Lustre™ 1.8 Operations Manual

D
22 Sun

Part No. 821-0035-11
Lustre manual version: Lustre_1.8_man_v1.3

March 2010

Copyright© 2007-2010 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Sun, Sun Microsystems, the Sun logo and Lustre are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license and obtain
more information about Creative Commons licensing, visit Creative Commons Attribution-Share Alike 3.0 United States or send a letter to
Creative Commons, 171 2nd Street, Suite 300, San Francisco, California 94105, USA.

D w 9

Adobe PostScript

http://creativecommons.org/licenses/by-sa/3.0/us

D w 9

Adobe PostScript

Contents

Preface xxv

Part 1 Lustre Architecture

1. Introduction to Lustre 1-1
1.1 Introducing the Lustre File System 1-2
1.1.1 Lustre Key Features 1-3
1.2 Lustre Components 1-5
121 Lustre Networking (LNET) 1-7
1.2.2 Management Server (MGS) 1-7
1.3 Lustre Systems 1-8
1.4 Files in the Lustre File System 1-10
1.4.1 Lustre File System and Striping 1-12
142 Lustre Storage 1-13
1.4.2.1 OSS Storage 1-13
1.4.2.2 MDS Storage 1-13
1.43 Lustre System Capacity 1-14
1.5 Lustre Configurations 1-14
1.6 Lustre Networking 1-16
1.7 Lustre Failover and Rolling Upgrades 1-17

2. Understanding Lustre Networking 2-1
2.1 Introduction to LNET 2-1
2.2 Supported Network Types 2-2
2.3 Designing Your Lustre Network 2-3
2.3.1 Identify All Lustre Networks 2-3
2.3.2 Identify Nodes to Route Between Networks 2-3
2.3.3 Identify Network Interfaces to Include/Exclude from LNET 2-3
234 Determine Cluster-wide Module Configuration 2-4
2.3.5 Determine Appropriate Mount Parameters for Clients 2-4
24 Configuring LNET 2-5
241 Module Parameters 2-5
24.1.1 Using Usocklnd 2-7
2412 OFED InfiniBand Options 2-8
2.42 Module Parameters - Routing 2-8
2421 LNET Routers 2-11
243 Downed Routers 2-12
2.5 Starting and Stopping LNET 2-13
2.5.1 Starting LNET 2-13
25.1.1 Starting Clients 2-13
252 Stopping LNET 2-14

vi Lustre 1.8 Operations Manual ¢ March 2010

Part 11 Lustre Administration

3. Installing Lustre 3-1
3.1 Preparing to Install Lustre 3-2
3.1.1 Supported Operating System, Platform and Interconnect 3-3
3.1.2 Required Lustre Software 34
3.1.3 Required Tools and Utilities 3—4
3.1.4 (Optional) High-Availability Software 3-4
3.1.5 Debugging Tools 3-5
3.1.6 Environmental Requirements 3-6
3.1.7 Memory Requirements 3-7
3.1.7.1 MDS Memory Requirements 3-7
3.1.7.2 OSS Memory Requirements 3-8
3.2 Installing Lustre from RPMs 3-10
3.3 Installing Lustre from Source Code 3-14
3.3.1 Patching the Kernel 3-15
3.3.1.1 Introducing the Quilt Utility 3-15
3.3.1.2 Get the Lustre Source and Unpatched Kernel 3-16
3.3.1.3 Patch the Kernel 3-17
3.3.2 Create and Install the Lustre Packages 3-18
3.3.3 Installing Lustre with a Third-Party Network Stack 3-20

Contents vii

4. Configuring Lustre 4-1
41 Configuring the Lustre File System 4-2
4.1.0.1 Simple Lustre Configuration Example 4-5
4.1.0.2 Module Setup 4-10
411 Scaling the Lustre File System 4-10
42 Additional Lustre Configuration 4-10
4.3 Basic Lustre Administration 4-11
43.1 Specifying the File System Name 4-12
432 Starting up Lustre 4-12
43.3 Mounting a Server 4-13
434 Unmounting a Server 4-14
43.5 Working with Inactive OSTs 4-14
43.6 Finding Nodes in the Lustre File System 4-15
43.7 Mounting a Server Without Lustre Service 4-16
43.8 Specifying Failout/Failover Mode for OSTs 4-16
439 Running Multiple Lustre File Systems 4-17
4.3.10 Setting and Retrieving Lustre Parameters 4-19
4.3.10.1 Setting Parameters with mkfs.lustre 4-19
4.3.10.2 Setting Parameters with tunefs.lustre 4-19
43.10.3 Setting Parameters with Ictl 4-20
43104 Reporting Current Parameter Values 4-21
43.11 Regenerating the Lustre Configuration Logs 4-22
4.3.12 Changing a Server NID 4-23
4.3.13 Removing and Restoring OSTs 4-24
43.13.1 Removing an OST from the File System 4-24
43.13.2 Restoring an OST in the File System 4-26
4.3.14 Aborting Recovery 4-26
4.3.15 Determining Which Machine is Serving an OST 4-27

viii Lustre 1.8 Operations Manual ¢ March 2010

4.4

4.5

More Complex Configurations 4-28

441 Failover 4-28

Operational Scenarios 4-29

451 Unmounting a Server (without Failover) 4-31
452 Unmounting a Server (with Failover) 4-31
45.3 Changing the Address of a Failover Node 4-31

Service Tags 5-1

51
52

Introduction to Service Tags 5-1

Using Service Tags 5-2

52.1 Installing Service Tags 5-2

52.2 Discovering and Registering Lustre Components 5-3

523 Information Registered with Sun 5-6

Configuring Lustre - Examples 6-1

6.1

Simple TCP Network 6-1
6.1.1 Lustre with Combined MGS/MDT 6-1
6.1.1.1 Installation Summary 6-1
6.1.1.2 Configuration Generation and Application 6-2
6.1.2 Lustre with Separate MGS and MDT 6-3
6.1.2.1 Installation Summary 6-3
6.1.2.2 Configuration Generation and Application 6-3
6.1.2.3 Configuring Lustre with a CSV File 64

Contents

X

7. More Complicated Configurations 7-1
71 Multihomed Servers 7-1
711 Modprobe.conf 7-1
7.1.2 Start Servers 7-3
7.1.3 Start Clients 7-4
7.2 Elan to TCP Routing 7-5
721 Modprobe.conf 7-5
722 Startservers 7-5
723 Startclients 7-5
7.3 Load Balancing with InfiniBand 7-6
7.3.1 Setting Up modprobe.conf for Load Balancing 7-6
7.4 Multi-Rail Configurations with LNET 7-7

8. Failover 8-1

8.1 Whatis Failover? 8-1
8.1.1 Failover Capabilities 8-2
8.1.2 Types of Failover Configurations 8-2

8.2 Failover Functionality in Lustre 8-3
8.2.1 MDT Failover Configuration (Active/Passive) 8-4
8.2.2 OST Failover Configuration (Active/Active) 8-4
8.2.3 Lustre Failover and MMP 8-4

8.2.3.1 Working with MMP 8-5

Lustre 1.8 Operations Manual ¢ March 2010

8.3 Configuring and Using Heartbeat with Lustre Failover 8-6
8.3.1 Creating a Failover Environment 8-6
8.3.1.1 Power Management Software 8-6
8.3.1.2 Power Equipment 8-7
8.3.2 Setting up the Heartbeat Software 8-7
8.3.2.1 Installing Heartbeat 8-8
8.3.22 Configuring Heartbeat 8-8

8.3.2.3 (Optional) Migrating a Heartbeat Configuration (v1 to
v2) 8-13

8.3.3 Working with Heartbeat 8-14
8.3.3.1 Starting Heartbeat 8-14
8.3.3.2 Switching Resources Between Nodes 8-14

9. Configuring Quotas 9-1
9.1 Working with Quotas 9-1
9.1.1 Enabling Disk Quotas 9-2
9.1.11 Administrative and Operational Quotas 9-3
9.1.2 Creating Quota Files and Quota Administration 9-4
9.1.3 Quota Allocation 9-7
9.1.4 Known Issues with Quotas 9-10
9.14.1 Granted Cache and Quota Limits 9-10
9.14.2 Quota Limits 9-11
9.14.3 Quota File Formats 9-12
9.1.5 Lustre Quota Statistics 9-13

9.1.5.1 Interpreting Quota Statistics 9-14

Contents

10. RAID 10-1
10.1 Considerations for Backend Storage 10-2
10.1.1 Selecting Storage for the MDS or OSTs 10-2
10.1.2 Reliability Best Practices 10-3

10.1.3 Understanding Double Failures with Hardware and Software
RAID5 10-4

10.1.4 Performance Tradeoffs 10-5
10.1.5 Formatting Options for RAID Devices 10-5
10.1.5.1 Creating an External Journal 10-6
10.1.6 Handling Degraded RAID Arrays 10-7
10.2 Insights into Disk Performance Measurement 10-7
10.3 Lustre Software RAID Support 10-8
10.3.0.1 Enabling Software RAID on Lustre 10-8

11. Kerberos 11-1
11.1 What is Kerberos? 11-1
11.2 Lustre Setup with Kerberos 11-2
11.2.1 Configuring Kerberos for Lustre 11-2

11.2.1.1 Kerberos Distributions Supported on Lustre 11-2
11.2.1.2 Preparing to Set Up Lustre with Kerberos 11-3
11.2.1.3 Configuring Lustre for Kerberos 11-4
11.2.1.4 Configuring Kerberos 11-6
11.2.1.5 Setting the Environment 11-8
11.2.1.6 Building Lustre 11-9
11.2.1.7 Running GSS Daemons 11-10

xii Lustre 1.8 Operations Manual ¢ March 2010

12.

13.

11.2.2 Types of Lustre-Kerberos Flavors 11-11
11.2.2.1 Basic Flavors 11-11
11.2.2.2 Security Flavor 11-12
11.22.3 Customized Flavor 11-13
11.2.24 Specifying Security Flavors 11-14
11.2.2.5 Mounting Clients 11-14
11.2.2.6 Rules, Syntax and Examples 11-15
11.2.2.7 Authenticating Normal Users 11-16

Bonding 12-1
12.1 Network Bonding 12-1
12.2 Requirements 12-2
12.3 Using Lustre with Multiple NICs versus Bonding NICs 12—4
12.4 Bonding Module Parameters 12-5
12.5 Setting Up Bonding 12-5
1251 Examples 12-9
12.6 Configuring Lustre with Bonding 12-11
12.6.1 Bonding References 12-11

Upgrading and Downgrading Lustre 13-1

13.1 Supported Upgrades 13-2

13.2 Lustre Interoperability 13-2

13.3 Upgrading Lustre 1.6.x to 1.8.x 13-3
13.3.1 Performing a Complete File System Upgrade 13-4
13.3.2 Performing a Rolling Upgrade 13-6

13.4 Upgrading Lustre 1.8.x to the Next Minor Version 13-8

13.5 Downgrading from Lustre 1.8.x to 1.6.x 13-8
13.5.1 Performing a Complete File System Downgrade 13-9
13.5.2 Performing a Rolling Downgrade 13-11

Contents

xiii

14. Lustre SNMP Module 14-1
14.1 Installing the Lustre SNMP Module 14-2
14.2 Building the Lustre SNMP Module 14-2
14.3 Using the Lustre SNMP Module 14-3

15. Backup and Restore 15-1

15.1 Backing up a File System 15-1

15.2 Backing up a Device (MDS or OST) 15-2
15.2.1 Backing Up the MDS 15-2
15.2.2 Backing Up an OST 15-3

15.3 Backing up Files 15-4
15.3.1 Backing up Extended Attributes 154

154 Restoring from a File-level Backup 15-5

15.5 Using LVM Snapshots with Lustre 15-7
15.5.1 Creating an LVM-based Backup File System 15-7
15.5.2 Backing up New/Changed Files to the Backup File System 15-9
15.5.3 Creating Snapshot Volumes 15-9
15.5.4 Restoring the File System From a Snapshot 15-10
15.5.5 Deleting Old Snapshots 15-12
15.5.6 Changing Snapshot Volume Size 15-12

16. POSIX 16-1
16.1 Introduction to POSIX 16-1
16.2 Installing POSIX 16-2
16.2.1 POSIX Installation Using a Quick Start Version 16-2
16.3 Building and Running a POSIX Compliance Test Suite on Lustre 16-3
16.3.1 Building the Test Suite from Scratch 16-3
16.3.2 Running the Test Suite Against Lustre 16-5

16.4 Isolating and Debugging Failures 16-6

Xiv Lustre 1.8 Operations Manual ¢ March 2010

17.

18.

Benchmarking 17-1

17.1
17.2
17.3

Bonnie++ Benchmark 17-2
IOR Benchmark 17-3
I0zone Benchmark 17-5

Lustre I/O Kit 18-1

18.1

18.2

18.3

Lustre I/O Kit Description and Prerequisites 18-1

18.1.1 Downloading an I/O Kit 18-2

18.1.2 Prerequisites to Using an I/O Kit 18-2

Running I/0 Kit Tests 18-2

18.2.1 sgpdd_survey 18-3

18.2.2 obdfilter_survey 18-5
18.2.2.1 Running obdfilter_survey Against a Local Disk 18-6
18.2.2.2 Running obdfilter_survey Against a Network 18-7

18.2.2.3 Running obdfilter_survey Against a Network Disk 18-

8
18.2.24 Output Files 18-9
18.2.2.5 Script Output 18-10
18.2.2.6 Visualizing Results 18-10
18.2.3 ost_survey 18-11
18.2.4 stats-collect 18-12
PIOS Test Tool 18-14
18.3.1 Synopsis 18-15
18.3.2 PIOSI/O Modes 18-16
18.3.3 PIOS Parameters 18-17
18.3.4 PIOS Examples 18-20

Contents

XV

18.4 LNET Self-Test 18-21

18.4.1 Basic Concepts of LNET Self-Test 18-21
18.4.1.1 Modules 18-21
18.4.1.2 Utilities 18-22
18.4.1.3 Session 18-22
18.4.1.4 Console 18-22
18.41.5 Group 18-23
18.4.1.6 Test 18-23
18.4.1.7 Batch 18-24
18.4.1.8 Sample Script 18-25

18.4.2 LNET Self-Test Commands 18-26
18.4.2.1 Session 18-26
18.42.2 Group 18-27
18.4.2.3 Batch and Test 18-30
18.4.2.4 Other Commands 18-33

xvi Lustre 1.8 Operations Manual ¢ March 2010

19.

Lustre Recovery 19-1

19.1

19.2

19.3

19.4

19.5
19.6

Recovery Overview 19-2

19.1.1 Client Failure 19-2

19.1.2 Client Eviction 19-3

19.1.3 MDS Failure (Failover) 19-3

19.1.4 OST Failure (Failover) 19-4

19.1.5 Network Partition 19-5

19.1.6 Failed Recovery 19-5

Metadata Replay 19-6

19.2.1 XID Numbers 19-6

19.2.2 Transaction Numbers 19-6

19.2.3 Replay and Resend 19-7

19.2.4 Client Replay List 19-7

19.2.5 Server Recovery 19-8

19.2.6 Request Replay 19-9

19.2.7 Gaps in the Replay Sequence 19-9
19.2.8 Lock Recovery 19-10

19.2.9 Request Resend 19-10

Reply Reconstruction 19-11

19.3.1 Required State 19-11

19.3.2 Reconstruction of Open Replies 19-11
Version-based Recovery 19-13

19.4.1 Delayed Recovery 19-14

19.4.2 Working with VBR 19-15

19.4.3 Tips for Using VBR 19-15

Recovering from Errors or Corruption on a Backing File System 19-16
Recovering from Corruption in the Lustre File System 19-18

19.6.1 Working with Orphaned Objects 19-22

Contents xvii

PartIII Lustre Tuning, Monitoring and Troubleshooting

20. Lustre Tuning 20-1
20.1 Module Options 20-2
20.1.1 OSS Service Thread Count 20-2
20.1.1.1 Optimizing the Number of Service Threads 20-2
20.1.2 MDS Service Thread Count 20-3
20.1.2.1 I/O Scheduler 20-4
20.2 LNET Tunables 20-4
20.2.0.1 Transmit and receive buffer size: 20-4
20.2.0.2 irq_affinity 20-4
20.3 Options for Formatting the MDT and OSTs 20-5
20.3.1 Planning for Inodes 20-5
20.3.2 Sizing the MDT 20-5
20.4 Overriding Default Formatting Options 20-6
20.4.1 Number of Inodes for the MDT 20-6
20.4.2 Inode Size for the MDT 20-7
20.4.3 Number of Inodes for an OST 20-7
20.5 Large-Scale Tuning for Cray XT and Equivalents 20-8
20.5.1 Network Tunables 20-8
20.6 Lockless I/O Tunables 20-9
20.7 Data Checksums 20-10

xviii Lustre 1.8 Operations Manual ¢ March 2010

21.

LustreProc

21.1

21.2

21-1

Proc Entries for Lustre 21-2

21.1.1
21.1.2
21.1.3

21.14
21.1.5

Locating Lustre File Systems and Servers 21-2

Lustre Timeouts 21-3

Adaptive Timeouts 21-5

21.1.3.1 Configuring Adaptive Timeouts 21-6

21.1.3.2 Interpreting Adaptive Timeouts Information 21-8
LNET Information 21-9

Free Space Distribution 21-11

21.1.5.1 Managing Stripe Allocation 21-11

Lustre I/O Tunables 21-12

21.2.1
21.2.2
21.2.3
21.24
21.25
21.2.6

21.2.7

21.2.8
21.29
21.2.10
21.2.11

Client I/0O RPC Stream Tunables 21-12
Watching the Client RPC Stream 21-14
Client Read-Write Offset Survey 21-15
Client Read-Write Extents Survey 21-17
Watching the OST Block I/O Stream 21-19
Using File Readahead and Directory Statahead 21-20
21.2.6.1 Tuning File Readahead 21-20
21.2.6.2 Tuning Directory Statahead 21-21
OSS Read Cache 21-22

21.2.7.1 Using OSS Read Cache 21-22
mballoc History 21-25

mballoc3 Tunables 21-27

Locking 21-29

Setting MDS and OSS Thread Counts 21-30

Contents

Xxix

21.3 Debug Support 21-32
21.3.1 RPC Information for Other OBD Devices 21-35
21.3.1.1 Interpreting OST Statistics 21-36
21.3.1.2 llobdstat 21-38
21.3.1.3 Interpreting MDT Statistics 21-38

22. Lustre Monitoring and Troubleshooting 22-1

22.1 Monitoring Lustre 22-1

22.2 Troubleshooting Lustre 22-3
22.2.1 Error Numbers 22-3
22.2.2 Error Messages 22-4
22.2.3 Lustre Logs 224

22.3 Reporting a Lustre Bug 22-5

224 Common Lustre Problems and Performance Tips 22-6
2241 Recovering from an Unavailable OST 22-6
22.4.2 Write Performance Better Than Read Performance 22-7
22.4.3 OST Object is Missing or Damaged 22-8
2244 OSTs Become Read-Only 22-9
22.4.5 Identifying a Missing OST 22-9

22.4.6 Improving Lustre Performance When Working with Small Files
22-11

22.4.7 Default Striping 22-11

22.4.8 Erasing a File System 22-12

22.4.9 Reclaiming Reserved Disk Space 22-12

22.4.10 Considerations in Connecting a SAN with Lustre 22-13

22.4.11 Handling/Debugging "Bind: Address already in use" Error 22-14
22.4.12 Replacing An Existing OST or MDS 22-15

22.4.13 Handling/Debugging Error "- 28" 22-15

22.4.14 Triggering Watchdog for PID NNN 22-16

XX Lustre 1.8 Operations Manual ¢ March 2010

23.

22.4.15 Handling Timeouts on Initial Lustre Setup 22-17

22.4.16 Handling/Debugging "LustreError: xxx went back in time"

22.4.17 Lustre Error: "Slow Start_Page_Write" 22-18
22.4.18 Drawbacks in Doing Multi-client O_APPEND Writes
22.4.19 Slowdown Occurs During Lustre Startup 22-19
22.420 Log Message ‘Out of Memory’ on OST 22-19
22.4.21 Number of OSTs Needed for Sustained Throughput
22.4.22 Setting SCSI1/O Sizes 22-20

22-19

22-20

22-18

22.4.23 Identifying Which Lustre File an OST Object Belongs To 22-21

Lustre Debugging 23-1

23.1

23.2

23.3
23.4

23.5
23.6

Lustre Debug Messages 23-2
23.1.1 Format of Lustre Debug Messages 23-3
Tools for Lustre Debugging 23-4
23.2.1 Debug Daemon Option to Ictl 23-6
23.2.1.1 lctl Debug Daemon Commands 23-7
23.2.2 Controlling the Kernel Debug Log 23-8
23.2.3 Thelctl Tool 23-8
23.2.4 Finding Memory Leaks 23-10
23.2.5 Printing to /var/log/messages 23-10
23.2.6 Tracing Lock Traffic 23-10
23.2.7 Sample lctl Run 23-11
23.2.8 Adding Debugging to the Lustre Source Code 23-11
Troubleshooting with strace 23-14
Looking at Disk Content 23-15
23.4.1 Determine the Lustre UUID of an OST 23-16
2342 Tepdump 23-16
Ptlrpc Request History 23-16
Using LWT Tracing 23-17

Contents

xxi

Part IV Lustre for Users

24. Striping and I/O Options 24-1
241 File Striping 24-1
24.1.1 Advantages of Striping 24-2
24.1.1.1 Bandwidth 24-2
24.1.2 Disadvantages of Striping 24-3
241.2.1 Increased Overhead 24-3
24122 Increased Risk 24-3
24.1.3 Stripe Size 24-4
24.2 Displaying Files and Directories with Ifs getstripe 24-5
24.3 Ifs setstripe — Setting File Layouts 24-6
24.3.1 Changing Striping for a Subdirectory 24-7
24.3.2 Using a Specific Striping Pattern/File Layout for a Single File 24-7
24.3.3 Creating a File on a Specific OST 24-8
244 Managing Free Space 24-9
2441 Checking File System Free Space 24-9
2442 Using Stripe Allocations 24-11
2443 Round-Robin Allocator 24-11
2444 Weighted Allocator 24-11
2445 Adjusting the Weighting Between Free Space and Location 24-12
245 Handing Full OSTs 24-12
24.5.1 Checking File System Usage 24-12
24.5.2 Taking a Full OST Offline 24-13
24.5.3 Migrating Data within a File System 24-14
24.6 Creating and Managing OST Pools 24-16
24.6.1 Working with OST Pools 24-17
24.6.1.1 Using the Ifs Command with OST Pools 24-18
24.6.2 Tips for Using OST Pools 24-19

xxii Lustre 1.8 Operations Manual ¢ March 2010

25.

26.

