 1 -o ! -d $MVDIR]; then

 usage

fi

lfs find -type f $OST_PARAM $MVDIR | while read OLDNAME; do

 echo -n "$OLDNAME: "

 if [! -w "$OLDNAME"]; then

 echo "No write permission, skipping"

 continue

 fi
Chapter 26 Lustre Operating Tips 26-3

 OLDCHK=$($CKSUM "$OLDNAME" | awk '{print $1}')

 if [-z "$OLDCHK"]; then

 echo "checksum error - exiting" 1>&2

exit 1

 fi

 NEWNAME=$(mktemp "$OLDNAME.tmp.XXXXXX")

 if [$? -ne 0 -o -z "$NEWNAME"]; then

 echo "unable to create temp file - exiting" 1>&2

exit 2

 fi

 cp -a "$OLDNAME" "$NEWNAME"

 if [$? -ne 0]; then

 echo "copy error - exiting" 1>&2

 rm -f "$NEWNAME"

 exit 4

 fi

 NEWCHK=$($CKSUM "$NEWNAME" | awk '{print $1}')

 if [-z "$NEWCHK"]; then

 echo "'$NEWNAME' checksum error - exiting" 1>&2

exit 6

 fi

 if [$OLDCHK != $NEWCHK]; then

echo "'$NEWNAME' bad checksum - "$OLDNAME" not moved, exiting"
1>&2

 rm -f "$NEWNAME"

 exit 8

 else

 mv "$NEWNAME" "$OLDNAME"

 if [$? -ne 0]; then

 echo "rename error - exiting" 1>&2

 rm -f "$NEWNAME"

 exit 12

 fi

 fi

 echo "done"

done
26-4 Lustre 2.0 Operations Manual • April 2010

26.3 Adding Multiple SCSI LUNs on Single
HBA
The configuration of the kernels packaged by the Lustre group is similar to that of
the upstream RedHat and SuSE packages. Currently, RHEL does not enable
CONFIG_SCSI_MULTI_LUN because it can cause problems with SCSI hardware.

To enable this, set the scsi_mod max_scsi_luns=xx option (typically, xx is 128) in
either modprobe.conf (2.6 kernel) or modules.conf (2.4 kernel).

To pass this option as a kernel boot argument (in grub.conf or lilo.conf),
compile the kernel with CONFIG_SCSI_MULT_LUN=y

26.4 Failures Running a Client and OST on the
Same Machine
There are inherent problems if a client and OST share the same machine (and the
same memory pool). An effort to relieve memory pressure (by the client), requires
memory to be available to the OST. If the client is experiencing memory pressure,
then the OST is as well. The OST may not get the memory it needs to help the client
get the memory it needs because it is all one memory pool; this results in deadlock.

Running a client and an OST on the same machine can cause these failures:

■ If the client contains a dirty file system in memory and memory pressure, a kernel
thread flushes dirty pages to the file system, and it writes to a local OST. To
complete the write, the OST needs to do an allocation. Then the blocking of
allocation occurs while waiting for the above kernel thread to complete the write
process and free up some memory. This is a deadlock condition.

■ If the node with both a client and OST crashes, then the OST waits for the
mounted client on that node to recover. However, since the client is now in
crashed state, the OST considers it to be a new client and blocks it from mounting
until the recovery completes.

As a result, running OST and client on same machine can cause a double failure and
prevent a complete recovery.
Chapter 26 Lustre Operating Tips 26-5

26.5 Improving Lustre Metadata Performance
While Using Large Directories
To improve metadata performance while using large directories, follow these tips:

■ Increase RAM on the MDS – On the MDS, more memory translates into bigger
caches, thereby increasing the metadata performance.

■ Patch the core kernel on the MDS with the 3G/1G patch (if not running a 64-bit
kernel), which increases the available kernel address space. This translates into
support for bigger caches on the MDS.
26-6 Lustre 2.0 Operations Manual • April 2010

PART V Reference

This part includes reference information on Lustre user utilities, configuration files
and module parameters, programming interfaces, system configuration utilities, and
system limits.

CHAPTER 27

User Utilities (man1)

This chapter describes user utilities and includes the following sections:

■ lfs

■ lfsck

■ Filefrag

■ Mount

■ Handling Timeouts
27-1

27.1 lfs
The lfs utility can be used for user configuration routines and monitoring. With lfs
you can create a new file with a specific striping pattern, determine the striping
pattern of existing files, and gather the extended attributes (object numbers and
location) of a specific file.

Synopsis

lfs

lfs check <mds|osts|servers>

lfs df [-i] [-h] [path]

lfs find [[!] --atime|-A [-+]N] [[!] --mtime|-M [-+]N]

[[!] --ctime|-C [-+]N] [--maxdepth|-D N] [--name|-n <pattern>]

[--print|-p] [--print0|-P] [[!] --obd|-O <uuid[s]>]

[[!] --size|-S [+-]N[kMGTPE]] --type |-t {bcdflpsD}]

[[!] --gid|-g|--group|-G <gname>|<gid>]

[[!] --uid|-u|--user|-U <uname>|<uid>]

<dirname|filename>

lfs osts

lfs getstripe [--obd|-O <uuid>] [--quiet|-q] [--verbose|-v]

[--count|-c] [--size|-s] [--index|-i]

[--offset|-o] [--pool|-p] [--directory|-d]

[--recursive|-r] <dirname|filename>

lfs setstripe [--size|-s stripe-size] [--count|-c stripe-cnt]

[--offset|-o start-ost] [--pool|-p <pool>]

<dirname|filename>

lfs setstripe -d <dirname>

lfs poollist <filename[.<pool>] | <pathname>

lfs quota [-q] [-v] [-o obd_uuid|-I ost_idx|-i mdt_idx] [-u|-g
<uname>|uid|gname|gid>] <filesystem>

lfs quota -t <-u|-g> <filesystem>

lfs quotacheck [-ugf] <filesystem>

lfs quotachown [-i] <filesystem>

lfs quotaon [-ugf] <filesystem>

lfs quotaoff [-ug] <filesystem>

lfs quotainv [-ug] [-f] <filesystem>
27-2 Lustre 2.0 Operations Manual • April 2010

lfs setquota <-u|--user|-g|--group> <uname|uid|gname|gid>

[--block-softlimit <block-softlimit>]

[--block-hardlimit <block-hardlimit>]

[--inode-softlimit <inode-softlimit>]

[--inode-hardlimit <inode-hardlimit>]

<filesystem>

lfs setquota <-u|--user|-g|--group> <uname|uid|gname|gid>

[-b <block-softlimit>] [-B <block-hardlimit>]

[-i <inode-softlimit>] [-I <inode-hardlimit>]

<filesystem>

lfs setquota -t <-u|-g>

[--block-grace <block-grace>]

[--inode-grace <inode-grace>]

<filesystem>

lfs setquota -t <-u|-g>

[-b <block-grace>] [-i <inode-grace>]

<filesystem>

lfs help

Note – In the above example, the <filesystem> parameter refers to the mount
point of the Lustre file system. The default mount point is /mnt/lustre.

Note – The old lfs quota output was very detailed and contained cluster-wide
quota statistics (including cluster-wide limits for a user/group and cluster-wide
usage for a user/group), as well as statistics for each MDS/OST. Now, lfs quota
has been updated to provide only cluster-wide statistics, by default. To obtain the full
report of cluster-wide limits, usage and statistics, use the -v option with lfs quota.

Description

The lfs utility is used to create a new file with a specific striping pattern, determine
the default striping pattern, gather the extended attributes (object numbers and
location) for a specific file, find files with specific attributes, list OST information, or
set quota limits. It can be invoked interactively without any arguments or in a
non-interactive mode with one of the supported arguments.
Chapter 27 User Utilities (man1) 27-3

Options

The various lfs options are listed and described below. For a complete list of
available options, type help at the lfs prompt.

Option Description

check

Displays the status of the MDS or OSTs (as specified in the
command) or all servers (MDS and OSTs).

df

Reports file system disk space usage or inode usage of each
MDT/OST. Can limit the scope to a specific OST pool.

find

Searches the directory tree rooted at the given
directory/filename for files that match the given parameters.
The --maxdepth option limits find to decend at most N levels
of directory tree. The --print and --print0 options print the full
filename, followed by a new line or NUL character
correspondingly. Using ! before an option negates its meaning
(files NOT matching the parameter). Using + before a numeric
value means files with the parameter OR MORE. Using - before
a numeric value means files with the parameter OR LESS.

--atime

File was last accessed N*24 hours ago. (There is no guarantee
that atime is kept coherent across the cluster.)

OSTs store a transient atime that is updated when clients do
read requests. Permanent atime is written to the MDS when the
file is closed. However, on-disk atime is only updated if it is
more than 60 seconds old
(/proc/fs/lustre/mds/*/max_atime_diff). Lustre considers the
latest atime from all OSTs. If a setattr is set by user, then it is
updated on both the MDS and OST, allowing the atime to go
backward.

--ctime

File status was last changed N*24 hours ago.

--mtime

File status was last modified N*24 hours ago.

--obd

File has an object on a specific OST(s).
27-4 Lustre 2.0 Operations Manual • April 2010

--size

File has a size in bytes or kilo-, Mega-, Giga-, Tera-, Peta- or
Exabytes if a suffix is given.

--type

File has a type (block, character, directory, pipe, file, symlink,
socket or Door [for Solaris]).

--uid

File has a specific numeric user ID.

--user

File is owned by a specific user (numeric user ID is allowed).

--gid

File has a specific group ID.

--group

File belongs to a specific group (numeric group ID allowed).

osts

Lists all OSTs for the file system.

getstripe

Lists the striping information for a given filename or directory.
By default, the stripe count, stripe size and offset are returned.

If you only want specific striping information, then the options
of --count,--size,--index or --offset, plus various combinations
of these options can be used to retrieve specific information.

--obd <uuid>

Lists files that have an object on a specific OST.

--quiet

Lists only information about a file’s object ID.

--verbose

Prints additional striping information.

--count

Lists the stripe count (how many OSTs to use).

--size

Lists the stripe size (how much data to write to one OST before
moving to the next OST).

Option Description
Chapter 27 User Utilities (man1) 27-5

--index

Lists the index for each OST in the file system.

--offset

Lists the OST index on which file striping starts.

--pool

Lists the pools to which a file belongs.

--directory

Lists entries about a specified directory instead of its contents
(in the same manner as ls -d).

--recursive

Recurses into sub-directories.

setstripe

Creates a new file or sets the directory default with specific
striping parameters.†

--size stripe-size*

Number of bytes to store on an OST before moving to the next
OST. A stripe size of 0 uses the file system’s default stripe size,
1MB. Can be specified with k (KB), m (MB), or g (GB),
respectively.

--count stripe-cnt

Number of OSTs over which to stripe a file. A stripe count of 0
uses the file system-wide default stripe count (1). A stripe
count of -1 stripes over all available OSTs, and normally results
in a file with 80 stripes.

--offset start-ost *

The OST index (base 10, starting at 0) on which to start striping
for this file. A start-ost value of -1 allows the MDS to choose
the starting index. This is the default, and it means that the
MDS selects the starting OST as it wants. It has no relevance on
whether the MDS will use round-robin or QoS weighted
allocation for the remaining stripes in the file. We strongly
recommend selecting this default value, as it allows space and
load balancing to be done by the MDS as needed.

Option Description
27-6 Lustre 2.0 Operations Manual • April 2010

--pool pool-name

Name of the pre-defined pool of OSTs (see lctl) that will be
used for striping. The stripe-cnt, stripe-size and start-ost
values are used as well. The start-ost value must be part of the
pool or an error is returned.

setstripe -d <dirname>

Deletes default striping on the specified directory.

poollist <filesystem>[.<pool>] | <pathname>

Lists pools in the file system or pathname or OSTs in the file
system’s pool.

quota [-q] [-v] [-o obd_uuid|-i mdt_idx|-I ost_idx] [-u|-g <uname|uid|gname|gid>]
<filesystem>

Displays disk usage and limits, either for the full file system or
for objects on a specific OBD. A user or group name or an ID
can be specified. If both user and group are omitted, quotas for
the current UID/GID are shown. The -q option provides more
quiet output by suppressing the printing of the header. It also
fills in blank spaces in the ''grace'' column with zeros (when
there is no grace period set), to ensure that the number of
columns is consistent. The -v option provides more verbose
(with per-OBD statistics) output.

quota -t <-u|-g> <filesystem>

Displays block and inode grace times for user (-u) or group (-g)
quotas.

quotacheck [-ugf] <filesystem>

Scans the specified file system for disk usage, and creates or
updates quota files. Options specify quota for users (-u),
groups (-g), and force (-f).

quotachown [-i] <filesystem>

Changes the file’s owner and group on OSTs of the specified
file system.

quotaon [-ugf] <filesystem>

Turns on file system quotas. Options specify quota for users
(-u), groups (-g), and force (-f).

quotaoff [-ugf] <filesystem>

Turns off file system quotas. Options specify quota for users
(-u), groups (-g), and force (-f).

Option Description
Chapter 27 User Utilities (man1) 27-7

quotainv [-ug] [-f] <filesystem>

Clears quota files (administrative quota files if used without -f,
operational quota files otherwise), all of their quota entries for
users (-u) or groups (-g). After running quotainv, you must run
quotacheck before using quotas.
CAUTION: Use extreme caution when using this command; its
results cannot be undone.

setquota <-u|-g> <uname>|<uid>|<gname>|<gid> [--block-softlimit <block-softlimit>]
[--block-hardlimit <block-hardlimit>] [--inode-softlimit <inode-softlimit>]
[--inode-hardlimit <inode-hardlimit>] <filesystem>

Sets file system quotas for users or groups. Limits can be
specified with --{block|inode}-{softlimit|hardlimit} or their
short equivalents -b, -B, -i, -I. Users can set 1, 2, 3 or 4 limits.‡

Also, limits can be specified with special suffixes, -b, -k, -m, -g,
-t, and -p to indicate units of 1, 2^10, 2^20, 2^30, 2^40 and 2^50,
respectively. By default, the block limits unit is 1 kilobyte (1,024),
and block limits are always kilobyte-grained (even if specified in
bytes). See Examples.

setquota -t <-u|-g> [--block-grace <block-grace>] [--inode-grace <inode-grace>]
<filesystem>

Sets file system quota grace times for users or groups. Grace
time is specified in “XXwXXdXXhXXmXXs” format or as an
integer seconds value. See Examples.

help

Provides brief help on various lfs arguments.

exit/quit

Quits the interactive lfs session.

* The default stripe-size is 0. The default stripe-start is -1. Do NOT confuse them! If you set stripe-start to 0, all
new file creations occur on OST 0 (seldom a good idea).

† The file cannot exist prior to using setstripe. A directory must exist prior to using setstripe.

‡ The old setquota interface is supported, but it may be removed in a future Lustre release.

Option Description
27-8 Lustre 2.0 Operations Manual • April 2010

Examples

$ lfs setstripe -s 128k -c 2 /mnt/lustre/file1

Creates a file striped on two OSTs with 128 KB on each stripe.

$ lfs setstripe -d /mnt/lustre/dir

Deletes a default stripe pattern on a given directory. New files use the default
striping pattern.

$ lfs getstripe -v /mnt/lustre/file1

Lists the detailed object allocation of a given file.

$ lfs setstripe --pool my_pool -c 2 /mnt/lustre/file

Creates a file striped on two OSTs from the pool my_pool

$ lfs poollist /mnt/lustre/

Lists the pools defined for the mounted Lustre file system /mnt/lustre

$ lfs poollist my_fs.my_pool

Lists the OSTs which are members of the pool my_pool in file system my_fs

$ lfs getstripe -v /mnt/lustre/file1

Lists the detailed object allocation of a given file.

$ lfs find /mnt/lustre

Efficiently lists all files in a given directory and its subdirectories.

$ lfs find /mnt/lustre -mtime +30 -type f -print

Recursively lists all regular files in a given directory more than 30 days old.
Chapter 27 User Utilities (man1) 27-9

$ lfs find --obd OST2-UUID /mnt/lustre/

Recursively lists all files in a given directory that have objects on OST2-UUID. The
lfs check servers command checks the status of all servers (MDT and OSTs).

$ lfs find /mnt/lustre --pool poolA

Finds all directories/files associated with poolA.

$ lfs find /mnt//lustre --pool ""

Finds all directories/files not associated with a pool.

$ lfs find /mnt/lustre ! --pool ""

Finds all directories/files associated with pool.

$ lfs check servers

Checks the status of all servers (MDT, OST)

$ lfs osts

Lists all OSTs in the file system.

$ lfs df -h

Lists space usage per OST and MDT in human-readable format.

$ lfs df -i

Lists inode usage per OST and MDT.

$ lfs df --pool <filesystem>[.<pool>] | <pathname>

List space or inode usage for a specific OST pool.

$ lfs quotachown -i /mnt/lustre

Changes file owner and group.
27-10 Lustre 2.0 Operations Manual • April 2010

$ lfs quotacheck -ug /mnt/lustre

Checks quotas for user and group. Turns on quotas after making the check.

$ lfs quotaon -ug /mnt/lustre

Turns on quotas of user and group.

$ lfs quotaoff -ug /mnt/lustre

Turns off quotas of user and group.

$ lfs setquota -u bob --block-softlimit 2000000 --block-hardlimit
1000000 /mnt/lustre

Sets quotas of user ‘bob’, with a 1 GB block quota hardlimit and a 2 GB block
quota softlimit.

$ lfs setquota -t -u --block-grace 1000 --inode-grace 1w4d /mnt/lustre

Sets grace times for user quotas: 1000 seconds for block quotas, 1 week and 4 days
for inode quotas.

$ lfs quota -u bob /mnt/lustre

List quotas of user ‘bob’.

$ lfs quota -t -u /mnt/lustre

Show grace times for user quotas on /mnt/lustre.

$ lfs setstripe --pool my_pool /mnt/lustre/dir

Associates a directory with the pool my_pool, so all new files and directories are
created in the pool.

$ lfs find /mnt/lustre --pool poolA

Finds all directories/files associated with poolA.
Chapter 27 User Utilities (man1) 27-11

$ lfs find /mnt//lustre --pool ""

Finds all directories/files not associated with a pool.

$ lfs find /mnt/lustre ! --pool ""

Finds all directories/files associated with pool.
27-12 Lustre 2.0 Operations Manual • April 2010

27.2 lfsck
Lfsck ensures that objects are not referenced by multiple MDS files, that there are no
orphan objects on the OSTs (objects that do not have any file on the MDS which
references them), and that all of the objects referenced by the MDS exist. Under
normal circumstances, Lustre maintains such coherency by distributed logging
mechanisms, but under exceptional circumstances that may fail (e.g. disk failure, file
system corruption leading to e2fsck repair). To avoid lengthy downtime, you can also
run lfsck once Lustre is already started.

The e2fsck utility is run on each of the local MDS and OST device file systems and
verifies that the underlying ldiskfs is consistent. After e2fsck is run, lfsck does
distributed coherency checking for the Lustre file system. In most cases, e2fsck is
sufficient to repair any file system issues and lfsck is not required.

Synopsis

lfsck [-c|--create] [-d|--delete] [-f|--force] [-h|--help]
[-l|--lostfound] [-n|--nofix] [-v|--verbose] --mdsdb
mds_database_file --ostdb ost1_database_file [ost2_database_file...]
<filesystem>

Note – As shown, the <filesystem> parameter refers to the Lustre file system mount
point. The default mount point is /mnt/lustre.

Note – For lfsck, database filenames must be provided as absolute pathnames.
Relative paths do not work, the databases cannot be properly opened.
Chapter 27 User Utilities (man1) 27-13

Options

The options and descriptions for the lfsck command are listed below.

Description

The lfsck utility is used to check and repair the distributed coherency of a Lustre file
system. If an MDS or an OST becomes corrupt, run a distributed check on the file
system to determine what sort of problems exist. Use lfsck to correct any defects
found.

For more information on using e2fsck and lfsck, including examples, see Commit
on Share. For information on resolving orphaned objects, see Working with
Orphaned Objects.

Option Description

-c

Creates (empty) missing OST objects referenced by MDS inodes.

-d

Deletes orphaned objects from the file system. Since objects on the OST are often
only one of several stripes of a file, it can be difficult to compile multiple objects
together in a single, usable file.

-h

Prints a brief help message.

-l

Puts orphaned objects into a lost+found directory in the root of the file system.

-n

Performs a read-only check; does not repair the file system.

-v

Verbose operation - more verbosity by specifying the option multiple times.

--mdsdb mds_database_file

MDS database file created by running e2fsck --mdsdb mds_database_file <device>
on the MDS backing device. This is required.

--ostdb ost1_database_file [ost2_database_file...]

