Lustre™ 2.0 Operations Manual

»
22 Sun

April 2010

Copyright ©2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software
or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware
in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Oracle and Java are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel
Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content,
products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access
to or use of third-party content, products, or services.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license and obtain
more information about Creative Commons licensing, visit Creative Commons Attribution-Share Alike 3.0 United States or send a letter to
Creative Commons, 171 2nd Street, Suite 300, San Francisco, California 94105, USA.

& wen 9

Adobe PostScript

http://creativecommons.org/licenses/by-sa/3.0/us

D weh 9]

Adobe PostScript

Contents

Preface xxv

Part I Lustre Architecture

1. Introduction to Lustre 1-1
1.1 Introducing the Lustre File System 1-2
1.1.1 Lustre Key Features 1-3
1.2 Lustre Components 1-5
1.2.1 Lustre Networking (LNET) 1-7
1.2.2 Management Server (MGS) 1-7
1.3 Lustre Systems 1-8
1.4 Files in the Lustre File System 1-10
1.4.1 Lustre File System and Striping 1-12
142 Lustre Storage 1-13
1.4.2.1 OSS Storage 1-13
1.4.2.2 MDS Storage 1-13
143 Lustre System Capacity 1-14
1.5 Lustre Configurations 1-14
1.6 Lustre Networking 1-16
1.7 Lustre Failover 1-17

2. Understanding Lustre Networking 2-1
2.1 Introduction to LNET 2-1
2.2 Supported Network Types 2-2
2.3 Designing Your Lustre Network 2-3
2.3.1 Identify All Lustre Networks 2-3
2.3.2 Identify Nodes to Route Between Networks 2-3
2.3.3 Identify Network Interfaces to Include/Exclude from LNET 2-3
234 Determine Cluster-wide Module Configuration 2-4
2.3.5 Determine Appropriate Mount Parameters for Clients 2-4
24 Configuring LNET 2-5
241 Module Parameters 2-5
24.1.1 Using Usocklnd 2-7
2412 OFED InfiniBand Options 2-8
242 Module Parameters - Routing 2-8
2421 LNET Routers 2-11
243 Downed Routers 2-12
2.5 Starting and Stopping LNET 2-13
2.5.1 Starting LNET 2-13
25.1.1 Starting Clients 2-13
2.5.2 Stopping LNET 2-14

vi Lustre 2.0 Operations Manual * April 2010

Part 11 Lustre Administration

3. Installing Lustre 3-1
3.1 Preparing to Install Lustre 3-2
3.1.1 Supported Linux Distribution, Architecture and Interconnect 3-2
3.1.2 Required Lustre Software 3-3
3.1.3 Required Tools and Utilities 3-3
3.14 (Optional) High-Availability Software 3-4
3.1.5 Debugging Tools 3-4
3.1.6 Environmental Requirements 3-5
3.1.7 Memory Requirements 3-6
3.1.7.1 MDS Memory Requirements 3-6
3.1.7.2 OSS Memory Requirements 3-7
3.2 Installing Lustre from RPMs 3-9
3.3 Installing Lustre from Source Code 3-13
3.3.1 Patching the Kernel 3-14
3.3.1.1 Introducing the Quilt Utility 3-14
3.3.1.2 Get the Lustre Source and Unpatched Kernel 3-15
3.3.1.3 Patch the Kernel 3-16
3.3.2 Create and Install the Lustre Packages 3-17
3.3.3 Installing Lustre with a Third-Party Network Stack 3-19

Contents vii

4. Configuring Lustre 4-1
41 Configuring the Lustre File System 4-2
4.1.0.1 Simple Lustre Configuration Example 4-5
4.1.0.2 Module Setup 4-10
411 Scaling the Lustre File System 4-10
42 Additional Lustre Configuration 4-10
4.3 Basic Lustre Administration 4-11
43.1 Specifying the File System Name 4-12
43.2 Starting Lustre 4-12
43.3 Mounting a Server 4-13
434 Unmounting a Server 4-14
43.5 Working with Inactive OSTs 4-14
43.6 Finding Nodes in the Lustre File System 4-15
4.3.7 Mounting a Server Without Lustre Service 4-16
43.8 Specifying Failout/Failover Mode for OSTs 4-16
439 Running Multiple Lustre File Systems 4-17
4.3.10 Setting and Retrieving Lustre Parameters 4-19
43.10.1 Setting Parameters with mkfs.lustre 4-19
4.3.10.2 Setting Parameters with tunefs.lustre 4-19
43.10.3 Setting Parameters with lctl 4-20
43104 Reporting Current Parameter Values 4-21
4.3.11 Regenerating Lustre Configuration Logs 4-22
4.3.12 Changing a Server NID 4-23
4.3.13 Removing and Restoring OSTs 4-24
43.13.1 Removing an OST from the File System 4-24
43.13.2 Restoring an OST in the File System 4-26
43.14 Aborting Recovery 4-26
4.3.15 Determining Which Machine is Serving an OST 4-27

viii Lustre 2.0 Operations Manual * April 2010

4.4

4.5

More Complex Configurations 4-28

441 Failover 4-28

Operational Scenarios 4-29

451 Unmounting a Server (without Failover) 4-31
452 Unmounting a Server (with Failover) 4-31

453 Changing the Address of a Failover Node 4-31

Service Tags 5-1

5.1
52

Introduction to Service Tags 5-1

Using Service Tags 5-2

52.1 Installing Service Tags 5-2

5.2.2 Discovering and Registering Lustre Components 5-3

523 Information Registered with Sun 5-6

Configuring Lustre - Examples 6-1

6.1

Simple TCP Network 6-1
6.1.1 Lustre with Combined MGS/MDT 6-1

6.1.1.1 Installation Summary 6-1

6.1.1.2 Configuration Generation and Application 6-2
6.1.2 Lustre with Separate MGS and MDT 6-3

6.1.2.1 Installation Summary 6-3

6.1.2.2 Configuration Generation and Application 6-3

Contents

7. More Complicated Configurations 7-1
71 Multihomed Servers 7-1
7.1.1 Modprobe.conf 7-1
712 StartServers 7-3
7.1.3 Start Clients 7-4
7.2 Elan to TCP Routing 7-5
72.1 Modprobe.conf 7-5
7.2.2 Startservers 7-5
7.2.3 Startclients 7-5
7.3 Load Balancing with InfiniBand 7-6
7.3.1 Setting Up modprobe.conf for Load Balancing 7-6
7.4 Multi-Rail Configurations with LNET 7-7

8. Failover 8-1

8.1 Whatis Failover? 8-1
8.1.1 Failover Capabilities 8-2
8.1.2 Types of Failover Configurations 8-2

8.2 Failover Functionality in Lustre 8-3
8.2.1 MDT Failover Configuration (Active/Passive) 8-4
8.2.2 OST Failover Configuration (Active/Active) 8-4
8.2.3 Lustre Failover and MMP 8-4

8.2.3.1 Working with MMP 8-5

X Lustre 2.0 Operations Manual * April 2010

8.3 Configuring and Using Heartbeat with Lustre Failover 8-6
8.3.1 Creating a Failover Environment 8-6
8.3.1.1 Power Management Software 8-6
8.3.1.2 Power Equipment 8-7
8.3.2 Setting up the Heartbeat Software 8-7
8.3.2.1 Installing Heartbeat 8-8
8.3.2.2 Configuring Heartbeat 8-8

8.3.2.3 (Optional) Migrating a Heartbeat Configuration (v1 to
v2) 8-13

8.3.3 Working with Heartbeat 8-14
8.3.3.1 Starting Heartbeat 8-14
8.3.3.2 Switching Resources Between Nodes 8-14

9. Configuring Quotas 9-1
9.1 Working with Quotas 9-1
9.1.1 Enabling Disk Quotas 9-2
9.1.11 Administrative and Operational Quotas 9-3
9.12 Creating Quota Files and Quota Administration 9-4
9.1.3 Quota Allocation 9-7
9.14 Known Issues with Quotas 9-10
9.1.4.1 Granted Cache and Quota Limits 9-10
9.14.2 Quota Limits 9-11
9.14.3 Quota File Formats 9-12
9.1.5 Lustre Quota Statistics 9-13
9.1.5.1 Interpreting Quota Statistics 9-14

Contents

10. RAID 10-1
10.1 Considerations for Backend Storage 10-2
10.1.1 Selecting Storage for the MDS or OSTs 10-2
10.1.2 Reliability Best Practices 10-3

10.1.3 Understanding Double Failures with Hardware and Software
RAID5 10-4

10.1.4 Performance Tradeoffs 10-5
10.1.5 Formatting Options for RAID Devices 10-5
10.1.5.1 Creating an External Journal 10-6
10.1.6 Handling Degraded RAID Arrays 10-7
10.2 Insights into Disk Performance Measurement 10-7
10.3 Lustre Software RAID Support 10-8
10.3.0.1 Enabling Software RAID on Lustre 10-8

11. Kerberos 11-1
11.1 What is Kerberos? 11-1
11.2 Lustre Setup with Kerberos 11-2
11.2.1 Configuring Kerberos for Lustre 11-2

11.2.1.1 Kerberos Distributions Supported on Lustre 11-2
11.2.1.2 Preparing to Set Up Lustre with Kerberos 11-3
11.2.1.3 Configuring Lustre for Kerberos 11-4
11.2.14 Configuring Kerberos 11-6
11.2.1.5 Setting the Environment 11-8
11.2.1.6 Building Lustre 11-9
11.2.1.7 Running GSS Daemons 11-10

Xii Lustre 2.0 Operations Manual * April 2010

12.

13.

11.2.2 Types of Lustre-Kerberos Flavors 11-11
11.2.2.1 Basic Flavors 11-11
11.2.2.2 Security Flavor 11-12
11.2.2.3 Customized Flavor 11-13
11.2.24 Specifying Security Flavors 11-14
11.2.2.5 Mounting Clients 11-14
11.2.2.6 Rules, Syntax and Examples 11-15
11.2.2.7 Authenticating Normal Users 11-16

Bonding 12-1
12.1 Network Bonding 12-1
122 Requirements 12-2
12.3 Using Lustre with Multiple NICs versus Bonding NICs 124
12.4 Bonding Module Parameters 12-5
12.5 Setting Up Bonding 12-5
12.5.1 Examples 12-9
12.6 Configuring Lustre with Bonding 12-11
12.6.1 Bonding References 12-11

Lustre SNMP Module 13-1

13.1 Installing the Lustre SNMP Module 13-2
13.2 Building the Lustre SNMP Module 13-2
13.3 Using the Lustre SNMP Module 13-3

Contents

xiii

14. Backup and Restore 14-1
14.1 Backing up a File System 14-1
14.1.1 Lustre_rsync 14-2
14.1.1.1 Using Lustre_rsync 14-2
14.1.1.2 Lustre_rsync Examples 14-4
14.2 Backing up a Device (MDS or OST) 14-5
14.2.1 Backing Up the MDS 14-5
14.2.2 Backing Up an OST 14-6
14.3 Backing up Files 14-7
14.3.1 Backing up Extended Attributes 14-7
14.4 Restoring from a File-level Backup 14-8
14.5 Using LVM Snapshots with Lustre 14-9
14.5.1 Creating an LVM-based Backup File System 14-10
14.5.2 Backing up New/Changed Files to the Backup File System 14-11
14.5.3 Creating Snapshot Volumes 14-12
14.5.4 Restoring the File System From a Snapshot 14-13
14.5.5 Deleting Old Snapshots 14-15
14.5.6 Changing Snapshot Volume Size 14-15

15. POSIX 15-1

15.1 Introduction to POSIX 15-1

15.2 Installing POSIX 15-2
15.2.1 POSIX Installation Using a Quick Start Version 15-2

15.3 Building and Running a POSIX-Compliant Test Suite on Lustre 15-3
15.3.1 Building the Test Suite from Scratch 15-3
15.3.2 Running the Test Suite Against Lustre 15-5

15.4 Isolating and Debugging Failures 15-6

Xiv Lustre 2.0 Operations Manual * April 2010

16.

17.