24.7

24.8

249

Performing Direct /O 24-20
24.7.1 Making File System Objects Immutable 24-20
Other I/O Options 24-20
24.8.1 Lustre Checksums 24-20

24.8.1.1 Changing Checksum Algorithms 24-21
Striping Using llapi 24-22

Lustre Security 25-1

25.1

25.2

Using ACLs 25-1

25.1.1 How ACLs Work 25-1

25.1.2 Using ACLs with Lustre 25-2

25.1.3 Examples 25-3

Using Root Squash 25-4

25.2.1 Configuring Root Squash 25-4

25.2.2 Enabling and Tuning Root Squash 25-5
25.2.3 Syntax Error Handling 25-6

Lustre Operating Tips 26-1

26.1
26.2
26.3
26.4
26.5

Adding an OST to a Lustre File System 26-2

A Simple Data Migration Script 26-3

Adding Multiple SCSI LUNs on Single HBA 26-5

Failures Running a Client and OST on the Same Machine 26-5

Improving Lustre Metadata Performance While Using Large Directories
266

Contents xxiii

Part V Reference

27. User Utilities (man1) 27-1
27.1 1lfs 27-2
27.2 lfsck 27-13
27.3 Filefrag 27-15
274 Mount 27-17
27.5 Handling Timeouts 27-17

28. Lustre Programming Interfaces (man2) 28-1
28.1 User/Group Cache Upcall 28-1
28.1.1 Name 28-1
28.1.2 Description 28-2
28.1.2.1 Primary and Secondary Groups 28-2
28.1.3 Parameters 28-3
28.1.4 Data structures 28-3

29. Setting Lustre Properties (man3) 29-1
29.1 Usingllapi 29-1
29.1.1 llapi_file_create 29-1
29.1.2 llapi_file_get_stripe 29-4
29.1.3 llapi_file_open 29-5
29.1.4 llapi_quotactl 29-6
29.1.5 llapi_path2fid 29-9

xxiv Lustre 1.8 Operations Manual ¢ March 2010

30.

31.

Configuration Files and Module Parameters (man5) 30-1

30.1

Introduction 30-1

30.2 Module Options 30-2

30.2.1

30.2.2
30.2.3
30.2.4
30.2.5
30.2.6
30.2.7
30.2.8
30.2.9

LNET Options 30-3

30.2.1.1 Network Topology 30-3
30.2.1.2 networks ("tcp") 30-5
30.2.1.3 routes (“”) 30-5

30.2.14 forwarding (") 30-7
SOCKLND Kernel TCP/IP LND 30-8
QSW LND 30-10

RapidArray LND 30-11

VIBLND 30-12

OpenlB LND 30-14

Portals LND (Linux) 30-15

Portals LND (Catamount) 30-17
MXLND 30-19

System Configuration Utilities (man8) 31-1

31.1
31.2
31.3
31.4
31.5

mkfs.Justre 31-2

tunefs.lustre 31-5

letl 31-8

mount.lustre 31-15

Additional System Configuration Utilities 31-18

31.5.1
31.5.2
31.5.3
31.5.4
31.5.5
31.5.6

lustre_rmmod.sh 31-18

e2scan 31-18

Utilities to Manage Large Clusters 31-20
Application Profiling Utilities 31-20

More /proc Statistics for Application Profiling 31-21
Testing / Debugging Utilities 31-22

Contents

XXV

31.5.7 Flock Feature 31-27
31571 Example 31-27
31.5.8 1 _getgroups 31-28
31.59 llobdstat 31-29
31.5.10 llstat 31-30
31.5.11 Ist 31-32
31.5.12 plot-llstat 31-34
31.5.13 routerstat 31-35
31.5.14 1l_recover_lost_found_objs 31-36

32. System Limits 32-1
32.1 Maximum Stripe Count 32-1
32.2 Maximum Stripe Size 32-2
32.3 Minimum Stripe Size 32-2
32.4 Maximum Number of OSTs and MDTs 32-2
32.5 Maximum Number of Clients 32-2
32.6 Maximum Size of a File System 32-3
32.7 Maximum File Size 32-3
32.8 Maximum Number of Files or Subdirectories in a Single Directory 32-3
32.9 MDS Space Consumption 324
32.10 Maximum Length of a Filename and Pathname 324
32.11 Maximum Number of Open Files for Lustre File Systems 32-5
32.12 OSS RAM Size 32-5

Glossary Glossary-1

Index Index-1

xxvi Lustre 1.8 Operations Manual ¢ March 2010

Preface

The Lustre 1.8 Operations Manual provides detailed information and procedures to
install, configure and tune Lustre. The manual covers topics such as failover, quotas,
striping and bonding. The Lustre manual also contains troubleshooting information
and tips to improve Lustre operation and performance.

Using UNIX Commands

This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

m Software documentation that you received with your system
m Solaris™ Operating System documentation, which is at:

http://docs.sun.com

XXV

http://docs.sun.com

Shell Prompts

Shell

Prompt

C shell
C shell superuser
Bourne shell and Korn shell

Bourne shell and Korn shell superuser

machine-name$
machine-name#
$
#

XXVi

Typographic Conventions

Typeface Meaning

Examples

AaBbCcl23 The names of commands, files,

and directories; on-screen
computer output

AaBbCc123 What you type, when contrasted
with on-screen computer output

AaBbCc123 Book titles, new words or terms,

words to be emphasized.

Replace command-line variables
with real names or values.

Edit your. login file.
Use 1s -a to list all files.

% You have mail.

% su
Password:

Read Chapter 6 in the User’s Guide.
These are called class options.

You must be superuser to do this.
To delete a file, type rm filename.

Note — Characters display differently depending on browser settings. If characters
do not display correctly, change the character encoding in your browser to Unicode

UTE-8.

A '\' (backslash) continuation character is used to indicate that commands are too

long to fit on one text line.

Lustre 1.8 Operations Manual ¢ March 2010

Third-Party Web Sites

Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Preface xxvii

xxviii Lustre 1.8 Operations Manual * March 2010

Revision History

BookTitle Part Number Rev Date Comments

Lustre 1.8 Operations Manual 821-0035-10 A March 2010 First release of Lustre 1.8 manual
Lustre 1.8 Operations Manual =~ 821-0035-10 B October 2009 Second release of Lustre 1.8 manual
Lustre 1.8 Operations Manual =~ 821-0035-11 A February 2010 Third release of Lustre 1.8 manual
Lustre 1.8 Operations Manual =~ 821-0035-11 B March 2010 Fourth release of Lustre 1.8 manual

PART I

Lustre Architecture

Lustre is a storage-architecture for clusters. The central component is the Lustre file
system, a shared file system for clusters. The Lustre file system is currently available
for Linux and provides a POSIX-compliant UNIX file system interface.

The Lustre architecture is used for many different kinds of clusters. It is best known
for powering seven of the ten largest high-performance computing (HPC) clusters in
the world with tens of thousands of client systems, petabytes (PBs) of storage and
hundreds of gigabytes per second (GB/sec) of 1/O throughput. Many HPC sites use
Lustre as a site-wide global file system, servicing dozens of clusters on an
unprecedented scale.

CHAPTER 1

Introduction to Lustre

This chapter describes Lustre software and components, and includes the following
sections:

Introducing the Lustre File System
Lustre Components

Lustre Systems

Files in the Lustre File System
Lustre Configurations

Lustre Networking

Lustre Failover and Rolling Upgrades

These instructions assume you have some familiarity with Linux system
administration, cluster systems and network technologies.

11

1.1

1-2

Introducing the Lustre File System

Lustre is a storage architecture for clusters. The central component is the Lustre file
system, which is available for Linux and provides a POSIX-compliant UNIX file
system interface.

The Lustre architecture is used for many different kinds of clusters. It is best known
for powering seven of the ten largest high-performance computing (HPC) clusters
worldwide, with tens of thousands of client systems, petabytes (PB) of storage and
hundreds of gigabytes per second (GB/sec) of I/O throughput. Many HPC sites use
Lustre as a site-wide global file system, serving dozens of clusters on an
unprecedented scale.

The scalability of a Lustre file system reduces the need to deploy many separate file
systems (such as one for each cluster). This offers significant storage management
advantages, for example, avoiding maintenance of multiple data copies staged on
multiple file systems. Hand in hand with aggregating file system capacity with many
servers, I/O throughput is also aggregated and scales with additional servers.
Moreover, throughput (or capacity) can be easily adjusted by adding servers
dynamically.

Lustre has been integrated with several vendor’s kernels. We offer Red Hat
Enterprise Linux (RHEL) and SUSE Linux Enterprise (SUSE) kernels with Lustre
patches.

Lustre 1.8 Operations Manual ¢ March 2010

1.1.1

Lustre Key Features

The key features of Lustre include:

Scalability: Lustre scales up or down with respect to the number of client nodes,
disk storage and bandwidth. Currently, Lustre is running in production
environments with up to 26,000 client nodes, with many clusters in the
10,000-20,000 client range. Other Lustre installations provide aggregated disk
storage and bandwidth of up to 1,000 OSTs running on more than 450 OSSs.
Several Lustre file systems with a capacity of 1 PB or more (allowing storage of up
to 2 billion files) have been in use since 2006.

Performance: Lustre deployments in production environments currently offer
performance of up to 100 GB/s. In a test environment, a performance of 130 GB/s
and 13,000 creates/s has been sustained. Lustre single client node throughput has
been measured at 2 GB/s (max) and OSS throughput at 2.5 GB/s (max). Lustre has
been run at 240 GB/sec on the Spider file system at Oak Ridge National
Laboratories.

POSIX compliance: The full POSIX test suite passes on Lustre clients. In a cluster,
POSIX compliance means that most operations are atomic and clients never see
stale data or metadata.

High-availability: Lustre offers shared storage partitions for OSS targets (OSTs),
and a shared storage partition for the MDS target (MDT).

Security: In Lustre, it is an option to have TCP connections only from privileged
ports. Group membership handling is server-based. POSIX access control lists
(ACLs) are supported.

Open source: Lustre is licensed under the GNU GPL.

Additionally, Lustre offers these features:

Interoperability: Lustre runs on a variety of CPU architectures and mixed-endian
clusters and interoperability between adjacent Lustre software releases.

Access control list (ACL): Currently, the Lustre security model follows a UNIX file
system, enhanced with POSIX ACLs. Noteworthy additional features include root
squash and connecting from privileged ports only.

Quotas: User and group quotas are available for Lustre.

OSS addition: The capacity of a Lustre file system and aggregate cluster
bandwidth can be increased without interrupting any operations by adding a new
0SS with OSTs to the cluster.

Controlled striping: The default stripe count and stripe size can be controlled in
various ways. The file system has a default setting that is determined at format
time. Directories can be given an attribute so that all files under that directory
(and recursively under any sub-directory) have a striping pattern determined by
the attribute. Finally, utilities and application libraries are provided to control the
striping of an individual file at creation time.

Chapter 1 Introduction to Lustre 1-3

m Snapshots: Lustre file servers use volumes attached to the server nodes. The
Lustre software includes a utility (using LVM snapshot technology) to create a
snapshot of all volumes and group snapshots together in a snapshot file system
that can be mounted with Lustre.

m Backup tools: Lustre 1.6 includes two utilities supporting backups. One tool scans
file systems and locates files modified since a certain timeframe. This utility makes
modified files” pathnames available so they can be processed in parallel by other
utilities (such as rsync) using multiple clients. Another useful tool is a modified
version of GNU tar (gtar) which can back up and restore extended attributes (i.e.
file striping and pool membership) for Lustre.l

m Other current features of Lustre are described in detail in this manual. Future
features are described in the Lustre roadmap.

1. Files backed up using the modified version of gtar are restored per the backed up striping information. The
backup procedure does not use default striping rules.

Lustre 1.8 Operations Manual ¢ March 2010

1.2

Lustre Components

A Lustre file system consists of the following basic components (see FIGURE 1-1).

Metadata Server (MDS) - The MDS server makes metadata stored in one or more
MDTs available to Lustre clients. Each MDS manages the names and directories in
the Lustre file system(s) and provides network request handling for one or more
local MDTs.

Metadata Target (MDT) - The MDT stores metadata (such as filenames,
directories, permissions and file layout) on an MDS. Each file system has one
MDT. An MDT on a shared storage target can be available to many MDSs,
although only one should actually use it. If an active MDS fails, a passive MDS
can serve the MDT and make it available to clients. This is referred to as MDS
failover.

Object Storage Servers (OSS): The OSS provides file I/O service, and network
request handling for one or more local OSTs. Typically, an OSS serves between 2
and 8 OSTs, up to 8 TB each?. The MDT, OSTs and Lustre clients can run
concurrently (in any mixture) on a single node. However, a typical configuration is
an MDT on a dedicated node, two or more OSTs on each OSS node, and a client on
each of a large number of compute nodes.

Object Storage Target (OST): The OST stores file data (chunks of user files) as
data objects on one or more OSSs. A single Lustre file system can have multiple
OSTs, each serving a subset of file data. There is not necessarily a 1:1
correspondence between a file and an OST. To optimize performance, a file may be
spread over many OSTs. A Logical Object Volume (LOV), manages file striping
across many OSTs.

Lustre clients: Lustre clients are computational, visualization or desktop nodes
that run Lustre software that allows them to mount the Lustre file system.

The Lustre client software consists of an interface between the Linux Virtual File
System and the Lustre servers. Each target has a client counterpart: Metadata
Client (MDC), Object Storage Client (OSC), and a Management Client (MGC). A
group of OSCs are wrapped into a single LOV. Working in concert, the OSCs
provide transparent access to the file system.

Clients, which mount the Lustre file system, see a single, coherent, synchronized
namespace at all times. Different clients can write to different parts of the same file
at the same time, while other clients can read from the file.

Lustre includes several additional components, LNET and the MGS, described in the
following sections.

2. InLustre 1.8.2, 16 TB OSTs are supported on RHEL 5 using specific RPMs (with ext4-based 1diskfs).

Chapter 1 Introduction to Lustre 1-5

FIGURE 1-1 Lustre components in a basic cluster

Metadata Server (MDS)

High Speed
Interconnect

Lustre Clients

ePe

Lustre 1.8 Operations Manual ¢ March 2010

Metadata Target (MDT)

(Ethernet, 1B, etc.)

1.2.1

1.2.2

Lustre Networking (LNET)

Lustre Networking (LNET) is an API that handles metadata and file I/O data for file
system servers and clients. LNET supports multiple, heterogeneous interfaces on
clients and servers. LNET interoperates with a variety of network transports through
Network Abstraction Layers (NAL). Lustre Network Drivers (LNDs) are available for
a number of commodity and high-end networks, including Infiniband, TCP/IP,
Quadrics Elan, Myrinet (MX and GM) and Cray.

In clusters with a Lustre file system, servers and clients communicate with one
another over a custom networking API known as Lustre Networking (LNET), while
the disk storage behind the MDSs and OSSs is connected to these servers using
traditional SAN technologies.

Key features of LNET include:

m RDMA, when supported by underlying networks such as Elan, Myrinet and
InfiniBand.

m Support for many commonly-used network types such as InfiniBand and IP.

m High availability and recovery features enabling transparent recovery in
conjunction with failover servers.

m Simultaneous availability of multiple network types with routing between them.

Management Server (MGS)

The MGS stores configuration information for all Lustre file systems in a cluster. Each
Lustre target contacts the MGS to provide information, and Lustre clients contact the
MGS to retrieve information. The MGS requires its own disk for storage. However,
there is a provision that allows the MGS to share a disk ("co-locate") with a single
MDT. The MGS is not considered "part" of an individual file system; it provides
configuration information for all managed Lustre file systems to other Lustre
components.

Chapter 1 Introduction to Lustre 1-7

1.3

1-8

Lustre Systems

Lustre components work together as coordinated systems to manage file and
directory operations in the file system (see FIGURE 1-2).

FIGURE 1-2 Lustre system interaction in a file system

Clients
LoV
File open
Doy tallone. File 1/0 and
file open/close |
meta?data' and file locking
concurrency

Recovery, file
status and file
creation

The characteristics of the Lustre system include:

Typical number of Required Desirable hardware
systems Performance attached storage characteristics
Clients 1-100,000 1 GB/sec1/0, None None
1,000 metadata
ops/sec
OSss 1-1,000 500-2.5 GB/sec File system Good bus bandwidth
capacity /OSS
count
MDS 2 3,000-15,000 1-2% of file Adequate CPU power,
(2-100 in future) metadata ops/sec system capacity plenty of memory

Lustre 1.8 Operations Manual ¢ March 2010

At scale, the Lustre cluster can include up to 1,000 OSSs and 100,000 clients (see

FIGURE 1-3).

FIGURE 1-3 Lustre cluster at scale

MDS disk storage containing
Metadata Targets (MDT)

Pool of clustered Metadata
Servers (MDS) 1-100

e

S}
Lustre Clients
1-100,000 @

MOS 1 MDS 2
(agtlv g) ($t‘and b ¥)
5 =

- L]

Elan
Myrinet
InfiniBand

Simultaneous
supportof mu mple‘
network types

g Router £

@

r‘ = failover ‘

GigE

Object Storage 053 storage with Object
Servers (055) Storage Targets (OST)
1-1000's

0381

Commodity Storage

Shared storage
enablesfailover 0SS

2
_- é’frﬁerpnse-C\ass

Storage Arrays and
SAN Fabric

Chapter 1 Introduction to Lustre

1-9

1.4

1-10

Files in the Lustre File System

Traditional UNIX disk file systems use inodes, which contain lists of block numbers
where file data for the inode is stored. Similarly, for each file in a Lustre file system,
one inode exists on the MDT. However, in Lustre, the inode on the MDT does not
point to data blocks, but instead, points to one or more objects associated with the
files. This is illustrated in FIGURE 1-4. These objects are implemented as files on the
OST file systems and contain file data.

FIGURE 1-4 MDS inodes point to objects, ext3 inodes point to data

File on MDT Ordinary ext3 File

Extended
Alttributes

{o— obj1 | o553
obj2 | ossd
0bj3 | 0555
\ / Data

Block ——=

\/ ptrs

Indirect

Double
Indirect

Direct Data Blocks

inode

Indirect Data Blocks

Lustre 1.8 Operations Manual ¢ March 2010

FIGURE 1-5 shows how a file open operation transfers the object pointers from the
MDS to the client when a client opens the file, and how the client uses this
information to perform I/O on the file, directly interacting with the OSS nodes where
the objects are stored.

FIGURE 1-5 File open and file I/O in Lustre

Lustre Client

Linux VFS
Lustre clientFS
LoV

— 8 OPEN TEOUES —
asc sE e MDC
File metadata

b | Inode A {obj1, obj2)

‘\ Metadata Server
Writel{obj 1) Write (obj 2)

Parallel Ban dwicth \

0ST1 0ST2 0ST 3

Odd blocks, even blocks

If only one object is associated with an MDS inode, that object contains all of the data
in that Lustre file. When more than one object is associated with a file, data in the file
is "striped" across the objects.

The MDS knows the layout of each file, the number and location of the file's stripes.
The clients obtain the file layout from the MDS. Client do I/O against the stripes of a
file by communicating directly with the relevant OSTs.

The benefits of the Lustre arrangement are clear. The capacity of a Lustre file system
equals the sum of the capacities of the storage targets. The aggregate bandwidth
available in the file system equals the aggregate bandwidth offered by the OSSs to
the targets. Both capacity and aggregate I/O bandwidth scale simply with the
number of OSSs.

Chapter 1 Introduction to Lustre 1-11

1.4.1

Lustre File System and Striping

Striping allows parts of files to be stored on different OSTs, as shown in FIGURE 1-6. A
RAID 0 pattern, in which data is "striped" across a certain number of objects, is used;
the number of objects is called the stripe_count. Each object contains "chunks" of
data. When the "chunk" being written to a particular object exceeds the stripe_size,
the next "chunk" of data in the file is stored on the next target.

FIGURE 1-6 Files striped with a stripe count of 2 and 3 with different stripe sizes

Legend

File data [
File B data |:|

e -

Each gray area is one object

File striping presents several benefits. One is that the maximum file size is not
limited by the size of a single target. Lustre can stripe files over up to 160 targets, and
each target can support a maximum disk use of 8 TB? by a file. This leads to a
maximum disk use of 1.48 PB* by a file. Note that the maximum file size is much
larger (2764 bytes), but the file cannot have more than 1.48 PB? of allocated data;
hence a file larger than 1.48 PB2 must have many sparse sections. While a single file
can only be striped over 160 targets, Lustre file systems have been built with almost
5000 targets, which is enough to support a 40 PB file system.

1-12

3. InLustre 1.8.2,16 TB on RHEL 5.
4. InLustre1.8.2,2.96 PB on RHEL 5.

Lustre 1.8 Operations Manual ¢ March 2010

1.4.2

1.4.2.1

1.4.2.2

Another benefit of striped files is that the I/O bandwidth to a single file is the
aggregate 1/O bandwidth to the objects in a file and this can be as much as the
bandwidth of up to 160 servers.

Lustre Storage

The storage attached to the servers is partitioned, optionally organized with logical
volume management (LVM) and formatted as file systems. Lustre OSS and MDS
servers read, write and modify data in the format imposed by these file systems.

OSS Storage

Each OSS can manage multiple object storage targets (OSTs), one for each volume;
I/0 traffic is load-balanced against servers and targets. An OSS should also balance
network bandwidth between the system network and attached storage to prevent
network bottlenecks. Depending on the server's hardware, an OSS typically serves
between 2 and 25 targets, with each target up to 8 terabytes (TBs) in size.

MDS Storage

For the MDS nodes, storage must be attached for Lustre metadata, for which 1-2
percent of the file system capacity is needed. The data access pattern for MDS storage
is different from the OSS storage: the former is a metadata access pattern with many
seeks and read-and-writes of small amounts of data, while the latter is an I/O access
pattern, which typically involves large data transfers.

High throughput to MDS storage is not important. Therefore, we recommend that a
different storage type be used for the MDS (for example FC or SAS drives, which
provide much lower seek times). Moreover, for low levels of I/O, RAID 5/6 patterns
are not optimal, a RAID 0+1 pattern yields much better results.

Lustre uses journaling file system technology on the targets, and for a MDS, an
approximately 20 percent performance gain can sometimes be obtained by placing
the journal on a separate device. Typically, the MDS requires CPU power; we
recommend at least four processor cores.

Chapter 1 Introduction to Lustre 1-13

1.4.3

Lustre System Capacity

Lustre file system capacity is the sum of the capacities provided by the targets.

As an example, 64 OSSs, each with two 8-TB targets, provide a file system with a
capacity of nearly 1 PB. If this system uses sixteen 1-TB SATA disks, it may be
possible to get 50 MB/sec from each drive, providing up to 800 MB/sec of disk
bandwidth. If this system is used as storage backend with a system network like
InfiniBand that supports a similar bandwidth, then each OSS could provide 800
MB/sec of end-to-end I/0O throughput. Note that the OSS must provide inbound and
outbound bus throughput of 800 MB/sec simultaneously. The cluster could see
aggregate 1/O bandwidth of 64x800, or about 50 GB/sec. Although the architectural
constraints described here are simple, in practice it takes careful hardware selection,
benchmarking and integration to obtain such results.