OST database files created by running e2fsck --ostdb ost_database_file <device> on
each of the OST backing devices. These are required unless an OST is unavailable,
in which case all objects thereon are considered missing.
27-14 Lustre 2.0 Operations Manual • April 2010

27.3 Filefrag
The e2fsprogs package contains the filefrag tool which reports the extent of file
fragmentation.

Synopsis

filefrag [-belsv] [files...]

Description

The filefrag utility reports the extent of fragmentation in a given file. Initially, filefrag
attempts to obtain extent information using FIEMAP ioctl, which is efficient and fast.
If FIEMAP is not supported, then filefrag uses FIBMAP.

Note – Lustre only supports FIEMAP ioctl. FIBMAP ioctl is not supported.

In default mode1, filefrag returns the number of physically discontiguous extents in
the file. In extent or verbose mode, each extent is printed with details. For Lustre, the
extents are printed in device offset order, not logical offset order.

1. The default mode is faster than the verbose/extent mode.
Chapter 27 User Utilities (man1) 27-15

Options

The options and descriptions for the filefrag utility are listed below.

Examples

Lists default output.

$ filefrag /mnt/lustre/foo

/mnt/lustre/foo: 6 extents found

Lists verbose output in extent format.

$ filefrag -ve /mnt/lustre/foo
Checking /mnt/lustre/foo
Filesystem type is: bd00bd0
Filesystem cylinder groups is approximately 5
File size of /mnt/lustre/foo is 157286400 (153600 blocks)
ext:device_logical:start..end physical: start..end:length: device:flags:
0: 0.. 49151: 212992.. 262144: 49152: 0: remote
1: 49152.. 73727: 270336.. 294912: 24576: 0: remote
2: 73728.. 76799: 24576.. 27648: 3072: 0: remote
3: 0.. 57343: 196608.. 253952: 57344: 1: remote
4: 57344.. 65535: 139264.. 147456: 8192: 1: remote
5: 65536.. 76799: 163840.. 175104: 11264: 1: remote
/mnt/lustre/foo: 6 extents found

Option Description

-b

Uses the 1024-byte blocksize for the output. By default, this blocksize is used by
Lustre, since OSTs may use different block sizes.

-e

Uses the extent mode when printing the output.

-l

Displays extents in LUN offset order.

-s

Synchronizes the file before requesting the mapping.

--v

Uses the verbose mode when checking file fragmentation.
27-16 Lustre 2.0 Operations Manual • April 2010

27.4 Mount
Lustre uses the standard mount(8) Linux command. When mounting a Lustre file
system, mount(8) executes the /sbin/mount.lustre command to complete the
mount. The mount command supports these Lustre-specific options:

27.5 Handling Timeouts
Timeouts are the most common cause of hung applications. After a timeout involving
an MDS or failover OST, applications attempting to access the disconnected resource
wait until the connection gets established.

When a client performs any remote operation, it gives the server a reasonable
amount of time to respond. If a server does not reply either due to a down network,
hung server, or any other reason, a timeout occurs which requires a recovery.

If a timeout occurs, a message (similar to this one), appears on the console of the
client, and in /var/log/messages:

LustreError: 26597:(client.c:810:ptlrpc_expire_one_request()) @@@ timeout

req@a2d45200 x5886/t0 o38->mds_svc_UUID@NID_mds_UUID:12 lens 168/64 ref 1 fl

RPC:/0/0 rc 0

Server options Description

abort_recov Aborts recovery when starting a target

nosvc Starts only MGS/MGC servers

exclude Starts with a dead OST

Client options Description

flock Enables/disables flock support

user_xattr/nouser_xattr Enables/disables user-extended attributes

retry= Number of times a client will retry to mount the file system
Chapter 27 User Utilities (man1) 27-17

27-18 Lustre 2.0 Operations Manual • April 2010

CHAPTER 28

Lustre Programming Interfaces
(man2)

This chapter describes public programming interfaces to control various aspects of
Lustre from userspace. These interfaces are generally not guaranteed to remain
unchanged over time, although we will make an effort to notify the user community
well in advance of major changes. This chapter includes the following section:

■ User/Group Cache Upcall

28.1 User/Group Cache Upcall
This section describes user and group upcall.

Note – For information on a universal UID/GID, see Environmental Requirements.

28.1.1 Name
Use /proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_upcall to look
up a given user’s group membership.
28-1

28.1.2 Description
The group upcall file contains the path to an executable that, when installed, is
invoked to resolve a numeric UID to a group membership list. This utility should
complete the mds_grp_downcall_data data structure (see Data Structures) and
write it to the /proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_info
pseudo-file.

For a sample upcall program, see lustre/utils/l_getgroups.c in the Lustre
source distribution.

28.1.2.1 Primary and Secondary Groups

The mechanism for the primary/secondary group is as follows:

■ The MDS issues an upcall (set per MDS) to map the numeric UID to the
supplementary group(s).

■ If there is no upcall or if there is an upcall and it fails, supplementary groups will
be added as supplied by the client (as they are now).

■ The default upcall is /usr/sbin/l_getidentity, which can interact with the
user/group database to obtain UID/GID/suppgid. The user/group database
depends on authentication configuration, and can be local /etc/passwd, NIS,
LDAP, etc. If necessary, the administrator can use a parse utility to set
/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_upcall. If the
upcall interface is set to NONE, then upcall is disabled. The MDS uses the
UID/GID/suppgid supplied by the client.

■ The default group upcall is set by mkfs.lustre. Use tunefs.lustre --param or echo
{path} > /proc/fs/lustre/mds/{mdsname}/group_upcall

■ The Lustre administrator can specify permissions for a specific UID by configuring
/etc/lustre/perm.conf on the MDS. As commented in
lustre/utils/l_getidentity.c

/*
* permission file format is like this:
* {nid} {uid} {perms}
*
* '*' nid means any nid
* '*' uid means any uid
* the valid values for perms are:
* setuid/setgid/setgrp/rmtacl -- enable corresponding perm
* nosetuid/nosetgid/nosetgrp/normtacl -- disable corresponding
perm
* they can be listed together, seperated by ',',
* when perm and noperm are in the same line (item), noperm is
preferential,
* when they are in different lines (items), the latter is
28-2 Lustre 2.0 Operations Manual • April 2010

preferential,
* '*' nid is as default perm, and is not preferential.
*/

Currently, rmtacl/normtacl can be ignored, which are part of security stuff, and
used for remote client. The /usr/sbin/l_getidentity utility can parse
/etc/lustre/perm.conf to obtain permission mask for specified UID.

■ To avoid repeated upcalls, the MDS caches supplemental group information. Use
/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_expire to set the
cache time (default is 600 seconds). The kernel waits for the upcall to complete (at
most, 5 seconds) and takes the "failure" behavior as described. Set the wait time in
/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_acquire_expir
e (default is 15 seconds). Cached entries are flushed by writing to
/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_flush.

28.1.3 Parameters
■ Name of the MDS service

■ Numeric UID

28.1.4 Data Structures
struct identity_downcall_data {

__u32 idd_magic;

__u32 idd_err;

__u32 idd_uid;

__u32 idd_gid;

__u32 idd_nperms;

struct perm_downcall_data idd_perms[N_PERMS_MAX];

__u32 idd_ngroups;

__u32 idd_groups[0];

};
Chapter 28 Lustre Programming Interfaces (man2) 28-3

28-4 Lustre 2.0 Operations Manual • April 2010

CHAPTER 29

Setting Lustre Properties (man3)

This chapter describes how to use llapi to set Lustre file properties.

29.1 Using llapi
Several llapi commands are available to set Lustre properties, llapi_file_create,
llapi_file_get_stripe, and llapi_file_open. These commands are
described in the following sections:

llapi_file_create

llapi_file_get_stripe

llapi_file_open

llapi_quotactl

29.1.1 llapi_file_create
Use llapi_file_create to set Lustre properties for a new file.

Synopsis

#include <lustre/liblustreapi.h>
#include <lustre/lustre_user.h>

int llapi_file_create(char *name, long stripe_size,
int stripe_offset, int stripe_count, int stripe_pattern);
29-1

Description

The llapi_file_create() function sets a file descriptor’s Lustre striping
information. The file descriptor is then accessed with open ().

Note – Currently, only RAID 0 is supported. To use the system defaults, set these
values: stripe_size = 0, stripe_offset = -1, stripe_count = 0, stripe_pattern = 0

Option Description

llapi_file_create()

If the file already exists, this parameter returns to ‘EEXIST’.
If the stripe parameters are invalid, this parameter returns to ‘EINVAL’.

stripe_size

This value must be an even multiple of system page size, as shown by getpagesize
(). The default Lustre stripe size is 4MB.

stripe_offset

Indicates the starting OST for this file.

stripe_count

Indicates the number of OSTs that this file will be striped across.

stripe_pattern

Indicates the RAID pattern.
29-2 Lustre 1.8 Operations Manual • March 2010

Examples

System default size is 4 MB.

char *tfile = TESTFILE;

int stripe_size = 65536

To start at default, run:

int stripe_offset = -1

To start at the default, run:
int stripe_count = 1

To set a single stripe for this example, run:

int stripe_pattern = 0

Currently, only RAID 0 is supported.

int stripe_pattern = 0;

int rc, fd;

rc = llapi_file_create(tfile,
stripe_size,stripe_offset, stripe_count,stripe_pattern);

Result code is inverted, you may return with ’EINVAL’ or an ioctl error.

if (rc) {

fprintf(stderr,"llapi_file_create failed: %d (%s) 0, rc,
strerror(-rc));
return -1;
}

llapi_file_create closes the file descriptor. You must re-open the descriptor. To
do this, run:

fd = open(tfile, O_CREAT | O_RDWR | O_LOV_DELAY_CREATE, 0644);
if (fd < 0) \ {
fprintf(stderr, "Can’t open %s file: %s0, tfile,

str-

error(errno));

return -1;

}

Chapter 29 Setting Lustre Properties (man3) 29-3

29.1.2 llapi_file_get_stripe
Use llapi_file_get_stripe to get striping information.

Synopsis

int llapi_file_get_stripe(const char *path, struct lov_user_md *lum)

Description

The llapi_file_get_stripe function returns the striping information to the
caller. If it returns a zero (0), the operation was successful; a negative number means
there was a failure.

Option Description

path

The path of the file.

lum

The returned striping information.

return

A value of zero (0) mean the operation was successful.
A value of a negative number means there was a failure.

stripe_count

Indicates the number of OSTs that this file will be striped across.

stripe_pattern

Indicates the RAID pattern.
29-4 Lustre 1.8 Operations Manual • March 2010

29.1.3 llapi_file_open
The llapi_file_open command opens or creates a file with the specified striping
parameters.

Synopsis

int llapi_file_open(const char *name, int flags, int mode, unsigned
long stripe_size, int stripe_offset, int stripe_count, int
stripe_pattern)

Description

The llapi_file_open function opens or creates a file with the specified striping
parameters. If it returns a zero (0), the operation was successful; a negative number
means there was a failure.

Option Description

name

The name of the file.

flags

This opens flags.

mode

This opens modes.

stripe_size

The stripe size of the file.

stripe_offset

The stripe offset (stripe_index) of the file.

stripe_count

The stripe count of the file.

stripe_pattern

The stripe pattern of the file.
Chapter 29 Setting Lustre Properties (man3) 29-5

29.1.4 llapi_quotactl
Use llapi_quotactl to manipulate disk quotas on a Lustre file system.

Synopsis

#include <liblustre.h>

#include <lustre/lustre_idl.h>

#include <lustre/liblustreapi.h>

#include <lustre/lustre_user.h>

int llapi_quotactl(char" " *mnt," " struct if_quotactl" " *qctl)

struct if_quotactl {

 __u32 qc_cmd;

 __u32 qc_type;

 __u32 qc_id;

 __u32 qc_stat;

 struct obd_dqinfo qc_dqinfo;

 struct obd_dqblk qc_dqblk;

 char obd_type[16];

 struct obd_uuid obd_uuid;

};

struct obd_dqblk {

 __u64 dqb_bhardlimit;

 __u64 dqb_bsoftlimit;

 __u64 dqb_curspace;

 __u64 dqb_ihardlimit;

 __u64 dqb_isoftlimit;

 __u64 dqb_curinodes;

 __u64 dqb_btime;

 __u64 dqb_itime;

 __u32 dqb_valid;

 __u32 padding;

};

struct obd_dqinfo {

 __u64 dqi_bgrace;

 __u64 dqi_igrace;

 __u32 dqi_flags;

 __u32 dqi_valid;

};

struct obd_uuid {

 char uuid[40];

};
29-6 Lustre 1.8 Operations Manual • March 2010

Description

The llapi_quotactl() command manipulates disk quotas on a Lustre file system
mount. qc_cmd indicates a command to be applied to UID qc_id or GID qc_id.

Option Description

LUSTRE_Q_QUOTAON

Turns on quotas for a Lustre file system. qc_type is USRQUOTA, GRPQUOTA or
UGQUOTA (both user and group quota). The quota files must exist. They are
normally created with the llapi_quotacheck(3) call. This call is restricted to the
super user privilege.

LUSTRE_Q_QUOTAOFF

Turns off quotas for a Lustre file system. qc_type is USRQUOTA, GRPQUOTA or
UGQUOTA (both user and group quota). This call is restricted to the super user
privilege.

LUSTRE_Q_GETQUOTA

Gets disk quota limits and current usage for user or group qc_id. qc_type is
USRQUOTA or GRPQUOTA. UUID may be filled with OBD UUID string to query
quota information from a specific node. dqb_valid may be set nonzero to query
information only from MDS. If UUID is an empty string and dqb_valid is zero then
cluster-wide limits and usage are returned. On return, obd_dqblk contains the
requested information (block limits unit is kilobyte). Quotas must be turned on
before using this command.

LUSTRE_Q_SETQUOTA

Sets disk quota limits for user or group qc_id. qc_type is USRQUOTA or
GRPQUOTA. dqb_valid must be set to QIF_ILIMITS, QIF_BLIMITS or
QIF_LIMITS (both inode limits and block limits) dependent on updating limits.
obd_dqblk must be filled with limits values (as set in dqb_valid, block limits unit is
kilobyte). Quotas must be turned on before using this command.

LUSTRE_Q_GETINFO

Gets information about quotas. qc_type is either USRQUOTA or GRPQUOTA. On
return, dqi_igrace is inode grace time (in seconds), dqi_bgrace is block grace time
(in seconds), dqi_flags is not used by the current Lustre version.

LUSTRE_Q_SETINFO

Sets quota information (like grace times). qc_type is either USRQUOTA or
GRPQUOTA. dqi_igrace is inode grace time (in seconds), dqi_bgrace is block grace
time (in seconds), dqi_flags is not used by the current Lustre version and must be
zeroed.
Chapter 29 Setting Lustre Properties (man3) 29-7

Return Values

llapi_quotactl() returns:

0 on success

-1 on failure and sets error number to indicate the error

llapi Errors

llapi errors are described below.

Errors Description

EFAULT qctl is invalid.

ENOSYS Kernel or Lustre modules have not been compiled with the QUOTA option.

ENOMEM Insufficient memory to complete operation.

ENOTTY qc_cmd is invalid.

EBUSY Cannot process during quotacheck.

ENOENT UUID does not correspond to OBD or mnt does not exist.

EPERM The call is privileged and the caller is not the super user.

ESRCH No disk quota is found for the indicated user. Quotas have not been turned
on for this file system.
29-8 Lustre 1.8 Operations Manual • March 2010

29.1.5 llapi_path2fid
Use llapi_path2fid to get the FID from the pathname.

Synopsis

#include <lustre/liblustreapi.h>

#include <lustre/lustre_user.h>

int llapi_path2fid(const char *path, unsigned long long *seq, unsigned
long *oid, unsigned long *ver)

Description

The llapi_path2fid function returns the FID (sequence : object ID : version) for
the pathname.

Return Values

llapi_path2fid returns:

0 on success

non-zero value on failure
Chapter 29 Setting Lustre Properties (man3) 29-9

29-10 Lustre 1.8 Operations Manual • March 2010

CHAPTER 30

Configuration Files and Module
Parameters (man5)

This section describes configuration files and module parameters and includes the
following sections:

■ Introduction

■ Module Options

30.1 Introduction
LNET network hardware and routing are now configured via module parameters.
Parameters should be specified in the /etc/modprobe.conf file, for example:

alias lustre llite

options lnet networks=tcp0,elan0

The above option specifies that this node should use all the available TCP and Elan
interfaces.

Module parameters are read when the module is first loaded. Type-specific LND
modules (for instance, ksocklnd) are loaded automatically by the LNET module
when LNET starts (typically upon modprobe ptlrpc).

Under Linux 2.6, LNET configuration parameters can be viewed under
/sys/module/; generic and acceptor parameters under LNET, and LND-specific
parameters under the name of the corresponding LND.

Under Linux 2.4, sysfs is not available, but the LND-specific parameters are
accessible via equivalent paths under /proc.
30-1

Important: All old (pre v.1.4.6) Lustre configuration lines should be removed from
the module configuration files and replaced with the following. Make sure that
CONFIG_KMOD is set in your linux.config so LNET can load the following modules
it needs. The basic module files are:

modprobe.conf (for Linux 2.6)

alias lustre llite

options lnet networks=tcp0,elan0

modules.conf (for Linux 2.4)

alias lustre llite

options lnet networks=tcp0,elan0

For the following parameters, default option settings are shown in parenthesis.
Changes to parameters marked with a W affect running systems. (Unmarked
parameters can only be set when LNET loads for the first time.) Changes to
parameters marked with Wc only have effect when connections are established
(existing connections are not affected by these changes.)

30.2 Module Options
■ With routed or other multi-network configurations, use ip2nets rather than

networks, so all nodes can use the same configuration.

■ For a routed network, use the same “routes” configuration everywhere. Nodes
specified as routers automatically enable forwarding and any routes that are not
relevant to a particular node are ignored. Keep a common configuration to
guarantee that all nodes have consistent routing tables.

■ A separate modprobe.conf.lnet included from modprobe.conf makes distributing
the configuration much easier.

■ If you set config_on_load=1, LNET starts at modprobe time rather than waiting
for Lustre to start. This ensures routers start working at module load time.

lctl

lctl> net down

■ Remember the lctl ping {nid} command - it is a handy way to check your
LNET configuration.
30-2 Lustre 2.0 Operations Manual • April 2010

30.2.1 LNET Options
This section describes LNET options.

30.2.1.1 Network Topology

Network topology module parameters determine which networks a node should
join, whether it should route between these networks, and how it communicates with
non-local networks.

Here is a list of various networks and the supported software stacks:

Note – Lustre ignores the loopback interface (lo0), but Lustre use any IP addresses
aliased to the loopback (by default). When in doubt, explicitly specify networks.

Network Software Stack

openib OpenIB gen1/Mellanox Gold

iib Silverstorm (Infinicon)

vib Voltaire

o2ib OpenIB gen2

cib Cisco

mx Myrinet MX

gm Myrinet GM-2

elan Quadrics QSNet
Chapter 30 Configuration Files and Module Parameters (man5) 30-3

ip2nets ("") is a string that lists globally-available networks, each with a set of IP
address ranges. LNET determines the locally-available networks from this list by
matching the IP address ranges with the local IPs of a node. The purpose of this
option is to be able to use the same modules.conf file across a variety of nodes on
different networks. The string has the following syntax.

<ip2nets> :== <net-match> [<comment>] { <net-sep> <net-match> }

<net-match> :== [<w>] <net-spec> <w> <ip-range> { <w> <ip-range> }

[<w>]

<net-spec> :== <network> ["(" <interface-list> ")"]

<network> :== <nettype> [<number>]

<nettype> :== "tcp" | "elan" | "openib" | ...

<iface-list> :== <interface> ["," <iface-list>]

<ip-range> :== <r-expr> "." <r-expr> "." <r-expr> "." <r-expr>

<r-expr> :== <number> | "*" | "[" <r-list> "]"

<r-list> :== <range> ["," <r-list>]

<range> :== <number> ["-" <number> ["/" <number>]]

<comment :== "#" { <non-net-sep-chars> }

<net-sep> :== ";" | "\n"

<w> :== <whitespace-chars> { <whitespace-chars> }

<net-spec> contains enough information to uniquely identify the network and load
an appropriate LND. The LND determines the missing "address-within-network"
part of the NID based on the interfaces it can use.

<iface-list> specifies which hardware interface the network can use. If omitted, all
interfaces are used. LNDs that do not support the <iface-list> syntax cannot be
configured to use particular interfaces and just use what is there. Only a single
instance of these LNDs can exist on a node at any time, and <iface-list> must be
omitted.