Benchmarking 16-1

16.1
16.2
16.3

Bonnie++ Benchmark 16-2
IOR Benchmark 16-3
I0zone Benchmark 16-5

Lustre I/O Kit 17-1

17.1

17.2

17.3

Lustre I/O Kit Description and Prerequisites 17-1

17.1.1 Downloading an I/O Kit 17-2

17.1.2 Prerequisites to Using an I/O Kit 17-2

Running I/0 Kit Tests 17-2

17.21 sgpdd_survey 17-3

17.2.2 obdfilter_survey 17-5
17.2.2.1 Running obdfilter_survey Against a Local Disk 17-6
17.2.2.2 Running obdfilter_survey Against a Network 17-7

17.2.2.3 Running obdfilter_survey Against a Network Disk 17—

8
17.2.2.4 Output Files 17-9
17.22.5 Script Output 17-10
17.2.2.6 Visualizing Results 17-10
17.2.3 ost_survey 17-11
1724 stats-collect 17-12
PIOS Test Tool 17-14
17.3.1 Synopsis 17-15
17.3.2 PIOSI/O Modes 17-16
17.3.3 PIOS Parameters 17-17
17.3.4 PIOS Examples 17-20

Contents

XV

17.4 LNET Self-Test 17-21

17.4.1 Basic Concepts of LNET Self-Test 17-21
17.41.1 Modules 17-21
17.4.1.2 Utilities 17-22
17.4.1.3 Session 17-22
17414 Console 17-22
17415 Group 17-23
17.41.6 Test 17-23
17.4.1.7 Batch 17-24
17.4.1.8 Sample Script 17-25

17.4.2 LNET Self-Test Commands 17-26
17.4.2.1 Session 17-26
17422 Group 17-27
17.42.3 Batch and Test 17-30
17.42.4 Other Commands 17-33

18. Lustre Recovery 18-1
18.1 Recovery Overview 18-2

18.1.1 Client Failure 18-2
18.1.2 Client Eviction 18-3
18.1.3 MDS Failure (Failover) 18-3
18.1.4 OST Failure (Failover) 18-4
18.1.5 Network Partition 18-5
18.1.6 Failed Recovery 18-5

Xvi Lustre 2.0 Operations Manual * April 2010

18.2

18.3

18.4

18.5

18.6
18.7

Metadata Replay 18-6

18.2.1 XID Numbers 18-6

18.2.2 Transaction Numbers 18-6

18.2.3 Replay and Resend 18-7

18.2.4 Client Replay List 18-7

18.2.5 Server Recovery 18-8

18.2.6 Request Replay 18-9

18.2.7 Gaps in the Replay Sequence 18-9
18.2.8 Lock Recovery 18-10

18.2.9 Request Resend 18-10

Reply Reconstruction 18-11

18.3.1 Required State 18-11

18.3.2 Reconstruction of Open Replies 18-11
Version-based Recovery 18-13

18.4.1 VBR Messages 18-14

18.4.2 Tips for Using VBR 18-14

Commit on Share 18-15

18.5.1 Working with Commit on Share 18-15
18.5.2 Tuning Commit On Share 18-16

Recovering from Errors or Corruption on a Backing File System 18-16

Recovering from Corruption in the Lustre File System 18-18

18.7.1 Working with Orphaned Objects 18-22

Contents

xvii

PartIII Lustre Tuning, Monitoring and Troubleshooting

19. Lustre Tuning 19-1
19.1 Module Options 19-2
19.1.1 OSS Service Thread Count 19-2
19.1.1.1 Optimizing the Number of Service Threads 19-2
19.1.2 MDS Service Thread Count 19-3
19.1.2.1 I/0O Scheduler 194
19.2 LNET Tunables 194
19.2.0.1 Transmit and receive buffer size: 19-4
19.2.0.2 irq_affinity 19-4
19.3 Options for Formatting the MDT and OSTs 19-5
19.3.1 Planning for Inodes 19-5
19.3.2 Sizing the MDT 19-5
19.4 Overriding Default Formatting Options 19-6
19.4.1 Number of Inodes for the MDT 19-6
19.4.2 Inode Size for the MDT 19-7
19.4.3 Number of Inodes for an OST 19-7
19.5 Large-Scale Tuning for Cray XT and Equivalents 19-8
19.5.1 Network Tunables 19-8
19.6 Lockless I/O Tunables 19-9
19.7 Data Checksums 19-10

xviii Lustre 2.0 Operations Manual ¢ April 2010

20.

LustreProc

20.1

20.2

20-1

Proc Entries for Lustre 20-2

20.1.1
20.1.2
20.1.3

20.1.4
20.1.5

Locating Lustre File Systems and Servers 20-2

Lustre Timeouts 20-3

Adaptive Timeouts 20-5

20.1.3.1 Configuring Adaptive Timeouts 20-6

20.1.3.2 Interpreting Adaptive Timeouts Information 20-8
LNET Information 20-9

Free Space Distribution 20-11

20.1.5.1 Managing Stripe Allocation 20-11

Lustre I/O Tunables 20-12

20.2.1
20.2.2
20.2.3
20.2.4
20.2.5
20.2.6

20.2.7

20.2.8
20.2.9
20.2.10
20.2.11

Client I/O RPC Stream Tunables 20-12
Watching the Client RPC Stream 20-14
Client Read-Write Offset Survey 20-15
Client Read-Write Extents Survey 20-17
Watching the OST Block I/O Stream 20-19
Using File Readahead and Directory Statahead 20-20
20.2.6.1 Tuning File Readahead 20-20
20.2.6.2 Tuning Directory Statahead 20-21
OSS Read Cache 20-22

20.2.7.1 Using OSS Read Cache 20-22
mballoc History 20-25

mballoc3 Tunables 20-27

Locking 20-29

Setting MDS and OSS Thread Counts 20-30

Contents

Xix

20.3 Debug Support 20-32
20.3.1 RPC Information for Other OBD Devices 20-35
20.3.1.1 Interpreting OST Statistics 20-36
20.3.1.2 llobdstat 20-38
20.3.1.3 Interpreting MDT Statistics 20-38

21. Lustre Troubleshooting 21-1

21.1 Troubleshooting Lustre 21-2
21.1.1 Error Numbers 21-2
21.1.2 Error Messages 21-3
21.1.3 Lustre Logs 21-3

21.2 Reporting a Lustre Bug 21-4

21.3 Common Lustre Problems and Performance Tips 21-5
21.3.1 Recovering from an Unavailable OST 21-5
21.3.2 Write Performance Better Than Read Performance 21-6
21.3.3 OST Object is Missing or Damaged 21-7
21.3.4 OSTs Become Read-Only 21-8
21.3.5 Identifying a Missing OST 21-8

21.3.6 Improving Lustre Performance When Working with Small Files
21-10

21.3.7 Default Striping 21-10

21.3.8 Erasing a File System 21-11

21.3.9 Reclaiming Reserved Disk Space 21-11

21.3.10 Considerations in Connecting a SAN with Lustre 21-12

21.3.11 Handling/Debugging "Bind: Address already in use" Error 21-13
21.3.12 Replacing An Existing OST or MDS 21-14

21.3.13 Handling/Debugging Error "- 28" 21-14

21.3.14 Triggering Watchdog for PID NNN 21-15

21.3.15 Handling Timeouts on Initial Lustre Setup 21-16

XX Lustre 2.0 Operations Manual * April 2010

22,

23.

21.3.16 Handling/Debugging "LustreError: xxx went back in time" 21—

21.3.17 Lustre Error: "Slow Start_Page_Write" 21-17

21.3.18 Drawbacks in Doing Multi-client O_APPEND Writes 21-18
21.3.19 Slowdown Occurs During Lustre Startup 21-18

21.3.20 Log Message ‘Out of Memory’ on OST 21-18

21.3.21 Number of OSTs Needed for Sustained Throughput 21-19
21.3.22 Setting SCSI1/0O Sizes 21-19

21.3.23 Identifying Which Lustre File an OST Object Belongs To 21-20

Lustre Monitoring 22-1

22.1

22.2
22.3
22.4
22.5

Lustre Changelogs 22-2

22.1.1 Working with Changelogs 22-3
22.1.2 Changelog Examples 22—4
Lustre Monitoring Tool 22-8

Red Hat Cluster Manager 22-8

SNMP Monitoring 22-9

CollectL. 22-9

Lustre Debugging 23-1

23.1

23.2

Lustre Debug Messages 23-2
23.1.1 Format of Lustre Debug Messages 23-3
Tools for Lustre Debugging 23-4
23.2.1 Debug Daemon Option to Ictl 23-6
23.2.1.1 Ictl Debug Daemon Commands 23-7
23.2.2 Controlling the Kernel Debug Log 23-8
23.2.3 Thelctl Tool 23-8
23.2.4 Finding Memory Leaks 23-10
23.2.5 Printing to /var/log/messages 23-10
23.2.6 Tracing Lock Traffic 23-10

Contents

17

xXi

23.2.7 Sample Ictl Run 23-11
23.2.8 Adding Debugging to the Lustre Source Code 23-11
23.3 Troubleshooting with strace 23-14
23.4 Looking at Disk Content 23-15
23.4.1 Determine the Lustre UUID of an OST 23-16
2342 Tepdump 23-16
23.5 Ptlrpc Request History 23-16
23.6 Using LWT Tracing 23-17

Part IV Lustre for Users

24. Striping and I/O Options 24-1
24.1 File Striping 24-1
24.1.1 Advantages of Striping 24-2
24111 Bandwidth 24-2
24.1.2 Disadvantages of Striping 24-3
241.2.1 Increased Overhead 24-3
24.1.2.2 Increased Risk 24-3
24.1.3 Stripe Size 24-4
242 Displaying Files and Directories with lfs getstripe 24-5
24.3 Ifs setstripe — Setting File Layouts 24-6
24.3.1 Changing Striping for a Subdirectory 24-7
24.3.2 Using a Specific Striping Pattern/File Layout for a Single File 24-7
24.3.3 Creating a File on a Specific OST 24-8

xxii Lustre 2.0 Operations Manual ¢ April 2010

24.4

24.5

24.6

24.7

24.8

249

Managing Free Space 24-9

2441 Checking File System Free Space 24-9
2442 Using Stripe Allocations 24-11

24.4.3 Round-Robin Allocator 24-11

2444 Weighted Allocator 24-11

2445 Adjusting the Weighting Between Free Space and Location 24-12

Handing Full OSTs 24-12
24.5.1 Checking File System Usage 24-12
24.5.2 Taking a Full OST Offline 24-13
24.5.3 Migrating Data within a File System 24-14
Creating and Managing OST Pools 24-16
24.6.1 Working with OST Pools 24-17

24.6.1.1 Using the Ifs Command with OST Pools
24.6.2 Tips for Using OST Pools 24-19
Performing Direct /O 24-20
24.7.1 Making File System Objects Immutable 24-20
Other I/O Options 24-20
24.8.1 Lustre Checksums 24-20

24.8.1.1 Changing Checksum Algorithms 24-21
Striping Using llapi 24-22

24-18

Contents

xxiii

XXiv

25. Lustre Security 25-1

25.1

25.2

Using ACLs 25-1

25.1.1 How ACLs Work 25-1

25.1.2 Using ACLs with Lustre 25-2

25.1.3 Examples 25-3

Using Root Squash 25—4

25.2.1 Configuring Root Squash 25-4

25.2.2 Enabling and Tuning Root Squash 25-4
25.2.3 Tips on Using Root Squash 25-6

26. Lustre Operating Tips 26-1

26.1
26.2
26.3
26.4
26.5

Adding an OST to a Lustre File System 26-2

A Simple Data Migration Script 263

Adding Multiple SCSI LUNs on Single HBA 26-5

Failures Running a Client and OST on the Same Machine 26-5

Improving Lustre Metadata Performance While Using Large Directories
266

Lustre 2.0 Operations Manual * April 2010

Part V

Reference

27. User Utilities (man1) 27-1
271 s 27-2
272 lfsck 27-13
27.3 Filefrag 27-15
274 Mount 27-17
27.5 Handling Timeouts 27-17