In a Lustre file system, storage is only attached to server nodes, not to client nodes. If
failover capability is desired, then this storage must be attached to multiple servers.
In all cases, the use of storage area networks (SANs) with expensive switches can be
avoided, because point-to-point connections between the servers and the storage
arrays normally provide the simplest and best attachments.

1.5

1-14

Lustre Configurations

Lustre file systems are easy to configure. First, the Lustre software is installed, and
then MDT and OST partitions are formatted using the standard UNIX mkfs
command. Next, the volumes carrying the Lustre file system targets are mounted on
the server nodes as local file systems. Finally, the Lustre client systems are mounted
(in a manner similar to NFS mounts).

Lustre 1.8 Operations Manual ¢ March 2010

The configuration commands listed below are for the Lustre cluster shown in
FIGURE 1-7.

On the MDS (mds.your.org@tcp0):

mkfs.lustre --mdt --mgs --fsname=large-fs /dev/sda
mount -t lustre /dev/sda /mnt/mdt

On OSS1:

mkfs.lustre --ost --fsname=large-fs --mgsnode=mds.your.org@tcp0 /dev/sdb
mount -t lustre /dev/sdb/mnt/ostl

On OSS52:

mkfs.lustre --ost --fsname=large-fs --mgsnode=mds.your.org@tcp0 /dev/sdc
mount -t lustre /dev/sdc/mnt/ost2

FIGURE 1-7 A simple Lustre cluster

Clients

®

sda

®

sdb

®

sdc

Chapter 1 Introduction to Lustre 1-15

1.6

1-16

Lustre Networking

In clusters with a Lustre file system, the system network connects the servers and the
clients. The disk storage behind the MDSs and OSSs connects to these servers using
traditional SAN technologies, but this SAN does not extend to the Lustre client
system. Servers and clients communicate with one another over a custom networking
API known as Lustre Networking (LNET). LNET interoperates with a variety of
network transports through Network Abstraction Layers (NAL).

Key features of LNET include:

m RDMA, when supported by underlying networks such as Elan, Myrinet and
InfiniBand.

m Support for many commonly-used network types such as InfiniBand and IP.

m High availability and recovery features enabling transparent recovery in
conjunction with failover servers.

m Simultaneous availability of multiple network types with routing between them.

LNET includes LNDs to support many network type including;:

m InfiniBand: OpenFabrics versions 1.0 and 1.2, Mellanox Gold, Cisco, Voltaire, and
Silverstorm

m TCP: Any network carrying TCP traffic, including GigE, 10GigE, and IPoIB
m Quadrics: Elan3, Elan4

m Myrinet: GM, MX

m Cray: Seastar, RapidArray

The LNDs that support these networks are pluggable modules for the LNET software
stack.

LNET offers extremely high performance. It is common to see end-to-end throughput
over GigE networks in excess of 110 MB/sec, InfiniBand double data rate (DDR) links
reach bandwidths up to 1.5 GB/sec, and 10GigE interfaces provide end-to-end
bandwidth of over 1 GB/sec.

Lustre 1.8 Operations Manual ¢ March 2010

1.7

Lustre Failover and Rolling Upgrades

Lustre offers a robust, application-transparent failover mechanism that delivers call
completion. This failover mechanism, in conjunction with software that offers
interoperability between versions, is used to support rolling upgrades of file system
software on active clusters.

The Lustre recovery feature allows servers to be upgraded without taking down the
system. The server is simply taken offline, upgraded and restarted (or failed over to
a standby server with the new software). All active jobs continue to run without
failures, they merely experience a delay.

Lustre MDSs are configured as an active/passive pair, while OSSs are typically
deployed in an active/active configuration that provides redundancy without extra
overhead, as shown in FIGURE 1-8. Often the standby MDS is the active MDS for
another Lustre file system, so no nodes are idle in the cluster.

FIGURE 1-8 Lustre failover configurations for OSSs and MDSs

Shared storage partition s
for 0SS targets (OST)

o ¢
Y

0551 0552

0551 - active for target 1, standby for target 2
0552 - active for target 2, standby for target 1

Shared storage partition
for MDS targst (MDT)

MDS 1 MDS 2

MDS1 - active for MOT
MDS2 — standby for MDT

Chapter 1 Introduction to Lustre 1-17

Although a file system checking tool (Ifsck) is provided for disaster recovery,
journaling and sophisticated protocols re-synchronize the cluster within seconds,
without the need for a lengthy fsck. Lustre version interoperability between
successive minor versions is guaranteed. As a result, the Lustre failover capability is
used regularly to upgrade the software without cluster downtime.

Note — Lustre does not provide redundancy for data; it depends exclusively on
redundancy of backing storage devices. The backing OST storage should be RAID 5
or, preferably, RAID 6 storage. MDT storage should be RAID 1 or RAID 0+1.

1-18 Lustre 1.8 Operations Manual ¢ March 2010

CHAPTER 2

Understanding Lustre Networking

This chapter describes Lustre Networking (LNET) and supported networks, and
includes the following sections:

m Introduction to LNET

m Supported Network Types

m Designing Your Lustre Network
m Configuring LNET

m Starting and Stopping LNET

2.1 Introduction to LNET

In a Lustre network, servers and clients communicate with one another using LNET,
a custom networking API which abstracts away all transport-specific interaction. In
turn, LNET operates with a variety of network transports through Lustre Network
Drivers (LNDs).

The following terms are important to understanding LNET.

m LND: Lustre Network Driver. A modular sub-component of LNET that
implements one of the network types. LNDs are implemented as individual kernel
modules (or a library in userspace) and, typically, must be compiled against the
network driver software.

m Network: A group of nodes that communicate directly with each other. The
network is how LNET represents a single cluster. Multiple networks can be used
to connect clusters together. Each network has a unique type and number (for
example, tcp0, tcpl, or elan0).

m NID: Lustre Network Identifier. The NID uniquely identifies a Lustre network
endpoint, including the node and the network type. There is an NID for every
network which a node uses.

2-1

Key features of LNET include:

m RDMA, when supported by underlying networks such as Elan, Myrinet, and
InfiniBand

m Support for many commonly-used network types such as InfiniBand and TCP/IP

m High availability and recovery features enabling transparent recovery in
conjunction with failover servers

m Simultaneous availability of multiple network types with routing between them

LNET is designed for complex topologies, superior routing capabilities and
simplified configuration.

2.2 Supported Network Types

LNET supports the following network types:
n TCP

m openib (Mellanox-Gold InfiniBand)

m cib (Cisco Topspin)

m iib (Infinicon InfiniBand)

m vib (Voltaire InfiniBand)

m 02ib (OFED - InfiniBand and iWARP)

m ra (RapidArray)

m Elan (Quadrics Elan)

s GM and MX (Myrinet)

m Cray Seastar

2-2 Lustre 1.8 Operations Manual ¢ March 2010

2.3

2.3.1

2.3.2

2.3.3

Designing Your Lustre Network

Before you configure Lustre, it is essential to have a clear understanding of the Lustre
network topologies.

Identify All Lustre Networks

A network is a group of nodes that communicate directly with one another. As
previously mentioned in this manual, Lustre supports a variety of network types and
hardware, including TCP/IP, Elan, varieties of InfiniBand, Myrinet and others. The
normal rules for specifying networks apply to Lustre networks. For example, two
TCP networks on two different subnets (tcp0 and tcpl) would be considered two
different Lustre networks.

Identify Nodes to Route Between Networks

Any node with appropriate interfaces can route LNET between different
networks—the node may be a server, a client, or a standalone router. LNET can route
across different network types (such as TCP-to-Elan) or across different topologies
(such as bridging two InfiniBand or TCP/IP networks).

Identify Network Interfaces to Include/Exclude
from LNET

If not explicitly specified, LNET uses either the first available interface or a
pre-defined default for a given network type. If there are interfaces that LNET should
not use (such as administrative networks, IP over IB, and so on), then the included
interfaces should be explicitly listed.

Chapter 2 Understanding Lustre Networking 2-3

234

2.3.5

2-4

Determine Cluster-wide Module Configuration

The LNET configuration is managed via module options, typically specified in
/etc/modprobe.conf or /etc/modprobe.conf.local (depending on the distribution).
To ease the maintenance of large clusters, you can configure the networking setup for
all nodes using a single, unified set of options in the modprobe.conf file on each
node. For more information, see the ip2nets option in Setting Up modprobe.conf for
Load Balancing.

Users of liblustre should set the accept=all parameter. For details, see Module
Parameters.

Determine Appropriate Mount Parameters for
Clients

In mount commands, clients use the NID of the MDS host to retrieve their
configuration information. Since an MDS may have more than one NID, a client
should use the appropriate NID for its local network. If you are unsure which NID to
use, there is a Ictl command that can help.

MDS
On the MDS, run:
lctl list_nids

This displays the server's NIDs (networks configured to work with Lustre).

Client
On a client, run:
lctl which_nid <NID list>

This displays the closest NID for the client.

Lustre 1.8 Operations Manual ¢ March 2010

Client with SSH Access
From a client with SSH access to the MDS, run:

mds_nids="ssh the_mds lctl list_nids’
lctl which_nid $mds_nids

This displays, generally, the correct NID to use for the MDS in the mount command.

Note — In the mds_nids command above, be sure to use the correct mark (*), not a
straight quotation mark ('). Otherwise, the command will not work.

2.4

24.1

Configuring LNET

This section describes how to configure LNET, including entries in the
modprobe.conf file which tell LNET which NIC(s) will be configured to work with
Lustre, and parameters that specify the routing that will be used with Lustre.

Note — We recommend that you use dotted-quad IP addressing rather than host
names. We have found this aids in reading debug logs, and helps greatly when
debugging configurations with multiple interfaces.

Module Parameters

LNET hardware and routing are configured via module parameters of the LNET and
LND-specific modules. Parameters should be specified in the /etc/modprobe.conf or
/etc/modules.conf file. This example specifies that the node should use a TCP
interface and an Elan interface:

options lnet networks=tcp0,elan0

Depending on the LNDs used, it may be necessary to specify explicit interfaces. For
example, if you want to use two TCP interfaces (tcp0 and tcpl, for example), it is
necessary to specify the module parameters and ethX interfaces, like this:

options lnet networks=tcpO (eth0), tcpl (ethl)

This modprobe.conf entry specifies:
m First Lustre network, tcp0, is configured on interface ethO

m Second Lustre network, tcpl, is configured on interface ethl

Chapter 2 Understanding Lustre Networking 2-5

2-6

Note — The requirement to specify explicit interfaces is not consistent across all
LNDs used with Lustre, and LND behavior may change over time. We recommend
that if your multi-homed settings do not work, try specifying the ethX interfaces in
the options lnet networks line.

All LNET routers that bridge two networks are equivalent; their configuration is not
primary or secondary. All available routers balance their overall load. With the router
checker configured, Lustre nodes can detect router health status, avoid those that
appear dead, and reuse the ones that restore service after failures. To do this, LNET
routing must correspond exactly with the Linux nodes' map of alive routers. There is
no hard limit on the number of LNET routers.

Note — When multiple interfaces are available during the network setup, Lustre
choose the 'best' route. Once the network connection is established, Lustre expects
the network to stay connected. In a Lustre network, connections do not fail over to
the other interface, even if multiple interfaces are available on the same node.

Under Linux 2.6, the LNET configuration parameters can be viewed under
/sys/module/; generic and acceptor parameters under Inet and LND-specific
parameters under the corresponding LND name.

Note — Depending on the Linux distribution, options with included commas may
need to be escaped using single and/or double quotes. Worst-case quotes look like:
options lnet'networks="tcp0,elan0"' 'routes="tcp [2,10]@elan0O"’

Additional quotes may confuse some distributions. Check for messages such as:
lnet: Unknown parameter ' 'networks'

After modprobe LNET, remove the additional single quotes (modprobe.conf in this
case). Additionally, the refusing connection - no matching NID message generally
points to an error in the LNET module configuration.

Note — By default, Lustre ignores the loopback (100) interface. Lustre does not ignore
IP addresses aliased to the loopback. In this case, specify all Lustre networks.

The liblustre network parameters may be set by exporting the environment variables
LNET_NETWORKS, LNET_IP2NETS and LNET_ROUTES. Each of these variables
uses the same parameters as the corresponding modprobe option.

Lustre 1.8 Operations Manual ¢ March 2010

2411

Note, it is very important that a liblustre client includes ALL the routers in its setting
of LNET_ROUTES. A liblustre client cannot accept connections, it can only create
connections. If a server sends remote procedure call (RPC) replies via a router to
which the liblustre client has not already connected, then these RPC replies are lost.

Note — Liblustre is not required or even recommended for running Lustre on Linux.
Most users will not use liblustre. Instead, you should use the Lustre (VES) client file
system to mount Lustre directly. Liblustre does NOT support multi-threaded
applications.

Note — Liblustre is not widely tested as part of Lustre release testing, and is
currently maintained only as a courtesy to the Lustre community.

Using Usocklnd

Lustre now offers usocklnd, a socket-based LND that uses TCP in userspace. By
default, liblustre is compiled with usockInd as the transport, so there is no need to
specially enable it.

Use the following environmental variables to tune usocklnd’s behavior.

Variable Description

USOCK_SOCKNAGLE=N Turns the TCP Nagle algorithm on or off. Setting N to 0 (the
default value), turns the algorithm off. Setting N to 1 turns
the algorithm on.

USOCK_SOCKBUFSIZ=N Changes the socket buffer size. Setting N to 0 (the default
value), specifies the default socket buffer size. Setting N to
pnother value (must be a positive integer) causes usocklnd
to try to set the socket buffer size to the specified value.

USOCK_TXCREDITS=N Specifies the maximum number of concurrent sends. The
default value is 256. N should be set to a positive value.

USOCK_PEERTXCREDITS=N Specifies the maximum number of concurrent sends per
peer. The default value is 8. N should be set to a positive
value and should not be greater than the value of the
USOCK_TXCREDITS parameter.

USOCK_NPOLLTHREADS=N [Defines the degree of parallelism of usocklnd, by equaling
the number of threads devoted to processing network
events. The default value is the number of CPUs in the

system. N should be set to a positive value.

Chapter 2 Understanding Lustre Networking 2-7

2412

2.4.2

2-8

[USOCK_FAIR_LIMIT=N The maximum number of times that usocklnd loops
processing events before the next polling occurs. The default
value is 1, meaning that every network event has only one
chance to be processed before polling occurs the next time.
IN should be set to a positive value.

USOCK_TIMEOUT=N Specifies the network timeout (measured in seconds).
Network options that are not completed in N seconds
time out and are canceled. The default value is 50 seconds.
IN should be a positive value.

USOCK_POLL_TIMEOUT=N Bpecifies the polling timeout; how long usocklnd ‘sleeps’ if
no network events occur. N results in a slightly lower
overhead of checking network timeouts and longer delay of
evicting timed-out events. The default value is 1 second.

IN should be set to a positive value.

USOCK_MIN_BULK=N This tunable is only used for typed network connections.
Currently, liblustre clients do not use this usocklnd facility.

OFED InfiniBand Options

For the SilverStorm/Infinicon InfiniBand LND (iibInd), the network and HCA may
be specified, as in this example:

options lnet networks="02ib3 (ib3)"

This specifies that the node is on 02ib network number 3, using HCA ib3.

Module Parameters - Routing

The following parameter specifies a colon-separated list of router definitions. Each
route is defined as a network number, followed by a list of routers.

route=<net type> <router NID(s)>

Examples:

options lnet 'networks="02ib0"' 'routes="tcp0 192.168.10.[1-8]@0o2ib0O""
This is an example for IB clients to access TCP servers via 8 IB-TCP routers.

options lnet 'ip2nets="tcpO 10.10.0.%*; 02ib0(ib0) 192.168.10.[1-128]1""' \
'routes="tcp 192.168.10.[1-8]@021b0; o02ib 10.10.0.[1-8]@tcp0"

This specifies bi-directional routing; TCP clients can reach Lustre resources on the IB
networks and IB servers can access the TCP networks. For more information on
ip2nets, Modprobe.conf.

Lustre 1.8 Operations Manual ¢ March 2010

Note — Configure IB network interfaces on a different subnet than LAN interfaces.

Best Practices for ip2nets, routes and networks Options

For the ip2nets, routes and networks options, several best practices must be
followed or configuration errors occur.

Best Practice 1: If you add a comment to any of the above options, position the
semicolon after the comment. If you fail to do so, some nodes are not properly
initialized because LNET silently ignores everything following the '#' character
(which begins the comment), until it reaches the next semicolon. This is subtle; no
error message is generated to alert you to the problem.

This example shows the correct syntax:

options lnet ip2nets="ptl0 192.168.0.[89,93] # comment with semicolon AFTER comment; \
ptll 192.168.0.[92,96] # comment

In this example, the following is ignored: comment with semicolon AFTER comment

This example shows the wrong syntax:

options lnet ip2nets="ptl0 192.168.0.[89,93]; # comment with semicolon BEFORE comment \
ptll 192.168.0.[92,96];

In this example, the following is ignored: comment with semicolon BEFORE comment
ptll 192.168.0.[92,96]. Because LNET silently ignores pt11 192.168.0.[92,96],
these nodes are not properly initialized.

Best Practice 2: Do not add an excessive number of comments to these options. The
Linux kernel has a limit on the length of string module options; it is usually 1KB, but
may differ in vendor kernels. If you exceed this limit, errors result and the
configuration specified by the user is not processed properly.

Using Routing Parameters Across a Cluster

To ease Lustre administration, the same routing parameters can be used across
different parts of a routed cluster. For example, the bi-directional routing example
above can be used on an entire cluster (TCP clients, TCP-IB routers, and IB servers):

m TCP clients would ignore 02ib0(ib0) 192.168.10.[1-128] in ip2nets since they have
no such interfaces. Similarly, IB servers would ignore tcp0 192.168.0.*. But TCP-IB
routers would use both since they are multi-homed.

m TCP clients would ignore the route "tcp 192.168.10.[1-8]@02ib0" since the target
network is a local network. For the same reason, IB servers would ignore "o2ib
10.10.0.[1-8]@tcp0".

Chapter 2 Understanding Lustre Networking 2-9

2-10

m TCP-IB routers would ignore both routes, because they are multi-homed.
Moreover, the routers would enable LNet forwarding since their NIDs are
specified in the 'routes' parameters as being routers.

live_router_check_interval, dead_router_check_interval, auto_down,
check_routers_before_use and router_ping_timeout

In a routed Lustre setup with nodes on different networks such as TCP/IP and Elan,
the router checker checks the status of a router. The auto_down parameter
enables/disables (1/0) the automatic marking of router state.

The 1ive_router_check_interval parameter specifies a time interval in seconds
after which the router checker will ping the live routers.

In the same way, you can set the dead_router_check_interval parameter for
checking dead routers.

You can set the timeout for the router checker to check the live or dead routers by
setting the router_ping_timeout parameter. The Router pinger sends a ping
message to a dead/live router once every dead/live_router_check_interval
seconds, and if it does not get a reply message from the router within
router_ping_timeout seconds, it considers the router to be down.

The last parameter is check_routers_before_use, which is off by default. If it is
turned on, you must also give dead_router_check_interval a positive integer
value.

The router checker gets the following variables for each router:
m Last time that it was disabled

m Duration of time for which it is disabled

The initial time to disable a router should be one minute (enough to plug in a cable
after removing it). If the router is administratively marked as "up", then the router
checker clears the timeout. When a route is disabled (and possibly new), the "sent
packets" counter is set to 0. When the route is first re-used (that is an elapsed disable
time is found), the sent packets counter is incremented to 1, and incremented for all
further uses of the route. If the route has been used for 100 packets successfully, then
the sent-packets counter should be with a value of 100. Set the timeout to 0 (zero), so
future errors no longer double the timeout.

Note — The router_ping_ timeout is consistent with the default LND timeouts.
You may have to increase it on very large clusters if the LND timeout is also
increased. For larger clusters, we suggest increasing the check interval.

Lustre 1.8 Operations Manual ¢ March 2010

2421

LNET Routers

All LNET routers that bridge two networks are equivalent. They are not configured
as primary or secondary, and load is balanced across all available routers.

With the router checker configured, Lustre nodes can detect router health status,
avoid those that appear dead, and reuse the ones that restore service after failures.

There are no hard requirements regarding the number of LNET routers, although
there should enough to handle the required file serving bandwidth (and a 25%
margin for headroom).

Comparing 32-bit and 64-bit LNET Routers

By default, at startup, LNET routers allocate 544M (i.e. 139264 4K pages) of memory
as router buffers. The buffers can only come from low system memory (i.e.
ZONE_DMA and ZONE_NORMAL).

On 32-bit systems, low system memory is, at most, 896M no matter how much RAM
is installed. The size of the default router buffer puts big pressure on low memory
zones, making it more likely that an out-of-memory (OOM) situation will occur. This
is a known cause of router hangs. Lowering the value of the large_router_buffers
parameter can circumvent this problem, but at the cost of penalizing router
performance, by making large messages wait for longer for buffers.

On 64-bit architectures, the ZONE_HIGHMEM zone is always empty. Router buffers
can come from all available memory and out-of-memory hangs do not occur.
Therefore, we recommend using 64-bit routers.

Chapter 2 Understanding Lustre Networking ~ 2-11

24.3 Downed Routers

There are two mechanisms to update the health status of a peer or a router:

m LNET can actively check health status of all routers and mark them as dead or
alive automatically. By default, this is off. To enable it set auto_down and if
desired check_routers_before_use. This initial check may cause a pause
equal to router_ping_timeout at system startup, if there are dead routers in
the system.

m When there is a communication error, all LNDs notify LNET that the peer (not
necessarily a router) is down. This mechanism is always on, and there is no
parameter to turn it off. However, if you set the LNET module parameter
auto_down to 0, LNET ignores all such peer-down notifications.

Several key differences in both mechanisms:

m The router pinger only checks routers for their health, while LNDs notices all dead
peers, regardless of whether they are a router or not.

m The router pinger actively checks the router health by sending pings, but LNDs
only notice a dead peer when there is network traffic going on.

m The router pinger can bring a router from alive to dead or vice versa, but LNDs
can only bring a peer down.

2-12 Lustre 1.8 Operations Manual ¢ March 2010

2.5

2.5.1

2.5.1.1

Starting and Stopping LNET

Lustre automatically starts and stops LNET, but it can also be manually started in a
standalone manner. This is particularly useful to verify that your networking setup is
working correctly before you attempt to start Lustre.

Starting LNET

To start LNET, run:

$ modprobe lnet
$ lctl network up

To see the list of local NIDs, run:
$ lctl list_nids
This command tells you the network(s) configured to work with Lustre

If the networks are not correctly setup, see the modules.conf "networks=" line and
make sure the network layer modules are correctly installed and configured.