<net-match> entries are scanned in the order declared to see if one of the node's IP
addresses matches one of the <ip-range> expressions. If there is a match, <net-spec>
specifies the network to instantiate. Note that it is the first match for a particular
network that counts. This can be used to simplify the match expression for the
general case by placing it after the special cases. For example:

ip2nets="tcp(eth1,eth2) 134.32.1.[4-10/2]; tcp(eth1) *.*.*.*"

4 nodes on the 134.32.1.* network have 2 interfaces (134.32.1.{4,6,8,10}) but all the rest
have 1.

ip2nets="vib 192.168.0.*; tcp(eth2) 192.168.0.[1,7,4,12]"

This describes an IB cluster on 192.168.0.*. Four of these nodes also have IP
interfaces; these four could be used as routers.

Note that match-all expressions (For instance, *.*.*.*) effectively mask all other
<net-match> entries specified after them. They should be used with caution.
30-4 Lustre 2.0 Operations Manual • April 2010

Here is a more complicated situation, the route parameter is explained below. We
have:

■ Two TCP subnets

■ One Elan subnet

■ One machine set up as a router, with both TCP and Elan interfaces

■ IP over Elan configured, but only IP will be used to label the nodes.

options lnet ip2nets=”tcp198.129.135.* 192.128.88.98; \
elan 198.128.88.98 198.129.135.3;” \
routes=”tcp 1022@elan# Elan NID of router;\
elan 198.128.88.98@tcp # TCP NID of router “

30.2.1.2 networks ("tcp")

This is an alternative to "ip2nets" which can be used to specify the networks to be
instantiated explicitly. The syntax is a simple comma separated list of <net-spec>s
(see above). The default is only used if neither “ip2nets” nor “networks” is specified.

30.2.1.3 routes (“”)

This is a string that lists networks and the NIDs of routers that forward to them.

It has the following syntax (<w> is one or more whitespace characters):

<routes> :== <route>{ ; <route> }

<route> :== [<net>[<w><hopcount>]<w><nid>{<w><nid>}

So a node on the network tcp1 that needs to go through a router to get to the Elan
network:

options lnet networks=tcp1 routes="elan 1 192.168.2.2@tcp1”

The hopcount is used to help choose the best path between multiply-routed
configurations.

A simple but powerful expansion syntax is provided, both for target networks and
router NIDs as follows.

<expansion> :== "[" <entry> { "," <entry> } "]"

<entry> :== <numeric range> | <non-numeric item>

<numeric range> :== <number> ["-" <number> ["/" <number>]]
Chapter 30 Configuration Files and Module Parameters (man5) 30-5

The expansion is a list enclosed in square brackets. Numeric items in the list may be
a single number, a contiguous range of numbers, or a strided range of numbers. For
example, routes="elan 192.168.1.[22-24]@tcp" says that network elan0 is adjacent
(hopcount defaults to 1); and is accessible via 3 routers on the tcp0 network
(192.168.1.22@tcp, 192.168.1.23@tcp and 192.168.1.24@tcp).

routes="[tcp,vib] 2 [8-14/2]@elan" says that 2 networks (tcp0 and vib0) are accessible
through 4 routers (8@elan, 10@elan, 12@elan and 14@elan). The hopcount of 2 means
that traffic to both these networks will be traversed 2 routers - first one of the routers
specified in this entry, then one more.

Duplicate entries, entries that route to a local network, and entries that specify
routers on a non-local network are ignored.

Equivalent entries are resolved in favor of the route with the shorter hopcount. The
hopcount, if omitted, defaults to 1 (the remote network is adjacent).

It is an error to specify routes to the same destination with routers on different local
networks.

If the target network string contains no expansions, then the hopcount defaults to 1
and may be omitted (that is, the remote network is adjacent). In practice, this is true
for most multi-network configurations. It is an error to specify an inconsistent hop
count for a given target network. This is why an explicit hopcount is required if the
target network string specifies more than one network.
30-6 Lustre 2.0 Operations Manual • April 2010

30.2.1.4 forwarding ("")

This is a string that can be set either to "enabled" or "disabled" for explicit control of
whether this node should act as a router, forwarding communications between all
local networks.

A standalone router can be started by simply starting LNET (“modprobe ptlrpc”)
with appropriate network topology options.

Variable Description

acceptor The acceptor is a TCP/IP service that some LNDs use to establish
communications. If a local network requires it and it has not been
disabled, the acceptor listens on a single port for connection
requests that it redirects to the appropriate local network. The
acceptor is part of the LNET module and configured by the
following options:
• secure - Accept connections only from reserved TCP ports (<

1023).
• all - Accept connections from any TCP port. NOTE: this is

required for liblustre clients to allow connections on
non-privileged ports.

• none - Do not run the acceptor.

accept_port
(988)

Port number on which the acceptor should listen for connection
requests. All nodes in a site configuration that require an acceptor
must use the same port.

accept_backlog
(127)

Maximum length that the queue of pending connections may grow
to (see listen(2)).

accept_timeout
(5, W)

Maximum time in seconds the acceptor is allowed to block while
communicating with a peer.

accept_proto_version Version of the acceptor protocol that should be used by outgoing
connection requests. It defaults to the most recent acceptor protocol
version, but it may be set to the previous version to allow the node
to initiate connections with nodes that only understand that
version of the acceptor protocol. The acceptor can, with some
restrictions, handle either version (that is, it can accept connections
from both 'old' and 'new' peers). For the current version of the
acceptor protocol (version 1), the acceptor is compatible with old
peers if it is only required by a single local network.
Chapter 30 Configuration Files and Module Parameters (man5) 30-7

30.2.2 SOCKLND Kernel TCP/IP LND
The SOCKLND kernel TCP/IP LND (socklnd) is connection-based and uses the
acceptor to establish communications via sockets with its peers.

It supports multiple instances and load balances dynamically over multiple
interfaces. If no interfaces are specified by the ip2nets or networks module
parameter, all non-loopback IP interfaces are used. The address-within-network is
determined by the address of the first IP interface an instance of the socklnd
encounters.

Consider a node on the “edge” of an InfiniBand network, with a low-bandwidth
management Ethernet (eth0), IP over IB configured (ipoib0), and a pair of GigE NICs
(eth1,eth2) providing off-cluster connectivity. This node should be configured with
"networks=vib,tcp(eth1,eth2)” to ensure that the socklnd ignores the management
Ethernet and IPoIB.

Variable Description

timeout
(50,W)

Time (in seconds) that communications may be stalled before the
LND completes them with failure.

nconnds
(4)

Sets the number of connection daemons.

min_reconnectms
(1000,W)

Minimum connection retry interval (in milliseconds). After a failed
connection attempt, this is the time that must elapse before the first
retry. As connections attempts fail, this time is doubled on each
successive retry up to a maximum of 'max_reconnectms'.

max_reconnectms
(6000,W)

Maximum connection retry interval (in milliseconds).

eager_ack
(0 on linux,
1 on darwin,W)

Boolean that determines whether the socklnd should attempt to
flush sends on message boundaries.

typed_conns
(1,Wc)

Boolean that determines whether the socklnd should use different
sockets for different types of messages. When clear, all
communication with a particular peer takes place on the same
socket. Otherwise, separate sockets are used for bulk sends, bulk
receives and everything else.

min_bulk
(1024,W)

Determines when a message is considered "bulk".

tx_buffer_size,
rx_buffer_size
(8388608,Wc)

Socket buffer sizes. Setting this option to zero (0), allows the
system to auto-tune buffer sizes. WARNING: Be very careful
changing this value as improper sizing can harm performance.

nagle
(0,Wc)

Boolean that determines if nagle should be enabled. It should never
be set in production systems.
30-8 Lustre 2.0 Operations Manual • April 2010

keepalive_idle
(30,Wc)

Time (in seconds) that a socket can remain idle before a keepalive
probe is sent. Setting this value to zero (0) disables keepalives.

keepalive_intvl
(2,Wc)

Time (in seconds) to repeat unanswered keepalive probes. Setting
this value to zero (0) disables keepalives.

keepalive_count
(10,Wc)

Number of unanswered keepalive probes before pronouncing
socket (hence peer) death.

enable_irq_affinity
(0,Wc)

Boolean that determines whether to enable IRQ affinity. The
default is zero (0).
When set, socklnd attempts to maximize performance by handling
device interrupts and data movement for particular (hardware)
interfaces on particular CPUs. This option is not available on all
platforms. This option requires an SMP system to exist and
produces best performance with multiple NICs. Systems with
multiple CPUs and a single NIC may see increase in the
performance with this parameter disabled.

zc_min_frag
(2048,W)

Determines the minimum message fragment that should be
considered for zero-copy sends. Increasing it above the platform's
PAGE_SIZE disables all zero copy sends. This option is not
available on all platforms.

Variable Description
Chapter 30 Configuration Files and Module Parameters (man5) 30-9

30.2.3 QSW LND
The QSW LND (qswlnd) is connection-less and, therefore, does not need the acceptor.
It is limited to a single instance, which uses all Elan "rails" that are present and
dynamically load balances over them.

The address-with-network is the node's Elan ID. A specific interface cannot be
selected in the "networks" module parameter.

Variable Description

tx_maxcontig
(1024)

Integer that specifies the maximum message payload (in bytes) to
copy into a pre-mapped transmit buffer

mtxmsgs
(8)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when
this pool is exhausted).

nnblk_txmsg
(512 with a 4K page
size, 256 otherwise)

Number of "reserved" message descriptors for communications
that may not block for memory. This pool must be sized large
enough so it is never exhausted.

nrxmsg_small
(256)

Number of "small" receive buffers to post (typically everything
apart from bulk data).

ep_envelopes_small
(2048)

Number of message envelopes to reserve for the "small" receive
buffer queue. This determines a breakpoint in the number of
concurrent senders. Below this number, communication attempts
are queued, but above this number, the pre-allocated envelope
queue will fill, causing senders to back off and retry. This can have
the unfortunate side effect of starving arbitrary senders, who
continually find the envelope queue is full when they retry. This
parameter should therefore be increased if envelope queue
overflow is suspected.

nrxmsg_large
(64)

Number of "large" receive buffers to post (typically for routed bulk
data).

ep_envelopes_large
(256)

Number of message envelopes to reserve for the "large" receive
buffer queue. For more information on message envelopes, see the
ep_envelopes_small option (above).

optimized_puts
(32768,W)

Smallest non-routed PUT that will be RDMA’d.

optimized_gets
(1,W)

Smallest non-routed GET that will be RDMA’d.
30-10 Lustre 2.0 Operations Manual • April 2010

30.2.4 RapidArray LND
The RapidArray LND (ralnd) is connection-based and uses the acceptor to establish
connections with its peers. It is limited to a single instance, which uses all (both)
RapidArray devices present. It load balances over them using the XOR of the source
and destination NIDs to determine which device to use for communication.

The address-within-network is determined by the address of the single IP interface
that may be specified by the "networks" module parameter. If this is omitted, then the
first non-loopback IP interface that is up is used instead.

Variable Description

n_connd
(4)

Sets the number of connection daemons.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed
connection attempt, this sets the time that must elapse before the
first retry. As connections attempts fail, this time is doubled on
each successive retry, up to a maximum of the
max_reconnect_interval option.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(30,W)

Time (in seconds) that communications may be stalled before the
LND completes them with failure.

ntx
(64)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when
this pool is exhausted).

ntx_nblk
(256)

Number of "reserved" message descriptors for communications
that may not block for memory. This pool must be sized large
enough so it is never exhausted.

fma_cq_size
(8192)

Number of entries in the RapidArray FMA completion queue to
allocate. It should be increased if the ralnd starts to issue
warnings that the FMA CQ has overflowed. This is only a
performance issue.

max_immediate
(2048,W)

Size (in bytes) of the smallest message that will be RDMA’d,
rather than being included as immediate data in an FMA. All
messages greater than 6912 bytes must be RDMA’d (FMA limit).
Chapter 30 Configuration Files and Module Parameters (man5) 30-11

30.2.5 VIB LND
The VIB LND is connection-based, establishing reliable queue-pairs over InfiniBand
with its peers. It does not use the acceptor. It is limited to a single instance, using a
single HCA that can be specified via the "networks" module parameter. If this is
omitted, it uses the first HCA in numerical order it can open. The
address-within-network is determined by the IPoIB interface corresponding to the
HCA used.

Variable Description

service_number
(0x11b9a2)

Fixed IB service number on which the LND listens for incoming
connection requests. NOTE: All instances of the viblnd on the
same network must have the same setting for this parameter.

arp_retries
(3,W)

Number of times the LND will retry ARP while it establishes
communications with a peer.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed
connection attempt, this sets the time that must elapse before the
first retry. As connections attempts fail, this time is doubled on
each successive retry, up to a maximum of the
max_reconnect_interval option.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(50,W)

Time (in seconds) that communications may be stalled before the
LND completes them with failure.

ntx
(32)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when
this pool is exhausted).

ntx_nblk
(256

Number of "reserved" message descriptors for communications
that may not block for memory. This pool must be sized large
enough so it is never exhausted.

concurrent_peers
(1152)

Maximum number of queue pairs and, therefore, the maximum
number of peers that the instance of the LND may communicate
with.

hca_basename
("InfiniHost")

Used to construct HCA device names by appending the device
number.

ipif_basename
("ipoib")

Used to construct IPoIB interface names by appending the same
device number as is used to generate the HCA device name.

local_ack_timeout
(0x12,Wc)

Used to construct IPoIB interface names by appending the same
device number as is used to generate the HCA device name.

retry_cnt
(7,Wc)

Low-level QP parameter. Only change it from the default value if
so advised.
30-12 Lustre 2.0 Operations Manual • April 2010

rnr_cnt
(6,Wc)

Low-level QP parameter. Only change it from the default value if
so advised.

rnr_nak_timer
(0x10,Wc)

Low-level QP parameter. Only change it from the default value if
so advised.

fmr_remaps
(1000)

Controls how often FMR mappings may be reused before they
must be unmapped. Only change it from the default value if so
advised

cksum
(0,W)

Boolean that determines if messages (NB not RDMAs) should be
check-summed. This is a diagnostic feature that should not
normally be enabled.

Variable Description
Chapter 30 Configuration Files and Module Parameters (man5) 30-13

30.2.6 OpenIB LND
The OpenIB LND is connection-based and uses the acceptor to establish reliable
queue-pairs over InfiniBand with its peers. It is limited to a single instance that uses
only IB device '0'.

The address-within-network is determined by the address of the single IP interface
that may be specified by the "networks" module parameter. If this is omitted, the first
non-loopback IP interface that is up, is used instead. It uses the acceptor to establish
connections with its peers.

Variable Description

n_connd
(4)

Sets the number of connection daemons. The default value is 4.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed
connection attempt, this sets the time that must elapse before the
first retry. As connections attempts fail, this time is doubled on
each successive retry, up to a maximum of
'max_reconnect_interval'.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(50,W)

Time (in seconds) that communications may be stalled before the
LND completes them with failure.

ntx
(64)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when
this pool is exhausted).

ntx_nblk
(256)

Number of "reserved" message descriptors for communications
that may not block for memory. This pool must be sized large
enough so it is never exhausted.

concurrent_peers
(1024)

Maximum number of queue pairs and, therefore, the maximum
number of peers that the instance of the LND may communicate
with.

cksum
(0,W)

Boolean that determines whether messages (NB not RDMAs)
should be check-summed. This is a diagnostic feature that should
not normally be enabled.
30-14 Lustre 2.0 Operations Manual • April 2010

30.2.7 Portals LND (Linux)
The Portals LND Linux (ptllnd) can be used as a interface layer to communicate with
Sandia Portals networking devices. This version is intended to work on Cray XT3
Linux nodes that use Cray Portals as a network transport.

Message Buffers

When ptllnd starts up, it allocates and posts sufficient message buffers to allow all
expected peers (set by concurrent_peers) to send one unsolicited message. The
first message that a peer actually sends is a

(so-called) "HELLO" message, used to negotiate how much additional buffering to
setup (typically 8 messages). If 10000 peers actually exist, then enough buffers are
posted for 80000 messages.

The maximum message size is set by the max_msg_size module parameter (default
value is 512). This parameter sets the bulk transfer breakpoint. Below this breakpoint,
payload data is sent in the message itself. Above this breakpoint, a buffer descriptor
is sent and the receiver gets the actual payload.

The buffer size is set by the rxb_npages module parameter (default value is 1). The
default conservatively avoids allocation problems due to kernel memory
fragmentation. However, increasing this value to 2 is probably not risky.

The ptllnd also keeps an additional rxb_nspare buffers (default value is 8) posted to
account for full buffers being handled.

Assuming a 4K page size with 10000 peers, 1258 buffers can be expected to be posted
at startup, increasing to a maximum of 10008 as peers that are actually connected. By
doubling rxb_npages halving max_msg_size, this number can be reduced by a
factor of 4.
Chapter 30 Configuration Files and Module Parameters (man5) 30-15

ME/MD Queue Length

The ptllnd uses a single portal set by the portal module parameter (default value of
9) for both message and bulk buffers. Message buffers are always attached with
PTL_INS_AFTER and match anything sent with "message" matchbits. Bulk buffers
are always attached with PTL_INS_BEFORE and match only specific matchbits for
that particular bulk transfer.

This scheme assumes that the majority of ME / MDs posted are for "message"
buffers, and that the overhead of searching through the preceding "bulk" buffers is
acceptable. Since the number of "bulk" buffers posted at any time is also dependent
on the bulk transfer breakpoint set by max_msg_size, this seems like an issue worth
measuring at scale.

TX Descriptors

The ptllnd has a pool of so-called "tx descriptors", which it uses not only for outgoing
messages, but also to hold state for bulk transfers requested by incoming messages.
This pool should scale with the total number of peers.

To enable the building of the Portals LND (ptllnd.ko) configure with this option:

./configure --with-portals=<path-to-portals-headers>

Variable Description

ntx
(256)

Total number of messaging descriptors.

concurrent_peers
(1152)

Maximum number of concurrent peers. Peers that attempt to
connect beyond the maximum are not allowed.

peer_hash_table_size
(101)

Number of hash table slots for the peers. This number should scale
with concurrent_peers. The size of the peer hash table is set by the
module parameter peer_hash_table_size which defaults to a value
of 101. This number should be prime to ensure the peer hash table
is populated evenly. It is advisable to increase this value to 1001 for
~10000 peers.

cksum
(0)

Set to non-zero to enable message (not RDMA) checksums for
outgoing packets. Incoming packets are always check-summed if
necessary, independent of this value.

timeout
(50)

Amount of time (in seconds) that a request can linger in a
peers-active queue before the peer is considered dead.

portal
(9)

Portal ID to use for the ptllnd traffic.

rxb_npages
(64 * #cpus)

Number of pages in an RX buffer.
30-16 Lustre 2.0 Operations Manual • April 2010

30.2.8 Portals LND (Catamount)
The Portals LND Catamount (ptllnd) can be used as a interface layer to communicate
with Sandia Portals networking devices. This version is intended to work on the
Cray XT3 Catamount nodes using Cray Portals as a network transport.

To enable the building of the Portals LND configure with this option:

./configure --with-portals=<path-to-portals-headers>

The following PTLLND tunables are currently available:

credits
(128)

Maximum total number of concurrent sends that are outstanding to
a single peer at a given time.

peercredits
(8)

Maximum number of concurrent sends that are outstanding to a
single peer at a given time.

max_msg_size
(512)

Maximum immediate message size. This MUST be the same on all
nodes in a cluster. A peer that connects with a different
max_msg_size value will be rejected.

Variable Description

PTLLND_DEBUG
(boolean, dflt 0)

Enables or disables debug features.

PTLLND_TX_HISTORY
(int, dflt debug?1024:0)

Sets the size of the history buffer.

PTLLND_ABORT_ON_PROT
OCOL_MISMATCH
(boolean, dflt 1)

Calls abort action on connecting to a peer running a
different version of the ptllnd protocol.

PTLLND_ABORT_ON_NAK
(boolean, dflt 0)

Calls abort action when a peer sends a NAK. (Example:
When it has timed out this node.)

PTLLND_DUMP_ON_NAK
(boolean, dflt debug?1:0)

Dumps peer debug and the history on receiving a NAK.

Variable Description
Chapter 30 Configuration Files and Module Parameters (man5) 30-17

The following environment variables can be set to configure the PTLLND’s behavior.

PTLLND_WATCHDOG_INTE
RVAL
(int, dflt 1)

Sets intervals to check some peers for timed out
communications while the application blocks for
communications to complete.

PTLLND_TIMEOUT
(int, dflt 50)

The communications timeout (in seconds).

PTLLND_LONG_WAIT
(int, dflt
debug?5:PTLLND_TIMEOUT)

The time (in seconds) after which the ptllnd prints a
warning if it blocks for a longer time during connection
establishment, cleanup after an error, or cleanup during
shutdown.