28. Lustre Programming Interfaces (man2) 28-1
28.1 User/Group Cache Upcall 28-1
28.1.1 Name 28-1
28.1.2 Description 28-2
28.1.2.1 Primary and Secondary Groups 28-2
28.1.3 Parameters 28-3
28.1.4 Data Structures 28-3

29. Setting Lustre Properties (man3) 29-1
29.1 Using llapi 29-1
29.1.1 llapi_file_create 29-1
29.1.2 llapi_file_get_stripe 29-4
29.1.3 llapi_file_open 29-5
29.1.4 llapi_quotactl 29-6
29.1.5 llapi_path2fid 29-9

Contents

XXV

XXVi

30. Configuration Files and Module Parameters (man5) 30-1
30.1 Introduction 30-1
30.2 Module Options 30-2
30.2.1 LNET Options 30-3
30.2.1.1 Network Topology 30-3
30.2.1.2 networks ("tcp") 30-5
30.2.1.3 routes (“”) 30-5
30.214 forwarding (") 30-7
30.2.2 SOCKLND Kernel TCP/IP LND 30-8
30.23 QSWLND 30-10
30.2.4 RapidArray LND 30-11
30.2.5 VIBLND 30-12
30.2.6 OpenlBLND 30-14
30.2.7 Portals LND (Linux) 30-15
30.2.8 Portals LND (Catamount) 30-17
30.29 MXLND 30-19

31. System Configuration Utilities (man8) 31-1

31.1 mkfs.lustre 31-2

31.2 tunefslustre 31-5

313 letl 31-8

314 mount.lustre 31-15

31.5 lustre_rsync 31-18

31.6 Additional System Configuration Utilities 31-22
31.6.1 lustre_rmmod.sh 31-22
31.6.2 e2scan 31-23
31.6.3 Application Profiling Utilities 31-24
31.6.4 More /proc Statistics for Application Profiling 31-24
31.6.5 Testing / Debugging Utilities 31-25

Lustre 2.0 Operations Manual * April 2010

31.6.6 Flock Feature 31-30
31.6.6.1 Example 31-30
31.6.7 1_getidentity 31-31
31.6.8 llobdstat 31-32
31.6.9 llstat 31-33
31.6.10 Ist 31-35
31.6.11 plot-llstat 31-37
31.6.12 routerstat 31-38
31.6.13 1ll_recover_lost_found_objs 31-39

System Limits 32-1

32.1 Maximum Stripe Count 32-1

32.2 Maximum Stripe Size 32-2

32.3 Minimum Stripe Size 32-2

32.4 Maximum Number of OSTs and MDTs 32-2

32.5 Maximum Number of Clients 32-2

32.6 Maximum Size of a File System 32-3

32.7 Maximum File Size 32-3

32.8 Maximum Number of Files or Subdirectories in a Single Directory 32-3
32.9 MDS Space Consumption 32—4

32.10 Maximum Length of a Filename and Pathname 324

32.11 Maximum Number of Open Files for Lustre File Systems 32-5
32.12 OSS RAM Size 32-5

Glossary Glossary-1

Index Index-1

Contents xxvii

xxviii Lustre 2.0 Operations Manual ¢ April 2010

Preface

The Lustre 2.0 Operations Manual provides detailed information and procedures to
install, configure and tune Lustre. The manual covers topics such as failover, quotas,
striping and bonding. The Lustre manual also contains troubleshooting information
and tips to improve Lustre operation and performance.

Using UNIX Commands

This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

m Software documentation that you received with your system
m Solaris™ Operating System documentation, which is at:

http://docs.sun.com

XXV

Shell Prompts

Shell

Prompt

C shell
C shell superuser
Bourne shell and Korn shell

Bourne shell and Korn shell superuser

machine-name%
machine-name#
$
#

XXVi

Typographic Conventions

Typeface Meaning

Examples

AaBbCcl23 The names of commands, files,

and directories; on-screen
computer output

AaBbCc123 What you type, when contrasted
with on-screen computer output

AaBbCc123 Book titles, new words or terms,

words to be emphasized.

Replace command-line variables
with real names or values.

Edit your. login file.
Use 1s -a to list all files.

% You have mail.

o
s su

Password:

Read Chapter 6 in the User’s Guide.
These are called class options.

You must be superuser to do this.
To delete a file, type rm filename.

Note — Characters display differently depending on browser settings. If characters
do not display correctly, change the character encoding in your browser to Unicode

UTE-8.

A '\' (backslash) continuation character is used to indicate that commands are too

long to fit on one text line.

Lustre 2.0 Operations Manual ¢ April 2010

Third-Party Web Sites

Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Preface xxvii

xxviii Lustre 2.0 Operations Manual ¢ April 2010

Revision History

BookTitle Part Number Rev Date Comments

Lustre 2.0 Operations Manual xxx-xxxx-10 A April 2010 First release of Lustre 2.0 manual

PART |

Lustre Architecture

Lustre is a storage-architecture for clusters. The central component is the Lustre file
system, a shared file system for clusters. The Lustre file system is currently available
for Linux and provides a POSIX-compliant UNIX file system interface.

The Lustre architecture is used for many different kinds of clusters. It is best known
for powering seven of the ten largest high-performance computing (HPC) clusters in
the world with tens of thousands of client systems, petabytes (PBs) of storage and
hundreds of gigabytes per second (GB/sec) of I/O throughput. Many HPC sites use
Lustre as a site-wide global file system, servicing dozens of clusters on an
unprecedented scale.

CHAPTER 1

Introduction to Lustre

This chapter describes Lustre software and components, and includes the following

sections:

m Introducing the Lustre File System
m Lustre Components

m Lustre Systems

m Files in the Lustre File System

m Lustre Configurations

m Lustre Networking

m Lustre Failover

These instructions assume you have some familiarity with Linux system
administration, cluster systems and network technologies.

1-1

1.1

1-2

Introducing the Lustre File System

Lustre is a storage architecture for clusters. The central component is the Lustre file
system, which is available for Linux and provides a POSIX-compliant UNIX file
system interface.

The Lustre architecture is used for many different kinds of clusters. It is best known
for powering seven of the ten largest high-performance computing (HPC) clusters
worldwide, with tens of thousands of client systems, petabytes (PB) of storage and
hundreds of gigabytes per second (GB/sec) of I/O throughput. Many HPC sites use
Lustre as a site-wide global file system, serving dozens of clusters on an
unprecedented scale.

The scalability of a Lustre file system reduces the need to deploy many separate file
systems (such as one for each cluster). This offers significant storage management
advantages, for example, avoiding maintenance of multiple data copies staged on
multiple file systems. Hand in hand with aggregating file system capacity with many
servers, I/O throughput is also aggregated and scales with additional servers.
Moreover, throughput (or capacity) can be easily adjusted by adding servers
dynamically.

Lustre has been integrated with several vendor’s kernels. We offer Red Hat
Enterprise Linux (RHEL) and SUSE Linux Enterprise (SUSE) kernels with Lustre
patches.

Lustre 2.0 Operations Manual * April 2010

1.1.1

Lustre Key Features

The key features of Lustre include:

Scalability: Lustre scales up or down with respect to the number of client nodes,
disk storage and bandwidth. Currently, Lustre is running in production
environments with up to 26,000 client nodes, with many clusters in the
10,000-20,000 client range. Other Lustre installations provide aggregated disk
storage and bandwidth of up to 1,000 OSTs running on more than 450 OSSs.
Several Lustre file systems with a capacity of 1 PB or more (allowing storage of up
to 2 billion files) have been in use since 2006.

Performance: Lustre deployments in production environments currently offer
performance of up to 100 GB/s. In a test environment, a performance of 130 GB/s
and 13,000 creates/s has been sustained. Lustre single client node throughput has
been measured at 2 GB/s (max) and OSS throughput at 2.5 GB/s (max). Lustre has
been run at 240 GB/sec on the Spider file system at Oak Ridge National
Laboratories.

POSIX compliance: The full POSIX test suite passes on Lustre clients. In a cluster,
POSIX compliance means that most operations are atomic and clients never see
stale data or metadata.

High-availability: Lustre offers shared storage partitions for OSS targets (OSTs),
and a shared storage partition for the MDS target (MDT).

Security: In Lustre, it is an option to have TCP connections only from privileged
ports. Group membership handling is server-based. POSIX access control lists
(ACLs) are supported.

Open source: Lustre is licensed under the GNU GPL.

Additionally, Lustre offers these features:

Interoperability: Lustre runs on a variety of CPU architectures and mixed-endian
clusters and interoperability between adjacent Lustre software releases.

Access control list (ACL): Currently, the Lustre security model follows a UNIX file
system, enhanced with POSIX ACLs. Noteworthy additional features include root
squash and connecting from privileged ports only.

Quotas: User and group quotas are available for Lustre.

OSS addition: The capacity of a Lustre file system and aggregate cluster
bandwidth can be increased without interrupting any operations by adding a new
OSS with OSTs to the cluster.

Controlled striping: The default stripe count and stripe size can be controlled in
various ways. The file system has a default setting that is determined at format
time. Directories can be given an attribute so that all files under that directory
(and recursively under any sub-directory) have a striping pattern determined by
the attribute. Finally, utilities and application libraries are provided to control the
striping of an individual file at creation time.

Chapter 1 Introduction to Lustre 1-3

m Snapshots: Lustre file servers use volumes attached to the server nodes. The
Lustre software includes a utility (using LVM snapshot technology) to create a
snapshot of all volumes and group snapshots together in a snapshot file system
that can be mounted with Lustre.

m Backup tools: Lustre 1.6 includes two utilities supporting backups. One tool scans
file systems and locates files modified since a certain timeframe. This utility makes
modified files” pathnames available so they can be processed in parallel by other
utilities (such as rsync) using multiple clients. Another useful tool is a modified
version of GNU tar (gtar) which can back up and restore extended attributes (i.e.
file striping and pool membership) for Lustre.l

m Other current features of Lustre are described in detail in this manual. Future
features are described in the Lustre roadmap.

1. Files backed up using the modified version of gtar are restored per the backed up striping information. The
backup procedure does not use default striping rules.

Lustre 2.0 Operations Manual * April 2010

1.2

Lustre Components

A Lustre file system consists of the following basic components (see FIGURE 1-1).

Metadata Server (MDS) - The MDS server makes metadata stored in one or more
MDTs available to Lustre clients. Each MDS manages the names and directories in
the Lustre file system(s) and provides network request handling for one or more
local MDTs.

Metadata Target (MDT) - The MDT stores metadata (such as filenames,
directories, permissions and file layout) on an MDS. Each file system has one
MDT. An MDT on a shared storage target can be available to many MDSs,
although only one should actually use it. If an active MDS fails, a passive MDS
can serve the MDT and make it available to clients. This is referred to as MDS
failover.

Object Storage Servers (OSS): The OSS provides file I/O service, and network
request handling for one or more local OSTs. Typically, an OSS serves between 2
and 8 OSTs, up to 8 TB each?. The MDT, OSTs and Lustre clients can run
concurrently (in any mixture) on a single node. However, a typical configuration is
an MDT on a dedicated node, two or more OSTs on each OSS node, and a client on
each of a large number of compute nodes.

Object Storage Target (OST): The OST stores file data (chunks of user files) as
data objects on one or more OSSs. A single Lustre file system can have multiple
OSTs, each serving a subset of file data. There is not necessarily a 1:1
correspondence between a file and an OST. To optimize performance, a file may be
spread over many OSTs. A Logical Object Volume (LOV), manages file striping
across many OSTs.

Lustre clients: Lustre clients are computational, visualization or desktop nodes
that run Lustre software that allows them to mount the Lustre file system.

The Lustre client software consists of an interface between the Linux Virtual File
System and the Lustre servers. Each target has a client counterpart: Metadata
Client (MDC), Object Storage Client (OSC), and a Management Client (MGC). A
group of OSCs are wrapped into a single LOV. Working in concert, the OSCs
provide transparent access to the file system.

Clients, which mount the Lustre file system, see a single, coherent, synchronized
namespace at all times. Different clients can write to different parts of the same file
at the same time, while other clients can read from the file.