To get the best remote NID, run:
$ lctl which_nid <NID list>
where <NID 1list> is the list of available NIDs.

This command takes the "best" NID from a list of the NIDs of a remote host. The
"best” NID is the one that the local node uses when trying to communicate with the
remote node.

Starting Clients

To start a TCP client, run:

mount -t lustre mdsnode:/mdsA/client /mnt/lustre/
To start an Elan client, run:

mount -t lustre 2@elanl:/mdsA/client /mnt/lustre

Chapter 2 Understanding Lustre Networking 2-13

2.5.2

2-14

Stopping LNET

Before the LNET modules can be removed, LNET references must be removed. In
general, these references are removed automatically when Lustre is shut down, but
for standalone routers, an explicit step is needed to stop LNET. Run:

lctl network unconfigure

Note — Attempting to remove Lustre modules prior to stopping the network may
result in a crash or an LNET hang. if this occurs, the node must be rebooted (in most
cases). Make sure that the Lustre network and Lustre are stopped prior to unloading
the modules. Be extremely careful using rmmod -f.

To unconfigure the LNET network, run:

modprobe -r <any 1lnd and the lnet modules>

Tip — To remove all Lustre modules, run:

$ lctl modules | awk '{print $2}' | xargs rmmod

Lustre 1.8 Operations Manual ¢ March 2010

part II Lustre Administration

Lustre administration includes the steps necessary to meet pre-installation
requirements, and install and configure Lustre. It also includes advanced topics such
as failover, quotas, bonding, benchmarking, Kerberos and POSIX.

CHAPTER 3

Installing Lustre

Lustre installation involves two procedures, meeting the installation prerequisites
and installing the Lustre software, either from RPMs or from source code. This
chapter includes these sections:

m Preparing to Install Lustre

m Installing Lustre from RPMs

m Installing Lustre from Source Code

Lustre can be installed from either packaged binaries (RPMs) or freely-available
source code. Installing from the package release is straightforward, and
recommended for new users. Integrating Lustre into an existing kernel and building
the associated Lustre software is an involved process.

For either installation method, the following are required:

m Linux kernel patched with Lustre-specific patches

m Lustre modules compiled for the Linux kernel

m Lustre utilities required for Lustre configuration

Note — When installing Lustre and creating components on devices, a certain
amount of space is reserved, so less than 100% of storage space will be available.
Lustre servers use the ext3 file system to store user-data objects and system data. By
default, ext3 file systems reserve 5% of space that cannot be used by Lustre.
Additionally, Lustre reserves up to 400 MB on each OST for journal usel. This
reserved space is unusable for general storage. For this reason, you will see up to 400
MB of space used on each OST before any file object data is saved to it.

1. Additionally, a few bytes outside the journal are used to create accounting data for Lustre.

3.1

3-2

Preparing to Install Lustre

To successfully install and run Lustre, make sure the following installation
prerequisites have been met:

m Supported Operating System, Platform and Interconnect
m Required Lustre Software

m Required Tools and Utilities

m (Optional) High-Availability Software

m Debugging Tools

m Environmental Requirements

m Memory Requirements

Lustre 1.8 Operations Manual ¢ March 2010

3.1.1

Supported Operating System, Platform and
Interconnect

Lustre 1.8 supports the following operating systems, platforms? and interconnects. To
install Lustre from downloaded packages (RPMs), you must use a supported
configuration.

Configuration Component Supported Type

Operating system OEL 5.4, i686 and x86_64 only (Lustre 1.8.2)
OEL 5.3, 686 and x86_64 only (Lustre 1.8.1.1 and 1.8.2)
Red Hat Enterprise Linux 5
SuSE Linux Enterprise Server 10

SuSE Linux Enterprise Server 11, i686 and x86_64 only (Lustre 1.8.1
and later)

Linux kernel 2.6.16 or greater

NOTE: Lustre does not support security-enhanced (SE) Linux
(including clients and servers).

Platform x86, IA-64, x86-64 (EM64 and AMD64)
PowerPC architectures (for clients only) and mixed-endian clusters

Interconnect TCP/IP
Quadrics Elan 3 and 4
Myri-10G and Myrinet-2000
Mellanox

InfiniBand (Voltaire, OpenlB, Silverstorm and any OFED-supported
InfiniBand adapter)

Note — Lustre clients running on architectures with different endianness are
supported. One limitation is that the PAGE_SIZE kernel macro on the client must be
as large as the PAGE_SIZE of the server. In particular, ia64 clients with large pages
(up to 64kB pages) can run with i386 servers (4kB pages). If you are running 1386
clients with ia64 servers, you must compile the ia64 kernel with a 4kB PAGE_SIZE
(so the server page size is not larger than the client page size).

2. We encourage the use of 64-bit platforms.

Chapter 3 Installing Lustre 3-3

3.1.2

3.1.3

3.1.4

Required Lustre Software

To install Lustre, the following are required:

m Linux kernel patched with Lustre-specific patches (the patched Linux kernel is
required only on the Lustre MDS and OSSs)

m Lustre modules compiled for the Linux kernel
m Lustre utilities required for Lustre configuration
m (Optional) Network-specific kernel modules and libraries (for example, kernel

modules and libraries required for an InfiniBand interconnect)

These packages can be downloaded from the Lustre download site.

Required Tools and Utilities

Several third-party utilities are required:

m e2fsprogs: Lustre requires a recent version of e2fsprogs that understands extents.
Use e2fsprogs-1.41-6 or later, available on the Lustre download site.

Note — Lustre-patched e2fsprogs utility only needs to be installed on machines that
mount backend (Idiskfs) file systems, such as the OSS, MDS and MGS nodes. It does
not need to be loaded on clients.

m Perl - Various userspace utilities are written in Perl. Any recent version of Perl will
work with Lustre.

(Optional) High-Availability Software

If you plan to enable failover server functionality with Lustre (either on an OSS or
the MDS), you must add high-availability (HA) software to your cluster software.
You can use any HA software package with Lustre.> For more information, see
Failover.

3-4

3. In this manual, the Linux-HA (Heartbeat) package is referenced, but you can use any HA software.

Lustre 1.8 Operations Manual ¢ March 2010

http://www.sun.com/software/products/lustre/get.jsp
http://www.sun.com/software/products/lustre/get.jsp

3.1.5

Debugging Tools

Lustre is a complex system and you may encounter problems when using it. You
should have debugging tools on hand to help figure out how and why a problem
occurred. A variety of diagnostic and analysis tools are available to debug issues

with the Lustre software. Some of these are provided in Linux distributions, while

others have been developed and are made available by the Lustre project.

These in-kernel debug mechanisms are incorporated into the Lustre software:
m Debug logs
m Debug daemon

m /proc/sys/Inet/debug

These tools are also provided with the Lustre software:

m Ictl

m Lustre subsystem asserts

m Ifs

These general debugging tools are provided as a part of the standard Linux
distribution:

m strace

m /var/log/messages

m Crash dumps

m debugfs

These logging and data collection tools can be used to collect information for
debugging Lustre kernel issues:

s kdump

m netconsole

= netdump

To debug Lustre in a development environment, use:

m leak_finder.pl

A variety of debuggers and analysis tools are available including:
m kgdb

m crash

For detailed information about these debugging tools, see Tools for Lustre
Debugging.

Chapter 3 Installing Lustre

3-5

3.1.6

3-6

Environmental Requirements

Make sure the following environmental requirements are met before installing
Lustre:

(Recommended) Provide remote shell access to clients. Although not strictly
required to run Lustre, we recommend that all cluster nodes have remote shell
client access, to facilitate the use of Lustre configuration and monitoring scripts.
Parallel Distributed SHell (pdsh) is preferable, although Secure SHell (SSH) is
acceptable.

Ensure client clocks are synchronized. Lustre uses client clocks for timestamps. If
clocks are out-of-sync between clients and servers, timeouts and client evictions
will occur. Drifting clocks can also cause problems by, for example, making it
difficult to debug multi-node issues or correlate logs, which depend on
timestamps. We recommend that you use Network Time Protocol (NTP) to keep
client and server clocks in sync with each other. For more information about NTP,
see: http:/ /www.ntp.org.

Maintain uniform file access permissions on all cluster nodes. Use the same user
IDs (UID) and group IDs (GID) on all clients. If use of supplemental groups is
required, verify that the group_upcall requirements have been met. See
User/Group Cache Upcall.

(Recommended) Disable Security-Enhanced Linux (SELinux) on servers and
clients. Lustre does not support SELinux. Therefore, disable the SELinux system
extension on all Lustre nodes and make sure other security extensions, like Novell
AppArmorand network packet filtering tools (such as iptables) do not interfere
with Lustre.

Lustre 1.8 Operations Manual ¢ March 2010

http://www.ntp.org/

3.1.7

3.1.7.1

Memory Requirements

This section describes the memory requirements of Lustre.

MDS Memory Requirements

MDS memory requirements are determined by the following factors:
m Number of clients
m Size of the directories

m Extent of load

The amount of memory used by the MDS is a function of how many clients are on
the system, and how many files they are using in their working set. This is driven,
primarily, by the number of locks a client can hold at one time. The default maximum
number of locks for a compute node is 100*num_cores, and interactive clients can
hold in excess of 10,000 locks at times. For the MDS, this works out to approximately
2 KB per file, including the Lustre DLM lock and kernel data structures for it, just for
the current working set.

There is, by default, 400 MB for the file system journal, and additional RAM usage
for caching file data for the larger working set that is not actively in use by clients,
but should be kept "HOT" for improved access times. Having file data in cache can
improve metadata performance by a factor of 10x or more compared to reading it
from disk. Approximately 1.5 KB/file is needed to keep a file in cache.

For example, for a single MDT on an MDS with 1,000 clients, 16 interactive nodes,
and a 2 million file working set (of which 400,000 files are cached on the clients):

File system journal = 400 MB
1000 * 4-core clients * 100 files/core * 2kB = 800 MB
16 interactive clients * 10,000 files * 2kB = 320 MB

1,600,000 file extra working set * 1.5kB/file = 2400 MB

Thus, the minimum requirement for a system with this configuration is 4-GB RAM.
However, additional memory may significantly improve performance.

If there are directories containing 1 million or more files, you may benefit
significantly from having more memory. For example, in an environment where
clients randomly access one of 10 million files, having extra memory for the cache
significantly improves performance.

4. Having more RAM is always prudent, given the relatively low cost of this component compared to the total
system cost.

Chapter 3 Installing Lustre 3-7

3.1.7.2

3-8

OSS Memory Requirements

When planning the hardware for an OSS node, consider the memory usage of several
components in the Lustre system (i.e., journal, service threads, file system metadata,
etc.). Also, consider the effect of the OSS read cache feature (new in Lustre 1.8),
which consumes memory as it caches data on the OSS node.

m Journal size: By default, each Lustre Idiskfs file system has 400 MB for the journal
size. This can pin up to an equal amount of RAM on the OSS node per file system.

m Service threads: The service threads on the OSS node pre-allocate a 1 MB 1/0
buffer for each ost_io service thread, so these buffers do not need to be allocated
and freed for each I/O request.

m File system metadata: A reasonable amount of RAM needs to be available for file
system metadata. While no hard limit can be placed on the amount of file system
metadata, if more RAM is available, then the disk I/0O is needed less often to
retrieve the metadata.

m Network transport: If you are using TCP or other network transport that uses
system memory for send/receive buffers, this must also be taken into
consideration.

m Failover configuration: If the OSS node will be used for failover from another
node, then the RAM for each journal should be doubled, so the backup server can
handle the additional load if the primary server fails.

m OSS read cache: OSS read cache provides read-only caching of data on an OSS,
using the regular Linux page cache to store the data. Just like caching from a
regular file system in Linux, OSS read cache uses as much physical memory as is
available.

Because of these memory requirements, the following calculations should be taken as
determining the absolute minimum RAM required in an OSS node.

Lustre 1.8 Operations Manual ¢ March 2010

Calculating OSS Memory Requirements

The minimum recommended RAM size for an OSS with two OSTs is computed
below:

1.5 MB per OST IO thread * 512 threads = 768 MB

€1000 RX descriptors, RxDescriptors=4096 for 9000 byte MTU = 128 MB
Operating system overhead = 512 MB

400 MB journal size * 2 OST devices = 800 MB

600 MB file system metadata cache * 2 OSTs = 1200 MB

This consumes about 1,700 MB just for the pre-allocated buffers, and an additional 2
GB for minimal file system and kernel usage. Therefore, for a non-failover
configuration, the minimum RAM would be 4 GB for an OSS node with two OSTs.
While it is not strictly required, adding additional memory on the OSS will improve
the performance of reading smaller, frequently-accessed files.

For a failover configuration, the minimum RAM would be at least 6 GB. For 4 OSTs
on each OSS in a failover configuration 10GB of RAM is reasonable. When the OSS is
not handling any failed-over OSTs the extra RAM will be used as a read cache.

As a reasonable rule of thumb, about 2 GB of base memory plus 1 GB per OST can be
used. In failover configurations, about 2 GB per OST is needed.

Chapter 3 Installing Lustre 3-9

3.2

3-10

Installing Lustre from RPMs

This procedure describes how to install Lustre from the RPM packages. This is the
easier installation method and is recommended for new users.

Alternately, you can install Lustre directly from the source code. For more
information on this installation method, see Installing Lustre from Source Code.

Note — In all Lustre installations, the server kernel that runs on an MDS, MGS or
OSS must be patched. However, running a patched kernel on a Lustre client is
optional and only required if the client will be used for multiple purposes, such as
running as both a client and an OST.

Caution — Lustre contains kernel modifications which interact with storage devices
and may introduce security issues and data loss if not installed, configured or
administered properly. Before installing Lustre, be cautious and back up ALL data.

Use this procedure to install Lustre from RPMs.

1. Verify that all Lustre installation requirements have been met.

For more information on these prerequisites, see Preparing to Install Lustre.
2. Download the Lustre RPMs.

a. On the Lustre download site, select your platform.
The files required to install Lustre (kernels, modules and utilities RPMs) are
listed for the selected platform.

b. Download the required files.
Use the Download Manager or download the files individually.

Lustre 1.8 Operations Manual ¢ March 2010

http://www.sun.com/software/products/lustre/get.jsp

3. Install the Lustre packages.

Some Lustre packages are installed on servers (MDS and OSSs), and others are
installed on Lustre clients. Lustre packages must be installed in a specific order.

Caution — For a non-production Lustre environment or for testing, a Lustre client
and server can run on the same machine. However, for best performance in a production
environment, dedicated clients are always best. Performance and other issues can occur
when an MDS or OSS and a client are running on the same machine®. The MDS and
MGS can run on the same machine.

a. For each Lustre package, determine if it needs to be installed on servers
and/or clients. Use TABLE 3-1 to determine where to install a specific package.
Depending on your platform, not all of the listed files need to be installed.

TABLE 3-1 Lustre required packages, descriptions and installation guidance

Install Installon Installon
on patchless patched
Lustre Package Description servers clients clients
Lustre kernel RPMs
kernel-lustre-<ver> Lustre-patched kernel X X
package for RHEL 5 (i686,
ia64 and x86_64) platform.
kernel-lustre-smp-<ver> Lustre-patched kernel X X
package for SuSE Server 10
(x86_64) platform.
kernel-lustre-bigsmp-<ver> Lustre-patched kernel
package for SuSE Server 10 X x*
(i686) platform.
kernel-ib-<ver> Lustre OFED package.
Install if the network X X X
interconnect is InfiniBand.
kernel-lustre-default-<ver> Lustre-patched kernel
kernel-lustre-default-base-<ver> package for SuSE Server 11 X X

(1686 and x86_64) platform.

Lustre module RPMs

5. Running the MDS and a client on the same machine can cause recovery and deadlock issues, and the
performance of other Lustre clients to suffer. Running the OSS and a client on the same machine can cause
issues with low memory and memory pressure. The client consume all of the memory and tries to flush pages
to disk. The OSS needs to allocate pages to receive data from the client, but cannot perform this operation, due
to low memory. This can result in OOM kill and other issues.

Chapter 3 Installing Lustre 3-11

3-12

TABLE 3-1 Lustre required packages, descriptions and installation guidance
Install Install on Installon
on patchless patched
Lustre Package Description servers clients clients
lustre-modules-<ver> Lustre modules for the X X
patched kernel.
lustre-client-modules-<ver> Lustre modules for X
patchless clients.
Lustre utilities
lustre-<ver> Lustre utilities package.
This includes userspace
utilities to configure and X X
run Lustre.
lustre-ldiskfs-<ver> Lustre-patched backing file
system kernel module X
package for the ext3 file
system
e2fsprogs-<ver> Utilities package used to
maintain the ext3 backing X
file system.
lustre-client-<ver> Lustre utilities for X

patchless clients

* Only install this kernel RPM if you want to patch the client kernel. You do not have to patch the clients to run

Lustre.

b. Install the kernel, modules and 1diskfs packages.

Use the rpm -ivh command to install the kernel, module and ldiskfs packages.

For example:

$ rpm -ivh kernel-lustre-smp-<ver> \

kernel-ib-<ver> \
lustre-modules-<ver> \
lustre-1ldiskfs-<ver>

c. Install the utilities/userspace packages.

Use the rpm -ivh command to install the utilities packages. For example:

$ rpm -ivh lustre-<ver>

Lustre 1.8 Operations Manual ¢ March 2010

d. Install the e2fsprogs package.

Use the rpm -ivh command to install the e2fsprogs package. For example:

$ rpm -ivh e2fsprogs-<ver>

If e2fsprogs is already installed on your Linux system, install the Lustre-specific
e2fsprogs version by using rpm -Uvh to update the existing e2fsprogs package.
For example:

$ rpm -Uvh e2fsprogs-<ver>

The rpm command options --force or --nodeps are not required to install or
update the Lustre-specific e2fsprogs package. We specifically recommend that
you not use these options. If errors are reported, notify Lustre Support by filing a
bug.

. (Optional) If you want to add optional packages to your Lustre file system,
install them now.

Optional packages include file system creation and repair tools, debugging
tools, test programs and scripts, Linux kernel and Lustre source code, and other
packages. A complete list of optional packages for your platform is provided on

the Lustre download site.

4. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the

patched kernel.
5. Reboot the patched clients and the servers.

a. If you applied the patched kernel to any clients, reboot them.
Unpatched clients do not need to be rebooted.

b. Reboot the servers.

Once all machines have rebooted, go to Configuring Lustre to configure Lustre
Networking (LNET) and the Lustre file system.

Chapter 3 Installing Lustre

3-13

http://www.sun.com/software/products/lustre/get.jsp

3.3

3-14

Installing Lustre from Source Code

If you need to build a customized Lustre server kernel or are using a Linux kernel
that has not been tested with the version of Lustre you are installing, you may need
to build and install Lustre from source code. This involves several steps:

m Patching the core kernel

m Configuring the kernel to work with Lustre

m Creating Lustre and kernel RPMs from source code.

Please note that the Lustre/kernel configurations available at the Lustre download
site have been extensively tested and verified with Lustre. The recommended method

for installing Lustre servers is to use these pre-built binary packages (RPMs). For
more information on this installation method, see Installing Lustre from RPMs.

Caution — Lustre contains kernel modifications which interact with storage devices
and may introduce security issues and data loss if not installed, configured and
administered correctly. Before installing Lustre, be cautious and back up ALL data.

Note — When using third-party network hardware with Lustre, the third-party
modules (typically, the drivers) must be linked against the Linux kernel. The LNET
modules in Lustre also need these references. To meet these requirements, a specific
process must be followed to install and recompile Lustre. See Installing Lustre with a
Third-Party Network Stack, for an example showing how to install Lustre 1.6.6 using
the Myricom MX 1.2.7 driver. The same process can be used for other third-party
network stacks.

Lustre 1.8 Operations Manual ¢ March 2010

http://www.sun.com/software/products/lustre/get.jsp

3.3.1

3.3.1.1

Patching the Kernel

If you are using non-standard hardware, plan to apply a Lustre patch, or have
another reason not to use packaged Lustre binaries, you have to apply several Lustre
patches to the core kernel and run the Lustre configure script against the kernel.

Introducing the Quilt Utility

To simplify the process of applying Lustre patches to the kernel, we recommend that
you use the Quilt utility.

Quilt manages a stack of patches on a single source tree. A series file lists the patch
files and the order in which they are applied. Patches are applied, incrementally, on
the base tree and all preceding patches. You can:

m Apply patches from the stack (quilt push)
m Remove patches from the stack (quilt pop)

m Query the contents of the series file (quilt series), the contents of the stack
(quilt applied, quilt previous, quilt top), and the patches that are not
applied at a particular moment (quilt next, quilt unapplied).

m Edit and refresh (update) patches with Quilt, as well as revert inadvertent
changes, and fork or clone patches and show the diffs before and after work.

A variety of Quilt packages (RPMs, SRPMs and tarballs) are available from various
sources. Use the most recent version you can find. Quilt depends on several other
utilities, e.g., the coreutils RPM that is only available in RedHat 9. For other
RedHat kernels, you have to get the required packages to successfully install Quilt. If
you cannot locate a Quilt package or fulfill its dependencies, you can build Quilt
from a tarball, available at the Quilt project website:

http:/ /savannah.nongnu.org/projects/quilt

For additional information on using Quilt, including its commands, see Introduction
to Quilt and the quilt(1l) man page.

Chapter 3 Installing Lustre 3-15

http://savannah.nongnu.org/projects/quilt
http://www.suse.de/~agruen/quilt.pdf
http://www.suse.de/~agruen/quilt.pdf
http://linux.die.net/man/1/quilt

3.3.1.2 Get the Lustre Source and Unpatched Kernel

The Lustre Engineering Team has targeted several Linux kernels for use with Lustre
servers (MDS/OSS) and provides a series of patches for each one. The Lustre patches
are maintained in the kernel_patch directory bundled with the Lustre source code.

Note — Each patch series has been tailored to a specific kernel version, and may or
may not apply cleanly to other versions of the kernel.

To obtain the Lustre source and unpatched kernel:

1. Verify that all of the Lustre installation requirements have been met.
For more information on these prerequisites, see Preparing to Install Lustre.

2. Download the Lustre source code. On the Lustre download site, select a version
of Lustre to download and then select Source as the platform.

3. Download the unpatched kernel.
For convenience, Sun maintains an archive of unpatched kernel sources at:

http:/ /downloads.lustre.org/public/kernels/

4. To save time later, download e2fsprogs now.
The source code for Sun’s Lustre-enabled e2fsprogs distribution can be found at:

http:/ /downloads.lustre.org/public/tools/e2fsprogs/

3-16 Lustre 1.8 Operations Manual ¢ March 2010

http://downloads.lustre.org/public/tools/e2fsprogs/
http://www.sun.com/software/products/lustre/get.jsp
http://downloads.lustre.org/public/kernels/

3.3.1.3

Patch the Kernel

This procedure describes how to use Quilt to apply the Lustre patches to the kernel.
To illustrate the steps in this procedure, a RHEL 5 kernel is patched for Lustre 1.6.5.1.