Variable Description

PTLLND_PORTAL
(9)

The portal ID (PID) to use for the ptllnd traffic.

PTLLND_PID
(9)

The virtual PID on which to contact servers.

PTLLND_PEERCREDITS
(8)

The maximum number of concurrent sends that are
outstanding to a single peer at any given instant.

PTLLND_MAX_MESSAGE_SIZE
(512)

The maximum messages size. This MUST be the
same on all nodes in a cluster.

PTLLND_MAX_MSGS_PER_BUFFER
(64)

The number of messages in a receive buffer.
Receive buffer will be allocated of size
PTLLND_MAX_MSGS_PER_BUFFER times
PTLLND_MAX_MESSAGE_SIZE.

PTLLND_MSG_SPARE
(256)

Additional receive buffers posted to portals.

PTLLND_PEER_HASH_SIZE
(101)

Number of hash table slots for the peers.

PTLLND_EQ_SIZE
(1024)

Size of the Portals event queue (that is, maximum
number of events in the queue).

Variable Description
30-18 Lustre 2.0 Operations Manual • April 2010

30.2.9 MX LND
MXLND supports a number of load-time parameters using Linux's module
parameter system. The following variables are available:

Of the described variables, only hosts is required. It must be the absolute path to the
MXLND hosts file.

For example:

options kmxlnd hosts=/etc/hosts.mxlnd

The file format for the hosts file is:

IP HOST BOARD EP_ID

The values must be space and/or tab separated where:

IP is a valid IPv4 address

HOST is the name returned by `hostname` on that machine

BOARD is the index of the Myricom NIC (0 for the first card, etc.)

EP_ID is the MX endpoint ID

Variable Description

n_waitd Number of completion daemons.

max_peers Maximum number of peers that may connect.

cksum Enables small message (< 4 KB) checksums if set to a non-zero value.

ntx Number of total tx message descriptors.

credits Number of concurrent sends to a single peer.

board Index value of the Myrinet board (NIC).

ep_id MX endpoint ID.

polling Use zero (0) to block (wait). A value > 0 will poll that many times
before blocking.

hosts IP-to-hostname resolution file.
Chapter 30 Configuration Files and Module Parameters (man5) 30-19

To obtain the optimal performance for your platform, you may want to vary the
remaining options.

n_waitd (1) sets the number of threads that process completed MX requests (sends
and receives).

max_peers (1024) tells MXLND the upper limit of machines that it will need to
communicate with. This affects how many receives it will pre-post and each receive
will use one page of memory. Ideally, on clients, this value will be equal to the total
number of Lustre servers (MDS and OSS). On servers, it needs to equal the total
number of machines in the storage system. cksum (0) turns on small message
checksums. It can be used to aid in troubleshooting. MX also provides an optional
checksumming feature which can check all messages (large and small). For details,
see the MX README.

ntx (256) is the number of total sends in flight from this machine. In actuality,
MXLND reserves half of them for connect messages so make this value twice as large
as you want for the total number of sends in flight.

credits (8) is the number of in-flight messages for a specific peer. This is part of the
flow-control system in Lustre. Increasing this value may improve performance but it
requires more memory because each message requires at least one page.

board (0) is the index of the Myricom NIC. Hosts can have multiple Myricom NICs
and this identifies which one MXLND should use. This value must match the board
value in your MXLND hosts file for this host.

ep_id (3) is the MX endpoint ID. Each process that uses MX is required to have at
least one MX endpoint to access the MX library and NIC. The ID is a simple index
starting at zero (0). This value must match the endpoint ID value in your MXLND
hosts file for this host.

polling (0) determines whether this host will poll or block for MX request
completions. A value of 0 blocks and any positive value will poll that many times
before blocking. Since polling increases CPU usage, we suggest that you set this to
zero (0) on the client and experiment with different values for servers.
30-20 Lustre 2.0 Operations Manual • April 2010

CHAPTER 31

System Configuration Utilities
(man8)

This chapter includes system configuration utilities and includes the following
sections:

■ mkfs.lustre

■ tunefs.lustre

■ lctl

■ mount.lustre

■ lustre_rsync

■ Additional System Configuration Utilities
31-1

31.1 mkfs.lustre
The mkfs.lustre utility formats a disk for a Lustre service.

Synopsis

mkfs.lustre <target_type> [options] device

where <target_type> is one of the following:

Description

mkfs.lustre is used to format a disk device for use as part of a Lustre file system.
After formatting, a disk can be mounted to start the Lustre service defined by this
command.

When the file system is created, parameters can simply be added as a --param
option to the mkfs.lustre command. See Setting Parameters with mkfs.lustre.

Option Description

--ost

Object Storage Target (OST)

--mdt

Metadata Storage Target (MDT)

--mgs

Configuration Management Service (MGS), one per site. This service can be
combined with one --mdt service by specifying both types.

Option Description

--backfstype=fstype

Forces a particular format for the backing file system (such as ext3,
ldiskfs).

--comment=comment

Sets a user comment about this disk, ignored by Lustre.

--device-size=KB

Sets the device size for loop and non-loop devices.
31-2 Lustre 2.0 Operations Manual • April 2010

--dryrun

Only prints what would be done; it does not affect the disk.

--failnode=nid,...

Sets the NID(s) of a failover partner. This option can be repeated as
needed.

--fsname=filesystem_name

The Lustre file system of which this service/node will be a part. The
default file system name is “lustre”.

NOTE: The file system name is limited to 8 characters.

--index=index

Forces a particular OST or MDT index.

--mkfsoptions=opts

Formats options for the backing file system. For example, ext3 options
could be set here.

--mountfsoptions=opts

Sets permanent mount options. This is equivalent to the setting in
/etc/fstab.

--mgsnode=nid,...

Sets the NIDs of the MGS node, required for all targets other than the
MGS.

--param key=value

Sets the permanent parameter key to value. This option can be
repeated as desired. Typical options might include:

--param sys.timeout=40

System obd timeout.

--param lov.stripesize=2M

Default stripe size.

--param lov.stripecount=2

Default stripe count.

--param failover.mode=failout

Returns errors instead of waiting for recovery.

--quiet

Prints less information.

Option Description
Chapter 31 System Configuration Utilities (man8) 31-3

Examples

Creates a combined MGS and MDT for file system testfs on node cfs21:

mkfs.lustre --fsname=testfs --mdt --mgs /dev/sda1

Creates an OST for file system testfs on any node (using the above MGS):

mkfs.lustre --fsname=testfs --ost --mgsnode=cfs21@tcp0 /dev/sdb

Creates a standalone MGS on, e.g., node cfs22:

mkfs.lustre --mgs /dev/sda1

Creates an MDT for file system myfs1 on any node (using the above MGS):

mkfs.lustre --fsname=myfs1 --mdt --mgsnode=cfs22@tcp0 /dev/sda2

--reformat

Reformats an existing Lustre disk.

--stripe-count-hint=stripes

Used to optimize the MDT’s inode size.

--verbose

Prints more information.

Option Description
31-4 Lustre 2.0 Operations Manual • April 2010

31.2 tunefs.lustre
The tunefs.lustre utility modifies configuration information on a Lustre target disk.

Synopsis

tunefs.lustre [options] device

Description

tunefs.lustre is used to modify configuration information on a Lustre target disk.
This includes upgrading old (pre-Lustre 1.8) disks. This does not reformat the disk or
erase the target information, but modifying the configuration information can result
in an unusable file system.

Caution – Changes made here affect a file system when the target is mounted the
next time.

With tunefs.lustre, parameters are "additive" -- new parameters are specified in
addition to old parameters, they do not replace them. To erase all old
tunefs.lustre parameters and just use newly-specified parameters, run:

$ tunefs.lustre --erase-params --param=<new parameters>

The tunefs.lustre command can be used to set any parameter settable in a
/proc/fs/lustre file and that has its own OBD device, so it can be specified as
<obd|fsname>.<obdtype>.<proc_file_name>=<value>. For example:

$ tunefs.lustre --param mdt.group_upcall=NONE /dev/sda1
Chapter 31 System Configuration Utilities (man8) 31-5

Options

The tunefs.lustre options are listed and explained below.

Option Description

--comment=comment

Sets a user comment about this disk, ignored by Lustre.

--dryrun

Only prints what would be done; does not affect the disk.

--erase-params

Removes all previous parameter information.

--failnode=nid,...

Sets the NID(s) of a failover partner. This option can be repeated as needed.

--fsname=filesystem_name

The Lustre file system of which this service will be a part. The default file system
name is “lustre”.

--index=index

Forces a particular OST or MDT index.

--mountfsoptions=opts

Sets permanent mount options; equivalent to the setting in /etc/fstab.

--mgs

Adds a configuration management service to this target.

--msgnode=nid,...

Sets the NID(s) of the MGS node; required for all targets other than the MGS.

--nomgs

Removes a configuration management service to this target.

--quiet

Prints less information.
31-6 Lustre 2.0 Operations Manual • April 2010

Examples

Changing the MGS’s NID address. (This should be done on each target disk, since
they should all contact the same MGS.)

tunefs.lustre --erase-param --mgsnode=<new_nid> --writeconf /dev/sda

Adding a failover NID location for this target.

tunefs.lustre --param="failover.node=192.168.0.13@tcp0" /dev/sda

--verbose

Prints more information.

--writeconf

Erases all configuration logs for the file system to which this MDT belongs, and
regenerates them. This is very dangerous. All clients and servers should be
stopped. All targets must then be restarted to regenerate the logs. No clients
should be started until all targets have restarted. In general, this command should
only be executed on the MDT, not the OSTs.

Option Description
Chapter 31 System Configuration Utilities (man8) 31-7

31.3 lctl
The lctl utility is used for root control and configuration. With lctl you can
directly control Lustre via an ioctl interface, allowing various configuration,
maintenance and debugging features to be accessed.

Synopsis

lctl

lctl --device <OST device number> <command [args]>

Description

The lctl utility can be invoked in interactive mode by issuing the lctl command. After
that, commands are issued as shown below. The most common lctl commands are:

dl

device

network <up/down>

list_nids

ping {nid}

help

quit

For a complete list of available commands, type help at the lctl prompt. To get
basic help on command meaning and syntax, type help command

For non-interactive use, use the second invocation, which runs the command after
connecting to the device.
31-8 Lustre 2.0 Operations Manual • April 2010

Setting Parameters with lctl

Lustre parameters are not always accessible using the procfs interface, as it is
platform-specific. As a solution, lctl {get,set}_param has been introduced as a
platform-independent interface to the Lustre tunables. Avoid direct references to
/proc/{fs,sys}/{lustre,lnet}. For future portability, use lctl {get,set}_param .

When the file system is running, temporary parameters can be set using the lctl
set_param command. These parameters map to items in
/proc/{fs,sys}/{lnet,lustre}. The lctl set_param command uses this
syntax:

lctl set_param [-n] <obdtype>.<obdname>.<proc_file_name>=<value>

For example:

$ lctl set_param ldlm.namespaces.*osc*.lru_size=$((NR_CPU*100))

Many permanent parameters can be set with the lctl conf_param command. In
general, the lctl conf_param command can be used to specify any parameter
settable in a /proc/fs/lustre file, with its own OBD device. The lctl conf_param
command uses this syntax:

<obd|fsname>.<obdtype>.<proc_file_name>=<value>)

For example:

$ lctl conf_param testfs-MDT0000.mdt.group_upcall=NONE

$ lctl conf_param testfs.llite.max_read_ahead_mb=16

Caution – The lctl conf_param command permanently sets parameters in the
file system configuration.

To get current Lustre parameter settings, use the lctl get_param command with
this syntax:

lctl get_param [-n] <obdtype>.<obdname>.<proc_file_name>

For example:

$ lctl get_param -n ost.*.ost_io.timeouts

To list Lustre parameters that are available to set, use the lctl list_param
command, with this syntax:

lctl list_param [-n] <obdtype>.<obdname>

For example:

$ lctl list_param obdfilter.lustre-OST0000
Chapter 31 System Configuration Utilities (man8) 31-9

Network Configuration

Option Description

dl

Specifies Lustre devices, by device name and number.

The command output also lists the device UUID. On server devices, the UUID will
be different for each one. On clients, the UUID will be the same for all devices that
are part of a single file system mount point.

The command output also lists the number of references on the device. On server
devices, this is roughly the number of connected clients (plus a small number, like
3 or 4). The accurate number of clients can be found in the num_exports file in
/proc for each device.

network <up/down>|<tcp/elan/myrinet>

Starts or stops LNET. Or, select a network type for other lctl LNET commands.

list_nids

Prints all NIDs on the local node. LNET must be running.

which_nid <nidlist>

From a list of NIDs for a remote node, identifies the NID on which interface
communication will occur.

ping {nid}

Check’s LNET connectivity via an LNET ping. This uses the fabric appropriate to
the specified NID.

interface_list

Prints the network interface information for a given network type.

peer_list

Prints the known peers for a given network type.

conn_list

Prints all the connected remote NIDs for a given network type.

active_tx

This command prints active transmits. It is only used for the Elan network type.

route_list

Prints the complete routing table.
31-10 Lustre 2.0 Operations Manual • April 2010

Device Selection

Device Operations

Option Description

device <devname>

This selects the specified OBD device. All other commands depend on the device
being set.

device_list

Shows all of the local Lustre OBDs.

Option Description

lctl get_param [-n] <path_name>

Gets the Lustre or LNET parameters from the specified <path_name>. Use the -n
option to get only the parameter value and skip the pathname in the output.
NOTE: Lustre tunables are not always accessible using procfs interface, as it is
platform-specific. As a solution, lctl {get,set}_param has been introduced as a
platform-independent interface to the Lustre tunables. Avoid direct references to
/proc/{fs,sys}/{lustre,lnet}. For future portability, use lctl {get,set}_param instead.

lctl set_param [-n] <path_name>

Sets the specified value to the Lustre or LNET parameter indicated by the
pathname. Use the -n option to skip the pathname in the output.
NOTE: Lustre tunables are not always accessible using procfs interface, as it is
platform-specific. As a solution, lctl {get,set}_param has been introduced as a
platform-independent interface to the Lustre tunables. Avoid direct references to
/proc/{fs,sys}/{lustre,lnet}. For future portability, use lctl {get,set}_param instead.

conf_param <device> <parameter>

Sets a permanent configuration parameter for any device via the MGS. This
command must be run on the MGS node.

activate

Re-activates an import after the de-activate operation.

deactivate

Running lctl deactivate on the MDS stops new objects from being allocated
on the OST. Running lctl deactivate on Lustre clients causes them to return
-EIO when accessing objects on the OST instead of waiting for recovery.

abort_recovery

Aborts the recovery process on a re-starting MDT or OST device.
Chapter 31 System Configuration Utilities (man8) 31-11

Note – Lustre tunables are not always accessible using the procfs interface, as it is
platform-specific. As a solution, lctl {get,set}_param has been introduced as a
platform-independent interface to the Lustre tunables. Avoid direct references to
/proc/{fs,sys}/{lustre,lnet}. For future portability, use lctl {get,set}_param
instead.

Virtual Block Device Operations

Lustre can emulate a virtual block device upon a regular file. This emulation is
needed when you are trying to set up a swap space via the file.

Changelogs

Option Description

blockdev_attach <file name> <device node>

Attaches a regular Lustre file to a block device. If the device node is non-existent,
lctl creates it. We recommend that you create the device node by lctl since the
emulator uses a dynamic major number.

blockdev_detach <device node>

Detaches the virtual block device.

blockdev_info <device node>

Provides information on which Lustre file is attached to the device node.

Option Description

changelog_register

Registers a new changelog user for a particular device. Changelog entries are not
purged beyond a registered user’s set point (see lfs changelog_clear).

changelog_deregister <id>

Unregisters an existing changelog user. If the user’s "clear" record number is the
minimum for the device, changelog records are purged until the next minimum.
31-12 Lustre 2.0 Operations Manual • April 2010

Debug

Options

Use the following options to invoke lctl.

Option Description

debug_daemon

Starts and stops the debug daemon, and controls the output filename and size.

debug_kernel [file] [raw]

Dumps the kernel debug buffer to stdout or a file.

debug_file <input> [output]

Converts the kernel-dumped debug log from binary to plain text format.

clear

Clears the kernel debug buffer.

mark <text>

Inserts marker text in the kernel debug buffer.

Option Description

--device

Device to be used for the operation (specified by name or number). See device_list.

--ignore_errors | ignore_errors

Ignores errors during script processing.
Chapter 31 System Configuration Utilities (man8) 31-13

Examples

lctl

$ lctl

lctl > dl

0 UP mgc MGC192.168.0.20@tcp bfbb24e3-7deb-2ffa-

eab0-44dffe00f692 5

1 UP ost OSS OSS_uuid 3

2 UP obdfilter testfs-OST0000 testfs-OST0000_UUID 3

lctl > dk /tmp/log Debug log: 87 lines, 87 kept, 0 dropped.

lctl > quit

$ lctl conf_param testfs-MDT0000 sys.timeout=40

$ lctl conf_param testfs-MDT0000.lov.stripesize=2M

$ lctl conf_param testfs-OST0000.osc.max_dirty_mb=29.15

$ lctl conf_param testfs-OST0000.ost.client_cache_seconds=15

get_param

$ lctl

lctl > get_param obdfilter.lustre-OST0000.kbytesavail

obdfilter.lustre-OST0000.kbytesavail=249364

lctl > get_param -n obdfilter.lustre-OST0000.kbytesavail

249364

lctl > get_param timeout

timeout=20

lctl > get_param -n timeout

20

lctl > get_param obdfilter.*.kbytesavail

obdfilter.lustre-OST0000.kbytesavail=249364

obdfilter.lustre-OST0001.kbytesavail=249364

lctl >

set_param

$ lctl > set_param obdfilter.*.kbytesavail=0

obdfilter.lustre-OST0000.kbytesavail=0

obdfilter.lustre-OST0001.kbytesavail=0

lctl > set_param -n obdfilter.*.kbytesavail=0

lctl > set_param fail_loc=0

fail_loc=0
31-14 Lustre 2.0 Operations Manual • April 2010

31.4 mount.lustre
The mount.lustre utility starts a Lustre client or target service.

Synopsis

mount -t lustre [-o options] directory

Description

The mount.lustre utility starts a Lustre client or target service. This program
should not be called directly; rather, it is a helper program invoked through
mount(8), as shown above. Use the umount(8) command to stop Lustre clients and
targets.

There are two forms for the device option, depending on whether a client or a target
service is started:

Option Description

<mgsspec>:/<fsname>

This mounts the Lustre file system, <fsname>, by contacting the Management
Service at <mgsspec> on the pathname given by <directory>. The format for
<mgsspec> is defined below. A mounted file system appears in fstab(5) and is
usable, like any local file system, providing a full POSIX-compliant interface.

<disk_device>

This starts the target service defined by the mkfs.lustre command on the
physical disk <disk_device>. A mounted target service file system is only useful
for df(1) operations and appears in fstab(5) to show the device is in use.
Chapter 31 System Configuration Utilities (man8) 31-15

Options

In addition to the standard mount options, Lustre understands the following
client-specific options:

Option Description

<mgsspec>:=<mgsnode>[:<mgsnode>]

The MGS specification may be a colon-separated list of nodes.

<mgsnode>:=<mgsnid>[,<mgsnid>]

Each node may be specified by a comma-separated list of NIDs.

Option Description

flock

Enables flock support (slower, performance impact for use, coherent between
nodes).

localflock

Enables local flock support using only client-local flock (faster, for applications that
require flock, but do not run on multiple nodes).

noflock

Disables flock support entirely. Applications calling flock get an error. It is up to
the administrator to choose either localflock (fastest, low impact, not coherent
between nodes) or flock (slower, performance impact for use, coherent between
nodes).

user_xattr

Enables get/set of extended attributes by regular users.

nouser_xattr

Disables use of extended attributes by regular users. Root and system processes
can still use extended attributes.

acl

Enables ACL support.

noacl

Disables ACL support.
31-16 Lustre 2.0 Operations Manual • April 2010

In addition to the standard mount options and backing disk type (e.g. ext3) options,
Lustre understands the following server-specific options:

Examples

Starts a client for the Lustre file system testfs at mount point
/mnt/myfilesystem. The Management Service is running on a node reachable
from this client via the cfs21@tcp0 NID.

mount -t lustre cfs21@tcp0:/testfs /mnt/myfilesystem

Starts the Lustre target service on /dev/sda1.

mount -t lustre /dev/sda1 /mnt/test/mdt

Starts the testfs-MDT0000 service (using the disk label), but aborts the recovery
process.

mount -t lustre -L testfs-MDT0000 -o abort_recov /mnt/test/mdt

Option Description

nosvc

Starts only the MGC (and MGS, if co-located) for a target service, not the actual
service.

nomgs

Starts only the MDT (with a co-located MGS), without starting the MGS.

exclude=<ostlist>

Starts a client or MDT with a colon-separated list of known inactive OSTs.

abort_recov

Aborts client recovery and immediately starts the target service.

md_stripe_cache_size

Sets the stripe cache size for server-side disk with a striped RAID configuration.

recovery_time_soft=<timeout>

Allows <timeout> seconds for clients to reconnect for recovery after a server crash.
This timeout is incrementally extended if it is about to expire and the server is still
handling new connections from recoverable clients. The default soft recovery
timeout is 300 seconds (5 minutes).

recovery_time_hard=<timeout>

The server is allowed to incrementally extend its timeout, up to a hard maximum
of <timeout> seconds. The default hard recovery timeout is 900 seconds (15
minutes).
Chapter 31 System Configuration Utilities (man8) 31-17

Note – If the Service Tags tool (from the sun-servicetag package) can be found in
/opt/sun/servicetag/bin/stclient, an inventory service tag is created reflecting the
Lustre service being provided. If this tool cannot be found, mount.lustre silently
ignores it and no service tag is created. The stclient(1) tool only creates the local
service tag. No information is sent to the asset management system until you run the
Registration Client to collect the tags and then upload them to the inventory system
using your inventory system account. For more information, see Service Tags.