Lustre includes several additional components, LNET and the MGS, described in the
following sections.

2. InLustre 2.0, 16 TB OSTs will be supported on OEL 5 using specific RPMs (with ext4-based Idiskfs).

Chapter 1 Introduction to Lustre 1-5

1-6

FIGURE 1-1 Lustre components in a basic cluster

Metadata Server (MDS) Metadata Target (MDT)

@z @@
Interconnect 3
(Ethernet, B, efc.) e
Lustre Clients @ ObjectStorage %7 ppiect Storage
Servers (0SSs) Targets (OSTs)

Lustre 2.0 Operations Manual ¢ April 2010

1.2.1

1.2.2

Lustre Networking (LNET)

Lustre Networking (LNET) is an API that handles metadata and file I/O data for file
system servers and clients. LNET supports multiple, heterogeneous interfaces on
clients and servers. LNET interoperates with a variety of network transports through
Network Abstraction Layers (NAL). Lustre Network Drivers (LNDs) are available for
a number of commodity and high-end networks, including Infiniband, TCP/IP,
Quadrics Elan, Myrinet (MX and GM) and Cray.

In clusters with a Lustre file system, servers and clients communicate with one
another over a custom networking API known as Lustre Networking (LNET), while
the disk storage behind the MDSs and OSSs is connected to these servers using
traditional SAN technologies.

Key features of LNET include:

m RDMA, when supported by underlying networks such as Elan, Myrinet and
InfiniBand.

m Support for many commonly-used network types such as InfiniBand and IP.

m High availability and recovery features enabling transparent recovery in
conjunction with failover servers.

m Simultaneous availability of multiple network types with routing between them.

Management Server (MGS)

The MGS stores configuration information for all Lustre file systems in a cluster. Each
Lustre target contacts the MGS to provide information, and Lustre clients contact the
MGS to retrieve information. The MGS requires its own disk for storage. However,
there is a provision that allows the MGS to share a disk ("co-locate") with a single
MDT. The MGS is not considered "part" of an individual file system; it provides
configuration information for all managed Lustre file systems to other Lustre
components.

Chapter 1 Introduction to Lustre 1-7

1.3 Lustre Systems

Lustre components work together as coordinated systems to manage file and
directory operations in the file system (see FIGURE 1-2).

FIGURE 1-2 Lustre system interaction in a file system

Clients
LoV
File open

Directory Operations,
file open/close
metadata, and
concurrency

Recovery, file
status and file
creation

File /O and
file locking

The characteristics of the Lustre system include:

Typical number of Required Desirable hardware
systems Performance attached storage characteristics
Clients 1-100,000 1 GB/sec1/0, None None
1,000 metadata
ops/sec
0SS 1-1,000 500-2.5 GB/sec File system Good bus bandwidth
capacity /OSS
count
MDS 2 3,000-15,000 1-2% of file Adequate CPU power,

(2-100 in future) metadata ops/sec

system capacity

plenty of memory

1-8 Lustre 2.0 Operations Manual ¢ April 2010

At scale, the Lustre cluster can include up to 1,000 OSSs and 100,000 clients (see

FIGURE 1-3).

FIGURE 1-3 Lustre cluster at scale

MDS disk storage containing
Metadata Targets (MDT) @

Pool of clustered Metadata
Servers (MDS) 1-100

Mo 1 MDS 2
(active) (standby)
= o ¥
-
Elan
Myrinet
@ InfiniBand !
Simultaneous
Lustre Clients supportof multiple
1-100,000 @ networkypes
g Router .
@ GigE

r‘ = failover ‘

Object Storage 055 storage with Object
Servers (055) Storage Targets (OST)
1-1000's

0851 \@

Commodity Storage

Shared storage
enablesfailover 0SS

/ 'terpnse-C\ass
Storage Arrays and
SAMN Fabric

Chapter 1 Introduction to Lustre

1-9

1.4

1-10

Files in the Lustre File System

Traditional UNIX disk file systems use inodes, which contain lists of block numbers
where file data for the inode is stored. Similarly, for each file in a Lustre file system,
one inode exists on the MDT. However, in Lustre, the inode on the MDT does not
point to data blocks, but instead, points to one or more objects associated with the
files. This is illustrated in FIGURE 1-4. These objects are implemented as files on the
OST file systems and contain file data.

FIGURE 1-4 MDS inodes point to objects, ext3 inodes point to data

File on MDT Ordinary ext3 File

Extended
Attributes

Fo— abj1 | oss2

Direct Data Blocks

obj2 | oss4
obj3 | nssh
\ / Data
\/ Block —
ptrs
Indirect
Double
Indirect

inode

Indirect Data Blocks

Lustre 2.0 Operations Manual * April 2010

FIGURE 1-5 shows how a file open operation transfers the object pointers from the
MDS to the client when a client opens the file, and how the client uses this
information to perform I/O on the file, directly interacting with the OSS nodes where
the objects are stored.

FIGURE 1-5 File open and file I/O in Lustre

Lustre Client

Linux VFES
Lustre clientFS
LOw

— 8 OPEN TEOUES —
asci 0sC3 MDC
File metadata

L . Inode A{obj1, obj2)

J \ Metadata Server
Writel{obj 1) " Wyrite (obj 2)

!, Parallel Ban dwicth \

05T 08T 2 0T 2

Odd blocks, even blocks

If only one object is associated with an MDS inode, that object contains all of the data
in that Lustre file. When more than one object is associated with a file, data in the file
is "striped" across the objects.

The MDS knows the layout of each file, the number and location of the file's stripes.
The clients obtain the file layout from the MDS. Client do I/O against the stripes of a
file by communicating directly with the relevant OSTs.

The benefits of the Lustre arrangement are clear. The capacity of a Lustre file system
equals the sum of the capacities of the storage targets. The aggregate bandwidth
available in the file system equals the aggregate bandwidth offered by the OSSs to
the targets. Both capacity and aggregate I/O bandwidth scale simply with the
number of OSSs.

Chapter 1 Introduction to Lustre 1-11

1.4.1

Lustre File System and Striping

Striping allows parts of files to be stored on different OSTs, as shown in FIGURE 1-6. A
RAID 0 pattern, in which data is "striped" across a certain number of objects, is used;
the number of objects is called the stripe_count. Each object contains "chunks" of
data. When the "chunk" being written to a particular object exceeds the stripe_size,
the next "chunk" of data in the file is stored on the next target.

FIGURE 1-6 Files striped with a stripe count of 2 and 3 with different stripe sizes

| Loy |
| osct || oscz |
ost | (osm |

Legend

File s data [

File B data

Object
1
=

L Each gray area is one object

-

A L
- =

File striping presents several benefits. One is that the maximum file size is not
limited by the size of a single target. Lustre can stripe files over up to 160 targets, and
each target can support a maximum disk use of 8 TB3 by a file. This leads to a
maximum disk use of 1.48 PB* by a file. Note that the maximum file size is much
larger (2764 bytes), but the file cannot have more than 1.48 PB? of allocated data;
hence a file larger than 1.48 PB? must have many sparse sections. While a single file
can only be striped over 160 targets, Lustre file systems have been built with almost
5000 targets, which is enough to support a 40 PB file system.

1-12

3. InLustre2.0,16 TB on OEL 5.
4. InLustre2.0,2.96 PBon OEL 5.

Lustre 2.0 Operations Manual * April 2010

1.4.2

1.4.2.1

1.4.2.2

Another benefit of striped files is that the I/O bandwidth to a single file is the
aggregate 1/O bandwidth to the objects in a file and this can be as much as the
bandwidth of up to 160 servers.

Lustre Storage

The storage attached to the servers is partitioned, optionally organized with logical
volume management (LVM) and formatted as file systems. Lustre OSS and MDS
servers read, write and modify data in the format imposed by these file systems.

OSS Storage

Each OSS can manage multiple object storage targets (OSTs), one for each volume;
1/0 traffic is load-balanced against servers and targets. An OSS should also balance
network bandwidth between the system network and attached storage to prevent
network bottlenecks. Depending on the server's hardware, an OSS typically serves
between 2 and 25 targets, with each target up to 8 terabytes (IBs) in size.

MDS Storage

For the MDS nodes, storage must be attached for Lustre metadata, for which 1-2
percent of the file system capacity is needed. The data access pattern for MDS storage
is different from the OSS storage: the former is a metadata access pattern with many
seeks and read-and-writes of small amounts of data, while the latter is an I/O access
pattern, which typically involves large data transfers.

High throughput to MDS storage is not important. Therefore, we recommend that a
different storage type be used for the MDS (for example FC or SAS drives, which
provide much lower seek times). Moreover, for low levels of I/O, RAID 5/6 patterns
are not optimal, a RAID 0+1 pattern yields much better results.

Lustre uses journaling file system technology on the targets, and for a MDS, an
approximately 20 percent performance gain can sometimes be obtained by placing
the journal on a separate device. Typically, the MDS requires CPU power; we
recommend at least four processor cores.

Chapter 1 Introduction to Lustre 1-13

1.4.3

Lustre System Capacity

Lustre file system capacity is the sum of the capacities provided by the targets.

As an example, 64 OSSs, each with two 8-TB targets, provide a file system with a
capacity of nearly 1 PB. If this system uses sixteen 1-TB SATA disks, it may be
possible to get 50 MB/sec from each drive, providing up to 800 MB/sec of disk
bandwidth. If this system is used as storage backend with a system network like
InfiniBand that supports a similar bandwidth, then each OSS could provide 800
MB/sec of end-to-end I/O throughput. Note that the OSS must provide inbound and
outbound bus throughput of 800 MB/sec simultaneously. The cluster could see
aggregate I/O bandwidth of 64x800, or about 50 GB/sec. Although the architectural
constraints described here are simple, in practice it takes careful hardware selection,
benchmarking and integration to obtain such results.

In a Lustre file system, storage is only attached to server nodes, not to client nodes. If
failover capability is desired, then this storage must be attached to multiple servers.
In all cases, the use of storage area networks (SANs) with expensive switches can be
avoided, because point-to-point connections between the servers and the storage
arrays normally provide the simplest and best attachments.

1.5

1-14

Lustre Configurations

Lustre file systems are easy to configure. First, the Lustre software is installed, and
then MDT and OST partitions are formatted using the standard UNIX mkfs
command. Next, the volumes carrying the Lustre file system targets are mounted on
the server nodes as local file systems. Finally, the Lustre client systems are mounted
(in a manner similar to NFS mounts).

Lustre 2.0 Operations Manual * April 2010

The configuration commands listed below are for the Lustre cluster shown in
FIGURE 1-7.

On the MDS (mds.your.org@tcp0):

mkfs.lustre --mdt --mgs --fsname=large-fs /dev/sda
mount -t lustre /dev/sda /mnt/mdt

On OSS1:

mkfs.lustre --ost --fsname=large-fs --mgsnode=mds.your.org@tcp0 /dev/sdb
mount -t lustre /dev/sdb/mnt/ostl

On OSS52:

mkfs.lustre --ost --fsname=large-fs --mgsnode=mds.your.org@tcp0 /dev/sdc
mount -t lustre /dev/sdc/mnt/ost2

FIGURE 1-7 A simple Lustre cluster

®

sda

®

sdb

®

sdc

Chapter 1 Introduction to Lustre 1-15

1.6

1-16

Lustre Networking

In clusters with a Lustre file system, the system network connects the servers and the
clients. The disk storage behind the MDSs and OSSs connects to these servers using
traditional SAN technologies, but this SAN does not extend to the Lustre client
system. Servers and clients communicate with one another over a custom networking
API known as Lustre Networking (LNET). LNET interoperates with a variety of
network transports through Network Abstraction Layers (NAL).

Key features of LNET include:

m RDMA, when supported by underlying networks such as Elan, Myrinet and
InfiniBand.

m Support for many commonly-used network types such as InfiniBand and IP.

m High availability and recovery features enabling transparent recovery in
conjunction with failover servers.

m Simultaneous availability of multiple network types with routing between them.