1. Unpack the Lustre source and kernel to separate source trees.

a. Unpack the Lustre source.

For this procedure, we assume that the resulting source tree is in
/tmp/lustre-1.6.5.1

b. Unpack the kernel.

For this procedure, we assume that the resulting source tree (also known as the
destination tree) is in /tmp/kernels/linux-2.6.18

2. Select a config file for your kernel, located in the kernel configs directory
(lustre/kernel_patches/kernel_config).

The kernel_config directory contains the .config files, which are named to
indicate the kernel and architecture with which they are associated. For example,
the configuration file for the 2.6.18 kernel shipped with RHEL 5 (suitable for 686
SMP systems) is kernel-2.6.18-2.6-rhel5-1686-smp.config.

3. Select the series file for your kernel, located in the series directory

(lustre/kernel_patches/series).

The series file contains the patches that need to be applied to the kernel.

4. Set up the necessary symlinks between the kernel patches and the Lustre

source.

This example assumes that the Lustre source files are unpacked under
/tmp/lustre-1.6.5.1 and you have chosen the 2.6-rhel5. series file). Run:

$ cd /tmp/kernels/linux-2.6.18
$ rm -f patches series

$ 1In -s /tmp/lustre-1.6.5.1/lustre/kernel_patches/series/2.6-\
rhel5.series ./series

$ 1In -s /tmp/lustre-1.6.5.1/1lustre/kernel_patches/patches

5. Use Quilt to apply the patches in the selected series file to the unpatched

kernel. Run:

$ cd /tmp/kernels/linux-2.6.18
$ quilt push -av

The patched destination tree acts as a base Linux source tree for Lustre.

Chapter 3 Installing Lustre 3-17

3.3.2 Create and Install the Lustre Packages

After patching the kernel, configure it to work with Lustre, create the Lustre
packages (RPMs) and install them.

1. Configure the patched kernel to run with Lustre. Run:

cd <path to kernel tree>

cp /boot/config-‘uname -r‘' .config
make oldconfig || make menuconfig
make include/asm

make include/linux/version.h

make SUBDIRS=scripts

make include/linux/utsrelease.h

v r r r r ¥

2. Run the Lustre configure script against the patched kernel and create the Lustre
packages.

$ cd <path to lustre source tree>
$./configure --with-linux=<path to kernel tree>
$ make rpms

This creates a set of .rpms in /usr/src/redhat/RPMS/<arch> with an
appended date-stamp. The SuSE path is /usr/src/packages.

Note — You do not need to run the Lustre configure script against an unpatched
kernel.

Example set of RPMs:

lustre-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.l.6.5.1.custom_20081021.1i686.rpm

lustre-debuginfo-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.l1.6.5.1.custom_20081021.i686.rpm

lustre-modules-1.6.5.1-\
2.6.18_53.xx.xxel5_lustre.l1.6.5.1.custom_20081021.i686.rpm

lustre-source-1.6.5.1-\
2.6.18_53.xx.xx.el5_lustre.1l.6.5.1.custom_20081021.1686.rpm

Note — If the steps to create the RPMs fail, contact Lustre Support by reporting a
bug. See Reporting a Lustre Bug.

3-18 Lustre 1.8 Operations Manual ¢ March 2010

Note — Lustre supports several features and packages that extend the core
functionality of Lustre. These features/packages can be enabled at the build time by
issuing appropriate arguments to the configure command. For a list of supported
features and packages, run . /configure -help in the Lustre source tree. The
configs/ directory of the kernel source contains the config files matching each the
kernel version. Copy one to .config at the root of the kernel tree.

3. Create the kernel package. Navigate to the kernel source directory and run:

$ make rpm

Example result:

kernel-2.6.95.0.3.EL_lustre.l.6.5.1lcustom-1.1686.rpm

Note — Step 3 is only valid for RedHat and SuSE kernels. If you are using a stock
Linux kernel, you need to get a script to create the kernel RPM.

4. Install the Lustre packages.

Some Lustre packages are installed on servers (MDS and OSSs), and others are
installed on Lustre clients. For guidance on where to install specific packages, see
TABLE 3-1, which lists required packages and for each package, where to install it.
Depending on the selected platform, not all of the packages listed in TABLE 3-1
need to be installed.

Note — Running the patched server kernel on the clients is optional. It is not
necessary unless the clients will be used for multiple purposes, for example, to run as
a client and an OST.

Lustre packages should be installed in this order:

a. Install the kernel, modules and ldiskfs packages.
Navigate to the directory where the RPMs are stored, and use the rpm -ivh
command to install the kernel, module and 1diskfs packages.

$ rpm -ivh kernel-lustre-smp-<ver> \
kernel-ib-<ver> \
lustre-modules-<ver> \
lustre-ldiskfs-<ver>

b. Install the utilities/userspace packages.

Use the rpm -ivh command to install the utilities packages. For example:

$ rpm -ivh lustre-<ver>

Chapter 3 Installing Lustre 3-19

3.3.3

3-20

c. Install the e2fsprogs package.
Make sure the e2fsprogs package downloaded in Step 4 is unpacked, and use
the rpm -1i command to install it. For example:

S rpm -i e2fsprogs-<ver>

d. (Optional) If you want to add optional packages to your Lustre system,
install them now.

5. Verify that the boot loader (grub.conf or lilo.conf) has been updated to load the
patched kernel.

6. Reboot the patched clients and the servers.

a. If you applied the patched kernel to any clients, reboot them.
Unpatched clients do not need to be rebooted.

b. Reboot the servers.

Once all the machines have rebooted, the next steps are to configure Lustre
Networking (LNET) and the Lustre file system. See Configuring Lustre.

Installing Lustre with a Third-Party Network
Stack

When using third-party network hardware, you must follow a specific process to
install and recompile Lustre. This section provides an installation example,
describing how to install Lustre 1.6.6 while using the Myricom MX 1.2.7 driver. The
same process is used for other third-party network stacks, by replacing MX-specific
references in Step 2 with the stack-specific build and using the proper --with option
when configuring the Lustre source code.

1. Compile and install the Lustre kernel.

a. Install the necessary build tools. GCC and related tools must also be
installed. For more information, see Required Lustre Software.

$ yum install rpm-build redhat-rpm-config

$ mkdir -p rpmbuild/{BUILD,RPMS, SOURCES, SPECS, SRPMS}

$ echo '%_topdir % (echo $HOME) /rpmbuild' > .rpmmacros
b. Install the patched Lustre source code.

This RPM is available at the Lustre download page.

$ rpm -ivh kernel-lustre-source-2.6.18-92.1.10.el5_lustre.l.6.6.x86_64.rpm

Lustre 1.8 Operations Manual ¢ March 2010

http://www.sun.com/software/products/lustre/get.jsp

¢. Build the Linux kernel RPM.

make
make

make
make
make

vy r vr r r r r Uy

make

Uy

make

cd /usr/src/linux-2.6.18-92.1.10.el5_lustre.l1l.6.6

distclean
oldconfig dep bzImage modules

cp /boot/config-‘uname -r° .config

oldconfig || make menuconfig
include/asm
include/linux/version.h

SUBDIRS=scripts

rpm

d. Install the Linux kernel RPM.

If you are building a set of RPMs for a cluster installation, this step is not
necessary. Source RPMs are only needed on the build machine.

$ rpm -ivh ~/rpmbuild/kernel-lustre-2.6.18-92.1.10.el5_lustre.l.6.6.x86_64.rpm
$ mkinitrd /boot/2.6.18-92.1.10.el5_lustre.l1.6.6

e. Update the boot loader (/etc/grub.conf) with the new kernel boot
information.

$ /sbin/shutdown 0 -r

. Compile and install the MX stack.

make

vy r Ur r r r W U

cd /usr/src/

gunzip mx_1.2.7.tar.gz (can be obtained from www.myri.com/scs
tar -xvf mx_1.2.7.tar

cd mx-1.2.7

1ln -s common include

./configure --with-kernel-1ib

make install

Chapter 3 Installing Lustre

/)

3-21

3-22

3. Compile and install the Lustre source code.

a. Install the Lustre source (this can be done via RPM or tarball). The source file
is available at the Lustre download page. This example shows installation via
the tarball.

$ c¢d /usr/src/
$ gunzip lustre-l1.6.6.tar.gz
$ tar -xvf lustre-1.6.6.tar
b. Configure and build the Lustre source code.

The . /configure --help command shows a list of all of the --with
options. All third-party network stacks are built in this manner.

$ cd lustre-1.6.6

$./configure --with-linux=/usr/src/linux --with-mx=/usr/src/mx-1.2.7
S make

$ make rpms

The make rpms command output shows the location of the generated RPMs

4. Use the rpm -ivh command to install the RPMS.

S rpm -ivh lustre-1.6.6-2.6.18_92.1.10.el5_lustre.l.6.6smp.x86_64.rpm

$ rpm -ivh lustre-modules-1.6.6-2.6.18_92.1.10.el5_lustre.l.6.6smp.x86_64.rpm

S rpm -ivh lustre-1diskfs-3.0.6-2.6.18_92.1.10.el5_ lustre.l.6.6smp.x86_64.rpm
5. Add the following lines to the /etc/modprobe.conf file.

options kmxlnd hosts=/etc/hosts.mxlnd
options lnet networks=mx0 (myri0O), tcpO (eth0)

6. Populate the myri0 configuration with the proper IP addresses.
vim /etc/sysconfig/network-scripts/myri0

7. Add the following line to the /etc/hosts.mxInd file.
$ IP HOST BOARD EP_ID

8. Start Lustre.

Once all the machines have rebooted, the next steps are to configure Lustre
Networking (LNET) and the Lustre file system. See Configuring Lustre.

Lustre 1.8 Operations Manual ¢ March 2010

http://www.sun.com/software/products/lustre/get.jsp

CHAPTER 4

Configuring Lustre

You can use the administrative utilities provided with Lustre to set up a system with
many different configurations. This chapter shows how to configure a simple Lustre
system comprised of a combined MGS/MDT, an OST and a client, and includes the
following sections:

m Configuring the Lustre File System
m Additional Lustre Configuration

m Basic Lustre Administration

m More Complex Configurations

m Operational Scenarios

4-1

4.1

Configuring the Lustre File System

A Lustre file system consists of four types of subsystems — a Management Server
(MGS), a Metadata Target (MDT), Object Storage Targets (OSTs) and clients. We
recommend running these components on different systems, although, technically,
they can co-exist on a single system. Together, the OSSs and MDS present a Logical
Object Volume (LOV) which is an abstraction that appears in the configuration.

It is possible to set up the Lustre system with many different configurations by using
the administrative utilities provided with Lustre. Some sample scripts are included in
the directory where Lustre is installed. If you have installed the Lustre source code,
the scripts are located in the lustre/tests sub-directory. These scripts enable
quick setup of some simple, standard Lustre configurations.

Note — We recommend that you use dotted-quad IP addressing (IPv4) rather than
host names. This aids in reading debug logs, and helps greatly when debugging
configurations with multiple interfaces.

1. Define the module options for Lustre networking (LNET), by adding this line to
the /etc/modprobe.conf filel.
options lnet networks=<network interfaces that LNET can use>

This step restricts LNET to use only the specified network interfaces and prevents
LNET from using all network interfaces.

As an alternative to modifying the modprobe. conf file, you can modify the
modprobe.local file or the configuration files in the modprobe.d directory.

Note — For details on configuring networking and LNET, see Configuring LNET.

2. (Optional) Prepare the block devices to be used as OSTs or MDTs.

Depending on the hardware used in the MDS and OSS nodes, you may want to set
up a hardware or software RAID to increase the reliability of the Lustre system.
For more details on how to set up a hardware or software RAID, see the
documentation for your RAID controller or see Lustre Software RAID Support.

4-2

1. The modprobe.conf file is a Linux file that lives in /etc/modprobe.conf and specifies what parts of the kernel
are loaded.

Lustre 1.8 Operations Manual ¢ March 2010

3. Create a combined MGS/MDT file system.

a. Consider the MDT size needed to support the file system.

When calculating the MDT size, the only important factor is the number of files
to be stored in the file system. This determines the number of inodes needed,
which drives the MDT sizing. For more information, see Sizing the MDT and
Planning for Inodes. Make sure the MDT is properly sized before performing

the next step, as a too-small MDT can cause the space on the OSTs to be
unusable.

b. Create the MGS/MDT file system on the block device. On the MDS node,

run:

mkfs.lustre --fsname=<fsname> --mgs --mdt <block device name>

The default file system name (fsname) is lustre.

Note — If you plan to generate multiple file systems, the MGS should be on its own

dedicated block device.

4. Mount the combined MGS/MDT file system on the block device. On the MDS

node, run:
mount -t lustre <block device name> <mount point>

5. Create the OST2. On the OSS node, run:

mkfs.lustre --ost --fsname=<fsname> --mgsnode=<NID> <block device

name>

You can have as many OSTs per OSS as the hardware or drivers allow.

You should only use only 1 OST per block device. Optionally, you can create an

OST which uses the raw block device and does not require partitioning.

Note — If the block device has more than 8 TB3 of storage, it must be partitioned
(because of the ext3 file system limitation). Lustre can support block devices with

multiple partitions, but they are not recommended because of resulting bottlenecks.

6. Mount the OST. On the OSS node where the OST was created, run:

mount -t lustre <block device name> <mount point>

2. When you create the OST, you are defining a storage device ('sd'), a device number (a, b, ¢, d), and a partition
(1,2, 3) where the OST node lives.

3. InLustre 1.8.2,16 TB on RHEL and 8 TB on other distributions.

Chapter 4 Configuring Lustre

Note — To create additional OSTs, repeat Step 4 and Step 5.

7. Create the client (mount the file system on the client). On the client node, run:

mount -t lustre <MGS node>:/<fsname> <mount point>

Note — To create additional clients, repeat Step 7.

8. Verify that the file system started and is working correctly by running the df,
dd and 1s commands on the client node.

a. Run the 1fs df -h command.

[root@clientl /] 1fs df -h

The 1fs df -h command lists space usage per OST and the MDT in
human-readable format.

b. Run the 1fs df -ih command.

[root@clientl /] 1fs df -ih
The 1fs df -ih command lists inode usage per OST and the MDT.

¢. Run the dd command.
[root@clientl /] cd /lustre

[root@clientl /lustre] dd if=/dev/zero of=/lustre/zero.dat bs=4M
count=2
The dd command verifies write functionality by creating a file containing all
zeros (0s). In this command, an 8 MB file is created.

d. Run the 1s command.

[root@clientl /lustre] 1ls -1lsah

The 1s -1sah command lists files and directories in the current working
directory.

If you have a problem mounting the file system, check the syslogs for errors.

Tip — Now that you have configured Lustre, you can collect and register your service
tags. For more information, see Service Tags.

4-4 Lustre 1.8 Operations Manual ¢ March 2010

4.1.0.1

Simple Lustre Configuration Example

To see the steps in a simple Lustre configuration, follow this worked example in
which a combined MGS/MDT and two OSTs are created. Three block devices are
used, one for the combined MGS/MDS node and one for each OSS node. Common
parameters used in the example are listed below, along with individual node

parameters.

Common Parameters Value

Description

MGS node
file system temp

network type TCP/IP

10.2.0.1@tcp0Node for the combined MGS/MDS

Name of the Lustre file system

Network type used for Lustre file system temp

Node Parameters Value

Description

MGS/MDS node
MGS/MDS nodemdtl

MDS in Lustre file system temp

block device /dev/sdb Block device for the combined MGS/MDS node
mount point /mnt /mdt Mount point for the mdt1 block device (/dev/sdb) on the
MGS/MDS node
First OSS node
OSS node ossl First OSS node in Lustre file system temp
OST ostl First OST in Lustre file system temp
block device /dev/sdc Block device for the first OSS node (oss1)
mount point /mnt/ostl Mount point for the ost1 block device (/dev/sdc) on the
ossl node
Second OSS node
OSS node oss2 Second OSS node in Lustre file system temp
OST ost2 Second OST in Lustre file system temp
block device /dev/sdd Block device for the second OSS node (oss2)
mount point /mnt/ost2 Mount point for the ost2 block device (/dev/sdd) on the
oss2 node
Client node
client node clientl Client in Lustre file system temp
mount point /lustre Mount point for Lustre file system temp on the clientl

node

Chapter 4 Configuring Lustre 4-5

4-6

1. Define the module options for Lustre networking (LNET), by adding this line to

the /etc/modprobe.conf file.

options lnet networks=tcp

. Create a combined MGS/MDT file system on the block device. On the MDS

node, run:

[root@mds /]# mkfs.lustre --fsname=temp --mgs --mdt /dev/sdb

This command generates this output:

Permanent disk data:

Target: temp-MDTEffff
Index: unassigned
Lustre FS: temp

Mount type: ldiskfs
Flags: 0x75

(MDT MGS needs_index first_time update)
Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
Parameters: mdt.group_upcall=/usr/sbin/l_getgroups

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdb
target nametemp-MDTffff
4k blocks 0
options -1 4096 -I 512 -g -0 dir_index,uninit_groups -F
mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-MDTffff -i 4096 -I 512 -g -O
dir_index,uninit_groups -F /dev/sdb
Writing CONFIGS/mountdata

. Mount the combined MGS/MDT file system on the block device. On the MDS

node, run:

[root@mds /]# mount -t lustre /dev/sdb /mnt/mdt

This command generates this output:

Lustre: temp-MDT0000: new disk, initializing

Lustre: 3009:0: (1lproc_mds.c:262:1procfs_wr_group_upcall()) \
temp-MDT0000: group upcall set to /usr/sbin/l_getgroups
Lustre: temp-MDTO0000.mdt: set parameter \
group_upcall=/usr/sbin/1l_getgroups

Lustre: Server temp-MDT0000 on device /dev/sdb has started

Lustre 1.8 Operations Manual ¢ March 2010

4. Create the OSTs.

In this example, the OSTs (ostl and ost2) are being created or different OSSs (oss1

and 0ss2).

a. Create ostl. On oss1 node, run:

[root@ossl /1# mkfs.lustre --ost --fsname=temp --mgsnode=
10.2.0.1@tcp0 /dev/sdc

The command generates this output:

Permanent disk data:

Target: temp-OSTEfff
Index: unassigned
Lustre FS: temp

Mount type: 1ldiskfs
Flags: 0x72

(OST needs_index first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdc
target name temp-OSTEfff
4k blocks 0
options -I 256 -g -0 dir_index,uninit_groups -F
mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OSTffff -I 256 -g -0
dir_index,uninit_groups -F /dev/sdc
Writing CONFIGS/mountdata

b. Create ost2. On 0ss2 node, run:

[root@oss2 /1# mkfs.lustre --ost --fsname=temp --mgsnode=
10.2.0.1@tcp0 /dev/sdd

The command generates this output:

Permanent disk data:

Target: temp-OSTEfff
Index: unassigned
Lustre FS: temp

Mount type: ldiskfs
Flags: 0x72

(OST needs_index first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp

Chapter 4 Configuring Lustre

4-7

4-8

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdd
target name temp-OSTEffff
4k blocks 0
options -I 256 -g -0 dir_index,uninit_groups -F
mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OSTffff -I 256 -g -O
dir_index,uninit_groups -F /dev/sdc
Writing CONFIGS/mountdata

. Mount the OSTs.

Mount each OST (ostl and ost2), on the OSS where the OST was created.

a. Mount ostl. On ossl node, run:

root@ossl /] mount -t lustre /dev/sdc /mnt/ostl
The command generates this output:

LDISKFS-fs: file extents enabled

LDISKFS-fs: mballoc enabled

Lustre: temp-0ST0000: new disk, initializing
Lustre: Server temp-0ST0000 on device /dev/sdb has started

Shortly afterwards, this output appears:
Lustre: temp-0OST0000: received MDS connection from 10.2.0.1@tcp0

Lustre: MDS temp-MDT0000: temp-OST0000_UUID now active, resetting
orphans

b. Mount ost2. On o0ss2 node, run:

root@oss2 /] mount -t lustre /dev/sdd /mnt/ost2

The command generates this output:

LDISKFS-fs: file extents enabled

LDISKFS-fs: mballoc enabled

Lustre: temp-0ST0000: new disk, initializing

Lustre: Server temp-0ST0000 on device /dev/sdb has started

Shortly afterwards, this output appears:
Lustre: temp-0ST0000: received MDS connection from 10.2.0.1@tcp0

Lustre: MDS temp-MDT0000: temp-OSTO0000_UUID now active, resetting
orphans

Lustre 1.8 Operations Manual ¢ March 2010

6. Create the client (mount the file system on the client). On the client node, run:

root@clientl /] mount -t lustre 10.2.0.1@tcp0O:/temp /lustre

This command generates this output:

Lustre: Client temp-client has started

7. Verify that the file system started and is working by running the df, dd and 1s
commands on the client node.

a. Run the df command:

[root@clientl /] 1fs df -h

This command generates output similar to this:

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup00-LogVol00

7.2G 2.4G 4.5G 35% /
dev/sdal 99M 29M 65M 31% /boot
tmpfs 62M 0 62M 0% /dev/shm
10.2.0.1@tcp0:/temp 30M 8.5M 20M 30% /lustre

b. Run the dd command:

[root@clientl /] cd /lustre
[root@clientl /lustre] dd if=/dev/zero of=/lustre/zero.dat bs=4M
count=2

This command generates output similar to this:

2+0 records in
2+0 records out
8388608 bytes (8.4 MB) copied, 0.159628 seconds, 52.6 MB/s

c¢. Run the 1s command:

[root@clientl /lustre] 1ls -1lsah

This command generates output similar to this:
total 8.0M
4.0K drwxr-xr-x 2 root root 4.0K Oct 16 15:27

8.0K drwxr-xr-x 25 root root 4.0K Oct 16 15:27
8.0M -rw-r--r-- 1 root root 8.0M Oct 16 15:27 zero.dat

Chapter 4 Configuring Lustre 4-9

4.1.0.2

4.1.1

Module Setup

Make sure the modules (like LNET) are installed in the appropriate /1ib/modules
directory. The mkfs . lustre utility tries to automatically load LNET (via the Lustre
module) with the default network settings (using all available network interfaces). To
change this default setting, use the network=. .. option to specify the network(s)
that LNET should use:

modprobe -v lustre "networks=XXX"

For example, to load Lustre with multiple-interface support (meaning LNET will use
more than one physical circuit for communication between nodes), load the Lustre
module with the following network=. . . option:

modprobe -v lustre "networks=tcpO (eth0),02ib0 (ib0)"
where:

tepO is the network itself (TCP/IP)

eth0 is the physical device (card) that is used (Ethernet)

021b0 is the interconnect (InfiniBand)

Scaling the Lustre File System

A Lustre file system can be scaled by adding OSTs or clients. For instructions on
creating additional OSTs see Step 4 and Step 5 above; for clients, see Step 7.