31.5 lustre_rsync
The lustre_rsync utility synchronizes (replicates) a Lustre file system to a target
file system.

Synopsis

lustre_rsync --source|-s <src> --target|-t <tgt>

--mdt|-m <mdt> [--user|-u <user id>]

[--xattr|-x <yes|no>] [--verbose|-v]

[--statuslog|-l <log>] [--dry-run] [--abort-on-err]

lustre_rsync --statuslog|-l <log>

lustre_rsync --statuslog|-l <log> --source|-s <source>

--target|-t <tgt> --mdt|-m <mdt>

Description

The lustre_rsync utility is designed to synchronize a Lustre file system (source) to
another file system (target). The target can be a Lustre system or (any other type),
and is a normal, usable file system. The synchronization operation is efficient and
does not require directory walking, as lustre_rsync uses Lustre MDT changelogs
to identify changes in the Lustre file system.
31-18 Lustre 2.0 Operations Manual • April 2010

Before using lustre_rsync:

■ A changelog user must be registered (see lctl (8) changelog_register)

- AND -

■ Verify that the Lustre file system (source) and the replica file system (target) are
identical before the changelog user is registered. If the file systems are discrepant,
use a utility, e.g. regular rsync (not lustre_rsync) to make them identical.
Chapter 31 System Configuration Utilities (man8) 31-19

Options

Option Description

--source=<src>

The path to the root of the Lustre file system (source) which will be
synchronized. This is a mandatory option if a valid status log created
during a previous synchronization operation (--statuslog) is not
specified.

--target=<tgt

The path to the root where the source file system will be synchronized
(target). This is a mandatory option if the status log created during a
previous synchronization operation (--statuslog) is not specified.
This option can be repeated if multiple synchronization targets are
desired.

--mdt=<mdt>

The metadata device to be synchronized. A changelog user must be
registered for this device. This is a mandatory option if a valid status
log created during a previous synchronization operation (--
statuslog) is not specified.

--user=<user id>

The changelog user ID for the specified MDT. To use lustre_rsync,
the changelog user must be registered. For details, see the
changelog_register parameter in the lctl man page. This is a
mandatory option if a valid status log created during a previous
synchronization operation (--statuslog) is not specified.

--statuslog=<log>

A log file to which synchronization status is saved. When the
lustre_rsync utility starts, if the status log from a previous
synchronization operation is specified, then the state is read from the
log and otherwise mandatory --source, --target and --mdt
options can be skipped. Specifying the --source, --target and/or -
-mdt options, in addition to the --statuslog option, causes the
specified parameters in the status log to be overriden. Command line
options take precedence over options in the status log.

--xattr <yes|no>

Specifies whether extended attributes (xattrs) are synchronized or not.
The default is to synchronize extended attributes.
NOTE: Disabling xattrs causes Lustre striping information not to be
synchronized.

--verbose

Produces verbose output.
31-20 Lustre 2.0 Operations Manual • April 2010

Examples

Sample lustre_rsync commands are listed below.

Register a changelog user for an MDT (e.g., MDT lustre-MDT0000).

lctl --device lustre-MDT0000 changelog_register lustre-MDT0000
Registered changelog userid 'cl1'

Synchronize a Lustre file system (/mnt/lustre) to a target file system (/mnt/target).

$ lustre_rsync --source=/mnt/lustre --target=/mnt/target \

--mdt=lustre-MDT0000 --user=cl1 \

--statuslog sync.log --verbose

Lustre filesystem: lustre

MDT device: lustre-MDT0000

Source: /mnt/lustre

Target: /mnt/target

Statuslog: sync.log

Changelog registration: cl1

Starting changelog record: 0

Errors: 0

lustre_rsync took 1 seconds

Changelog records consumed: 22

--dry-run

Shows the output of lustre_rsync commands (copy, mkdir, etc.) on
the target file system without actually executing them.

--abort-on-err

Stops processing the lustre_rsync operation if an error occurs. The
default is to continue the operation.

Option Description
Chapter 31 System Configuration Utilities (man8) 31-21

After the file system undergoes changes, synchronize the changes onto the target file
system. Only the statuslog name needs to be specified, as it has all the parameters
passed earlier.

$ lustre_rsync --statuslog sync.log --verbose

Replicating Lustre filesystem: lustre

MDT device: lustre-MDT0000

Source: /mnt/lustre

Target: /mnt/target

Statuslog: sync.log

Changelog registration: cl1

Starting changelog record: 22

Errors: 0

lustre_rsync took 2 seconds

Changelog records consumed: 42

To synchronize a Lustre file system (/mnt/lustre) to two target file systems
(/mnt/target1 and /mnt/target2).

$ lustre_rsync --source=/mnt/lustre \

--target=/mnt/target1 --target=/mnt/target2 \

--mdt=lustre-MDT0000 --user=cl1

--statuslog sync.log

31.6 Additional System Configuration
Utilities
This section describes additional system configuration utilities that were added in
Lustre 1.6.

31.6.1 lustre_rmmod.sh
The lustre_rmmod.sh utility removes all Lustre and LNET modules (assuming no
Lustre services are running). It is located in /usr/bin.

Note – The lustre_rmmod.sh utility does not work if Lustre modules are being
used or if you have manually run the lctl network up command.
31-22 Lustre 2.0 Operations Manual • April 2010

31.6.2 e2scan
The e2scan utility is an ext2 file system-modified inode scan program. The e2scan
program uses libext2fs to find inodes with ctime or mtime newer than a given time
and prints out their pathname. Use e2scan to efficiently generate lists of files that
have been modified. The e2scan tool is included in e2fsprogs, located at:

http://downloads.clusterfs.com/public/tools/e2fsprogs/latest

Synopsis

e2scan [options] [-f file] block_device

Description

When invoked, the e2scan utility iterates all inodes on the block device, finds
modified inodes, and prints their inode numbers. A similar iterator, using
libext2fs(5), builds a table (called parent database) which lists the parent node for
each inode. With a lookup function, you can reconstruct modified pathnames from
root.

Options

Option Description

-b inode buffer blocks

Sets the readahead inode blocks to get excellent performance when scanning the
block device.

-o output file

If an output file is specified, modified pathnames are written to this file. Otherwise,
modified parameters are written to stdout.

-t inode | pathname

Sets the e2scan type if type is inode. The e2scan utility prints modified inode
numbers to stdout. By default, the type is set as pathname.
The e2scan utility lists modified pathnames based on modified inode numbers.

-u

Rebuilds the parent database from scratch. Otherwise, the current parent database
is used.
Chapter 31 System Configuration Utilities (man8) 31-23

http://downloads.clusterfs.com/public/tools/e2fsprogs/latest

31.6.3 Application Profiling Utilities
The following utilities are located in /usr/bin.

lustre_req_history.sh

The lustre_req_history.sh utility (run from a client), assembles as much Lustre
RPC request history as possible from the local node and from the servers that were
contacted, providing a better picture of the coordinated network activity.

llstat.sh

The llstat.sh utility (improved in Lustre 1.6), handles a wider range of /proc
files, and has command line switches to produce more graphable output.

plot-llstat.sh

The plot-llstat.sh utility plots the output from llstat.sh using gnuplot.

31.6.4 More /proc Statistics for Application Profiling
The following utilities provide additional statistics.

vfs_ops_stats

The client vfs_ops_stats utility tracks Linux VFS operation calls into Lustre for a
single PID, PPID, GID or everything.

/proc/fs/lustre/llite/*/vfs_ops_stats

/proc/fs/lustre/llite/*/vfs_track_[pid|ppid|gid]

extents_stats

The client extents_stats utility shows the size distribution of I/O calls from the
client (cumulative and by process).

/proc/fs/lustre/llite/*/extents_stats, extents_stats_per_process

offset_stats

The client offset_stats utility shows the read/write seek activity of a client by
offsets and ranges.

/proc/fs/lustre/llite/*/offset_stats
31-24 Lustre 2.0 Operations Manual • April 2010

Lustre 1.6 included per-client and improved MDT statistics:

■ Per-client statistics tracked on the servers

Each MDT and OST now tracks LDLM and operations statistics for every
connected client, for comparisons and simpler collection of distributed job
statistics.

/proc/fs/lustre/mds|obdfilter/*/exports/

■ Improved MDT statistics

More detailed MDT operations statistics are collected for better profiling.

/proc/fs/lustre/mds/*/stats

31.6.5 Testing / Debugging Utilities
Lustre offers the following test and debugging utilities.

loadgen

The Load Generator (loadgen) is a test program designed to simulate large numbers
of Lustre clients connecting and writing to an OST. The loadgen utility is located at
lustre/utils/loadgen (in a build directory) or at /usr/sbin/loadgen (from an
RPM).

Loadgen offers the ability to run this test:

1. Start an arbitrary number of (echo) clients.

2. Start and connect to an echo server, instead of a real OST.

3. Create/bulk_write/delete objects on any number of echo clients simultaneously.

Currently, the maximum number of clients is limited by MAX_OBD_DEVICES and
the amount of memory available.
Chapter 31 System Configuration Utilities (man8) 31-25

Usage

The loadgen utility can be run locally on the OST server machine or remotely from
any LNET host. The device command can take an optional NID as a parameter; if
unspecified, the first local NID found is used.

The obdecho module must be loaded by hand before running loadgen.

cd lustre/utils/

insmod ../obdecho/obdecho.ko

./loadgen

loadgen> h

This is a test program used to simulate large numbers of clients. The
echo obds are used, so the obdecho module must be loaded.

Typical usage would be:

loadgen> dev lustre-OST0000 set the target device

loadgen> start 20 start 20 echo clients

loadgen> wr 10 5 have 10 clients do simultaneous
brw_write tests 5 times each

Available commands are:

device

dl

echosrv

start

verbose

wait

write

help

exit

quit

For more help type: help command-name

loadgen>

loadgen> device lustre-OST0000 192.168.0.21@tcp

Added uuid OSS_UUID: 192.168.0.21@tcp

Target OST name is 'lustre-OST0000'

loadgen>

loadgen> st 4

start 0 to 4

./loadgen: running thread #1

./loadgen: running thread #2

./loadgen: running thread #3

./loadgen: running thread #4

loadgen> wr 4 5
31-26 Lustre 2.0 Operations Manual • April 2010

Estimate 76 clients before we run out of grant space (155872K /
2097152)

1: i0

2: i0

4: i0

3: i0

1: done (0)

2: done (0)

4: done (0)

3: done (0)

wrote 25MB in 1.419s (17.623 MB/s)

loadgen>

The loadgen utility prints periodic status messages; message output can be
controlled with the verbose command.

To insure a file can be written to (a write cache requirement), OSTs reserve ("grants"),
chunks of space for each newly-created file. A grant may cause an OST to report it is
out of space, even though there is enough space on the disk, because the space is
"reserved" by other files. Loadgen estimates the number of simultaneous open files
as disk size divided by grant size and reports that number when write tests start.

Echo Server

The loadgen utility can start an echo server. On another node, loadgen can specify
the echo server as the device, thus creating a network-only test environment.

loadgen> echosrv

loadgen> dl

0 UP obdecho echosrv echosrv 3

1 UP ost OSS OSS 3

On another node:

loadgen> device echosrv cfs21@tcp

Added uuid OSS_UUID: 192.168.0.21@tcp

Target OST name is 'echosrv'

loadgen> st 1

start 0 to 1

./loadgen: running thread #1

loadgen> wr 1

start a test_brw write test on X clients for Y iterations

usage: write <num_clients> <num_iter> [<delay>]

loadgen> wr 1 1

loadgen>

1: i0

1: done (0)

wrote 1MB in 0.029s (34.023 MB/s)
Chapter 31 System Configuration Utilities (man8) 31-27

Scripting

The threads all perform their actions in non-blocking mode; use the wait command
to block for the idle state. For example:

#!/bin/bash

./loadgen << EOF

device lustre-OST0000

st 1

wr 1 10

wait

quit

EOF

Feature Requests

The loadgen utility is intended to grow into a more comprehensive test tool; feature
requests are encouraged. The current feature requests include:

■ Locking simulation

■ Many (echo) clients cache locks for the specified resource at the same time.

■ Many (echo) clients enqueue locks for the specified resource simultaneously.

■ obdsurvey functionality

■ Fold the Lustre I/O kit’s obdsurvey script functionality into loadgen

llog_reader

The llog_reader utility translates a Lustre configuration log into human-readable
form.

lr_reader

The lr_reader utility translates a last received (last_rcvd) file into
human-readable form.
31-28 Lustre 2.0 Operations Manual • April 2010

The following utilites are part of the Lustre I/O kit. For more information, see Lustre
I/O Kit.

sgpdd_survey

The sgpdd_survey utility tests 'bare metal' performance, bypassing as much of the
kernel as possible. The sgpdd_survey tool does not require Lustre, but it does
require the sgp_dd package.

Caution – The sgpdd_survey utility erases all data on the device.

obdfilter_survey

The obdfilter_survey utility is a shell script that tests performance of isolated
OSTS, the network via echo clients, and an end-to-end test.

ior-survey

The ior-survey utility is a script used to run the IOR benchmark. Lustre includes
IOR version 2.8.6.

ost_survey

The ost_survey utility is an OST performance survey that tests client-to-disk
performance of the individual OSTs in a Lustre file system.

stats-collect

The stats-collect utility contains scripts used to collect application profiling
information from Lustre clients and servers.
Chapter 31 System Configuration Utilities (man8) 31-29

31.6.6 Flock Feature
Lustre now includes the flock feature, which provides file locking support. Flock
describes classes of file locks known as ‘flocks’. Flock can apply or remove a lock on
an open file as specified by the user. However, a single file may not, simultaneously,
have both shared and exclusive locks.

By default, the flock utility is disabled on Lustre. Two modes are available.

A call to use flock may be blocked if another process is holding an incompatible lock.
Locks created using flock are applicable for an open file table entry. Therefore, a
single process may hold only one type of lock (shared or exclusive) on a single file.
Subsequent flock calls on a file that is already locked converts the existing lock to the
new lock mode.

31.6.6.1 Example

$ mount -t lustre –o flock mds@tcp0:/lustre /mnt/client

You can check it in /etc/mtab. It should look like,

mds@tcp0:/lustre /mnt/client lustre rw,flock 00

local mode In this mode, locks are coherent on one node (a single-node flock), but not
across all clients. To enable it, use -o localflock.
This is a client-mount option.

NOTE: This mode does not impact performance and is appropriate for
single-node databases.

consistent mode In this mode, locks are coherent across all clients.
To enable it, use the -o flock. This is a client-mount option.

CAUTION: This mode affects the performance of the file being flocked
and may affect stability, depending on the Lustre version used. Consider
using a newer Lustre version which is more stable. If the consistent mode
is enabled and no applications are using flock, then it has no effect.
31-30 Lustre 2.0 Operations Manual • April 2010

31.6.7 l_getidentity
The l_getidentity utility handles Lustre user / group cache upcall.

Synopsis

l_getidentity {mdtname} {uid}

Options

Description

The group upcall file contains the path to an executable file that, when properly
installed, is invoked to resolve a numeric UID to a group membership list. This
utility should complete the mds_grp_downcall_data structure and write it to the
/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_info pseudo-file.

The l_getidentity utility is the reference implementation of the user or group
cache upcall.

Files

The l_getidentity files are located at:

/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_upcall

Option Description

mdtname

Metadata server target name

uid

User identifier
Chapter 31 System Configuration Utilities (man8) 31-31

31.6.8 llobdstat
The llobdstat utility displays OST statistics.

Synopsis

llobdstat ost_name [interval]

Description

The llobdstat utility displays a line of OST statistics for a given OST at specified
intervals (in seconds).

Example
llobdstat liane-OST0002 1
/usr/bin/llobdstat on /proc/fs/lustre/obdfilter/liane-OST0002/stats
Processor counters run at 2800.189 MHz
Read: 1.21431e+07, Write: 9.93363e+08, create/destroy: 24/1499, stat: 34,
punch: 18
[NOTE: cx: create, dx: destroy, st: statfs, pu: punch]
Timestamp Read-delta ReadRate Write-delta WriteRate
--
1217026053 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026054 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026055 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026056 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026057 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026058 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026059 0.00MB 0.00MB/s 0.00MB 0.00MB/s st:1

Files

The llobdstat files are located at:

/proc/fs/lustre/obdfilter/<ostname>/stats

Option Description

ost_name

Name of the OBD for which statistics are requested.

interval

Time interval (in seconds) after which statistics are refreshed.
31-32 Lustre 2.0 Operations Manual • April 2010

31.6.9 llstat
The llstat utility displays Lustre statistics.

Synopsis

llstat [-c] [-g] [-i interval] stats_file

Description

The llstat utility displays statistics from any of the Lustre statistics files that share
a common format and are updated at a specified interval (in seconds). To stop
statistics printing, type CTRL-C.h

Options

Option Description

-c

Clears the statistics file.

-i

Specifies the interval polling period (in seconds).

-g

Specifies graphable output format.

-h

Displays help information.

stats_file

Specifies either the full path to a statistics file or a shorthand reference, mds or ost
Chapter 31 System Configuration Utilities (man8) 31-33

Example

To monitor /proc/fs/lustre/ost/OSS/ost/stats at 1 second intervals, run;

llstat -i 1 ost

Files

The llstat files are located at:

/proc/fs/lustre/mdt/MDS/*/stats

/proc/fs/lustre/mds/*/exports/*/stats

/proc/fs/lustre/mdc/*/stats

/proc/fs/lustre/ldlm/services/*/stats

/proc/fs/lustre/ldlm/namespaces/*/pool/stats

/proc/fs/lustre/mgs/MGS/exports/*/stats

/proc/fs/lustre/ost/OSS/*/stats

/proc/fs/lustre/osc/*/stats

/proc/fs/lustre/obdfilter/*/exports/*/stats

/proc/fs/lustre/obdfilter/*/stats

/proc/fs/lustre/llite/*/stats
31-34 Lustre 2.0 Operations Manual • April 2010

31.6.10 lst
The lst utility starts LNET self-test.

Synopsis

lst

Description

LNET self-test helps site administrators confirm that Lustre Networking (LNET) has
been correctly installed and configured. The self-test also confirms that LNET, the
network software and the underlying hardware are performing as expected.

Each LNET self-test runs in the context of a session. A node can be associated with
only one session at a time, to ensure that the session has exclusive use of the nodes
on which it is running. A single node creates, controls and monitors a single session.
This node is referred to as the self-test console.

Any node may act as the self-test console. Nodes are named and allocated to a
self-test session in groups. This allows all nodes in a group to be referenced by a
single name.

Test configurations are built by describing and running test batches. A test batch is a
named collection of tests, with each test composed of a number of individual
point-to-point tests running in parallel. These individual point-to-point tests are
instantiated according to the test type, source group, target group and distribution
specified when the test is added to the test batch.

Modules

To run LNET self-test, load following modules: libcfs, lnet, lnet_selftest and any one
of the klnds (ksocklnd, ko2iblnd...). To load all necessary modules, run modprobe
lnet_selftest, which recursively loads the modules on which lnet_selftest depends.

There are two types of nodes for LNET self-test: console and test. Both node types
require all previously-specified modules to be loaded. (The userspace test node does
not require these modules).