LNET includes LNDs to support many network type including:

m InfiniBand: OpenFabrics versions 1.0 and 1.2, Mellanox Gold, Cisco, Voltaire, and
Silverstorm

m TCP: Any network carrying TCP traffic, including GigE, 10GigE, and IPoIB
m Quadrics: Elan3, Elan4

m Myrinet: GM, MX

m Cray: Seastar, RapidArray

The LNDs that support these networks are pluggable modules for the LNET software
stack.

LNET offers extremely high performance. It is common to see end-to-end throughput
over GigE networks in excess of 110 MB/sec, InfiniBand double data rate (DDR) links
reach bandwidths up to 1.5 GB/sec, and 10GigE interfaces provide end-to-end
bandwidth of over 1 GB/sec.

Lustre 2.0 Operations Manual * April 2010

1.7

Lustre Failover

Lustre offers a robust, application-transparent failover mechanism that delivers call
completion. Lustre MDSs are configured as an active/passive pair, while OSSs are
typically deployed in an active/active configuration that provides redundancy
without extra overhead, as shown in FIGURE 1-8. Often the standby MDS is the active
MDS for another Lustre file system, so no nodes are idle in the cluster.

FIGURE 1-8 Lustre failover configurations for OSSs and MDSs

Shared storage partition s Shared storage partition
for 0SS targets (OST) for MDS target (MDT)

®

0SS 0552 MDS 1 MDS 2
0551 - active for target 1, standby for target 2 MDS1 - active for MDT
Q552 - active for target 2, standby for target 1 MDS2 - standby for MDT

Although a file system checking tool (Ifsck) is provided for disaster recovery,
journaling and sophisticated protocols re-synchronize the cluster within seconds,
without the need for a lengthy fsck. Lustre version interoperability between
successive minor versions is guaranteed. As a result, the Lustre failover capability is
used regularly to upgrade the software without cluster downtime.

Chapter 1 Introduction to Lustre 1-17

Note — Lustre does not provide redundancy for data; it depends exclusively on
redundancy of backing storage devices. The backing OST storage should be RAID 5
or, preferably, RAID 6 storage. MDT storage should be RAID 1 or RAID 0+1.

1-18 Lustre 2.0 Operations Manual * April 2010

CHAPTER 2

Understanding Lustre Networking

This chapter describes Lustre Networking (LNET) and supported networks, and
includes the following sections:

m Introduction to LNET

m Supported Network Types

m Designing Your Lustre Network
m Configuring LNET

m Starting and Stopping LNET

2.1 Introduction to LNET

In a Lustre network, servers and clients communicate with one another using LNET,
a custom networking API which abstracts away all transport-specific interaction. In
turn, LNET operates with a variety of network transports through Lustre Network
Drivers (LNDs).

The following terms are important to understanding LNET.

m LND: Lustre Network Driver. A modular sub-component of LNET that
implements one of the network types. LNDs are implemented as individual kernel
modules (or a library in userspace) and, typically, must be compiled against the
network driver software.

m Network: A group of nodes that communicate directly with each other. The
network is how LNET represents a single cluster. Multiple networks can be used
to connect clusters together. Each network has a unique type and number (for
example, tcp0, tcpl, or elan0).

m NID: Lustre Network Identifier. The NID uniquely identifies a Lustre network
endpoint, including the node and the network type. There is an NID for every
network which a node uses.

2-1

Key features of LNET include:

m RDMA, when supported by underlying networks such as Elan, Myrinet, and
InfiniBand

m Support for many commonly-used network types such as InfiniBand and TCP/IP

m High availability and recovery features enabling transparent recovery in
conjunction with failover servers

m Simultaneous availability of multiple network types with routing between them

LNET is designed for complex topologies, superior routing capabilities and
simplified configuration.

2.2 Supported Network Types

LNET supports the following network types:
n TCP

m openib (Mellanox-Gold InfiniBand)

m cib (Cisco Topspin)

m iib (Infinicon InfiniBand)

m vib (Voltaire InfiniBand)

m 02ib (OFED - InfiniBand and iWARP)

m ra (RapidArray)

m Elan (Quadrics Elan)

s GM and MX (Myrinet)

m Cray Seastar

2-2 Lustre 2.0 Operations Manual * April 2010

2.3

2.3.1

2.3.2

2.3.3

Designing Your Lustre Network

Before you configure Lustre, it is essential to have a clear understanding of the Lustre
network topologies.

Identify All Lustre Networks

A network is a group of nodes that communicate directly with one another. As
previously mentioned in this manual, Lustre supports a variety of network types and
hardware, including TCP/IP, Elan, varieties of InfiniBand, Myrinet and others. The
normal rules for specifying networks apply to Lustre networks. For example, two
TCP networks on two different subnets (tcp0 and tcpl) would be considered two
different Lustre networks.

Identify Nodes to Route Between Networks

Any node with appropriate interfaces can route LNET between different
networks—the node may be a server, a client, or a standalone router. LNET can route
across different network types (such as TCP-to-Elan) or across different topologies
(such as bridging two InfiniBand or TCP/IP networks).

Identify Network Interfaces to Include/Exclude
from LNET

If not explicitly specified, LNET uses either the first available interface or a
pre-defined default for a given network type. If there are interfaces that LNET should
not use (such as administrative networks, IP over IB, and so on), then the included
interfaces should be explicitly listed.

Chapter 2 Understanding Lustre Networking 2-3

234

2.3.5

2-4

Determine Cluster-wide Module Configuration

The LNET configuration is managed via module options, typically specified in
/etc/modprobe.conf or /etc/modprobe.conf.local (depending on the distribution).
To ease the maintenance of large clusters, you can configure the networking setup for
all nodes using a single, unified set of options in the modprobe.conf file on each
node. For more information, see the ip2nets option in Setting Up modprobe.conf for
Load Balancing.

Users of liblustre should set the accept=all parameter. For details, see Module
Parameters.

Determine Appropriate Mount Parameters for
Clients

In mount commands, clients use the NID of the MDS host to retrieve their
configuration information. Since an MDS may have more than one NID, a client
should use the appropriate NID for its local network. If you are unsure which NID to
use, there is a Ictl command that can help.

MDS
On the MDS, run:
lctl list_nids

This displays the server's NIDs (networks configured to work with Lustre).

Client
On a client, run:
lctl which_nid <NID list>

This displays the closest NID for the client.

Lustre 2.0 Operations Manual * April 2010

Client with SSH Access
From a client with SSH access to the MDS, run:

mds_nids="ssh the_mds lctl list_nids’
lctl which_nid $mds_nids

This displays, generally, the correct NID to use for the MDS in the mount command.

Note — In the mds_nids command above, be sure to use the correct mark ("), not a
straight quotation mark ('). Otherwise, the command will not work.

2.4

24.1

Configuring LNET

This section describes how to configure LNET, including entries in the
modprobe.conf file which tell LNET which NIC(s) will be configured to work with
Lustre, and parameters that specify the routing that will be used with Lustre.

Note — We recommend that you use dotted-quad IP addressing rather than host
names. We have found this aids in reading debug logs, and helps greatly when
debugging configurations with multiple interfaces.

Module Parameters

LNET hardware and routing are configured via module parameters of the LNET and
LND-specific modules. Parameters should be specified in the /etc/modprobe.conf or
/etc/modules.conf file. This example specifies that the node should use a TCP
interface and an Elan interface:

options lnet networks=tcp0,elan0

Depending on the LNDs used, it may be necessary to specify explicit interfaces. For
example, if you want to use two TCP interfaces (tcp0 and tcpl, for example), it is
necessary to specify the module parameters and ethX interfaces, like this:

options lnet networks=tcpO (eth0), tcpl (ethl)

This modprobe.conf entry specifies:
m First Lustre network, tcp0, is configured on interface eth0

m Second Lustre network, tcpl, is configured on interface ethl

Chapter 2 Understanding Lustre Networking 2-5

2-6

Note — The requirement to specify explicit interfaces is not consistent across all
LNDs used with Lustre, and LND behavior may change over time. We recommend
that if your multi-homed settings do not work, try specifying the ethX interfaces in
the options lnet networks line.

All LNET routers that bridge two networks are equivalent; their configuration is not
primary or secondary. All available routers balance their overall load. With the router
checker configured, Lustre nodes can detect router health status, avoid those that
appear dead, and reuse the ones that restore service after failures. To do this, LNET
routing must correspond exactly with the Linux nodes' map of alive routers. There is
no hard limit on the number of LNET routers.

Note — When multiple interfaces are available during the network setup, Lustre
choose the 'best’ route. Once the network connection is established, Lustre expects
the network to stay connected. In a Lustre network, connections do not fail over to
the other interface, even if multiple interfaces are available on the same node.

Under Linux 2.6, the LNET configuration parameters can be viewed under
/sys/module/; generic and acceptor parameters under 1net and LND-specific
parameters under the corresponding LND name.

Note — Depending on the Linux distribution, options with included commas may
need to be escaped using single and/or double quotes. Worst-case quotes look like:
options 1lnet'networks="tcp0,elan0"' ‘'routes="tcp [2,10]@elan0""'

Additional quotes may confuse some distributions. Check for messages such as:
lnet: Unknown parameter ‘' 'networks'

After modprobe LNET, remove the additional single quotes (modprobe.conf in this
case). Additionally, the refusing connection - no matching NID message generally
points to an error in the LNET module configuration.

Note — By default, Lustre ignores the loopback (100) interface. Lustre does not ignore
IP addresses aliased to the loopback. In this case, specify all Lustre networks.

The liblustre network parameters may be set by exporting the environment variables
LNET_NETWORKS, LNET_IP2NETS and LNET_ROUTES. Each of these variables
uses the same parameters as the corresponding modprobe option.

Lustre 2.0 Operations Manual * April 2010

2411

Note, it is very important that a liblustre client includes ALL the routers in its setting
of LNET_ROUTES. A liblustre client cannot accept connections, it can only create
connections. If a server sends remote procedure call (RPC) replies via a router to
which the liblustre client has not already connected, then these RPC replies are lost.

Note — Liblustre is not required or even recommended for running Lustre on Linux.
Most users will not use liblustre. Instead, you should use the Lustre (VFS) client file
system to mount Lustre directly. Liblustre does NOT support multi-threaded
applications.

Note — Liblustre is not widely tested as part of Lustre release testing, and is
currently maintained only as a courtesy to the Lustre community.

Using UsockInd

Lustre now offers usocklnd, a socket-based LND that uses TCP in userspace. By
default, liblustre is compiled with usocklnd as the transport, so there is no need to
specially enable it.

Use the following environmental variables to tune usocklnd’s behavior.

Variable Description

USOCK_SOCKNAGLE=N [Turns the TCP Nagle algorithm on or off. Setting N to 0 (the
default value), turns the algorithm off. Setting N to 1 turns
the algorithm on.

USOCK_SOCKBUFSIZ=N Changes the socket buffer size. Setting N to 0 (the default
value), specifies the default socket buffer size. Setting N to
another value (must be a positive integer) causes usockind
to try to set the socket buffer size to the specified value.

USOCK_TXCREDITS=N Specifies the maximum number of concurrent sends. The
default value is 256. N should be set to a positive value.

USOCK_PEERTXCREDITS=N Bpecifies the maximum number of concurrent sends per
peer. The default value is 8. N should be set to a positive
value and should not be greater than the value of the
IUSOCK_TXCREDITS parameter.

USOCK_NPOLLTHREADS=N [Defines the degree of parallelism of usockind, by equaling
the number of threads devoted to processing network
events. The default value is the number of CPUs in the

system. N should be set to a positive value.

Chapter 2 Understanding Lustre Networking 2-7

24.1.2

2.4.2

2-8

USOCK_FAIR_LIMIT=N [The maximum number of times that usocklnd loops
[processing events before the next polling occurs. The default
value is 1, meaning that every network event has only one
chance to be processed before polling occurs the next time.
IN should be set to a positive value.

USOCK_TIMEOUT=N Specifies the network timeout (measured in seconds).
INetwork options that are not completed in N seconds
time out and are canceled. The default value is 50 seconds.
IN should be a positive value.