4.2

4-10

Additional Lustre Configuration

Once the Lustre file system is configured, it is ready for use. If additional
configuration is necessary, several configuration utilities are available. For man pages
and reference information, see:

m mkfs.lustre

m tunefs.lustre

m Ictl

m mount.lustre

System Configuration Ultilities (man8) profiles utilities (e.g., lustre_rmmod, e2scan,

1_getgroups, llobdstat, llstat, plot-llstat, routerstat, and 1l_recover_lost_found_objs),
and tools to manage large clusters, perform application profiling, and debug Lustre.

Lustre 1.8 Operations Manual ¢ March 2010

4.3

Basic Lustre Administration

Once you have the Lustre file system up and running, you can use the procedures in

this section to perform these basic Lustre administration tasks:
m Specifying the File System Name

m Starting up Lustre

m Mounting a Server

m Unmounting a Server

m Working with Inactive OSTs

m Finding Nodes in the Lustre File System

m Mounting a Server Without Lustre Service

m Specifying Failout/Failover Mode for OSTs

m Running Multiple Lustre File Systems

m Setting and Retrieving Lustre Parameters

m Regenerating the Lustre Configuration Logs

m Changing a Server NID

m Removing and Restoring OSTs

m Changing a Server NID

m Aborting Recovery

m Determining Which Machine is Serving an OST
m Failover

s Unmounting a Server (without Failover)

m Unmounting a Server (with Failover)

m Changing the Address of a Failover Node

Chapter 4 Configuring Lustre

4.3.1

4.3.2

4-12

Specifying the File System Name

The file system name is limited to 8 characters. We have encoded the file system and
target information in the disk label, so you can mount by label. This allows system
administrators to move disks around without worrying about issues such as SCSI
disk reordering or getting the /dev/device wrong for a shared target. Soon, file
system naming will be made as fail-safe as possible. Currently, Linux disk labels are
limited to 16 characters. To identify the target within the file system, 8 characters are
reserved, leaving 8 characters for the file system name:

<fsname>-MDT0000 or <fsname>-0ST0al9

To mount by label, use this command:

$ mount -t lustre -L <file system label> <mount point>
This is an example of mount-by-label:

$ mount -t lustre -L testfs-MDT0000 /mnt/mdt

Caution — Mount-by-label should NOT be used in a multi-path environment.

Although the file system name is internally limited to 8 characters, you can mount
the clients at any mount point, so file system users are not subjected to short names.
Here is an example:

mount -t lustre umll@tcpO:/shortfs /mnt/<long-file_system-name>

Starting up Lustre

The startup order of Lustre components depends on whether you have a combined
MGS/MDT or these components are separate.

m If you have a combined MGS/MDT, the recommended startup order is OSTs, then
the MGS/MDT, and then clients.

m If the MGS and MDT are separate, the recommended startup order is: MGS, then
OSTs, then the MDT, and then clients.

Note — If an OST is added to a Lustre file system with a combined MGS/MDT, then
the startup order changes slightly; the MGS must be started first because the OST
needs to write its configuration data to it. In this scenario, the startup order is
MGS/MDT, then OSTs, then the clients.

Lustre 1.8 Operations Manual ¢ March 2010

4.3.3

Mounting a Server

Starting a Lustre server is straightforward and only involves the mount command.
Lustre servers can be added to /etc/fstab:

mount -t lustre
The mount command generates output similar to this:

/dev/sdal on /mnt/test/mdt type lustre (rw)
/dev/sda2 on /mnt/test/ost0 type lustre (rw)
192.168.0.21@tcp:/testfs on /mnt/testfs type lustre (rw)

In this example, the MDT, an OST (ost0) and file system (testfs) are mounted.
LABEL=testfs-MDT0000 /mnt/test/mdt lustre defaults,_netdev,noauto 0 0

LABEL=testfs-0ST0000 /mnt/test/ost0 lustre defaults,_netdev,nocauto 0 0

In general, it is wise to specify noauto and let your high-availability (HA) package
manage when to mount the device. If you are not using failover, make sure that
networking has been started before mounting a Lustre server. RedHat, SuSE, Debian
(and perhaps others) use the _netdev flag to ensure that these disks are mounted
after the network is up.

We are mounting by disk label here—the label of a device can be read with e2label.
The label of a newly-formatted Lustre server ends in FFFF, meaning that it has yet to
be assigned. The assignment takes place when the server is first started, and the disk
label is updated.

Caution — Do not do this when the client and OSS are on the same node, as memory
pressure between the client and OSS can lead to deadlocks.

Caution — Mount-by-label should NOT be used in a multi-path environment.

Chapter 4 Configuring Lustre 4-13

4.3.4

4.3.5

4-14

Unmounting a Server

To stop a Lustre server, use the umount <mount point> command.
For example, to stop ost0 on mount point /mnt/test, run:
$ umount /mnt/test

Gracefully stopping a server with the umount command preserves the state of the
connected clients. The next time the server is started, it waits for clients to reconnect,
and then goes through the recovery procedure.

If the force (-£) flag is used, then the server evicts all clients and stops WITHOUT
recovery. Upon restart, the server does not wait for recovery. Any currently
connected clients receive I/O errors until they reconnect.

Note — If you are using loopback devices, use the -d flag. This flag cleans up loop
devices and can always be safely specified.

Working with Inactive OSTs

To mount a client or an MDT with one or more inactive OSTs, run commands similar
to this:

client> mount -o exclude=testfs-0ST0000 -t lustre umll:/testfs\
/mnt/testfs

client> cat /proc/fs/lustre/lov/testfs-clilov-*/target_obd

To activate an inactive OST on a live client or MDT, use the 1ctl activate
command on the OSC device. For example:

lctl --device 7 activate

Note — A colon-separated list can also be specified. For example, exclude=
testfs-0ST0000:testfs-0ST0001.

Lustre 1.8 Operations Manual ¢ March 2010

4.3.6

Finding Nodes in the Lustre File System

There may be situations in which you need to find all nodes in your Lustre file
system or get the names of all OSTs.

To get a list of all Lustre nodes, run this command on the MGS:

cat /proc/fs/lustre/mgs/MGS/live/*

Note — This command must be run on the MGS.

In this example, file system lustre has three nodes, lustre-MDT0000,
lustre-0ST0000, and lustre-0ST0001.

cfs21:/tmp# cat /proc/fs/lustre/mgs/MGS/live/*
fsname: lustre

flags: 0x0 gen: 26

lustre-MDTO0000

lustre-0ST0000

lustre-0ST0001

To get the names of all OSTs, run this command on the MDS:

cat /proc/fs/lustre/lov/<fsname>-mdtlov/target_obd

Note — This command must be run on the MDS.

In this example, there are two OSTs, lustre-0ST0000 and lustre-0OST0001,
which are both active.

cfs2l:/tmp# cat /proc/fs/lustre/lov/lustre-mdtlov/target_obd
0: lustre-0ST0000_UUID ACTIVE
1: lustre-0ST0001_UUID ACTIVE

Chapter 4 Configuring Lustre

4-15

4.3.7

4.3.8

4-16

Mounting a Server Without Lustre Service

If you are using a combined MGS/MDT, but you only want to start the MGS and not
the MDT, run this command:

mount -t lustre <MDT partition> -o nosvc <mount point>
The <MDT partition> variable is the combined MGS/MDT.

In this example, the combined MGS/MDT is test£s-MDT0000 and the mount point
is mnt/test/mdt.

$ mount -t lustre -L testfs-MDT0000 -o nosvc /mnt/test/mdt

Specifying Failout/Failover Mode for OSTs

Lustre uses two modes, failout and failover, to handle an OST that has become
unreachable because it fails, is taken off the network, is unmounted, etc.

m In failout mode, Lustre clients immediately receive errors (EIOs) after a timeout,
instead of waiting for the OST to recover.

m In failover mode, Lustre clients wait for the OST to recover.

By default, the Lustre file system uses failover mode for OSTs. To specify failout
mode instead, run this command:

$ mkfs.lustre --fsname=<fsname> --ost --mgsnode=<MGS node NID>
--param="failover.mode=failout" <block device name>

In this example, failout mode is specified for the OSTs on MGS uml1, file system
testfs.

$ mkfs.lustre --fsname=testfs --ost --mgsnode=umll --param=
"failover.mode=failout" /dev/sdb

Caution — Before running this command, unmount all OSTS that will be affected by
the change in the failover/failout mode.

Note — After initial file system configuration, use the tunefs. lustre utility to
change the failover/failout mode. For example, to set the failout mode, run:

$ tunefs.lustre --param failover.mode=failout <OST partition>

Lustre 1.8 Operations Manual ¢ March 2010

4.3.9

Running Multiple Lustre File Systems

There may be situations in which you want to run multiple file systems. This is
doable, as long as you follow specific naming conventions.

By default, the mkfs.lustre command creates a file system named lustre. To
specify a different file system name (limited to 8 characters), run this command:

mkfs.lustre --fsname=<new file system name>

Note — The MDT, OSTs and clients in the new file system must share the same name
(prepended to the device name). For example, for a new file system named foo, the
MDT and two OSTs would be named foo-MDT0000, foo-0ST0000, and
foo-0ST0001.

To mount a client on the file system, run:
mount -t lustre mgsnode:/<new fsname> <mountpoint>

For example, to mount a client on file system foo at mount point /mnt/lustrel,
run:

mount -t lustre mgsnode:/foo /mnt/lustrel

Note — If a client(s) will be mounted on several file systems, add the following line
to /etc/xattr.conf file to avoid problems when files are moved between the file
systems: lustre.* skip

Note — The MGS is universal; there is only one MGS per Lustre installation, not per
file system.

Note — There is only one file system per MDT. Therefore, specify --mdt --mgs on
one file system and --mdt --mgsnode=<MGS node NID> on the other file systems.

Chapter 4 Configuring Lustre 4-17

A Lustre installation with two file systems (foo and bar) could look like this, where
the MGS node is mgsnode@tcp0 and the mount points are /mnt/lustrel and
/mnt/lustre.

mgsnode# mkfs.lustre --mgs /mnt/lustrel

mdtfoonode# mkfs.lustre --fsname=foo --mdt \
--mgsnode=mgsnode@tcpl0 /mnt/lustrel

ossfoonode# mkfs.lustre --fsname=foo --ost \
--mgsnode=mgsnode@tcpl0 /mnt/lustrel

ossfoonode# mkfs.lustre --fsname=foo --ost \
--mgsnode=mgsnode@tcpl0 /mnt/lustre2

mdtbarnode# mkfs.lustre --fsname=bar --mdt \
--mgsnode=mgsnode@tcpl0 /mnt/lustrel

ossbarnode# mkfs.lustre --fsname=bar --ost \
--mgsnode=mgsnode@tcpl0 /mnt/lustrel

ossbarnode# mkfs.lustre --fsname=bar --ost \
--mgsnode=mgsnode@tcpl0 /mnt/lustre2

To mount a client on file system foo at mount point /mnt/lustrel, run:
mount -t lustre mgsnode@tcpO:/foo /mnt/lustrel
To mount a client on file system bar at mount point /mnt/lustre2, run:

mount -t lustre mgsnode@tcpO:/bar /mnt/lustre2

4-18 Lustre 1.8 Operations Manual ¢ March 2010

4.3.10 Setting and Retrieving Lustre Parameters

There are several options for setting parameters in Lustre.

m When the file system is created, using mkfs.lustre. See Setting Parameters with
mkfs.lustre

m When a server is stopped, using tunefs.lustre. See Setting Parameters with
tunefs.lustre

m When the file system is running, using 1ctl. See Setting Parameters with Ictl

Additionally, you can use 1ctl to retrieve Lustre parameters. See Reporting Current
Parameter Values.

4.3.10.1 Setting Parameters with mkfs.lustre

When the file system is created, parameters can simply be added as a --param
option to the mkfs.lustre command. For example:

$ mkfs.lustre --mdt --param="sys.timeout=50" /dev/sda

4.3.10.2 Setting Parameters with tunefs.lustre

If a server (OSS or MDS) is stopped, parameters can be added using the --param
option to the tunefs.lustre command. For example:

$ tunefs.lustre --param="failover.node=192.168.0.13@tcp0" /dev/sda

With tunefs.lustre, parameters are "additive" -- new parameters are specified in
addition to old parameters, they do not replace them. To erase all old
tunefs.lustre parameters and just use newly-specified parameters, run:

$ tunefs.lustre --erase-params --param=<new parameters>

The tunefs.lustre command can be used to set any parameter settable in a
/proc/fs/lustre file and that has its own OBD device, so it can be specified as
<obd | fsname>.<obdtype>.<proc_file_name>=<value>. For example:

$ tunefs.lustre --param mdt.group_upcall=NONE /dev/sdal

Chapter 4 Configuring Lustre 4-19

4.3.10.3

Setting Parameters with Ictl

When the file system is running, the 1ct1l command can be used to set parameters
(temporary or permanent) and report current parameter values. Temporary
parameters are active as long as the server or client is not shut down. Permanent
parameters live through server and client reboots.

Setting Temporary Parameters

Use the 1ctl set_param command to set temporary parameters on the node
where it is run. These parameters map to items in
/proc/{fs,sys}/{1lnet,lustre}. The lctl set_param command uses this
syntax:

lctl set_param [-n] <obdtype>.<obdname>.<proc_file_name>=<value>
For example:
lctl set_param osc.*.max_dirty_mb=1024

osc.myth-0ST0000-osc.max_dirty mb=32
osc.myth-0ST0001-osc.max_dirty mb=32
osc.myth-0ST0002-osc.max_dirty mb=32
osc.myth-0ST0003-osc.max_dirty mb=32
osc.myth-0ST0004-osc.max_dirty mb=32

Setting Permanent Parameters

Use the 1ctl conf_param command to set permanent parameters. In general, the
lctl conf_param command can be used to specify any parameter settable in a
/proc/fs/lustre file, with its own OBD device. The 1ctl conf_param command
uses this syntax (same as the mkfs.lustre and tunefs.lustre commands):

<obd|fsname>.<obdtype>.<proc_file_name>:<value>)
Here are a few examples of 1ctl conf_param commands:

mgs> lctl conf_param testfs-MDT0000.sys.timeout=40

lctl conf_param testfs-MDT0000.mdt.group_upcall=NONE

lctl conf_param testfs.llite.max_read_ahead _mb=16

lctl conf_param testfs-MDT0000.lov.stripesize=2M

lctl conf_param testfs-0ST0000.osc.max_dirty mb=29.15

lctl conf_param testfs-0ST0000.ost.client_cache_seconds=15

vy r Vr r r r r

lctl conf_param testfs.sys.timeout=40

4-20 Lustre 1.8 Operations Manual ¢ March 2010

4.3.10.4

Caution — Parameters specified with the 1ctl conf_param command are set

permanently in the file system’s configuration file on the MGS.

Reporting Current Parameter Values

To report current Lustre parameter values, use the 1ctl get_param command
with this syntax:

lctl get_param [-n]

<obdtype>.<obdname>.<proc_file_name>

This example reports data on RPC service times.

$ lctl get_param -n ost.*.ost_io.timeouts
get_p

service : cur 1 worst 30 (at 1257150393, 85d23h58m54s ago) 1 1 1 1

This example reports the number of inodes available on each OST.

lctl get_param osc.*.filesfree

oscC
oscC
oscC
oscC
oscC

.myth-0ST0000-0sc-££££88006dd20000.
.myth-0ST0001-0sc-££££88006dd20000.
.myth-0ST0002-0sc-££££88006dd20000.
.myth-0ST0003-0sc-££££88006dd20000.
.myth-0ST0004-0sc-££££88006dd20000.

filesfree=217623
filesfree=5075042
filesfree=3762034
filesfree=91052
filesfree=129651

Chapter 4 Configuring Lustre

4-21

4.3.11

4-22

Regenerating the Lustre Configuration Logs

If the Lustre system’s configuration logs are in a state where the file system cannot be
started, use the writeconf command to erase them. After the writeconf command
is run and the servers restart, the configuration logs are re-generated and stored on
the MGS (as in a new file system).

You should only use the writeconf command if:

m The configuration logs are in a state where the file system cannot start

m A server NID is being changed

The writeconf command is destructive to some configuration items (i.e., OST pools

information and items set via conf_param), and should be used with caution. To
avoid problems:

m Shut down the file system before running the writeconf command
m Run the writeconf command on all servers (MDT first, then OSTs)
m Start the file system in this order (MDT first, then OSTs, then clients)

Caution — Lustre 1.8 introduces the OST pools feature, which enables a group of
OSTs to be named for file striping purposes. If you use OST pools, be aware that
running the writeconf command erases all pools information (as well as any other
parameters set via 1ctl conf_param). We recommend that the pools definitions
(and conf_param settings) be executed via a script, so they can be reproduced easily
after a writeconf is performed.

To regenerate the Lustre system’s configuration logs:

1. Shut down the file system by unmounting all servers and clients.

Do not run writeconf until the file system is completely shut down.

2. Run the writeconf command on all servers.
Run writeconf on the MDT first, and then the OSTs.

a. On the MDT, run:
<mdt node>$ tunefs.lustre --writeconf <device>
b. On each OST, run:

<ost node>$ tunefs.lustre --writeconf <device>

Lustre 1.8 Operations Manual ¢ March 2010

4.3.12

. Restart the file system by mounting the MGS/MDT first (if co-located), then the
OSTs, then the clients. If the MGS and MDT are separate, mount the MGS first,

then the MDT, OSTs and clients.

After the writeconf command is run, the configuration logs are re-generated as
servers restart.

Changing a Server NID

If you need to change the NID on the MDT or an OST, run the writeconf command

to erase Lustre configuration information (including server NIDs), and then
re-generate the system configuration using updated server NIDs.

Change a server NID in these situations:

New server hardware is added to the file system, and the MDS or an OSS is being

moved to the new machine
New network card is installed in the server

You want to reassign IP addresses

To change a server NID:

1.

Update the LNET configuration in the /etc/modprobe.conf file so the list of
server NIDs (1ctl list_nids) is correct.

The 1ctl 1list_nids command indicates which network(s) are configured to
work with Lustre.

. Shut down the file system by unmounting all servers and clients.

Do not run the writeconf command until the file system is completely shut
down.

. Run the writeconf command on all servers.

Run writeconf on the MDT first, and then the OSTs.
a. On the MDT, run:

$ mdt> tunefs.lustre --writeconf <device>
b. On each OST, run:

$ ost> tunefs.lustre --writeconf <device>

c. If the NID on the MGS was changed, communicate the new MGS location to

each server. Run:

tunefs.lustre --erase-param --mgsnode=<new_nid(s)> --writeconf /dev/..

Chapter 4 Configuring Lustre 4-23

4.3.13

4.3.13.1

4. Restart the file system by mounting the MGS/MDT first (if co-located), then the
OSTs, then the clients. If the MGS and MDT are separate, mount the MGS first,
then the MDT, OSTs and clients.

After the writeconf command is run, the configuration logs are re-generated as
servers restart, and server NIDs in the updated 1ist_nids file are used.

Removing and Restoring OSTs

OSTs can be removed from and restored to a Lustre file system. Currently in Lustre,
removing an OST really means that the OST is ‘deactivated’ in the file system, not
permanently removed. A removed OST still appears in the file system; do not create
a new OST with the same name.

You may want to remove (deactivate) an OST and prevent new files from being
written to it in several situations:
m Hard drive has failed and a RAID resync/rebuild is underway

m OST is nearing its space capacity

Removing an OST from the File System

When removing an OST, remember that the MDT does not communicate directly
with OSTs. Rather, each OST has a corresponding OSC which communicates with the
MDT. It is necessary to determine the device number of the OSC that corresponds to
the OST. Then, you use this device number to deactivate the OSC on the MDT.

To remove an OST from the file system:

1. For the OST to be removed, determine the device number of the corresponding
OSC on the MDT.

a. List all OSCs on the node, along with their device numbers. Run:

lctl d1 | grep " osc "
This is sample 1ctl d1 | grep " osc " output:

11 UP osc lustre-0ST-0000-osc-cac94211 4ea5b30f-6a8e-55a0-7519-2£f20318ebdb4d 5
12 UP osc lustre-0ST-0001l-osc-cac94211 4ea5b30f-6a8e-55a0-7519-2£20318ebdb4d 5
13 IN osc lustre-0ST-0000-osc lustre-MDT0000-mdtlov_UUID 5
14 UP osc lustre-0ST-0001l-osc lustre-MDT0000-mdtlov_UUID 5

b. Determine the device number of the OSC that corresponds to the OST to be
removed.

4-24 Lustre 1.8 Operations Manual ¢ March 2010

2. Temporarily deactivate the OSC on the MDT. On the MDT, run:

$ mdt> lctl --device <devno> deactivate

For example, based on the command output in Step 1, to deactivate device 13 (the
MDT’s OSC for OST-0000), the command would be:

$ mdt> lctl --device 13 deactivate

This marks the OST as inactive on the MDS, so no new objects are assigned to the
OST. This does not prevent use of existing objects for reads or writes.

Note — Do not deactivate the OST on the clients. Do so causes errors (EIOs), and the
copy out to fail.

Caution — Do not use 1ctl conf_param to deactivate the OST. It permanently
sets a parameter in the file system configuration.

3. Discover all files that have objects residing on the deactivated OST. Run:
1fs find --obd {OST UUID} / <mount_point>

4. Copy (not move) the files to a new directory in the file system.

Copying the files forces object re-creation on the active OSTs.

5. Move (not copy) the files back to their original directory in the file system.

Moving the files causes the original files to be deleted, as the copies replace them.

6. Once all files have been moved, permanently deactivate the OST on the clients
and the MDT. On the MGS, run:

mgs> lctl conf_param <OST name>.osc.active=0

Chapter 4 Configuring Lustre 4-25

4.3.13.2

4.3.14

Temporarily Deactivating an OST in the File System

You may encounter situations when it is necessary to temporarily deactivate an OST,
rather than permanently deactivate it. For example, you may need to deactivate a
failed OST that cannot be immediately repaired, but want to continue to access the
remaining files on the available OSTs.

To temporarily deactivate an OST:
1. Mount the Lustre file system.
2. On the MDS and all clients, run:
lctl set_param osc.<faname>-<OST name>-*.active=0

Clients accessing files on the deactivated OST receive an 1O error (-5), rather than
pausing until the OST completes recovery.

Restoring an OST in the File System

Restoring an OST to the file system is as easy as activating it. When the OST is active,
it is automatically added to the normal stripe rotation and files are written to it.

To restore an OST:
1. Make sure the OST to be restored is running.
2. Reactivate the OST. On the MGS, run:

mgs> lctl conf_param <OST name>.osc.active=1

Aborting Recovery

You can abort recovery with either the Ictl utility or by mounting the target with the
abort_recov option (mount -o abort_recov). When starting a target, run:

$ mount -t lustre -L <MDT name> -0 abort_recov <mount point>

Note — The recovery process is blocked until all OSTs are available.