Test nodes can either be in kernel or in userspace. A console user can invite a kernel
test node to join the test session by running lst add_group NID, but the user cannot
actively add a userspace test node to the test-session. However, the console user can
passively accept a test node to the test session while the test node runs lst client to
connect to the console.
Chapter 31 System Configuration Utilities (man8) 31-35

Utilities

LNET self-test includes two user utilities, lst and lstclient.

lst is the user interface for the self-test console (run on console node). It provides a
list of commands to control the entire test system, such as create session, create test
groups, etc.

lstclient is the userspace self-test program which is linked with userspace LNDs and
LNET. A user can invoke lstclient to join a self-test session:

lstclient -sesid CONSOLE_NID group NAME

Example

This is an example of an LNET self-test script which simulates the traffic pattern of a
set of Lustre servers on a TCP network, accessed by Lustre clients on an IB network
(connected via LNET routers), with half the clients reading and half the clients
writing.

#!/bin/bash

export LST_SESSION=$$

lst new_session read/write

lst add_group servers 192.168.10.[8,10,12-16]@tcp

lst add_group readers 192.168.1.[1-253/2]@o2ib

lst add_group writers 192.168.1.[2-254/2]@o2ib

lst add_batch bulk_rw

lst add_test --batch bulk_rw --from readers --to servers brw read
check=simple size=1M

lst add_test --batch bulk_rw --from writers --to servers brw write
check=full size=4K

start running

lst run bulk_rw

display server stats for 30 seconds

lst stat servers & sleep 30; kill $!

tear down

lst end_session
31-36 Lustre 2.0 Operations Manual • April 2010

31.6.11 plot-llstat
The plot-llstat utility plots Lustre statistics.

Synopsis

plot-llstat results_filename [parameter_index]

Options

Description

The plot-llstat utility generates a CSV file and instruction files for gnuplot from
llstat output. Since llstat is generic in nature, plot-llstat is also a generic script.
The value of parameter_index can be 1 for count per interval, 2 for count per second
(default setting) or 3 for total count.

The plot-llstat utility creates a .dat (CSV) file using the number of operations
specified by the user. The number of operations equals the number of columns in the
CSV file. The values in those columns are equal to the corresponding value of
parameter_index in the output file.

The plot-llstat utility also creates a .scr file that contains instructions for gnuplot
to plot the graph. After generating the .dat and .scr files, the plot-llstat tool
invokes gnuplot to display the graph.

Example

llstat -i2 -g -c lustre-OST0000 > log

plot-llstat log 3

Option Description

results_filename

Output generated by plot-llstat

parameter_index

Value of parameter_index can be:
1 - count per interval
2 - count per second (default setting)
3 - total count
Chapter 31 System Configuration Utilities (man8) 31-37

31.6.12 routerstat
The routerstat utility prints Lustre router statistics.

Synopsis

routerstat [interval]

Description

The routerstat utility watches LNET router statistics. If no interval is specified,
then statistics are sampled and printed only one time. Otherwise, statistics are
sampled and printed at the specified interval (in seconds).

Options

The routerstat output includes the following fields:

Files

The routerstat utility extracts statistics data from:

/proc/sys/lnet/stats

Field Description

M msgs_alloc(msgs_max)

E errors

S send_length/send_count

R recv_length/recv_count

F route_length/route_count

D drop_length/drop_count
31-38 Lustre 2.0 Operations Manual • April 2010

31.6.13 ll_recover_lost_found_objs
The ll_recover_lost_found_objs utility helps recover Lustre OST objects (file
data) from a lost and found directory back to their correct locations.

Running the ll_recover_lost_found_objs tool is not strictly necessary to bring
an OST back online, it just avoids losing access to objects that were moved to the lost
and found directory due to directory corruption.

Synopsis

$ ll_recover_lost_found_objs [-hv] -d directory

Description

The first time Lustre writes to an object, it saves the MDS inode number and the objid
as an extended attribute on the object, so in case of directory corruption of the OST,
it is possible to recover the objects. Running e2fsck fixes the corrupted OST directory,
but it puts all of the objects into a lost and found directory, where they are
inaccessible to Lustre. Use the ll_recover_lost_found_objs utility to recover all
(or at least most) objects from a lost and found directory back to their place in the
O/0/d* directories.

To use ll_recover_lost_found_objs, mount the file system locally (using the -t
ldiskfs command), run the utility and then unmount it again. The OST must not be
mounted by Lustre when ll_recover_lost_found_objs is run.

Options

Example

ll_recover_lost_found_objs -d /mnt/ost/lost+found

Field Description

-h Prints a help message

-v Increases verbosity

-d directory Sets the lost and found directory path
Chapter 31 System Configuration Utilities (man8) 31-39

31-40 Lustre 2.0 Operations Manual • April 2010

CHAPTER 32

System Limits

This chapter describes various limits on the size of files and file systems. These limits
are imposed by either the Lustre architecture or the Linux VFS and VM subsystems.
In a few cases, a limit is defined within the code and could be changed by
re-compiling Lustre. In those cases, the selected limit is supported by Lustre testing
and may change in future releases. This chapter includes the following sections:

■ Maximum Stripe Count

■ Maximum Stripe Size

■ Minimum Stripe Size

■ Maximum Number of OSTs and MDTs

■ Maximum Number of Clients

■ Maximum Size of a File System

■ Maximum File Size

■ Maximum Number of Files or Subdirectories in a Single Directory

■ MDS Space Consumption

■ Maximum Length of a Filename and Pathname

■ Maximum Number of Open Files for Lustre File Systems

■ OSS RAM Size

32.1 Maximum Stripe Count
The maximum number of stripe count is 160. This limit is hard-coded, but is near the
upper limit imposed by the underlying ext3 file system. It may be increased in future
releases. Under normal circumstances, the stripe count is not affected by ACLs.
32-1

32.2 Maximum Stripe Size
For a 32-bit machine, the product of stripe size and stripe count (stripe_size *
stripe_count) must be less than 2^32. The ext3 limit of 2TB for a single file applies for
a 64-bit machine. (Lustre can support 160 stripes of 2 TB each on a 64-bit system.)

32.3 Minimum Stripe Size
Due to the 64 KB PAGE_SIZE on some 64-bit machines, the minimum stripe size is
set to 64 KB.

32.4 Maximum Number of OSTs and MDTs
You can set the maximum number of OSTs by a compile option. The limit of 1020
OSTs in Lustre release 1.4.7 is increased to a maximum of 8150 OSTs in 1.6.0. Testing
is in progress to move the limit to 4000 OSTs.

The maximum number of MDSs will be determined after accomplishing MDS
clustering.

32.5 Maximum Number of Clients
Currently, the number of clients is limited to 131072.
32-2 Lustre 2.0 Operations Manual • April 2010

32.6 Maximum Size of a File System
For i386 systems with 2.6 kernels, the block devices are limited to 16 TB. Each OST or
MDT can have a file system up to 16 TB, regardless of whether 32-bit or 64-bit
kernels are on the server.

You can have multiple OST file systems on a single node. Currently, the largest
production Lustre file system has 448 OSTs in a single file system. There is a
compile-time limit of 8150 OSTs in a single file system, giving a theoretical file
system limit of nearly 64 PB.

Several production Lustre file systems have around 200 OSTs in a single file system.
The largest file system in production is at least 1.3 PB (184 OSTs). All these facts
indicate that Lustre would scale just fine if more hardware is made available.

32.7 Maximum File Size
Individual files have a hard limit of nearly 16 TB on 32-bit systems imposed by the
kernel memory subsystem. On 64-bit systems this limit does not exist. Hence, files
can be 64-bits in size. Lustre imposes an additional size limit of up to the number of
stripes, where each stripe is 2 TB. A single file can have a maximum of 160 stripes,
which gives an upper single file limit of 320 TB for 64-bit systems. The actual amount
of data that can be stored in a file depends upon the amount of free space in each
OST on which the file is striped.

32.8 Maximum Number of Files or
Subdirectories in a Single Directory
Lustre uses the ext3 hashed directory code, which has a limit of about 25 million files.
On reaching this limit, the directory grows to more than 2 GB depending on the
length of the filenames. The limit on subdirectories is the same as the limit on regular
files in all later versions of Lustre due to a small ext3 format change.

In fact, Lustre is tested with ten million files in a single directory. On a
properly-configured dual-CPU MDS with 4 GB RAM, random lookups in such a
directory are possible at a rate of 5,000 files / second.
Chapter 32 System Limits 32-3

32.9 MDS Space Consumption
A single MDS imposes an upper limit of 4 billion inodes. The default limit is slightly
less than the device size of 4 KB, meaning 512 MB inodes for a file system with MDS
of 2 TB. This can be increased initially, at the time of MDS file system creation, by
specifying the --mkfsoptions='-i 2048' option on the --add mds config line
for the MDS.

For newer releases of e2fsprogs, you can specify '-i 1024' to create 1 inode for
every 1 KB disk space. You can also specify '-N {num inodes}' to set a specific
number of inodes. The inode size (-I) should not be larger than half the inode ratio
(-i). Otherwise, mke2fs will spin trying to write more number of inodes than the
inodes that can fit into the device.

For more information, see Options for Formatting the MDT and OSTs.

32.10 Maximum Length of a Filename and
Pathname
This limit is 255 bytes for a single filename, the same as in an ext3 file system. The
Linux VFS imposes a full pathname length of 4096 bytes.
32-4 Lustre 2.0 Operations Manual • April 2010

32.11 Maximum Number of Open Files for
Lustre File Systems
Lustre does not impose maximum number of open files, but practically it depends on
amount of RAM on the MDS. There are no "tables" for open files on the MDS, as they
are only linked in a list to a given client's export. Each client process probably has a
limit of several thousands of open files which depends on the ulimit.

32.12 OSS RAM Size
For a single OST, there is no strict rule to size the OSS RAM. However, as a guideline
for Lustre 2.0 installations, 2 GB per OST is a reasonable RAM size. For details on
determining the memory needed for an OSS node, see OSS Memory Requirements
Chapter 32 System Limits 32-5

32-6 Lustre 2.0 Operations Manual • April 2010

Glossary

A
ACL Access Control List - An extended attribute associated with a file which

contains authorization directives.

Administrative
OST failure

A configuration directive given to a cluster to declare that an OST has failed,
so errors can be immediately returned.

C
CFS Cluster File Systems, Inc., a United States corporation founded in 2001 by

Peter J. Braam to develop, maintain and support Lustre.

CMD Clustered metadata, a collection of metadata targets implementing a single
file system namespace.

Completion Callback An RPC made by an OST or MDT to another system, usually a client, to
indicate that the lock request is now granted.

Configlog An llog file used in a node, or retrieved from a management server over the
network with configuration instructions for Lustre systems at startup time.

Configuration Lock A lock held by every node in the cluster to control configuration changes.
When callbacks are received, the nodes quiesce their traffic, cancel the lock
and await configuration changes after which they reacquire the lock before
resuming normal operation.
Glossary-1

D
Default stripe pattern Information in the LOV descriptor that describes the default stripe count

used for new files in a file system. This can be amended by using a directory
stripe descriptor or a per-file stripe descriptor.

Direct I/O A mechanism which can be used during read and write system calls. It
bypasses the kernel. I/O cache to memory copy of data between kernel and
application memory address spaces.

Directory stripe
descriptor

An extended attribute that describes the default stripe pattern for files
underneath that directory.

E
EA Extended Attribute. A small amount of data which can be retrieved through

a name associated with a particular inode. Lustre uses EAa to store striping
information (location of file data on OSTs). Examples of extended attributes
are ACLs, striping information, and crypto keys.

Eviction The process of eliminating server state for a client that is not returning to the
cluster after a timeout or if server failures have occurred.

Export The state held by a server for a client that is sufficient to transparently
recover all in-flight operations when a single failure occurs.

Extent Lock A lock used by the OSC to protect an extent in a storage object for
concurrent control of read/write, file size acquisition and truncation
operations.

F
Failback The failover process in which the default active server regains control over

the service.

Failout OST An OST which is not expected to recover if it fails to answer client requests.
A failout OST can be administratively failed, thereby enabling clients to
return errors when accessing data on the failed OST without making
additional network requests.
Glossary-2 Lustre 2.0 Operations Manual • April 2010

Failover The process by which a standby computer server system takes over for an
active computer server after a failure of the active node. Typically, the
standby computer server gains exclusive access to a shared storage device
between the two servers.

FID Lustre File Identifier. A collection of integers which uniquely identify a file
or object. The FID structure contains a sequence, identity and version
number.

Fileset A group of files that are defined through a directory that represents a file
system’s start point.

FLDB FID Location Database. This database maps a sequence of FIDs to a server
which is managing the objects in the sequence.

Flight Group Group or I/O transfer operations initiated in the OSC, which is
simultaneously going between two endpoints. Tuning the flight group size
correctly leads to a full pipe.

G
Glimpse callback An RPC made by an OST or MDT to another system, usually a client, to

indicate to tthat an extent lock it is holding should be surrendered if it is not
in use. If the system is using the lock, then the system should report the
object size in the reply to the glimpse callback. Glimpses are introduced to
optimize the acquisition of file sizes.

Group Lock

Group upcall

I
Import The state held by a client to fully recover a transaction sequence after a

server failure and restart.

Intent Lock A special locking operation introduced by Lustre into the Linux kernel. An
intent lock combines a request for a lock, with the full information to
perform the operation(s) for which the lock was requested. This offers the
server the option of granting the lock or performing the operation and
informing the client of the operation result without granting a lock. The use
of intent locks enables metadata operations (even complicated ones), to be
implemented with a single RPC from the client to the server.
Glossary-3

IOV I/O vector. A buffer destined for transport across the network which
contains a collection (a/k/a as a vector) of blocks with data.

K
Kerberos An authentication mechanism, optionally available in an upcoming Lustre

version as a GSS backend.

L
LBUG A bug that Lustre writes into a log indicating a serious system failure.

LDLM Lustre Distributed Lock Manager.

lfs The Lustre File System configuration tool for end users to set/check file
striping, etc. See lfs.

lfsck Lustre File System Check. A distributed version of a disk file system checker.
Normally, lfsck does not need to be run, except when file systems are
damaged through multiple disk failures and other means that cannot be
recovered using file system journal recovery.

liblustre Lustre library. A user-mode Lustre client linked into a user program for
Lustre fs access. liblustre clients cache no data, do not need to give back
locks on time, and can recover safely from an eviction. They should not
participate in recovery.

Llite Lustre lite. This term is in use inside the code and module names to indicate
that code elements are related to the Lustre file system.

Llog Lustre log. A log of entries used internally by Lustre. An llog is suitable for
rapid transactional appends of records and cheap cancellation of records
through a bitmap.

Llog Catalog Lustre log catalog. An llog with records that each point at an llog. Catalogs
were introduced to give llogs almost infinite size. llogs have an originator
which writes records and a replicator which cancels record (usually through
an RPC), when the records are not needed.

LMV Logical Metadata Volume. A driver to abstract in the Lustre client that it is
working with a metadata cluster instead of a single metadata server.
Glossary-4 Lustre 2.0 Operations Manual • April 2010

LND Lustre Network Driver. A code module that enables LNET support over a
particular transport, such as TCP and various kinds of InfiniBand, Elan or
Myrinet.

LNET Lustre Networking. A message passing network protocol capable of running
and routing through various physical layers. LNET forms the underpinning
of LNETrpc.

Load-balancing MDSs A cluster of MDSs that perform load balancing of on system requests.

Lock Client A module that makes lock RPCs to a lock server and handles revocations
from the server.

Lock Server A system that manages locks on certain objects. It also issues lock callback
requests, calls while servicing or, for objects that are already locked,
completes lock requests.

LOV Logical Object Volume. The object storage analog of a logical volume in a
block device volume management system, such as LVM or EVMS. The LOV
is primarily used to present a collection of OSTs as a single device to the
MDT and client file system drivers.

LOV descriptor A set of configuration directives which describes which nodes are OSS
systems in the Lustre cluster, providing names for their OSTs.

Lustre The name of the project chosen by Peter Braam in 1999 for an object-based
storage architecture. Now the name is commonly associated with the Lustre
file system.

Lustre client An operating instance with a mounted Lustre file system.

Lustre file A file in the Lustre file system. The implementation of a Lustre file is
through an inode on a metadata server which contains references to a
storage object on OSSs.

Lustre lite A preliminary version of Lustre developed for LLNL in 2002. With the
release of Lustre 1.0 in late 2003, Lustre Lite became obsolete.

Lvfs A library that provides an interface between Lustre OSD and MDD drivers
and file systems; this avoids introducing file system-specific abstractions into
the OSD and MDD drivers.

M
Mballoc Multi-Block-Allocate. Lustre functionality that enables the ext3 file system to

allocate multiple blocks with a single request to the block allocator.
Normally, an ext3 file system only allocates only one block per request.
Glossary-5

MDC MetaData Client - Lustre client component that sends metadata requests via
RPC over LNET to the Metadata Target (MDT).

MDD MetaData Disk Device - Lustre server component that interfaces with the
underlying Object Storage Device to manage the Lustre file system
namespace (directories, file ownership, attributes).

MDS MetaData Server - Server node that is hosting the Metadata Target (MDT).

MDT Metadata Target. A metadata device made available through the Lustre
meta-data network protocol.

Metadata Write-back
Cache

A cache of metadata updates (mkdir, create, setattr, other operations) which
an application has performed, but have not yet been flushed to a storage
device or server.

MGS Management Service. A software module that manages the startup
configuration and changes to the configuration. Also, the server node on
which this system runs.

Mountconf The Lustre configuration protocol (introduced in version 1.6) which formats
disk file systems on servers with the mkfs.lustre program, and prepares
them for automatic incorporation into a Lustre cluster.

N
NAL An older, obsolete term for LND.

NID Network Identifier. Encodes the type, network number and network address
of a network interface on a node for use by Lustre.

NIO API A subset of the LNET RPC module that implements a library for sending
large network requests, moving buffers with RDMA.

O
OBD Object Device. The base class of layering software constructs that provides

Lustre functionality.

OBD API See Storage Object API.

OBD type Module that can implement the Lustre object or metadata APIs. Examples of
OBD types include the LOV, OSC and OSD.
Glossary-6 Lustre 2.0 Operations Manual • April 2010

Obdfilter An older name for the OSD device driver.

Object device An instance of an object that exports the OBD API.

Object storage Refers to a storage-device API or protocol involving storage objects. The two
most well known instances of object storage are the T10 iSCSI storage object
protocol and the Lustre object storage protocol (a network implementation of
the Lustre object API). The principal difference between the Lustre and T10
protocols is that Lustre includes locking and recovery control in the protocol
and is not tied to a SCSI transport layer.

opencache A cache of open file handles. This is a performance enhancement for NFS.

Orphan objects Storage objects for which there is no Lustre file pointing at them. Orphan
objects can arise from crashes and are automatically removed by an llog
recovery. When a client deletes a file, the MDT gives back a cookie for each
stripe. The client then sends the cookie and directs the OST to delete the
stripe. Finally, the OST sends the cookie back to the MDT to cancel it.

Orphan handling A component of the metadata service which allows for recovery of open,
unlinked files after a server crash. The implementation of this feature retains
open, unlinked files as orphan objects until it is determined that no clients
are using them.

OSC Object Storage Client. The client unit talking to an OST (via an OSS).

OSD Object Storage Device. A generic, industry term for storage devices with
more extended interface than block-oriented devices, such as disks. Lustre
uses this name to describe to a software module that implements an object
storage API in the kernel. Lustre also uses this name to refer to an instance
of an object storage device created by that driver. The OSD device is layered
on a file system, with methods that mimic create, destroy and I/O
operations on file inodes.

OSS Object Storage Server. A server OBD that provides access to local OSTs.

OST Object Storage Target. An OSD made accessible through a network protocol.
Typically, an OST is associated with a unique OSD which, in turn is
associated with a formatted disk file system on the server containing the
storage objects.

P

Pdirops A locking protocol introduced in the VFS by CFS to allow for concurrent
operations on a single directory inode.
Glossary-7

pool OST pools allows the administrator to associate a name with an arbitrary
subset of OSTs in a Lustre cluster. A group of OSTs can be combined into a
named pool with unique access permissions and stripe characteristics.

Portal A concept used by LNET. LNET messages are sent to a portal on a NID.
Portals can receive packets when a memory descriptor is attached to the
portal. Portals are implemented as integers.

Examples of portals are the portals on which certain groups of object,
metadata, configuration and locking requests and replies are received.

PTLRPC An RPC protocol layered on LNET. This protocol deals with stateful servers
and has exactly-once semantics and built in support for recovery.

R
Recovery The process that re-establishes the connection state when a client that was

previously connected to a server reconnects after the server restarts.

Reply The concept of re-executing a server request after the server lost information
in its memory caches and shut down. The replay requests are retained by
clients until the server(s) have confirmed that the data is persistent on disk.
Only requests for which a client has received a reply are replayed.

Re-sent request A request that has seen no reply can be re-sent after a server reboot.

Revocation Callback An RPC made by an OST or MDT to another system, usually a client, to
revoke a granted lock.