USOCK_POLL_TIMEOUT=N [pecifies the polling timeout; how long usocklnd ‘sleeps’ if
no network events occur. N results in a slightly lower
overhead of checking network timeouts and longer delay of
evicting timed-out events. The default value is 1 second.

IN should be set to a positive value.

USOCK_MIN_BULK=N [This tunable is only used for typed network connections.
Currently, liblustre clients do not use this usockInd facility.

OFED InfiniBand Options

For the SilverStorm/Infinicon InfiniBand LND (iiblnd), the network and HCA may
be specified, as in this example:

options lnet networks="02ib3 (ib3)™"

This specifies that the node is on 02ib network number 3, using HCA ib3.

Module Parameters - Routing

The following parameter specifies a colon-separated list of router definitions. Each
route is defined as a network number, followed by a list of routers.

route=<net type> <router NID(s)>

Examples:

options lnet 'networks="02ib0"' 'routes="tcp0O 192.168.10.[1-8]@02ib0""
This is an example for IB clients to access TCP servers via 8 IB-TCP routers.

options lnet 'ip2nets="tcp0O 10.10.0.*; 02ib0(ib0) 192.168.10.[1-128]""' \
'routes="tcp 192.168.10.[1-8]@02ib0; 02ib 10.10.0.[1-8]@tcpO"

This specifies bi-directional routing; TCP clients can reach Lustre resources on the IB
networks and IB servers can access the TCP networks. For more information on
ip2nets, Modprobe.conf.

Lustre 2.0 Operations Manual * April 2010

Note — Configure IB network interfaces on a different subnet than LAN interfaces.

Best Practices for ip2nets, routes and networks Options

For the ip2nets, routes and networks options, several best practices must be
followed or configuration errors occur.

Best Practice 1: If you add a comment to any of the above options, position the
semicolon after the comment. If you fail to do so, some nodes are not properly
initialized because LNET silently ignores everything following the #' character
(which begins the comment), until it reaches the next semicolon. This is subtle; no
error message is generated to alert you to the problem.

This example shows the correct syntax:

options lnet ip2nets="ptl0 192.168.0.[89,93] # comment with semicolon AFTER comment; \
ptll 192.168.0.[92,96] # comment

In this example, the following is ignored: comment with semicolon AFTER comment

This example shows the wrong syntax:

options lnet ip2nets="ptl0 192.168.0.[89,93]; # comment with semicolon BEFORE comment \
ptll 192.168.0.[92,96];

In this example, the following is ignored: comment with semicolon BEFORE comment
ptll 192.168.0.[92,96]. Because LNET silently ignores pt11 192.168.0.[92,961,
these nodes are not properly initialized.

Best Practice 2: Do not add an excessive number of comments to these options. The
Linux kernel has a limit on the length of string module options; it is usually 1KB, but
may differ in vendor kernels. If you exceed this limit, errors result and the
configuration specified by the user is not processed properly.

Using Routing Parameters Across a Cluster

To ease Lustre administration, the same routing parameters can be used across
different parts of a routed cluster. For example, the bi-directional routing example
above can be used on an entire cluster (TCP clients, TCP-IB routers, and IB servers):

m TCP clients would ignore 02ib0(ib0) 192.168.10.[1-128] in ip2nets since they have
no such interfaces. Similarly, IB servers would ignore tcp0 192.168.0.*. But TCP-IB
routers would use both since they are multi-homed.

m TCP clients would ignore the route "tcp 192.168.10.[1-8]@02ib0" since the target
network is a local network. For the same reason, IB servers would ignore "02ib
10.10.0.[1-8]@tcp0".

Chapter 2 Understanding Lustre Networking 2-9

2-10

m TCP-IB routers would ignore both routes, because they are multi-homed.
Moreover, the routers would enable LNet forwarding since their NIDs are
specified in the 'routes' parameters as being routers.

live_router_check_interval, dead_router_check_interval, auto_down,
check_routers_before_use and router_ping_timeout

In a routed Lustre setup with nodes on different networks such as TCP/IP and Elan,
the router checker checks the status of a router. The auto_down parameter
enables/disables (1/0) the automatic marking of router state.

The 1ive_router_check_interval parameter specifies a time interval in seconds
after which the router checker will ping the live routers.

In the same way, you can set the dead_router_check_interval parameter for
checking dead routers.

You can set the timeout for the router checker to check the live or dead routers by
setting the router_ping_timeout parameter. The Router pinger sends a ping
message to a dead/live router once every dead/live_router_check_interval
seconds, and if it does not get a reply message from the router within
router_ping_timeout seconds, it considers the router to be down.

The last parameter is check_routers_before_use, which is off by default. If it is
turned on, you must also give dead_router_check_interval a positive integer
value.

The router checker gets the following variables for each router:
m Last time that it was disabled

m Duration of time for which it is disabled

The initial time to disable a router should be one minute (enough to plug in a cable
after removing it). If the router is administratively marked as "up", then the router
checker clears the timeout. When a route is disabled (and possibly new), the "sent
packets” counter is set to 0. When the route is first re-used (that is an elapsed disable
time is found), the sent packets counter is incremented to 1, and incremented for all
further uses of the route. If the route has been used for 100 packets successfully, then
the sent-packets counter should be with a value of 100. Set the timeout to 0 (zero), so
future errors no longer double the timeout.

Note — The router_ping_ timeout is consistent with the default LND timeouts.
You may have to increase it on very large clusters if the LND timeout is also
increased. For larger clusters, we suggest increasing the check interval.

Lustre 2.0 Operations Manual * April 2010

2421

LNET Routers

All LNET routers that bridge two networks are equivalent. They are not configured
as primary or secondary, and load is balanced across all available routers.

With the router checker configured, Lustre nodes can detect router health status,
avoid those that appear dead, and reuse the ones that restore service after failures.

There are no hard requirements regarding the number of LNET routers, although
there should enough to handle the required file serving bandwidth (and a 25%
margin for headroom).

Comparing 32-bit and 64-bit LNET Routers

By default, at startup, LNET routers allocate 544M (i.e. 139264 4K pages) of memory
as router buffers. The buffers can only come from low system memory (i.e.
ZONE_DMA and ZONE_NORMAL).

On 32-bit systems, low system memory is, at most, 896M no matter how much RAM
is installed. The size of the default router buffer puts big pressure on low memory
zones, making it more likely that an out-of-memory (OOM) situation will occur. This
is a known cause of router hangs. Lowering the value of the large_router_buffers
parameter can circumvent this problem, but at the cost of penalizing router
performance, by making large messages wait for longer for buffers.

On 64-bit architectures, the ZONE_HIGHMEM zone is always empty. Router buffers
can come from all available memory and out-of-memory hangs do not occur.
Therefore, we recommend using 64-bit routers.

Chapter 2 Understanding Lustre Networking 2-11

24.3 Downed Routers

There are two mechanisms to update the health status of a peer or a router:

m LNET can actively check health status of all routers and mark them as dead or
alive automatically. By default, this is off. To enable it set auto_down and if
desired check_routers_before_use. This initial check may cause a pause
equal to router_ping_timeout at system startup, if there are dead routers in
the system.

m When there is a communication error, all LNDs notify LNET that the peer (not
necessarily a router) is down. This mechanism is always on, and there is no
parameter to turn it off. However, if you set the LNET module parameter
auto_down to 0, LNET ignores all such peer-down notifications.

Several key differences in both mechanisms:

m The router pinger only checks routers for their health, while LNDs notices all dead
peers, regardless of whether they are a router or not.

m The router pinger actively checks the router health by sending pings, but LNDs
only notice a dead peer when there is network traffic going on.

m The router pinger can bring a router from alive to dead or vice versa, but LNDs
can only bring a peer down.

2-12 Lustre 2.0 Operations Manual * April 2010

2.5

2.5.1

2.5.1.1

Starting and Stopping LNET

Lustre automatically starts and stops LNET, but it can also be manually started in a
standalone manner. This is particularly useful to verify that your networking setup is
working correctly before you attempt to start Lustre.

Starting LNET

To start LNET, run:

$ modprobe lnet
$ lctl network up

To see the list of local NIDs, run:
$ lctl list_nids
This command tells you the network(s) configured to work with Lustre

If the networks are not correctly setup, see the modules.conf "networks=" line and
make sure the network layer modules are correctly installed and configured.

To get the best remote NID, run:
S 1lctl which_nid <NID list>
where <NID list> is the list of available NIDs.

This command takes the "best" NID from a list of the NIDs of a remote host. The
"best” NID is the one that the local node uses when trying to communicate with the
remote node.

Starting Clients

To start a TCP client, run:

mount -t lustre mdsnode:/mdsA/client /mnt/lustre/
To start an Elan client, run:

mount -t lustre 2@elanl:/mdsA/client /mnt/lustre

Chapter 2 Understanding Lustre Networking 2-13

2.5.2

2-14

Stopping LNET

Before the LNET modules can be removed, LNET references must be removed. In
general, these references are removed automatically when Lustre is shut down, but
for standalone routers, an explicit step is needed to stop LNET. Run:

lctl network unconfigure

Note — Attempting to remove Lustre modules prior to stopping the network may
result in a crash or an LNET hang. if this occurs, the node must be rebooted (in most
cases). Make sure that the Lustre network and Lustre are stopped prior to unloading
the modules. Be extremely careful using rmmod -f.

To unconfigure the LNET network, run:

modprobe -r <any 1nd and the lnet modules>

Tip — To remove all Lustre modules, run:

$ lctl modules | awk '{print $2}' | xargs rmmod

Lustre 2.0 Operations Manual * April 2010

part II Lustre Administration

Lustre administration includes the steps necessary to meet pre-installation
requirements, and install and configure Lustre. It also includes advanced topics such
as failover, quotas, bonding, benchmarking, Kerberos and POSIX.

CHAPTER 3

Installing Lustre

Lustre installation involves two procedures, meeting the installation prerequisites
and installing the Lustre software, either from RPMs or from source code. This
chapter includes these sections:

m Preparing to Install Lustre

m Installing Lustre from RPMs

m Installing Lustre from Source Code

Lustre can be installed from either packaged binaries (RPMs) or freely-available
source code. Installing from the package release is straightforward, and
recommended for new users. Integrating Lustre into an existing kernel and building
the associated Lustre software is an involved process.

For either installation method, the following are required:

m Linux kernel patched with Lustre-specific patches

m Lustre modules compiled for the Linux kernel

m Lustre utilities required for Lustre configuration

Note — When installing Lustre and creating components on devices, a certain
amount of space is reserved, so less than 100% of storage space will be available.
Lustre servers use the ext3 file system to store user-data objects and system data. By
default, ext3 file systems reserve 5% of space that cannot be used by Lustre.
Additionally, Lustre reserves up to 400 MB on each OST for journal use!. This
reserved space is unusable for general storage. For this reason, you will see up to 400
MB of space used on each OST before any file object data is saved to it.

1. Additionally, a few bytes outside the journal are used to create accounting data for Lustre.

3.1 Preparing to Install Lustre

To successfully install and run Lustre, make sure the following installation
prerequisites have been met:

m Supported Linux Distribution, Architecture and Interconnect
m Required Lustre Software

m Required Tools and Utilities

m (Optional) High-Availability Software

m Debugging Tools

m Environmental Requirements

m Memory Requirements

3.1.1 Supported Linux Distribution, Architecture and
Interconnect

Lustre 2.0 supports the following Linux distributions, architectures? and
interconnects. To install Lustre from downloaded packages (RPMs), you must use a
supported configuration.

Linux Distribution” Architecture Interconnect
Server OEL 5.4 x86_64

RHEL 5.4
Client OEL 5.4 x86_64

RHEL 5 i164 (RHEL)

SLES 10, 11 ppc64 (SLES)

Scientific Linux [New] 1686
Server and Client TCP/IP

Quadrics Elan 3 and 4

Myri-10G and Myrinet-2000

Mellanox

InfiniBand (Voltaire, OpenlB, Silverstorm and
any OFED-supported InfiniBand adapter)

* Lustre does not support security-enhanced (SE) Linux (including clients and servers).