4-26 Lustre 1.8 Operations Manual ¢ March 2010

4.3.15

Determining Which Machine is Serving an OST

In the course of administering a Lustre file system, you may need to determine which
machine is serving a specific OST. It is not as simple as identifying the machine’s IP
address, as IP is only one of several networking protocols that Lustre uses and, as

such, LNET does not use IP addresses as node identifiers, but NIDs instead.

To identify the NID that is serving a specific OST, run one of the following

commands on a client (you do not need to be a root user):

client$ lctl get_param osc.S$S{fsname}-${0STname}*.ost_conn_uuid

For example:

client$ lctl get_param osc.*-0ST0000*.ost_conn_uuid

osc.myth-0ST0000-0sc-£1579000.0st_conn_uuid=192.168.

-OR -

client$ lctl get_param osc.*.ost_conn_uuid

oscC
oscC
oscC
oscC
oscC

.myth-0ST0000-0sc-£1579000.
.myth-0ST0001-0sc-£1579000.
.myth-0ST0002-0sc-£1579000.
.myth-0ST0003-0sc-£1579000.
.myth-0ST0004-0sc-£1579000.

ost_conn_uuid=192.
ost_conn_uuid=192.
ost_conn_uuid=192.
ost_conn_uuid=192.
ost_conn_uuid=192.

Chapter 4 Configuring Lustre

168.
168.
168.
168.
168.

20.

20.

20

20

l@tcp

l@tcp

.1l@tcp
20.
20.

l@tcp
l@tcp

.1l@tcp

4-27

4.4

4.4.1

4-28

More Complex Configurations

If a node has multiple network interfaces, it may have multiple NIDs. When a node
is specified, all of its NIDs must be listed, delimited by commas (,) so other nodes can
choose the NID that is appropriate for their network interfaces. When failover nodes
are specified, they are delimited by a colon (:) or by repeating a keyword
(--mgsnode= or --failnode=). To obtain all NIDs from a node (while LNET is
running), run:

lctl list_nids

This displays the server's NIDs (networks configured to work with Lustre).

Failover

This example has a combined MGS/MDT failover pair on umll and uml2, and a OST
failover pair on uml3 and uml4. There are corresponding Elan addresses on umll and
uml2.

umll> mkfs.lustre --fsname=testfs --mdt --mgs \
--failnode=uml2,2@elan /dev/sdal

umll> mount -t lustre /dev/sdal /mnt/test/mdt

uml3> mkfs.lustre --fsname=testfs --ost --failnode=uml4 \
--mgsnode=umll, 1@elan --mgsnode=uml2,2@elan /dev/sdb

uml3> mount -t lustre /dev/sdb /mnt/test/ost0

client> mount -t lustre umll,l@elan:uml2,2@elan:/testfs /mnt/testfs
umll> umount /mnt/mdt

uml2> mount -t lustre /dev/sdal /mnt/test/mdt

uml2> cat /proc/fs/lustre/mds/testfs-MDT0000/recovery_status

Where multiple NIDs are specified, comma-separation (for example, uml12, 2@elan)
means that the two NIDs refer to the same host, and that Lustre needs to choose the
"best" one for communication. Colon-separation (for example, uml1:uml2) means
that the two NIDs refer to two different hosts, and should be treated as failover
locations (Lustre tries the first one, and if that fails, it tries the second one.)

Lustre 1.8 Operations Manual ¢ March 2010

Note — If you have an MGS or MDT configured for failover, perform these steps:

1. On the OST, list the NIDs of all MGS nodes at mkfs time.

OST# mkfs.lustre --fsname sunfs --ost --mgsnode=10.0.0.1
--mgsnode=10.0.0.2 /dev/{device}

2. On the client, mount the file system.

client# mount -t lustre 10.0.0.1:10.0.0.2:/sunfs /cfs/client/

4.5

Operational Scenarios

In the operational scenarios below, the management node is the MDS. The

management service is started as the initial part of the startup of the primary MDT.

Tip — All targets that are configured for failover must have some kind of shared
storage among two server nodes.

IP Network, Single MDS, Single OST, No Failover
On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> <partition>
mount -t lustre <partition> <mountpoint>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> <partition>
mount -t lustre <partition> <mountpoint>

On the client, run:

mount -t lustre <MGS NID>:/<fsname> <mountpoint>

Chapter 4 Configuring Lustre

4-29

IP Network, Failover MDS

For failover, storage holding target data must be available as shared storage to
failover server nodes. Failover nodes are statically configured as mount options.

On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> \
--failover=<failover MGS NID> <partition>
mount -t lustre <partition> <mount point>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> \
--mgsnode=<MGS NID>,<failover MGS NID> <partition>
mount -t lustre <partition> <mount point>

On the client, run:

mount -t lustre <MGS NID>[,<failover MGS NID>]:/<fsname> \
<mount point>

IP Network, Failover MDS and OSS

On the MDS, run:

mkfs.lustre --mdt --mgs --fsname=<fsname> \
--failover=<failover MGS NID> <partition>
mount -t lustre <partition> <mount point>

On the OSS, run:

mkfs.lustre --ost --mgs --fsname=<fsname> \
--mgsnode=<MGS NID>[,<failover mds hostdesc>] \
--failover=<failover 0SS NID> <partition>
mount -t lustre <partition> <mount point>

On the client, run:

mount -t lustre <MGS NID>[,<failover MGS NID>]:/<fsname> \
<mount point>

4-30 Lustre 1.8 Operations Manual ¢ March 2010

4.5.1

4.5.2

4.5.3

Unmounting a Server (without Failover)

To stop a server (MDS or OSS) without failover, run:
umount <mds|oss mountpoint>

This stops the server unconditionally, and cleans up client connections and export
information. When the server restarts, the clients create a new connection to it.

Unmounting a Server (with Failover)

To stop a server (MDS or OSS) with failover, run:
umount -f <MDS|O0SS mount point>

This stops the server and preserves client export information. When the server
restarts, the clients reconnect and resume in-progress transactions.

Changing the Address of a Failover Node

To change the address of a failover node (e.g, to use node X instead of node Y), run
this command on the OSS/OST partition:

tunefs.lustre --erase-params --failnode=<NID> <device>

Chapter 4 Configuring Lustre 4-31

4-32 Lustre 1.8 Operations Manual ¢ March 2010

CHAPTER 5

Service Tags

This chapter describes the use of service tags with Lustre, and includes the following
sections:

Introduction to Service Tags

Using Service Tags

5.1

Introduction to Service Tags

Service tags are part of an IT asset inventory management system provided by Sun.
A service tag is a unique identifier for a piece of hardware or software (gear) that
enables usage data about the tagged item to be shared over a local network in
standard XML format. The service tag program is used for a number of Sun products,
including hardware, software and services, and has now been implemented for
Lustre.

Service tags are provided for each MGS, MDS, OSS node and Lustre client. Using
service tags enables automatic discovery and tracking of these system components,
so administrators can better manage their Lustre environment.

Note — Service tags are used solely to provide an inventory list of system and
software information to Sun; they do not contain any personal information. Service
tag components that communicate information are read-only and contained. They are
not capable of accepting information and they cannot communicate with any other
services on your system.

For more information on service tags, see the Service Tag wiki and Service Tag FAQ.

http://wikis.sun.com/display/ServiceTag/Home
http://wikis.sun.com/display/ServiceTag/Sun+Service+Tag+FAQ

5.2

5.2.1

Using Service Tags

To begin using service tags with your Lustre system, download the service tag
package and registration client. The entire service tag process can be easily managed
from the Sun Inventory webpage.

Installing Service Tags

Service tag packages (for RedHat and SuSE Linux) are downloadable from the Sun
Lustre downloads page. To download and install the service tags package:

1.

Navigate to the Sun Lustre download page and download the service tag
package, sun-servicetag-1.1.4-1.i386.rpm1, for Lustre.

. Install the service tag package on all Lustre nodes (MGSs, MDSs, OSSs and

clients).

The service tag package includes several init.d scripts which are started on reboot
(/etc/init.d/stosreg and /etc/init.d/psn start).

This package also adds entries in the [x]inetd’s configuration scripts to provide
remote access to the nodes needed to collect information. The script restarts
[x]inetd (killall -HUP xinetd 1>/dev/null 2>&1).

. If this is a new installation, format the OSTs, MDTs, MGSs and Lustre clients.

. Mount the OSTs, MDTs, MGSs and Lustre clients, and verify that the Lustre file

system is running normally.

5-2

1. Thisis the current service tag package. The version number is subject to change.

Lustre 1.8 Operations Manual ¢ March 2010

https://inventory.sun.com
http://www.sun.com/software/products/lustre/get.jsp

522

Discovering and Registering Lustre Components

After installing the service tag package on all of your Lustre nodes, discover and
register the Lustre components. To perform this procedure, Lustre must be fully

configured and running.

1. Navigate to the Sun Lustre download page and download the Registration client,
eis-regclient.jar.

2. Install the Registration client on one node (the collection node) that can reach
all Lustre clients and servers over a TCP/IP network.

3. Install Java Virtual Machine (Java VM) on the collection node.

Java VM is available at the Sun Java download site.

4. Start the Registration client, run:

$ java -jar elis-regclient.jar

The Registration Client utility launches.

FIGURE 5-1 Registration Client

Product
Registration

.

Locate or lnad
procuct data,

Yiew product data
Login to Sun Online
Arcount

Determine which
products to register
surmmany

W

o~

w

Sun Microsystems Product Registration

Product Data

System = | Product Yersion

ial Red Hat Enterprise Linux 5 5

ial Lustre Client 1.6.6 166

iaZ Red Hat Enterprise Linux 5 5

sata2l Red Hat Enterprise Linux 4 4

satazo Lustre MD5 1.6.& 166

satazo Lustre MGS 1.6 166

sata2l Red Hat Enterprise Linux 5 5

satazl Lustre 055 1.6.6 166

salaz2 Lustre 055 1.6.6 166

sata2? SUSE Linux Enterprise Server 10 10

salazs Lustre Client 1.6.6 166

sata2s SUSE Linux Enterprise Server 9 9

SUNSPOO144 . SUN FIRE X4440 RE
SUNSPOO144 . SUN FIRE X4440 RE

Ta sawe this information and register these products with Sun Connection later,

click the Save As... button
oo | [e | [cancer | [e |

Chapter 5

Service Tags

5-3

http://www.sun.com/software/products/lustre/get.jsp
http://www.java.com/en/download/index.jsp

Note — The Registration client requires an X display to run. If the node from which
you want to do the registration has no native X display, you can use SSH’s X
forwarding to display the Registration client interface on your local machine.

The registration process includes up to five steps. The first step is to discover the
service tags created when you started Lustre.

The Registration client looks for Sun products on your local subnet, by default.
Alternately, you can specify another subnet, specific hosts or IP addresses.
5. Select an option to locate service tags and click Next.

The Product Data screen displays Sun products (that support service tags) as they
are located. For each product, the system name, product name, and version (if
applicable) are listed.

FIGURE 5-2 Product Data

Sun Microsystems Product Registration

Product
Registration

.

Locate or load Product Data
product data.
Yiew product data

.u

2. Login to Sun Online System - Product. Version
4 3‘;2#‘1““ which ial Red Hat Enterprise Linux 5 s
procucts to register lal Lustre Client 1.6.6 166

5. Summary a2 Red Hat Enterprise Linux 5 5
satazo Red Hat Enterprise Linux 4 4
sataz0 Lustre MCS 1.6.6 166
sataz0 Lustre MDS 1.6.6 166
satazl Red Hat Enterprise Linux 5 s
satazl Lustre 035 1.6.6 166
sataz2 Lustre 035 1.6.6 166
sata22 SUSE Linux Enterprise Server 10 10
sataz’s Lustre Client 1.6.6 166
satazs SUSE Linux Enterprise Server 9 a
sleslo Lustre Client 1.6.6 166
slesld SUSE Linux Enterprise Server 10 10
SUNSPOO144FEDESEE SUM FIRE X4440 RR
SUNSPOO144FEDZAL0 SUM FIRE X4440 RR

To sawe this information and register these products with Sun Connection later,
" Save As..
click the Save As... buttan,

[Caea | (e] [conm] []

If the list of located products does not look complete, select Back and enter a more
accurate search.

Note — Located service tags are not limited to Lustre components. The Registration
client locates any Sun product on your system that is supported in the Sun inventory
management program.

Lustre 1.8 Operations Manual ¢ March 2010

6. Register the service tags or save them for later use.
There are two options for registering service tags.

» Click Next to continue with the remaining steps 3-5 of the registration process,
including authentication to the Inventory management website and uploading
your service tags.

» Save the collected service tags and register them on another machine. This
option is good if the system used to collect the service tags does not have Web
access. Click Save As and enter a file where the tags should be saved. You can
then move this file (using network copy, a USB key, etc.) to a machine with Web
access.

On the Web-access machine, navigate to Sun Inventory and click Discover &
Register to start the Registration client. Select the ‘Locate Product on Other
Subnets, Specific System or Load Previously Saved Data’ option and check the
‘File Name’ box. Enter (or navigate to) the file where the collected service tags
were saved, click Next and follow the remaining steps 3-5 to complete the
registration process, including authentication to the Inventory management
website and uploading your service tags.

7. If you wish, navigate to Sun Inventory and log into your account to view and
manage your IT assets.

Note — For more information about service tags, see https://inventory.sun.com,
which links to the http://wikis.sun.com/display/ServiceTag/Home wiki. This wiki
includes an FAQ about Sun’s service tag program.

Chapter 5 Service Tags 5-5

https://inventory.sun.com
https://inventory.sun.com
https://inventory.sun.com
http://wikis.sun.com/display/ServiceTag/Hom

523 Information Registered with Sun

The service tag registration process collects the following product, registration
agentry and system information.

Data Name Description

Product Information

Lustre-specific information =~ Node type (client, MDS, OSS or MGS)

Instance identifier Unique identifier for that instance of the gear
Product name Name of the gear

Product identifier Unique identifier for the gear being registered
Product vendor Vendor of the gear

Product version Version of the gear

Parent name Parent gear of the registered gear

Parent identifier Unique identifier for the parent of the gear
Customer tag Optional, customer-defined value

Time stamp Day and time that the gear is registered
Source Where the gear identifiers came from
Container Name of the gear's container

Registration Agentry Information

Agentry Identifier Unique value for that instance of the agentry
Agentry Version Value of the agentry
Registry Identifier File version containing product registration information

System Information

Host System hostname

System Operating System

Release Operating system version
Architecture Physical hardware architecture
Platform Hardware platform
Manufacturer Hardware manufacturer

CPU manufacturer CPU manufacturer

HostID System host ID

Serial number System chassis serial number

5-6 Lustre 1.8 Operations Manual ¢ March 2010

CHAPTER 6

Configuring Lustre - Examples

This chapter provides Lustre configuration examples and includes the following
section:

m Simple TCP Network

6.1

6.1.1

6.1.1.1

Simple TCP Network

This chapter presents several examples of Lustre configurations on a simple TCP
network.

Lustre with Combined MGS/MDT

Below is an example is of a Lustre setup “datafs” having combined MDT/MGS with
four OSTs and a number of Lustre clients.

Installation Summary
m Combined (co-located) MDT/MGS
m Four OSTs

= Any number of Lustre clients

6-1

6.1.1.2

6-2

Configuration Generation and Application

1.

Install the Lustre RPMS (per Installing Lustre) on all nodes that are going to be
part of the Lustre file system. Boot the nodes in Lustre kernel, including the
clients.

. Change modprobe.conf by adding the following line to it.

options lnet networks=tcp

. Configuring Lustre on MGS and MDT node.

$ mkfs.lustre --fsname datafs --mdt --mgs /dev/sda

. Make a mount point on MDT/MGS for the file system and mount it.

$ mkdir -p /mnt/data/mdt
$ mount -t lustre /dev/sda /mnt/data/mdt

. Configuring Lustre on all four OSTs.

mkfs.lustre --fsname datafs --ost --mgsnode=mdsl6@tcp0 /dev/sda
mkfs.lustre --fsname datafs --ost --mgsnode=mdslé6@tcp0 /dev/sdd
mkfs.lustre --fsname datafs --ost --mgsnode=mdsl6@tcpO0 /dev/sdal
mkfs.lustre --fsname datafs --ost --mgsnode=mdslé6@tcp0 /dev/sdb

Note — While creating the file system, make sure you are not using disk with the
operating system.

6.

Make a mount point on all the OSTs for the file system and mount it.

$ mkdir -p /mnt/data/ost0
$ mount -t lustre /dev/sda /mnt/data/ost0

$ mkdir -p /mnt/data/ostl
$ mount -t lustre /dev/sdd /mnt/data/ostl

$ mkdir -p /mnt/data/ost2
$ mount -t lustre /dev/sdal /mnt/data/ost2

$ mkdir -p /mnt/data/ost3
$ mount -t lustre /dev/sdb /mnt/data/ost3

$ mount -t lustre mdtl6@tcpO:/datafs /mnt/datafs

Lustre 1.8 Operations Manual ¢ March 2010

6.1.2

6.1.2.1

6.1.2.2

Lustre with Separate MGS and MDT

The following example describes a Lustre file system “datafs” having an MGS and an
MDT on separate nodes, four OSTs, and a number of Lustre clients.

Installation Summary

One MGS
One MDT
Four OSTs

Any number of Lustre clients

Configuration Generation and Application

1.

Install the Lustre RPMs (per Installing Lustre) on all the nodes that are going to
be a part of the Lustre file system. Boot the nodes in the Lustre kernel,
including the clients.

. Change the modprobe.conf by adding the following line to it.

options lnet networks=tcp

. Start Lustre on the MGS node.

$ mkfs.lustre --mgs /dev/sda

. Make a mount point on MGS for the file system and mount it.

$ mkdir -p /mnt/mgs
$ mount -t lustre /dev/sdal /mnt/mgs

. Start Lustre on the MDT node.

$ mkfs.lustre --fsname=datafs --mdt --mgsnode=mgsnode@tcpl \
/dev/sda2

. Make a mount point on MDT/MGS for the file system and mount it.

$ mkdir -p /mnt/data/mdt
$ mount -t lustre /dev/sda /mnt/data/mdt

. Start Lustre on all the four OSTs.

mkfs.lustre --fsname datafs --ost --mgsnode=mdsl6@tcp0 /dev/sda
mkfs.lustre --fsname datafs --ost --mgsnode=mdsl6@tcp0 /dev/sdd
mkfs.lustre --fsname datafs --ost --mgsnode=mdsl6@tcpO /dev/sdal
mkfs.lustre --fsname datafs --ost --mgsnode=mdsl6@tcp0 /dev/sdb

Chapter 6 Configuring Lustre - Examples 6-3

6.1.2.3

6-4

8. Make a mount point on all the OSTs for the file system and mount it

$ mkdir
$ mount

$ mkdir
$ mount

$ mkdir
$ mount

$ mkdir
$ mount

$ mount

-P
-t

-P
-t

-P
-t

-P
-t

-t

/mnt/data/ost0
lustre /dev/sda /mnt/data/ost0

/mnt/data/ostl
lustre /dev/sdd /mnt/data/ostl

/mnt/data/ost?2
lustre /dev/sdal /mnt/data/ost2

/mnt /data/ost3
lustre /dev/sdb /mnt/data/ost3

lustre mdsnode@tcpO:/datafs /mnt/datafs

Configuring Lustre with a CSV File

A new utility (script) - /usr/sbin/lustre_config can be used to configure
Lustre 1.6 and later. This script enables you to automate formatting and setup of
disks on multiple nodes.

Describe your entire installation in a Comma Separated Values (CSV) file and pass it
to the script. The script contacts multiple Lustre targets simultaneously, formats the
drives, updates modprobe. conf, and produces HA configuration files using

definitions in the CSV file. (The lustre_config -h option shows several samples
of CSV files.)

Note — The CSV file format is a file type that stores tabular data. Many popular
spreadsheet programs, such as Microsoft Excel, can read from/write to CSV files.

How lustre_config Works

The lustre_config script parses each line in the CSV file and executes remote
commands, like mkfs.lustre, to format each Lustre target in the Lustre cluster.

Optionally, the lustre_config script can also:

Verify network connectivity and hostnames in the cluster
Configure Linux MD/LVM devices

Modify /etc/modprobe.conf to add Lustre networking information

Add the Lustre server information to /etc/fstab

Produce configurations for Heartbeat or CluManager

Lustre 1.8 Operations Manual ¢ March 2010

How to Create a CSV File

Five different types of line formats are available to create a CSV file. Each line format
represents a target. The list of targets with the respective line formats are described

below:

Linux MD device

The CSV line format is:

hostname, MD, md name, operation mode, options, raid level, component devices

Where:

Variable Supported Type

hostname Hostname of the node in the cluster.

MD Marker of the MD device line.

md name MD device name, for example: /dev/md0

operation mode
options

raid level
hostname

component devices

Operations mode, either create or remove. Default is create.
A “catchall’ for other mdadm options, for example, -c 128
RAID level: 0, 1, 4, 5, 6, 10, linear and multipath.

Hostname of the node in the cluster.

Block devices to be combined into the MD device. Multiple devices are
separated by space or by using shell extensions, for example:
/dev/sd{a,b,c}

Chapter 6 Configuring Lustre - Examples

6-5

Linux LVM PV (Physical Volume)
The CSV line format is:

hostname, PV, pv names, operation mode, options

Where:

Variable Supported Type

hostname Hostname of the node in the cluster.

4% Marker of the PV line.

pv names Devices or loopback files to be initialized for later use by LVM or to
wipe the label, for example: /dev/sda
Multiple devices or files are separated by space or by using shell
expansions, for example: /dev/sd{a,b,c}

operation mode Operations mode, either create or remove. Default is create.

options A “catchall’ for other pvcreate/pvremove options, for example: -vv

Linux LVM VG (Volume Group)
The CSV line format is:

hostname, VG, vg name, operation mode, options, pv paths

Where:

Variable Supported Type

hostname Hostname of the node in the cluster.

VG Marker of the VG line.

vg name Name of the volume group, for example: ost_vg

operation mode Operations mode, either create or remove. Default is create.

options A ‘catchall” for other vgcreate/rgremove options, for example: -s 32M
pv paths Physical volumes to construct this VG, required by the create mode;

multiple PVs are separated by space or by using shell expansions, for
example: /dev/sd[k-m]1

6-6 Lustre 1.8 Operations Manual ¢ March 2010

Linux LVM LV (Logical Volume)

The CSV line format is:

hostname, LV, lv name, operation mode, options, v size, vg name

Where:

Variable Supported Type

hostname Hostname of the node in the cluster.

LV Marker of the LV line.

Iv name Name of the logical volume to be created (optional) or path of the logical

operation mode
options
lv size

vg name

volume to be removed (required by the remove mode).