Rollback The concept that server state is in a crash lost because it was cached in
memory and not yet persistent on disk.

Root squash A mechanism whereby the identity of a root user on a client system is
mapped to a different identity on the server to avoid root users on clients
gaining broad permissions on servers. Typically, for management purposes,
at least one client system should not be subject to root squash.

routing LNET routing between different networks and LNDs.

RPC Remote Procedure Call. A network encoding of a request.
Glossary-8 Lustre 2.0 Operations Manual • April 2010

S
Storage Object API The API that manipulates storage objects. This API is richer than that of

block devices and includes the create/delete of storage objects, read/write of
buffers from and to certain offsets, set attributes and other storage object
metadata.

Storage Objects A generic concept referring to data containers, similar/identical to file
inodes.

Stride A contiguous, logical extent of a Lustre file written to a single OST.

Stride size The maximum size of a stride, typically 4 MB.

Stripe count The number of OSTs holding objects for a RAID0-striped Lustre file.

Striping metadata The extended attribute associated with a file that describes how its data is
distributed over storage objects. See also default stripe pattern.

T
T10 object protocol An object storage protocol tied to the SCSI transport layer. Lustre does not

use T10.

W
Wide striping Strategy of using many OSTs to store stripes of a single file. This obtains

maximum bandwidth to a single file through parallel utilization of many
OSTs.
Glossary-9

Glossary-10 Lustre 2.0 Operations Manual • April 2010

Index
A
access control list (ACL), 25-1
ACL, using, 25-1
ACLs

examples, 25-3
Lustre support, 25-2

adaptive timeouts
configuring, 20-6
interpreting, 20-8
introduction, 20-5

adding
clients, 4-10
OSTs, 4-10

adding multiple LUNs on a single HBA, 26-5
allocating quotas, 9-7

B
benchmark

Bonnie++, 16-2
IOR, 16-3
IOzone, 16-5

bonding, 12-1
configuring Lustre, 12-11
module parameters, 12-5
references, 12-11
requirements, 12-2
setting up, 12-5

bonding NICs, 12-4
Bonnie++ benchmark, 16-2
building

Lustre SNMP module, 13-2

C
calculating

OSS memory requirements, 3-7
capacity, system, 1-14
changelogs, 22-2
checksums, 24-20
Cisco Topspin (cib), 2-2
client

eviction, 18-3
client read/write

extents survey, 20-17
offset survey, 20-15

clients
adding, 4-10

CollectL, 22-9
command

filefrag, 27-15
lfsck, 27-13
llapi, 29-1
mount, 27-17

command lfs, 27-2
Commit on Share (COS), 18-15
complicated configurations, multihomed servers, 7-

1
components, Lustre, 1-5
configuration

module setup, 4-10
configuration example, Lustre, 4-5
configuration, logs, regenerating, 4-22
configuration, more complex

failover, 4-28
Index-1

configuring
adaptive timeouts, 20-6
LNET, 2-5
root squash, 25-4

configuring Lustre, 4-2
COW I/O, 17-16
Cray Seastar, 2-2

D
debugging

adding debugging to source code, 23-11
controlling the kernel debug log, 23-8
daemon, 23-6
finding Lustre UUID of an OST, 23-16
finding memory leaks, 23-10
lctl tool, 23-8
looking at disk content, 23-15
messages, 23-2
printing to /var/log/messages, 23-10
Ptlrpc request history, 23-16
sample lctl run, 23-11
tcpdump, 23-16
tools, 23-4
tracing lock traffic, 23-10
troubleshooting with strace, 23-14

debugging tools, 3-4
designing a Lustre network, 2-3
DIRECT I/O, 17-16
directory statahead, using, 20-20
downed routers, 2-12

E
e2fsprogs, 3-3
e2scan, 31-23
Elan (Quadrics Elan), 2-2
Elan to TCP routing

modprobe.conf, 7-5
start clients, 7-5
start servers, 7-5

environmental requirements, 3-5
error messages, 21-3
error numbers, 21-2
external journal, creating, 10-6

F
failover, 8-1

capabilities, 8-2
configuration types, 8-2
configuring, 4-28
failover and MMP, 8-4
MDT (active/passive), 8-4
OST (active/active), 8-4
using Heartbeat, 8-6

failures, isolating and debugging, 15-6
file formats, quotas, 9-12
file readahead, using, 20-20
file size, maximum, 32-3
file striping, 24-1
file system

name, 4-12
file system size, maximum, 32-3
filefrag command, 27-15
filename length, maximum, 32-4
flock utility, 31-30
free space management

adjusting weighting between free space and
location, 24-12

round-robin allocator, 24-11
weighted allocator, 24-11

free space, managing, 24-9

G
GM and MX (Myrinet), 2-2

H
HA software, 3-4
handling full OSTs, 24-12
handling timeouts, 27-17
HBA, adding SCSI LUNs, 26-5
Heartbeat, configuring for Lustre failover, 8-6

I
I/O options

checksums, 24-20
I/O tunables, 20-12
I/O, direct, performing, 24-20
improving Lustre metadata performance with large

directories, 26-6
Infinicon InfiniBand (iib), 2-2
inode number, MDT, 19-6
inode number, OST, 19-7
Index-2 Lustre 2.0 Operations Manual • April 2010

inode size, MDT, 19-7
installing

Lustre SNMP module, 13-2
POSIX, 15-2

installing Lustre
from RPMs, 3-9
from source code, 3-13

installing Lustre, debugging tools, 3-4
installing Lustre, environmental requirements, 3-5
installing Lustre, HA software, 3-4
installing Lustre, memory requirements, 3-6
installing Lustre, prerequisites, 3-2
installing Lustre, required software, 3-3
installing Lustre, required tools / utilities, 3-3
installing Lustre, supported Linux distributions,

architectures, and interconnects, 3-2
interpreting

adaptive timeouts, 20-8
IOR benchmark, 16-3
IOzone benchmark, 16-5

K
Kerberos

Lustre setup, 11-2
Lustre-Kerberos flavors, 11-11

key features, 1-3

L
l_getidentity, 31-31
lctl, 31-8

setting parameters, 4-20
lctl tool, 23-8
lfs command, 27-2
lfs getstripe

display files and directories, 24-5
setting file layouts, 24-6

lfsck command, 27-13
ll_recover_lost_found_objs, 31-39
llapi, 24-22
llapi command, 29-1
llobdstat, 31-32
llstat, 31-33
LND, 2-1
LNET, 1-16

configuring, 2-5

routers, 2-11
starting, 2-13
stopping, 2-14

LNET self-test
commands, 17-26
concepts, 17-21

Load balancing with InfiniBand
modprobe.conf, 7-6

locking proc entries, 20-29
logs, 21-3
lst, 31-35
LUNs, adding, 26-5
Lustre

administration, aborting recovery, 4-26
administration, changing a server NID, 4-23
administration, determining which machine is

serving an OST, 4-27
administration, failout / failover mode for

OSTs, 4-16
administration, file system name, 4-12
administration, finding nodes in the file

system, 4-15
administration, mounting a server, 4-13
administration, mounting a server without

Lustre service, 4-16
administration, regenerating Lustre

configuration logs, 4-22
administration, removing and restoring OSTs, 4-

24
administration, running multiple Lustre file

systems, 4-17
administration, setting and retrieving Lustre

parameters, 4-19
administration, starting Lustre, 4-12
administration, working with inactive OSTs, 4-14
adminstration, unmounting a server, 4-14
components, 1-5
configuration example, 4-5
configuring, 4-2
COS, 18-15
failover, 8-1
installing, debugging tools, 3-4
installing, environmental requirements, 3-5
installing, HA software, 3-4
installing, memory requirements, 3-6
installing, prerequisites, 3-2
installing, required software, 3-3
installing, required tools / utilities, 3-3
Index-3

installing, supported Linux distributions,
architectures and interconnects, 3-2

isolating and debugging failures, 15-6
key features, 1-3
metadata replay, 18-6
operational scenarios, 4-29
orphaned objects, 18-22
parameters, reporting current, 4-21
parameters, setting and retrieving, 4-19
parameters, setting with lctl, 4-20
parameters, setting with mkfs.lustre, 4-19
parameters, setting with tunefs.lustre, 4-19
performance tips, 21-5
recovering from corruption in Lustre file

system, 18-18
recovering from errors on backing file

system, 18-16
recovery, client eviction, 18-3
reply reconstruction, 18-11
scaling, 4-10
starting, 4-12
system capacity, 1-14
VBR, introduction, 18-13
VBR, tips, 18-14
VBR, working with, 18-14

Lustre I/O kit
downloading, 17-2
obdfilter_survey tool, 17-5
ost_survey tool, 17-11
PIOS I/O modes, 17-16
PIOS tool, 17-14
prerequisites to using, 17-2
running tests, 17-2
sgpdd_survey tool, 17-3

Lustre Monitoring Tool (LMT), 22-8
Lustre Network Driver (LND), 2-1
Lustre Networking (LNET), 1-16
Lustre SNMP module

building, 13-2
installing, 13-2
using, 13-3

lustre_rmmod.sh, 31-22
lustre_rsync, 31-18

M
man1

filefrag, 27-15
lfs, 27-2

lfsck, 27-13
mount, 27-17

man2
user/group cache upcall, 28-1

man3
llapi, 29-1

man5
LNET options, 30-3
module options, 30-2
MX LND, 30-19
OpenIB LND, 30-14
Portals LND (Catamount), 30-17
Portals LND (Linux), 30-15
QSW LND, 30-10
RapidArray LND, 30-11
SOCKLND kernel TCP/IP LND, 30-8
VIB LND, 30-12

man8
application profiling utilties, 31-24
l_getidentity, 31-31
lctl, 31-8
ll_recover_lost_found_objs, 31-39
llobdstat, 31-32
llstat, 31-33
lst, 31-35
lustre_rsync, 31-18
mkfs.lustre, 31-2
mount.lustre, 31-15
plot-llstat, 31-37
proc statistics, 31-24
routerstat, 31-38
system configuration utilities, 31-22
test/debug utilities, 31-25
tunefs.lustre, 31-5

managing free space, 24-9
maximum

file size, 32-3
file system size, 32-3
filename/pathname length, 32-4
number of clients, 32-2
number of files in a directory, 32-3
number of open files, 32-5
number of OSTs and MDTs, 32-2
OSS RAM size, 32-5
stripe count, 32-1
stripe size, 32-2

mballoc
history, 20-25
Index-4 Lustre 2.0 Operations Manual • April 2010

mballoc3
tunables, 20-27

MDS
service thread count, 19-3
space consumption, 32-4

MDT
failover, 8-4
inode size, 19-7
number of inodes, 19-6

MDT/OST formatting
planning for inodes, 19-5
sizing the MDT, 19-5

Mellanox-Gold InfiniBand (openib), 2-2
memory requirements, 3-6
metadata replay, 18-6
minimum

stripe size, 32-2
mkfs.lustre, 31-2

setting parameters, 4-19
MMP

MMP and failover, 8-4
modprobe.conf, 7-1, 7-5, 7-6
module parameters, 2-5
module parameters, routing, 2-8
module setup, 4-10
monitoring

changelogs, 22-2
CollectL, 22-9
Lustre Monitoring Tool, 22-8
Red Hat Cluster Manager, 22-8
SNMP, 22-9

mount command, 27-17
mount.lustre, 31-15
multihomed server

Lustre complicated configurations, 7-1
modprobe.conf, 7-1
start clients, 7-4
start server, 7-3

multiple NICs, 12-4
MX LND, 30-19
Myrinet, 2-2

N
network

bonding, 12-1
networks, supported

cib (Cisco Topspin), 2-2
Cray Seastar, 2-2
Elan (Quadrics Elan), 2-2
GM and MX (Myrinet), 2-2
iib (Infinicon InfiniBand), 2-2
o2ib (OFED), 2-2
openib (Mellanox-Gold InfiniBand), 2-2
ra (RapidArray), 2-2
TCP, 2-2
vib (Voltaire InfiniBand), 2-2

NIC
bonding, 12-4
multiple, 12-4

NID, server, changing, 4-23
number of clients, maximum, 32-2
number of files in a directory, maximum, 32-3
number of open files, maximum, 32-5

O
o2ib (OFED), 2-2
obdfilter_survey tool, 17-5
OFED, 2-2
OpenIB LND, 30-14
operating tips

data migration script, simple, 26-3
Operational scenarios, 4-29
orphaned objects, working with, 18-22
OSS

memory, determining, 3-7
RAM size, maximum, 32-5
service thread count, 19-2

OSS read cache, 20-22
OST

failover, 8-4
number of inodes, 19-7
removing and restoring, 4-24

OST block I/O stream, watching, 20-19
OST pools, 24-16
OST, adding, 26-2
OST, determining which machine is serving, 4-27
ost_survey tool, 17-11
OSTs

adding, 4-10
OSTs and MDTs, maximum, 32-2
OSTs, full, handling, 24-12
Index-5

P
parameters, setting with lctl, 4-20
parameters, setting with mkfs.lustre, 4-19
parameters, setting with tunefs.lustre, 4-19
pathname length, maximum, 32-4
performance tips, 21-5
performing direct I/O, 24-20
Perl, 3-3
PIOS

examples, 17-20
PIOS I/O mode

COW I/O, 17-16
DIRECT I/O, 17-16
POSIX I/O, 17-16

PIOS I/O modes, 17-16
PIOS parameter

ChunkSize(c), 17-17
Offset(o), 17-18
RegionCount(n), 17-17
RegionSize(s), 17-17
ThreadCount(t), 17-17

PIOS tool, 17-14
plot-llstat, 31-37
pools, OST, 24-16
Portals LND

Catamount, 30-17
Linux, 30-15

POSIX
building and running POSIX-compliant test suite

on Lustre, 15-3
installing, 15-2

POSIX I/O, 17-16
prerequisites, 3-2
proc entries

debug support, 20-32
free space distribution, 20-11
LNET information, 20-9
locating file systems and servers, 20-2
locking, 20-29
timeouts, 20-3

Q
QSW LND, 30-10
Quadrics Elan, 2-2
quota limits, 9-11

quota statistics, 9-13
quotas

administering, 9-4
allocating, 9-7
creating files, 9-4
enabling, 9-2
file formats, 9-12
granted cache, 9-10
known issues, 9-10
limits, 9-11
statistics, 9-13
working with, 9-1

R
ra (RapidArray), 2-2
RAID

creating an external journal, 10-6
formatting options, 10-5
handling degraded arrays, 10-7
insights into disk performance measurement, 10-

7
performance tradeoffs, 10-5
reliability best practices, 10-3
selecting storage for MDS or OSTs, 10-2
software RAID, 10-8
understanding double failures with hardware

and software RAID, 10-4
RapidArray, 2-2
RapidArray LND, 30-11
readahead, tuning, 20-20
recovery mode, failure types

client failure, 18-2
MDS failure/failover, 18-3
network partition, 18-5
OST failure, 18-4

recovery, aborting, 4-26
Red Hat Cluster Manager, 22-8
regenerating configuration logs, 4-22
reply reconstruction, 18-11
reporting current Lustre parameters, 4-21
required software, 3-3
required tools / utilities, 3-3
root squash

configuring, 25-4
tips, 25-6
tuning, 25-4

root squash, using, 25-4
Index-6 Lustre 2.0 Operations Manual • April 2010

round-robin allocator, 24-11
routers, downed, 2-12
routers, LNET, 2-11
routerstat, 31-38
routing, 2-8
routing, elan to TCP, 7-5
RPC stream tunables, 20-12
RPC stream, watching, 20-14
RPMs, installing Lustre, 3-9
running a client and OST on the same machine, 26-5

S
scaling Lustre, 4-10
server

mounting, 4-13
unmounting, 4-14

server NID, changing, 4-23
Service tags

introduction, 5-1
using, 5-2

service threads
MDS, 19-3
OSS, 19-2

setting
SCSI I/O sizes, 21-19

setting and retrieving Lustre parameters, 4-19
sgpdd_survey tool, 17-3
simple configuration

network, combined MGS/MDT, 6-1
network, separate MGS/MDT, 6-3
TCP network, Lustre simple configurations, 6-1

SNMP monitoring, 22-9
SOCKLND kernel TCP/IP LND, 30-8
software RAID, support, 10-8
source code, installing Lustre, 3-13
starting

LNET, 2-13
statahead, tuning, 20-21
stopping

LNET, 2-14
strace, 23-14
stripe count, maximum, 32-1
stripe size, maximum, 32-2
stripe size, minimum, 32-2
striping

advantages, 24-2
disadvantages, 24-3
lfs getstripe, display files and directories, 24-5
lfs getstripe, set file layout, 24-6
managing free space, 24-9
size, 24-4

striping using llapi, 24-22
supported Linux distributions, architectures and

interconnects, 3-2
supported networks

cib (Cisco Topspin), 2-2
Cray Seastar, 2-2
Elan (Quadrics Elan), 2-2
GM and MX (Myrinet), 2-2
iib (Infinicon InfiniBand), 2-2
o2ib (OFED), 2-2
openib (Mellanox-Gold InfiniBand), 2-2
ra (RapidArray), 2-2
TCP, 2-2
vib (Voltaire InfiniBand), 2-2

system capacity, 1-14

T
TCP, 2-2
timeouts, handling, 27-17
Troubleshooting

number of OSTs needed for sustained
throughput, 21-19

troubleshooting
consideration in connecting a SAN with

Lustre, 21-12
default striping, 21-10
drawbacks in doing multi-client O_APPEND

writes, 21-18
erasing a file system, 21-11
error messages, 21-3
error numbers, 21-2
handling timeouts on initial Lustre setup, 21-16
handling/debugging "bind

address already in use" error, 21-13
handling/debugging "Lustre Error

xxx went back in time", 21-17
handling/debugging error "28", 21-14
identifying a missing OST, 21-8
improving Lustre performance when working

with small files, 21-10
log message ’out of memory’ on OST, 21-18
logs, 21-3
Index-7

Lustre Error
"slow start_page_write", 21-17

OST object missing or damaged, 21-7
OSTs become read-only, 21-8
reclaiming reserved disk space, 21-11
recovering from an unavailable OST, 21-5
replacing an existing OST or MDS, 21-14
reporting a Lustre bug, 21-4
setting SCSI I/O sizes, 21-19
slowdown occurs during Lustre startup, 21-18
triggering watchdog for PID NNN, 21-15
write performance better than read

performance, 21-6
tunables

RPC stream, 20-12
tunables, lockless, 19-9
tunefs.lustre, 31-5

setting parameters, 4-19
tuning

directory statahead, 20-21
file readahead, 20-20
formatting the MDT and OSTs, 19-5
large-scale, 19-8
LNET tunables, 19-4
lockless tunables, 19-9
MDS threads, 19-3
module options, 19-2
OSS threads, 19-2
root squash, 25-4

U
using

Lustre SNMP module, 13-3
usocklnd, using, 2-7
utilities, third-party

e2fsprogs, 3-3
Perl, 3-3

V
VBR, introduction, 18-13
VBR, tips, 18-14
VBR, working with, 18-14
Version-based recovery (VBR), 18-13
VIB LND, 30-12
Voltaire InfiniBand (vib), 2-2

W
weighted allocator, 24-11
weighting, adjusting between free space and

location, 24-12
Index-8 Lustre 2.0 Operations Manual • April 2010

	Lustre™ 2.0 Operations Manual
	Contents
	Preface
	Revision History
	I Lustre Architecture
	Introduction to Lustre
	1.1 Introducing the Lustre File System
	1.1.1 Lustre Key Features

	1.2 Lustre Components
	1.2.1 Lustre Networking (LNET)
	1.2.2 Management Server (MGS)

	1.3 Lustre Systems
	1.4 Files in the Lustre File System
	1.4.1 Lustre File System and Striping
	1.4.2 Lustre Storage
	1.4.2.1 OSS Storage
	1.4.2.2 MDS Storage

	1.4.3 Lustre System Capacity

	1.5 Lustre Configurations
	1.6 Lustre Networking
	1.7 Lustre Failover

	Understanding Lustre Networking
	2.1 Introduction to LNET
	2.2 Supported Network Types
	2.3 Designing Your Lustre Network
	2.3.1 Identify All Lustre Networks
	2.3.2 Identify Nodes to Route Between Networks
	2.3.3 Identify Network Interfaces to Include/Exclude from LNET
	2.3.4 Determine Cluster-wide Module Configuration
	2.3.5 Determine Appropriate Mount Parameters for Clients