2. We encourage the use of 64-bit platforms.

3-2 Lustre 2.0 Operations Manual * April 2010

3.1.2

3.1.3

Note — Lustre clients running on architectures with different endianness are
supported. One limitation is that the PAGE_SIZE kernel macro on the client must be
as large as the PAGE_SIZE of the server. In particular, ia64 clients with large pages
(up to 64kB pages) can run with 1386 servers (4kB pages). If you are running i386
clients with ia64 servers, you must compile the ia64 kernel with a 4kB PAGE_SIZE
(so the server page size is not larger than the client page size).

Required Lustre Software

To install Lustre, the following are required:

m Linux kernel patched with Lustre-specific patches (the patched Linux kernel is
required only on the Lustre MDS and OSSs)

m Lustre modules compiled for the Linux kernel
m Lustre utilities required for Lustre configuration
m (Optional) Network-specific kernel modules and libraries (for example, kernel

modules and libraries required for an InfiniBand interconnect)

These packages can be downloaded from the Lustre download site.

Required Tools and Utilities

Several third-party utilities are required:

m e2fsprogs: Lustre requires a recent version of e2fsprogs that understands extents.
Use e2fsprogs-1.41-6 or later, available on the Lustre download site.

Note — Lustre-patched e2fsprogs utility only needs to be installed on machines that
mount backend (Idiskfs) file systems, such as the OSS, MDS and MGS nodes. It does
not need to be loaded on clients.

m Perl - Various userspace utilities are written in Perl. Any recent version of Perl will
work with Lustre.

Chapter 3 Installing Lustre 3-3

http://www.sun.com/software/products/lustre/get.jsp
http://www.sun.com/software/products/lustre/get.jsp

3.1.4

3.1.5

(Optional) High-Availability Software

If you plan to enable failover server functionality with Lustre (either on an OSS or
the MDS), you must add high-availability (HA) software to your cluster software.
You can use any HA software package with Lustre.? For more information, see
Failover.

Debugging Tools

Lustre is a complex system and you may encounter problems when using it. You
should have debugging tools on hand to help figure out how and why a problem
occurred. A variety of diagnostic and analysis tools are available to debug issues
with the Lustre software. Some of these are provided in Linux distributions, while
others have been developed and are made available by the Lustre project.

These in-kernel debug mechanisms are incorporated into the Lustre software:

m Debug logs

m Debug daemon

m /proc/sys/Inet/debug

These tools are also provided with the Lustre software:

m Ictl

m Lustre subsystem asserts

m Ifs

These general debugging tools are provided as a part of the standard Linux
distribution:

m strace

m /var/log/messages

m Crash dumps

m debugfs

These logging and data collection tools can be used to collect information for
debugging Lustre kernel issues:

s kdump

m netconsole

m netdump

3-4

3. In this manual, the Linux-HA (Heartbeat) package is referenced, but you can use any HA software.

Lustre 2.0 Operations Manual * April 2010

3.1.6

To debug Lustre in a development environment, use:

leak_finder.pl

A variety of debuggers and analysis tools are available including:

kgdb

crash

For detailed information about these debugging tools, see Tools for Lustre
Debugging.

Environmental Requirements

Make sure the following environmental requirements are met before installing
Lustre:

(Recommended) Provide remote shell access to clients. Although not strictly
required to run Lustre, we recommend that all cluster nodes have remote shell
client access, to facilitate the use of Lustre configuration and monitoring scripts.
Parallel Distributed SHell (pdsh) is preferable, although Secure SHell (SSH) is
acceptable.

Ensure client clocks are synchronized. Lustre uses client clocks for timestamps. If
clocks are out-of-sync between clients and servers, timeouts and client evictions
will occur. Drifting clocks can also cause problems by, for example, making it
difficult to debug multi-node issues or correlate logs, which depend on
timestamps. We recommend that you use Network Time Protocol (NTP) to keep
client and server clocks in sync with each other. For more information about NTP,
see: http:/ /www.ntp.org.

Maintain uniform file access permissions on all cluster nodes. Use the same user
IDs (UID) and group IDs (GID) on all clients. If use of supplemental groups is
required, verify that the group_upcall requirements have been met. See
User/Group Cache Upcall.

(Recommended) Disable Security-Enhanced Linux (SELinux) on servers and
clients. Lustre does not support SELinux. Therefore, disable the SELinux system
extension on all Lustre nodes and make sure other security extensions, like Novell
AppArmorand network packet filtering tools (such as iptables) do not interfere
with Lustre.

Chapter 3 Installing Lustre 3-5

http://www.ntp.org/

3.1.7

3.1.7.1

Memory Requirements

This section describes the memory requirements of Lustre.

MDS Memory Requirements

MDS memory requirements are determined by the following factors:
m Number of clients
m Size of the directories

m Extent of load

The amount of memory used by the MDS is a function of how many clients are on
the system, and how many files they are using in their working set. This is driven,
primarily, by the number of locks a client can hold at one time. The default maximum
number of locks for a compute node is 100" num_cores, and interactive clients can
hold in excess of 10,000 locks at times. For the MDS, this works out to approximately
2 KB per file, including the Lustre DLM lock and kernel data structures for it, just for
the current working set.

There is, by default, 400 MB for the file system journal, and additional RAM usage
for caching file data for the larger working set that is not actively in use by clients,
but should be kept "HOT" for improved access times. Having file data in cache can
improve metadata performance by a factor of 10x or more compared to reading it
from disk. Approximately 1.5 KB/file is needed to keep a file in cache.

For example, for a single MDT on an MDS with 1,000 clients, 16 interactive nodes,
and a 2 million file working set (of which 400,000 files are cached on the clients):

File system journal 400 MB

1000 * 4-core clients * 100 files/core * 2kB 800 MB

16 interactive clients * 10,000 files * 2kB 320 MB

1,600,000 file extra working set * 1.5kB/file = 2400 MB

Thus, the minimum requirement for a system with this configuration is 4-GB RAM.
However, additional memory may significantly improve performance?.

If there are directories containing 1 million or more files, you may benefit
significantly from having more memory. For example, in an environment where
clients randomly access one of 10 million files, having extra memory for the cache
significantly improves performance.

3-6

4. Having more RAM is always prudent, given the relatively low cost of this component compared to the total
system cost.

Lustre 2.0 Operations Manual * April 2010

3.1.7.2

OSS Memory Requirements

When planning the hardware for an OSS node, consider the memory usage of several
components in the Lustre system (i.e., journal, service threads, file system metadata,
etc.). Also, consider the effect of the OSS read cache feature, which consumes
memory as it caches data on the OSS node.

Journal size: By default, each Lustre ldiskfs file system has 400 MB for the journal
size. This can pin up to an equal amount of RAM on the OSS node per file system.

Service threads: The service threads on the OSS node pre-allocate a 1 MB I/O
buffer for each ost_io service thread, so these buffers do not need to be allocated
and freed for each I/O request.

File system metadata: A reasonable amount of RAM needs to be available for file
system metadata. While no hard limit can be placed on the amount of file system
metadata, if more RAM is available, then the disk I/O is needed less often to
retrieve the metadata.

Network transport: If you are using TCP or other network transport that uses
system memory for send/receive buffers, this must also be taken into
consideration.

Failover configuration: If the OSS node will be used for failover from another
node, then the RAM for each journal should be doubled, so the backup server can
handle the additional load if the primary server fails.

OSS read cache: OSS read cache provides read-only caching of data on an OSS,
using the regular Linux page cache to store the data. Just like caching from a
regular file system in Linux, OSS read cache uses as much physical memory as is
available.

Because of these memory requirements, the following calculations should be taken as
determining the absolute minimum RAM required in an OSS node.

Chapter 3 Installing Lustre 3-7

Calculating OSS Memory Requirements

The minimum recommended RAM size for an OSS with two OSTs is computed
below:

1.5 MB per OST IO thread * 512 threads = 768 MB

€1000 RX descriptors, RxDescriptors=4096 for 9000 byte MTU = 128 MB
Operating system overhead = 512 MB

400 MB journal size * 2 OST devices = 800 MB

600 MB file system metadata cache * 2 OSTs = 1200 MB

This consumes about 1,700 MB just for the pre-allocated buffers, and an additional 2
GB for minimal file system and kernel usage. Therefore, for a non-failover
configuration, the minimum RAM would be 4 GB for an OSS node with two OSTs.
While it is not strictly required, adding additional memory on the OSS will improve
the performance of reading smaller, frequently-accessed files.

For a failover configuration, the minimum RAM would be at least 6 GB. For 4 OSTs
on each OSS in a failover configuration 10GB of RAM is reasonable. When the OSS is
not handling any failed-over OSTs the extra RAM will be used as a read cache.

As a reasonable rule of thumb, about 2 GB of base memory plus 1 GB per OST can be
used. In failover configurations, about 2 GB per OST is needed.

3-8 Lustre 2.0 Operations Manual * April 2010

3.2

Installing Lustre from RPMs

This procedure describes how to install Lustre from the RPM packages. This is the
easier installation method and is recommended for new users.

Alternately, you can install Lustre directly from the source code. For more
information on this installation method, see Installing Lustre from Source Code.

Note — In all Lustre installations, the server kernel that runs on an MDS, MGS or
OSS must be patched. However, running a patched kernel on a Lustre client is
optional and only required if the client will be used for multiple purposes, such as
running as both a client and an OST.

Caution — Lustre contains kernel modifications which interact with storage devices
and may introduce security issues and data loss if not installed, configured or
administered properly. Before installing Lustre, be cautious and back up ALL data.

Use this procedure to install Lustre from RPMs.

1. Verify that all Lustre installation requirements have been met.

For more information on these prerequisites, see Preparing to Install Lustre.
2. Download the Lustre RPMs.

a. On the Lustre download site, select your platform.

The files required to install Lustre (kernels, modules and utilities RPMs) are
listed for the selected platform.

b. Download the required files.

Use the Download Manager or download the files individually.

Chapter 3 Installing Lustre 3-9

http://www.sun.com/software/products/lustre/get.jsp

3. Install the Lustre packages.

Some Lustre packages are installed on servers (MDS and OSSs), and others are
installed on Lustre clients. Lustre packages must be installed in a specific order.

Caution — For a non-production Lustre environment or for testing, a Lustre client
and server can run on the same machine. However, for best performance in a production
environment, dedicated clients are always best. Performance and other issues can occur
when an MDS or OSS and a client are running on the same machine®. The MDS and
MGS can run on the same machine.

a. For each Lustre package, determine if it needs to be installed on servers
and/or clients. Use TABLE 3-1 to determine where to install a specific package.
Depending on your platform, not all of the listed files need to be installed.

TABLE 3-1 Lustre required packages, descriptions and installation guidance

Install Installon Installon
on patchless patched
Lustre Package Description servers clients clients
Lustre kernel RPMs
kernel-lustre-<ver> Lustre-patched kernel X X
package for RHEL 5 (i686,
ia64 and x86_64) platform.
kernel-lustre-smp-<ver> Lustre-patched kernel X X
package for SuSE Server 10
(x86_64) platform.
kernel-lustre-bigsmp-<ver> Lustre-patched kernel
package for SuSE Server 10 X X*
(i686) platform.
kernel-ib-<ver> Lustre OFED package.
Install if the network X X X*
interconnect is InfiniBand.
kernel-lustre-default-<ver> Lustre-patched kernel
kernel-lustre-default-base-<ver> package for SuSE Server 11 X X*

(1686 and x86_64) platform.

Lustre module RPMs

3-10

5. Running the MDS and a client on the same machine can cause recovery and deadlock issues, and the
performance of other Lustre clients to suffer. Running the OSS and a client on the same machine can cause
issues with low memory and memory pressure. The client consume all of the memory and tries to flush pages
to disk. The OSS needs to allocate pages to receive data from the client, but cannot perform this operation, due
to low memory. This can result in OOM kill and other issues.

Lustre 2.0 Operations Manual * April 2010

TABLE 3-1 Lustre required packages, descriptions and installation guidance

Install Install on Installon
on patchless patched
Lustre Package Description servers clients clients
lustre-modules-<ver> Lustre modules for the X X"
patched kernel.
lustre-client-modules-<ver> Lustre modules for X
patchless clients.
Lustre utilities
lustre-<ver> Lustre utilities package.
This includes userspace
utilities to configure and X X'
run Lustre.
lustre-ldiskfs-<ver> Lustre-patched backing file
system kernel module X
package for the ext3 file
system
e2fsprogs-<ver> Utilities package used to
maintain the ext3 backing X
file system.
lustre-client-<ver> Lustre utilities for X

patchless clients

* Only install this kernel RPM if you want to patch the client kernel. You do not have to patch the clients to run
Lustre.

b. Install the kernel, modules and 1diskfs packages.
Use the rpm -ivh command to install the kernel, module and ldiskfs packages.
For example:

S rpm -ivh kernel-lustre-smp-<ver> \
kernel-ib-<ver> \
lustre-modules-<ver> \
lustre-1ldiskfs-<ver>

c. Install the utilities/userspace packages.

Use the rpm -ivh command to install the utilities packages. For example:

S rpm -ivh lustre-<ver>

Chapter 3 Installing Lustre ~ 3-11

3-12

d. Install the e2fsprogs package.

Use the rpm -ivh command to install the e2fsprogs package. For example:

S rpm -ivh e2fsprogs-<ver>

If e2fsprogs is already installed on your Linux system, install the Lustre-specific
e2fsprogs version by using rpm -Uvh to update the existing e2fsprogs package.
For example:

$ rpm -Uvh e2fsprogs-<ver>

The rpm command options --force or --nodeps are not required to install or
update the Lustre-specific e2fsprogs package. We specifically recommend that
you not use these options. If errors are reported, notify Lustre Support by filing a
bug.

e. (Optional) If you want to add optional packages to your Lustre file system,
install them now.

Optional packages include file system creation and repair tools, debugging
tools, test programs and scripts, Linux kernel and Lustre source code, and other
packages. A complete list of optional packages for your platform is provided on
the Lustre download site.

4. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the
patched kernel.

5. Reboot the patched clients and the servers.

a. If you applied the patched kernel to any clients, reboot them.
Unpatched clients do not need to be rebooted.

b. Reboot the servers.

Once all machines have rebooted, go to Configuring Lustre to configure Lustre
Networking (LNET) and the Lustre file system.

Lustre 2.0 Operations Manual * April 2010

http://www.sun.com/software/products/lustre/get.jsp

3.3

Installing Lustre from Source Code

If you need to build a customized Lustre server kernel or are using a Linux kernel
that has not been tested with the version of Lustre you are installing, you may need
to build and install Lustre from source code. This involves several steps:

m Patching the core kernel

m Configuring the kernel to work with Lustre

m Creating Lustre and kernel RPMs from source code.

Please note that the Lustre/kernel configurations available at the Lustre download
site have been extensively tested and verified with Lustre. The recommended method

for installing Lustre servers is to use these pre-built binary packages (RPMs). For
more information on this installation method, see Installing Lustre from RPMs.

Caution — Lustre contains kernel modifications which interact with storage devices
and may introduce security issues and data loss if not installed, configured and
administered correctly. Before installing Lustre, be cautious and back up ALL data.

Note — When using third-party network hardware with Lustre, the third-party
modules (typically, the drivers) must be linked against the Linux kernel. The LNET
modules in Lustre also need these references. To meet these requirements, a specific
process must be followed to install and recompile Lustre. See Installing Lustre with a
Third-Party Network Stack, for an example showing how to install Lustre 1.6.6 using
the Myricom MX 1.2.7 driver. The same process can be used for other third-party
network stacks.

Chapter 3 Installing Lustre 3-13

http://www.sun.com/software/products/lustre/get.jsp

3.3.1

33.1.1

3-14

Patching the Kernel

If you are using non-standard hardware, plan to apply a Lustre patch, or have
another reason not to use packaged Lustre binaries, you have to apply several Lustre
patches to the core kernel and run the Lustre configure script against the kernel.

Introducing the Quilt Utility

To simplify the process of applying Lustre patches to the kernel, we recommend that
you use the Quilt utility.

Quilt manages a stack of patches on a single source tree. A series file lists the patch
files and the order in which they are applied. Patches are applied, incrementally, on
the base tree and all preceding patches. You can:

m Apply patches from the stack (quilt push)
m Remove patches from the stack (quilt pop)

m Query the contents of the series file (quilt series), the contents of the stack
(quilt applied, quilt previous, quilt top), and the patches that are not
applied at a particular moment (quilt next, quilt unapplied).

m Edit and refresh (update) patches with Quilt, as well as revert inadvertent
changes, and fork or clone patches and show the diffs before and after work.

A variety of Quilt packages (RPMs, SRPMs and tarballs) are available from various
sources. Use the most recent version you can find. Quilt depends on several other
utilities, e.g., the coreutils RPM that is only available in RedHat 9. For other
RedHat kernels, you have to get the required packages to successfully install Quilt. If
you cannot locate a Quilt package or fulfill its dependencies, you can build Quilt
from a tarball, available at the Quilt project website:

http:/ /savannah.nongnu.org/projects/quilt

For additional information on using Quilt, including its commands, see Introduction
to Quilt and the quilt(1l) man page.

Lustre 2.0 Operations Manual * April 2010

http://savannah.nongnu.org/projects/quilt
http://www.suse.de/~agruen/quilt.pdf
http://www.suse.de/~agruen/quilt.pdf
http://linux.die.net/man/1/quilt

3.3.1.2 Get the Lustre Source and Unpatched Kernel

The Lustre Engineering Team has targeted several Linux kernels for use with Lustre
servers (MDS/OSS) and provides a series of patches for each one. The Lustre patches
are maintained in the kernel_patch directory bundled with the Lustre source code.

Note — Each patch series has been tailored to a specific kernel version, and may or
may not apply cleanly to other versions of the kernel.

To obtain the Lustre source and unpatched kernel:

1. Verify that all of the Lustre installation requirements have been met.
For more information on these prerequisites, see Preparing to Install Lustre.

2. Download the Lustre source code. On the Lustre download site, select a version
of Lustre to download and then select Source as the platform.

3. Download the unpatched kernel.
For convenience, Sun maintains an archive of unpatched kernel sources at:

http:/ /downloads.lustre.org/public/kernels/

4. To save time later, download e2fsprogs now.
The source code for Sun’s Lustre-enabled e2fsprogs distribution can be found at:

http:/ /downloads.lustre.org/public/tools/e2fsprogs/

Chapter 3 Installing Lustre 3-15

http://downloads.lustre.org/public/tools/e2fsprogs/
http://www.sun.com/software/products/lustre/get.jsp
http://downloads.lustre.org/public/kernels/

3.3.1.3

3-16

Patch the Kernel

This procedure describes how to use Quilt to apply the Lustre patches to the kernel.
To illustrate the steps in this procedure, a RHEL 5 kernel is patched for Lustre 1.6.5.1.

1. Unpack the Lustre source and kernel to separate source trees.

a. Unpack the Lustre source.

For this procedure, we assume that the resulting source tree is in
/tmp/lustre-1.6.5.1

b. Unpack the kernel.

For this procedure, we assume that the resulting source tree (also known as the
destination tree) is in /tmp/kernels/linux-2.6.18

2. Select a config file for your kernel, located in the kernel configs directory
(lustre/kernel_patches/kernel_config).

The kernel_config directory contains the .config files, which are named to
indicate the kernel and architecture with which they are associated. For example,
the configuration file for the 2.6.18 kernel shipped with RHEL 5 (suitable for i686
SMP systems) is kernel-2.6.18-2.6-rhel5-i686-smp.config.

3. Select the series file for your kernel, located in the series directory
(lustre/kernel_patches/series).
The series file contains the patches that need to be applied to the kernel.
4. Set up the necessary symlinks between the kernel patches and the Lustre
source.
This example assumes that the Lustre source files are unpacked under

/tmp/lustre-1.6.5.1 and you have chosen the 2. 6-rhel5.series file). Run:

$ cd /tmp/kernels/linux-2.6.18
$ rm -f patches series

$ In -s /tmp/lustre-1.6.5.1/1lustre/kernel_patches/series/2.6-\
rhel5.series ./series

$ In -s /tmp/lustre-1.6.5.1/1lustre/kernel_patches/patches

5. Use Quilt to apply the patches in the selected series file to the unpatched
kernel. Run:

$ cd /tmp/kernels/linux-2.6.18
$ quilt push -av

The patched destination tree acts as a base Linux source tree for Lustre.

Lustre 2.0 Operations Manual * April 2010

3.3.2

Create and Install the Lustre Packages

After patching the kernel, configure it to work with Lustre, create the Lustre
packages (RPMs) and install them.

1. Configure the patched kernel to run with Lustre. Run:

cd <path to kernel tree>

cp /boot/config-‘uname -r‘' .config
make oldconfig || make menuconfig
make include/asm

make include/linux/version.h

make SUBDIRS=scripts

make include/linux/utsrelease.h

vr r ¥r r r r

2. Run the Lustre configure script against the patched kernel and create the Lustre
packages.

$ cd <path to lustre source tree>
$./configure --with-linux=<path to kernel tree>
$ make rpms

This creates a set of .rpms in /usr/src/redhat/RPMS/<arch> with an
appended date-stamp. The SuSE path is /usr/src/packages.

Note — You do not need to run the Lustre configure script against an unpatched
kernel.

Example set of RPMs:

lustre-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.1l.6.5.1.custom_20081021.1686.rpm

lustre-debuginfo-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.l1.6.5.1.custom_20081021.1686.rpm

lustre-modules-1.6.5.1-\
2.6.18_53.xx.xxel5_lustre.l.6.5.1.custom_20081021.1686.rpm

lustre-source-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.l1.6.5.1.custom_20081021.i686.rpm

Note — If the steps to create the RPMs fail, contact Lustre Support by reporting a
bug. See Reporting a Lustre Bug.

Chapter 3 Installing Lustre 3-17

3-18

Note — Lustre supports several features and packages that extend the core
functionality of Lustre. These features/packages can be enabled at the build time by
issuing appropriate arguments to the configure command. For a list of supported
features and packages, run . /configure -help in the Lustre source tree. The
configs/ directory of the kernel source contains the config files matching each the
kernel version. Copy one to .config at the root of the kernel tree.

3. Create the kernel package. Navigate to the kernel source directory and run:

S make rpm

Example result:

kernel-2.6.95.0.3.EL_lustre.l.6.5.1lcustom-1.1686.rpm

Note — Step 3 is only valid for RedHat and SuSE kernels. If you are using a stock
Linux kernel, you need to get a script to create the kernel RPM.

4. Install the Lustre packages.

Some Lustre packages are installed on servers (MDS and OSSs), and others are
installed on Lustre clients. For guidance on where to install specific packages, see
TABLE 3-1, which lists required packages and for each package, where to install it.
Depending on the selected platform, not all of the packages listed in TABLE 3-1
need to be installed.

Note — Running the patched server kernel on the clients is optional. It is not
necessary unless the clients will be used for multiple purposes, for example, to run as
a client and an OST.

Lustre packages should be installed in this order:

a. Install the kernel, modules and ldiskfs packages.
Navigate to the directory where the RPMs are stored, and use the rpm -ivh
command to install the kernel, module and 1diskfs packages.

S rpm -ivh kernel-lustre-smp-<ver> \
kernel-ib-<ver> \
lustre-modules-<ver> \
lustre-1ldiskfs-<ver>

b. Install the utilities/userspace packages.

Use the rpm -ivh command to install the utilities packages. For example:

S rpm -ivh lustre-<ver>

Lustre 2.0 Operations Manual * April 2010

3.3.3

c. Install the e2fsprogs package.

Make sure the e2fsprogs package downloaded in Step 4 is unpacked, and use
the rpm -1i command to install it. For example:

S rpm -i e2fsprogs-<ver>

d. (Optional) If you want to add optional packages to your Lustre system, install
them now.

5. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the
patched kernel.

6. Reboot the patched clients and the servers.
a. If you applied the patched kernel to any clients, reboot them.
Unpatched clients do no