	2.4 Configuring LNET
	2.4.1 Module Parameters
	2.4.1.1 Using Usocklnd
	2.4.1.2 OFED InfiniBand Options

	2.4.2 Module Parameters - Routing
	2.4.2.1 LNET Routers

	2.4.3 Downed Routers

	2.5 Starting and Stopping LNET
	2.5.1 Starting LNET
	2.5.1.1 Starting Clients

	2.5.2 Stopping LNET

	II Lustre Administration
	Installing Lustre
	3.1 Preparing to Install Lustre
	3.1.1 Supported Linux Distribution, Architecture and Interconnect
	3.1.2 Required Lustre Software
	3.1.3 Required Tools and Utilities
	3.1.4 (Optional) High-Availability Software
	3.1.5 Debugging Tools
	3.1.6 Environmental Requirements
	3.1.7 Memory Requirements
	3.1.7.1 MDS Memory Requirements
	3.1.7.2 OSS Memory Requirements

	3.2 Installing Lustre from RPMs
	3.3 Installing Lustre from Source Code
	3.3.1 Patching the Kernel
	3.3.1.1 Introducing the Quilt Utility
	3.3.1.2 Get the Lustre Source and Unpatched Kernel
	3.3.1.3 Patch the Kernel

	3.3.2 Create and Install the Lustre Packages
	3.3.3 Installing Lustre with a Third-Party Network Stack

	Configuring Lustre
	4.1 Configuring the Lustre File System
	4.1.0.1 Simple Lustre Configuration Example
	4.1.0.2 Module Setup
	4.1.1 Scaling the Lustre File System

	4.2 Additional Lustre Configuration
	4.3 Basic Lustre Administration
	4.3.1 Specifying the File System Name
	4.3.2 Starting Lustre
	4.3.3 Mounting a Server
	4.3.4 Unmounting a Server
	4.3.5 Working with Inactive OSTs
	4.3.6 Finding Nodes in the Lustre File System
	4.3.7 Mounting a Server Without Lustre Service
	4.3.8 Specifying Failout/Failover Mode for OSTs
	4.3.9 Running Multiple Lustre File Systems
	4.3.10 Setting and Retrieving Lustre Parameters
	4.3.10.1 Setting Parameters with mkfs.lustre
	4.3.10.2 Setting Parameters with tunefs.lustre
	4.3.10.3 Setting Parameters with lctl
	4.3.10.4 Reporting Current Parameter Values

	4.3.11 Regenerating Lustre Configuration Logs
	4.3.12 Changing a Server NID
	4.3.13 Removing and Restoring OSTs
	4.3.13.1 Removing an OST from the File System
	4.3.13.2 Restoring an OST in the File System

	4.3.14 Aborting Recovery
	4.3.15 Determining Which Machine is Serving an OST

	4.4 More Complex Configurations
	4.4.1 Failover

	4.5 Operational Scenarios
	4.5.1 Unmounting a Server (without Failover)
	4.5.2 Unmounting a Server (with Failover)
	4.5.3 Changing the Address of a Failover Node

	Service Tags
	5.1 Introduction to Service Tags
	5.2 Using Service Tags
	5.2.1 Installing Service Tags
	5.2.2 Discovering and Registering Lustre Components
	5.2.3 Service Tag Registration Information

	Configuring Lustre - Examples
	6.1 Simple TCP Network
	6.1.1 Lustre with Combined MGS/MDT
	6.1.1.1 Installation Summary
	6.1.1.2 Configuration Generation and Application

	6.1.2 Lustre with Separate MGS and MDT
	6.1.2.1 Installation Summary
	6.1.2.2 Configuration Generation and Application

	More Complicated Configurations
	7.1 Multihomed Servers
	7.1.1 Modprobe.conf
	7.1.2 Start Servers
	7.1.3 Start Clients

	7.2 Elan to TCP Routing
	7.2.1 Modprobe.conf
	7.2.2 Start servers
	7.2.3 Start clients

	7.3 Load Balancing with InfiniBand
	7.3.1 Setting Up modprobe.conf for Load Balancing

	7.4 Multi-Rail Configurations with LNET

	Failover
	8.1 What is Failover?
	8.1.1 Failover Capabilities
	8.1.2 Types of Failover Configurations

	8.2 Failover Functionality in Lustre
	8.2.1 MDT Failover Configuration (Active/Passive)
	8.2.2 OST Failover Configuration (Active/Active)
	8.2.3 Lustre Failover and MMP
	8.2.3.1 Working with MMP

	8.3 Configuring and Using Heartbeat with Lustre Failover
	8.3.1 Creating a Failover Environment
	8.3.1.1 Power Management Software
	8.3.1.2 Power Equipment

	8.3.2 Setting up the Heartbeat Software
	8.3.2.1 Installing Heartbeat
	8.3.2.2 Configuring Heartbeat
	8.3.2.3 (Optional) Migrating a Heartbeat Configuration (v1 to v2)

	8.3.3 Working with Heartbeat
	8.3.3.1 Starting Heartbeat
	8.3.3.2 Switching Resources Between Nodes

	Configuring Quotas
	9.1 Working with Quotas
	9.1.1 Enabling Disk Quotas
	9.1.1.1 Administrative and Operational Quotas

	9.1.2 Creating Quota Files and Quota Administration
	9.1.3 Quota Allocation
	9.1.4 Known Issues with Quotas
	9.1.4.1 Granted Cache and Quota Limits
	9.1.4.2 Quota Limits
	9.1.4.3 Quota File Formats

	9.1.5 Lustre Quota Statistics
	9.1.5.1 Interpreting Quota Statistics

	RAID
	10.1 Considerations for Backend Storage
	10.1.1 Selecting Storage for the MDS or OSTs
	10.1.2 Reliability Best Practices
	10.1.3 Understanding Double Failures with Hardware and Software RAID5
	10.1.4 Performance Tradeoffs
	10.1.5 Formatting Options for RAID Devices
	10.1.5.1 Creating an External Journal

	10.1.6 Handling Degraded RAID Arrays

	10.2 Insights into Disk Performance Measurement
	10.3 Lustre Software RAID Support
	10.3.0.1 Enabling Software RAID on Lustre

	Kerberos
	11.1 What is Kerberos?
	11.2 Lustre Setup with Kerberos
	11.2.1 Configuring Kerberos for Lustre
	11.2.1.1 Kerberos Distributions Supported on Lustre
	11.2.1.2 Preparing to Set Up Lustre with Kerberos
	11.2.1.3 Configuring Lustre for Kerberos
	11.2.1.4 Configuring Kerberos
	11.2.1.5 Setting the Environment
	11.2.1.6 Building Lustre
	11.2.1.7 Running GSS Daemons

	11.2.2 Types of Lustre-Kerberos Flavors
	11.2.2.1 Basic Flavors
	11.2.2.2 Security Flavor
	11.2.2.3 Customized Flavor
	11.2.2.4 Specifying Security Flavors
	11.2.2.5 Mounting Clients
	11.2.2.6 Rules, Syntax and Examples
	11.2.2.7 Authenticating Normal Users

	Bonding
	12.1 Network Bonding
	12.2 Requirements
	12.3 Using Lustre with Multiple NICs versus Bonding NICs
	12.4 Bonding Module Parameters
	12.5 Setting Up Bonding
	12.5.1 Examples

	12.6 Configuring Lustre with Bonding
	12.6.1 Bonding References

	Lustre SNMP Module
	13.1 Installing the Lustre SNMP Module
	13.2 Building the Lustre SNMP Module
	13.3 Using the Lustre SNMP Module

	Backup and Restore
	14.1 Backing up a File System
	14.1.1 Lustre_rsync
	14.1.1.1 Using Lustre_rsync
	14.1.1.2 Lustre_rsync Examples

	14.2 Backing up a Device (MDS or OST)
	14.2.1 Backing Up the MDS
	14.2.2 Backing Up an OST

	14.3 Backing up Files
	14.3.1 Backing up Extended Attributes

	14.4 Restoring from a File-level Backup
	14.5 Using LVM Snapshots with Lustre
	14.5.1 Creating an LVM-based Backup File System
	14.5.2 Backing up New/Changed Files to the Backup File System
	14.5.3 Creating Snapshot Volumes
	14.5.4 Restoring the File System From a Snapshot
	14.5.5 Deleting Old Snapshots
	14.5.6 Changing Snapshot Volume Size

	POSIX
	15.1 Introduction to POSIX
	15.2 Installing POSIX
	15.2.1 POSIX Installation Using a Quick Start Version

	15.3 Building and Running a POSIX-Compliant Test Suite on Lustre
	15.3.1 Building the Test Suite from Scratch
	15.3.2 Running the Test Suite Against Lustre

	15.4 Isolating and Debugging Failures

	Benchmarking
	16.1 Bonnie++ Benchmark
	16.2 IOR Benchmark
	16.3 IOzone Benchmark

	Lustre I/O Kit
	17.1 Lustre I/O Kit Description and Prerequisites
	17.1.1 Downloading an I/O Kit
	17.1.2 Prerequisites to Using an I/O Kit

	17.2 Running I/O Kit Tests
	17.2.1 sgpdd_survey
	17.2.2 obdfilter_survey
	17.2.2.1 Running obdfilter_survey Against a Local Disk
	17.2.2.2 Running obdfilter_survey Against a Network
	17.2.2.3 Running obdfilter_survey Against a Network Disk
	17.2.2.4 Output Files
	17.2.2.5 Script Output
	17.2.2.6 Visualizing Results

	17.2.3 ost_survey
	17.2.4 stats-collect

	17.3 PIOS Test Tool
	17.3.1 Synopsis
	17.3.2 PIOS I/O Modes
	17.3.3 PIOS Parameters
	17.3.4 PIOS Examples

	17.4 LNET Self-Test
	17.4.1 Basic Concepts of LNET Self-Test
	17.4.1.1 Modules
	17.4.1.2 Utilities
	17.4.1.3 Session
	17.4.1.4 Console
	17.4.1.5 Group
	17.4.1.6 Test
	17.4.1.7 Batch
	17.4.1.8 Sample Script

	17.4.2 LNET Self-Test Commands
	17.4.2.1 Session
	17.4.2.2 Group
	17.4.2.3 Batch and Test
	17.4.2.4 Other Commands

	Lustre Recovery
	18.1 Recovery Overview
	18.1.1 Client Failure
	18.1.2 Client Eviction
	18.1.3 MDS Failure (Failover)
	18.1.4 OST Failure (Failover)
	18.1.5 Network Partition
	18.1.6 Failed Recovery

	18.2 Metadata Replay
	18.2.1 XID Numbers
	18.2.2 Transaction Numbers
	18.2.3 Replay and Resend
	18.2.4 Client Replay List
	18.2.5 Server Recovery
	18.2.6 Request Replay
	18.2.7 Gaps in the Replay Sequence
	18.2.8 Lock Recovery
	18.2.9 Request Resend

	18.3 Reply Reconstruction
	18.3.1 Required State
	18.3.2 Reconstruction of Open Replies

	18.4 Version-based Recovery
	18.4.1 VBR Messages
	18.4.2 Tips for Using VBR

	18.5 Commit on Share
	18.5.1 Working with Commit on Share
	18.5.2 Tuning Commit On Share

	18.6 Recovering from Errors or Corruption on a Backing File System
	18.7 Recovering from Corruption in the Lustre File System
	18.7.1 Working with Orphaned Objects

	III Lustre Tuning, Monitoring and Troubleshooting
	Lustre Tuning
	19.1 Module Options
	19.1.1 OSS Service Thread Count
	19.1.1.1 Optimizing the Number of Service Threads

	19.1.2 MDS Service Thread Count
	19.1.2.1 I/O Scheduler

	19.2 LNET Tunables
	19.2.0.1 Transmit and receive buffer size:
	19.2.0.2 irq_affinity

	19.3 Options for Formatting the MDT and OSTs
	19.3.1 Planning for Inodes
	19.3.2 Sizing the MDT

	19.4 Overriding Default Formatting Options
	19.4.1 Number of Inodes for the MDT
	19.4.2 Inode Size for the MDT
	19.4.3 Number of Inodes for an OST

	19.5 Large-Scale Tuning for Cray XT and Equivalents
	19.5.1 Network Tunables

	19.6 Lockless I/O Tunables
	19.7 Data Checksums

	LustreProc
	20.1 Proc Entries for Lustre
	20.1.1 Locating Lustre File Systems and Servers
	20.1.2 Lustre Timeouts
	20.1.3 Adaptive Timeouts
	20.1.3.1 Configuring Adaptive Timeouts
	20.1.3.2 Interpreting Adaptive Timeouts Information

	20.1.4 LNET Information
	20.1.5 Free Space Distribution
	20.1.5.1 Managing Stripe Allocation

	20.2 Lustre I/O Tunables
	20.2.1 Client I/O RPC Stream Tunables
	20.2.2 Watching the Client RPC Stream
	20.2.3 Client Read-Write Offset Survey
	20.2.4 Client Read-Write Extents Survey
	20.2.5 Watching the OST Block I/O Stream
	20.2.6 Using File Readahead and Directory Statahead
	20.2.6.1 Tuning File Readahead
	20.2.6.2 Tuning Directory Statahead

	20.2.7 OSS Read Cache
	20.2.7.1 Using OSS Read Cache

	20.2.8 mballoc History
	20.2.9 mballoc3 Tunables
	20.2.10 Locking
	20.2.11 Setting MDS and OSS Thread Counts

	20.3 Debug Support
	20.3.1 RPC Information for Other OBD Devices
	20.3.1.1 Interpreting OST Statistics
	20.3.1.2 llobdstat
	20.3.1.3 Interpreting MDT Statistics

	Lustre Troubleshooting
	21.1 Troubleshooting Lustre
	21.1.1 Error Numbers
	21.1.2 Error Messages
	21.1.3 Lustre Logs

	21.2 Reporting a Lustre Bug
	21.3 Common Lustre Problems and Performance Tips
	21.3.1 Recovering from an Unavailable OST
	21.3.2 Write Performance Better Than Read Performance
	21.3.3 OST Object is Missing or Damaged
	21.3.4 OSTs Become Read-Only
	21.3.5 Identifying a Missing OST
	21.3.6 Improving Lustre Performance When Working with Small Files
	21.3.7 Default Striping
	21.3.8 Erasing a File System
	21.3.9 Reclaiming Reserved Disk Space
	21.3.10 Considerations in Connecting a SAN with Lustre
	21.3.11 Handling/Debugging "Bind: Address already in use" Error
	21.3.12 Replacing An Existing OST or MDS
	21.3.13 Handling/Debugging Error "- 28"
	21.3.14 Triggering Watchdog for PID NNN
	21.3.15 Handling Timeouts on Initial Lustre Setup
	21.3.16 Handling/Debugging "LustreError: xxx went back in time"
	21.3.17 Lustre Error: "Slow Start_Page_Write"
	21.3.18 Drawbacks in Doing Multi-client O_APPEND Writes
	21.3.19 Slowdown Occurs During Lustre Startup
	21.3.20 Log Message ‘Out of Memory’ on OST
	21.3.21 Number of OSTs Needed for Sustained Throughput
	21.3.22 Setting SCSI I/O Sizes
	21.3.23 Identifying Which Lustre File an OST Object Belongs To

	Lustre Monitoring
	22.1 Lustre Changelogs
	22.1.1 Working with Changelogs
	22.1.2 Changelog Examples

	22.2 Lustre Monitoring Tool
	22.3 Red Hat Cluster Manager
	22.4 SNMP Monitoring
	22.5 CollectL

	Lustre Debugging
	23.1 Lustre Debug Messages
	23.1.1 Format of Lustre Debug Messages

	23.2 Tools for Lustre Debugging
	23.2.1 Debug Daemon Option to lctl
	23.2.1.1 lctl Debug Daemon Commands

	23.2.2 Controlling the Kernel Debug Log
	23.2.3 The lctl Tool
	23.2.4 Finding Memory Leaks
	23.2.5 Printing to /var/log/messages
	23.2.6 Tracing Lock Traffic
	23.2.7 Sample lctl Run
	23.2.8 Adding Debugging to the Lustre Source Code

	23.3 Troubleshooting with strace
	23.4 Looking at Disk Content
	23.4.1 Determine the Lustre UUID of an OST
	23.4.2 Tcpdump

	23.5 Ptlrpc Request History
	23.6 Using LWT Tracing

	IV Lustre for Users
	Striping and I/O Options
	24.1 File Striping
	24.1.1 Advantages of Striping
	24.1.1.1 Bandwidth

	24.1.2 Disadvantages of Striping
	24.1.2.1 Increased Overhead
	24.1.2.2 Increased Risk

	24.1.3 Stripe Size

	24.2 Displaying Files and Directories with lfs getstripe
	24.3 lfs setstripe - Setting File Layouts
	24.3.1 Changing Striping for a Subdirectory
	24.3.2 Using a Specific Striping Pattern/File Layout for a Single File
	24.3.3 Creating a File on a Specific OST

	24.4 Managing Free Space
	24.4.1 Checking File System Free Space
	24.4.2 Using Stripe Allocations
	24.4.3 Round-Robin Allocator
	24.4.4 Weighted Allocator
	24.4.5 Adjusting the Weighting Between Free Space and Location

	24.5 Handing Full OSTs
	24.5.1 Checking File System Usage
	24.5.2 Taking a Full OST Offline
	24.5.3 Migrating Data within a File System

	24.6 Creating and Managing OST Pools
	24.6.1 Working with OST Pools
	24.6.1.1 Using the lfs Command with OST Pools

	24.6.2 Tips for Using OST Pools

	24.7 Performing Direct I/O
	24.7.1 Making File System Objects Immutable

	24.8 Other I/O Options
	24.8.1 Lustre Checksums
	24.8.1.1 Changing Checksum Algorithms

	24.9 Striping Using llapi

	Lustre Security
	25.1 Using ACLs
	25.1.1 How ACLs Work
	25.1.2 Using ACLs with Lustre
	25.1.3 Examples

	25.2 Using Root Squash
	25.2.1 Configuring Root Squash
	25.2.2 Enabling and Tuning Root Squash
	25.2.3 Tips on Using Root Squash

	Lustre Operating Tips
	26.1 Adding an OST to a Lustre File System
	26.2 A Simple Data Migration Script
	26.3 Adding Multiple SCSI LUNs on Single HBA
	26.4 Failures Running a Client and OST on the Same Machine
	26.5 Improving Lustre Metadata Performance While Using Large Directories

	V Reference
	User Utilities (man1)
	27.1 lfs
	27.2 lfsck
	27.3 Filefrag
	27.4 Mount
	27.5 Handling Timeouts

	Lustre Programming Interfaces (man2)
	28.1 User/Group Cache Upcall
	28.1.1 Name
	28.1.2 Description
	28.1.2.1 Primary and Secondary Groups

	28.1.3 Parameters
	28.1.4 Data Structures

	Setting Lustre Properties (man3)
	29.1 Using llapi
	29.1.1 llapi_file_create
	29.1.2 llapi_file_get_stripe
	29.1.3 llapi_file_open
	29.1.4 llapi_quotactl
	29.1.5 llapi_path2fid

	Configuration Files and Module Parameters (man5)
	30.1 Introduction
	30.2 Module Options
	30.2.1 LNET Options
	30.2.1.1 Network Topology
	30.2.1.2 networks ("tcp")
	30.2.1.3 routes (“”)
	30.2.1.4 forwarding ("")

	30.2.2 SOCKLND Kernel TCP/IP LND
	30.2.3 QSW LND
	30.2.4 RapidArray LND
	30.2.5 VIB LND
	30.2.6 OpenIB LND
	30.2.7 Portals LND (Linux)
	30.2.8 Portals LND (Catamount)
	30.2.9 MX LND

	System Configuration Utilities (man8)
	31.1 mkfs.lustre
	31.2 tunefs.lustre
	31.3 lctl
	31.4 mount.lustre
	31.5 lustre_rsync
	31.6 Additional System Configuration Utilities
	31.6.1 lustre_rmmod.sh
	31.6.2 e2scan
	31.6.3 Application Profiling Utilities
	31.6.4 More /proc Statistics for Application Profiling
	31.6.5 Testing / Debugging Utilities
	31.6.6 Flock Feature
	31.6.6.1 Example

	31.6.7 l_getidentity
	31.6.8 llobdstat
	31.6.9 llstat
	31.6.10 lst
	31.6.11 plot-llstat
	31.6.12 routerstat
	31.6.13 ll_recover_lost_found_objs

	System Limits
	32.1 Maximum Stripe Count
	32.2 Maximum Stripe Size
	32.3 Minimum Stripe Size
	32.4 Maximum Number of OSTs and MDTs
	32.5 Maximum Number of Clients
	32.6 Maximum Size of a File System
	32.7 Maximum File Size
	32.8 Maximum Number of Files or Subdirectories in a Single Directory
	32.9 MDS Space Consumption
	32.10 Maximum Length of a Filename and Pathname
	32.11 Maximum Number of Open Files for Lustre File Systems
	32.12 OSS RAM Size

	Glossary
	Index