Operations mode, either create or remove. Default is create.

A “catchall’ for other Ivcreate/lvremove options, for example: -i 2 -1 128
Size [kKKmMgGtT] to be allocated for the new LV. Default is megabytes (MB).

Name of the VG in which the new LV is created.

Chapter 6 Configuring Lustre - Examples 6-7

6-8

Lustre target
The CSV line format is:

hostname, module_opts, device name, mount point, device type, fsname, mgs nids, index,
format options, mkfs options, mount options, failover nids

Where:

Variable Supported Type

hostname Hostname of the node in the cluster. It must match uname -n

module_opts Lustre networking module options. Use the newline character (\n) to
delimit multiple options.

device name Lustre target (block device or loopback file).

mount point Lustre target mount point.

device type Lustre target type (mgs, mdt, ost, mgs | mdt, mdt|mgs).

fsname Lustre file system name (limit is 8 characters).

mgs nids NID(s) of the remote mgs node, required for MDT and OST targets; if
this item is not given for an MDT, it is assumed that the MDT is also an
MGS (according to mkfs.lustre).

index Lustre target index.

format options A ‘catchall’ contains options to be passed to mkfs.lustre. For example:
device-size, --param, and so on.

mkfs options Format options to be wrapped with --mkfsoptions= and passed to
mkfs.lustre.

mount options If this script is invoked with -m option, then the value of this item is
wrapped with --mountfsoptions= and passed to mkfs.lustre;
otherwise, the value is added into /etc/ fstab

failver nids NID(s) of the failover partner node.

Note — In one node, all NIDs are delimited by commas (','). To use comma-separated
NIDs in a CSV file, they must be enclosed in quotation marks, for example:
"lustre-mgs2,2@elan"

When multiple nodes are specified, they are delimited by a colon ('').

If you leave a blank, it is set to default.

Lustre 1.8 Operations Manual ¢ March 2010

The lustre_config.csv file looks like:

{mdtname} . {domainname}, options lnet networks=

tcp, /dev/sdb, /mnt/mdt, mgs |mdt
{ost2name} . {domainname}, options

tcp, /dev/sda, /mnt/ostl,ost,,192.

{ostlname} . {domainname}, options

tcp, /dev/sda, /mnt/ost0,o0st,,192.

lnet networks=
168.16.34@tcp0
lnet networks=
168.16.34@tcp0

Note — Provide a Fully Qualified Domain Name (FQDN) for all nodes that are a part

of the file system in the first parameter of all the rows starting in a new line. For

example:

mdtl.clusterfs.com,options lnet networks=

tcp, /dev/sdb, /mnt/mdt, mgs |mdt

- AND -

ostl.clusterfs.com,options 1lnet\ networks=tcp,/dev/sda, /mnt/

ostl,ost,,192.168.16.34@tcp0

Chapter 6 Configuring Lustre - Examples

6-9

6-10

Using CSV with lustre_config

Once you created the CSV file, you can start to configure the file system by using the
lustre_config script.

1. List the available parameters. At the command prompt. Type:

$ lustre_config
lustre_config: Missing csv file!

Usage: lustre_config [options] <csv file>

This script is used to format and set up multiple lustre servers
from a csv file.

Options:

-h help and examples

-a select all the nodes from the csv file to operate on
-w hostname, hostname, . ..

select the specified list of nodes (separated by commas) to
operate on rather than all the nodes in the csv file

-x hostname, hostname, ... exclude the specified list of
nodes (separated by commas)

-t HAtype produce High-Availability software
configurations

The argument following -t is used to indicate the
High-Availability software type. The HA software types which are
currently supported are: hbvl (Heartbeat version 1) and hbv2
(Heartbeat version 2).

-n no net - don’'t verify network connectivity and hostnames
in the cluster

-d configure Linux MD/LVM devices before formatting the
Lustre targets

-f force-format the Lustre targets using --reformat option
OR you can specify --reformat in the ninth field of the target
line in the csv file

-m no fstab change - don’t modify /etc/fstab to add the new
Lustre targets. If using this option, then the value of "mount
options" item in the csv file will be passed to mkfs.lustre,else
the value will be added into the /etc/fstab

-v verbose mode

csv file is a spreadsheet that contains configuration parameters
(separated by commas) for each target in a Lustre cluster

Lustre 1.8 Operations Manual ¢ March 2010

Example 1: Simple Lustre configuration with CSV (use the following command):

$ lustre_config -v -a -f lustre_config.csv

This command starts the execution and configuration on the nodes or targets in
lustre_config.csv, prompting you for the password to log in with root access
to the nodes. To avoid this prompt, configure a shell like pdsh or SSH.

After completing the above steps, the script makes Lustre target entries in the
/etc/fstab file on Lustre server nodes, such as:

/dev/sdb /mnt/mdtlustre defaults 0 0
/dev/sda /mnt/ostlustre defaults 0 0

2. Run mount /dev/sdb and mount /dev/sda to start the Lustre services.

Note — Use the /usr/sbin/lustre_createcsv script to collect information on
Lustre targets from running a Lustre cluster and generating a CSV file. It is a reverse
utility (compared to lustre_config) and should be run on the MGS node.

Example 2: More complicated Lustre configuration with CSV:

For RAID and LVM-based configuration, the lustre_config.csv file looks like
this:

Configuring RAID 5 on mdsl6.clusterfs.com

mdsl6.clusterfs.com,MD, /dev/md0,,-c 128,5, /dev/sdb /dev/sdc
/dev/sdd

configuring multiple RAID5 on osslé6l.clusterfs.com
ossl6l.clusterfs.com,MD, /dev/md0,,-c 128,5, /dev/sdb /dev/sdc
/dev/sdd

ossl6l.clusterfs.com,MD, /dev/mdl, ,-c 128,5, /dev/sde /dev/sdf
/dev/sdg

configuring LVM2-PV from the RAID5 from the above steps on
ossl6l.clusterfs.com
ossl6l.clusterfs.com, PV, /dev/md0 /dev/mdl

configuring LVM2-VG from the PV and RAID5 from the above steps on
ossl6l.clusterfs.com
ossl6l.clusterfs.com,VG,oss_data,,-s 32M, /dev/md0 /dev/mdl

configuring LVM2-LV from the VG, PV and RAID5 from the above steps
on ossl6l.clusterfs.com

ossl6l.clusterfs.com,LV,ost0,,-1 2 -I 128,2G,oss_data
ossl6l.clusterfs.com,LV,ostl,,-1 2 -I 128,2G,oss_data

Chapter 6 Configuring Lustre - Examples 6-11

6-12

configuring LVM2-PV on ossl62.clusterfs.com
ossl62.clusterfs.com,PV, /dev/sdb /dev/sdc /dev/sdd /dev/sde
/dev/sdf /dev/sdg

configuring LVM2-VG from the PV from the above steps on
ossl62.clusterfs.com

ossl62.clusterfs.com,VG,vg_ossl,,-s 32M, /dev/sdb /dev/sdc /dev/sdd
ossl62.clusterfs.com,VG,vg_oss2,,-s 32M, /dev/sde /dev/sdf /dev/sdg

configuring LVM2-LV from the VG and PV from the above steps on
ossl62.clusterfs.com

ossl62.clusterfs.com,LV,ost3,,-i 3 -I 64,1G,vg_oss2
ossl62.clusterfs.com,LV,ost2,,-1i 3 -I 64,1G,vg_ossl

#configuring Lustre file system on MDS/MGS, 0SS and OST with RAID
and LVM created above

mdsl6.clusterfs.com,options lnet networks=

tcp, /dev/md0, /mnt/mdt, mgs |mdt, , ., ,,,

ossl6l.clusterfs.com,options lnet networks=

tcp, /dev/oss_data/ost0, /mnt/ost0,ost,,192.168.16.34@tcp0,,,,

ossl6l.clusterfs.com,options lnet networks=

tcp, /dev/oss_data/ostl, /mnt/ostl,ost,,192.168.16.34@tcp0,,,,
ossl62.clusterfs.com,options lnet networks=

tcp, /dev/pv_ossl/ost2, /mnt/ost2,0st,,192.168.16.34@tcp0, ,,,

ossl62.clusterfs.com,options lnet networks=

tcp, /dev/pv_oss2/ost3, /mnt/ost3,0st,,192.168.16.34@tcp0,,,,

$ lustre_config -v -a -d -f lustre_config.csv

This command creates RAID and LVM, and then configures Lustre on the nodes or
targets specified in lustre_config.csv. The script prompts you for the
password to log in with root access to the nodes.

After completing the above steps, the script makes Lustre target entries in the
/etc/fstab file on Lustre server nodes, such as:

For MDS | MDT:

/dev/md0 /mnt/mdtlustre defaults00
For OSS:

/pv_ossl/ost2 /mnt/ost2lustre defaults00

. Start the Lustre services, run:

mount /dev/sdb
mount /dev/sda

Lustre 1.8 Operations Manual ¢ March 2010

CHAPTER 7

More Complicated Configurations

This chapter describes more complicated Lustre configurations and includes the
following sections:

m Multihomed Servers

m Elan to TCP Routing

m Load Balancing with InfiniBand

m Multi-Rail Configurations with LNET

7.1

7.1.1

Multihomed Servers

If you are using multiple networks with Lustre, certain configuration settings are
required. Throughout this section, a worked example is used to illustrate these
settings.

In this example, servers megan and oscar each have three TCP NICs (eth0, ethl, and
eth2) and an Elan NIC. The eth2 NIC is used for management purposes and should
not be used by LNET. TCP clients have a single TCP interface and Elan clients have a
single Elan interface.

Modprobe.conf

Options under modprobe. conf are used to specify the networks available to a node.
You have the choice of two different options — the networks option, which explicitly
lists the networks available and the ip2nets option, which provides a list-matching
lookup. Only one option can be used at any one time. The order of LNET lines in
modprobe.conf is important when configuring multi-homed servers. If a server
node can be reached using more than one network, the first network specified in
modprobe.conf will be used.

7-1

7-2

Networks

On the servers:

options lnet networks=tcpl(eth0, ethl),elan0
Elan-only clients:

options lnet networks=elanO0

TCP-only clients:

options lnet networks=tcp0

Note — In the case of TCP-only clients, the first available non-loopback IP interface is
used for tcp0 since the interfaces are not specified.

ip2nets

The ip2nets option is typically used to provide a single, universal modprobe.conf
file that can be run on all servers and clients. An individual node identifies the
locally available networks based on the listed IP address patterns that match the
node's local IP addresses. Note that the IP address patterns listed in the ip2nets
option are only used to identify the networks that an individual node should
instantiate. They are not used by LNET for any other communications purpose. The
servers megan and oscar have ethQ IP addresses 192.168.0.2 and .4. They also have
IP over Elan (eip) addresses of 132.6.1.2 and .4. TCP clients have IP addresses
192.168.0.5-255. Elan clients have eip addresses of 132.6.[2-3].2, .4, .6, .8.

modprobe. conf is identical on all nodes:

options lnet 'ip2nets="tcpO(eth0,ethl1)192.168.0.[2,4]; tcpO \
192.168.0.*; elan0 132.6.[1-3].[2-8/2]""

Note — LNET lines in modprobe . conf are only used by the local node to determine
what to call its interfaces. They are not used for routing decisions.

Because megan and oscar match the first rule, LNET uses ethO and ethl for tcp0 on
those machines. Although they also match the second rule, it is the first matching
rule for a particular network that is used. The servers also match the (only) Elan rule.
The [2-8/2] format matches the range 2-8 stepping by 2; that is 2,4,6,8. For example,
clients at 132.6.3.5 would not find a matching Elan network.

Lustre 1.8 Operations Manual ¢ March 2010

7.1.2

Start Servers

For the combined MGS/MDT with TCP network, run:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda
$ mkdir -p /mnt/test/mdt
$ mount -t lustre /dev/sda /mnt/test/mdt

-OR -
For the MGS on the separate node with TCP network, run:

$ mkfs.lustre --mgs /dev/sda
$ mkdir -p /mnt/mgs
$ mount -t lustre /dev/sda /mnt/mgs

For starting the MDT on node mds16 with MGS on node mgs16, run:

$ mkfs.lustre --fsname=spfs --mdt --mgsnode=mgsl6@tcp0 /dev/sda
$ mkdir -p /mnt/test/mdt
$ mount -t lustre /dev/sda2 /mnt/test/mdt

For starting the OST on TCP-based network, run:

$ mkfs.lustre --fsname spfs --ost --mgsnode=mgsl6@tcp0 /dev/sda$
$ mkdir -p /mnt/test/ost0
$ mount -t lustre /dev/sda /mnt/test/ost0

Chapter 7 More Complicated Configurations

7-3

7.1.3

7-4

Start Clients

TCP clients can use the host name or IP address of the MDS, run:
mount -t lustre megan@tcpO:/mdsA/client /mnt/lustre
Use this command to start the Elan clients, run:

mount -t lustre 2@elanl:/mdsA/client /mnt/lustre

Note — If the MGS node has multiple interfaces (for instance, cfs21 and 1@elan), only
the client mount command has to change. The MGS NID specifier must be an
appropriate nettype for the client (for example, a TCP client could use uml1@tcp0,
and an Elan client could use 1@elan). Alternatively, a list of all MGS NIDs can be
given, and the client chooses the correctd one. For example:

S mount -t lustre mgsl6@tcpl,l@elan:/testfs /mnt/testfs

Lustre 1.8 Operations Manual ¢ March 2010

7.2

7.2.1

7.2.2

7.2.3

Elan to TCP Routing

Servers megan and oscar are on the Elan network with eip addresses 132.6.1.2 and

4. Megan is also on the TCP network at 192.168.0.2 and routes between TCP and

Elan. There is also a standalone router, routerl, at Elan 132.6.1.10 and TCP
192.168.0.10. Clients are on either Elan or TCP.

Modprobe.conf

modprobe.conf is identical on all nodes, run:

options lnet 'ip2nets="tcpO 192.168.0.%*; elan0 132.6.1.*"' \
'routes="tcp [2,10]@elan0; elan 192.168.0.[2,10]@tcp0O""

Start servers

To start routerl, run:

modprobe lnet
lctl network configure

To start megan and oscar, run:

mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

mkdir -p /mnt/test/mdt

mount -t lustre /dev/sda /mnt/test/mdt

mount -t lustre mgsl6@tcp0,l@elan:/testfs /mnt/testfs

vy r Vr

Start clients

For the TCP client, run:
mount -t lustre megan:/mdsA/client /mnt/lustre/
For the Elan client, run:

mount -t lustre 2@elanO:/mdsA/client /mnt/lustre

Chapter 7 More Complicated Configurations

7.3 Load Balancing with InfiniBand

A Lustre file system contains OSSs with two InfiniBand HCAs. Lustre clients have
only one InfiniBand HCA using OFED Infiniband "02ib" drivers. Load balancing
between the HCAs on the OSS is accomplished through LNET.

7.3.1 Setting Up modprobe.conf for Load Balancing

To configure LNET for load balancing on clients and servers:

1. Set the modprobe.conf options.
Depending on your configuration, set modprobe.conf options as follows:
m Dual HCA OSS server

options lnet ip2nets= "02ib0(ib0),02ibl (ibl) 192.168.10.1.[101-102]
m Client with the odd IP address

options lnet ip2nets=02ib0(ib0) 192.168.10.[103-253/2]
m Client with the even IP address

options lnet ip2nets=02ibl (ib0) 192.168.10.[102-254/2]

2. Run the modprobe lnet command and create a combined MGS/MDT file
system.

The following commands create the MGS/MDT file system and mount the servers
(MGS/MDT and OSS).

modprobe lnet

mkfs.lustre --fsname lustre --mgs --mdt <block device name>
mkdir -p <mount point>

mount -t lustre <block device> <mount point>

mount -t lustre <block device> <mount point>

mkfs.lustre --fsname lustre --mgs --mdt <block device name>
mkdir -p <mount point>
mount -t lustre <block device> <mount point>

Uy r Ur Ur “r Ur Ur Ur

mount -t lustre <block device> <mount point>

7-6 Lustre 1.8 Operations Manual ¢ March 2010

For example:

modprobe lnet

S mkfs.lustre --fsname lustre --mdt --mgs /dev/sda

$ mkdir -p /mnt/test/mdt

S mount -t lustre /dev/sda /mnt/test/mdt

S mount -t lustre mgs@o2ib0:/lustre /mnt/mdt

S mkfs.lustre --fsname lustre --ost --mgsnode=mds@o2ib0 /dev/sda
S mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/ost

$ mount -t lustre mgs@o2ib0:/lustre /mnt/ost

3. Mount the clients.

mount -t lustre <MGS node>:/<fsname> <mount point>

This example shows an IB client being mounted.

mount -t lustre
192.168.10.101@021b0,192.168.10.102@021ibl:/mds/client /mnt/lustre

7.4

Multi-Rail Configurations with LNET

To aggregate bandwidth across both rails of a dual-rail IB cluster (02iblnd)! using
LNET, consider these points:

m LNET can work with multiple rails, however, it does not load balance across them.
The actual rail used for any communication is determined by the peer NID.

m Multi-rail LNET configurations do not provide an additional level of network fault
tolerance. The configurations described below are for bandwidth aggregation only.
Network interface failover is planned as an upcoming Lustre feature.

m A Lustre node always uses the same local NID to communicate with a given peer
NID. The criteria used to determine the local NID are:

» Fewest hops (to minimize routing), and

m Appears first in the "networks" or "ip2nets" LNET configuration strings

1. Multi-rail configurations are only supported by 02iblnd; other IB LNDs do not support multiple interfaces.

Chapter 7 More Complicated Configurations 7-7

7-8

As an example, consider a two-rail IB cluster running the OFA stack (OFED) with
these IPoIB address assignments.

ib0 ibl
Servers 192.168.0.* 192.168.1.%*
Clients 192.168.[2-127].* 192.168.[128-253].*

You could create these configurations:

m A cluster with more clients than servers. The fact that an individual client cannot
get two rails of bandwidth is unimportant because the servers are the actual
bottleneck.

ip2nets="02ib0(ib0), 02ibl(ibl)192.168.[0-1].* #all servers;\
02ib0(ib0) 192.168.[2-253].[0-252/2]#even clients;\
02ibl (ibl) 192.168.[2-253].[1-253/2]#0dd clients"

This configuration gives every server two NIDs, one on each network, and statically
load-balances clients between the rails.

m A single client that must get two rails of bandwidth, and it does not matter if the
maximum aggregate bandwidth is only (# servers) * (1 rail).

ip2nets=" 021ib0 (ib0) 192.168.[0-1]1.[0-252/2] #even servers;\
021ibl (ibl) 192.168.[0-1]1.[1-253/2] #odd servers;\
02ib0 (ib0),02ibl (ibl) 192.168.[2-253].* #clients"

This configuration gives every server a single NID on one rail or the other. Clients
have a NID on both rails.

m All clients and all servers must get two rails of bandwidth.

ip2nets=" 021b0(ib0),021ib2 (ibl) 192.168.[0-1].[0-252/2] #even servers;\
02ibl (ib0),02ib3 (ibl) 192.168.[0-1].[1-253/2] #odd servers;\
021ib0 (ib0) ,02ib3 (ibl) 192.168.[2-253].[0-252/2) #even clients;\
02ibl (ib0) ,02ib2 (ibl) 192.168.[2-253].[1-253/2) #0odd clients"

This configuration includes two additional proxy o2ib networks to work around
Lustre's simplistic NID selection algorithm. It connects "even" clients to "even"
servers with 02ib0 on rail0, and "odd" servers with 02ib3 on raill. Similarly, it
connects "odd" clients to "odd" servers with 02ib1 on rail0, and "even" servers with
02ib2 on raill.

Lustre 1.8 Operations Manual ¢ March 2010

CHAPTER 8

Failover

This chapter describes failover in a Lustre system and includes the following
sections:

m What is Failover?
m Failover Functionality in Lustre

m Configuring and Using Heartbeat with Lustre Failover

8.1

What is Failover?

A computer system is "highly available" when the services it provides are available
with minimal downtime. In a highly-available system, if a failure condition occurs,
such as the loss of a server or a network or software fault, the system’s services
continue without interruption. Generally, we measure availability by the percentage
of time the system is required to be available.

Availability is accomplished by replicating hardware and/or software so that when a
primary server fails or is unavailable, a standby server can be switched into its place
to run applications and associated resources. This process, called failover, should be
automatic and, in most cases, completely application-transparent.

A failover hardware setup requires a pair of servers with a shared resource (typically
a physical storage device, which may be based on SAN, NAS, hardware RAID, SCSI
or FC technology). The method of sharing storage should be essentially transparent
at the device level in that the same physical logical unit number (LUN) should be
visible from both servers. To ensure high availability at the physical storage level, we
encourage the use of RAID arrays to protect against drive-level failures.

8-1

8.1.1

8.1.2

8-2

Failover Capabilities

To establish a highly-available Lustre file system, power management software or
hardware and high availability (HA) software are used to provide the following
failover capabilities:

m Resource fencing - Protects physical storage from simultaneous access by two
nodes.

m Resource management - Starts and stops the Lustre resources as a part of failover,
maintains the cluster state, and carries out other resource management tasks.

m Health monitoring - Verifies the availability of hardware and network resources
and responds to health indications provided by Lustre.

Although these capabilities can be provided by a variety of software and/or
hardware solutions, the currently supported solution for Lustre is Heartbeat. For
information about accessing the latest version of Heartbeat, see:

www.sun.com/software/products/hpcsoftware / getit.jsp

HA software is responsible for detecting failure of the primary Lustre server node
and controlling the failover. Lustre works with any HA software that supports
resource (I/O) fencing. For proper resource fencing, the HA software must be able to
completely power off the failed server or disconnect it from the shared storage
device. If two active nodes have access to the same storage device, data may be
severely corrupted.

Types of Failover Configurations

Nodes in a cluster can be configured for failover in several ways. They are often
configured in pairs (for example, two OSTs attached to a shared storage device), but
other failover configurations are also possible. Failover configurations include:

m Active/passive pair - In this configuration, the active node provides resources and
serves data, while the passive node is usually standing by idle. If the active node
fails, the passive node takes over and becomes active.

m Active/active pair - In this configuration, both nodes are active, each providing a
subset of resources. In case of a failure, the second node takes over resources from
the failed node.

The active/passive configuration is seldom used for OST servers as it doubles
hardware costs without improving performance. On the other hand, an active/active
cluster configuration can improve performance by serving and providing arbitrary
failover protection to a number of OSTs. In an active/active configuration, multiple
OSS nodes are configured to serve the same OST, but only one OSS node can serve
the OST at a time. The OST must never be active on more than one OSS at a time.

Lustre 1.8 Operations Manual ¢ March 2010

http://www.sun.com/software/products/hpcsoftware/getit.jsp

8.2

Failover Functionality in Lustre

The failover functionality provided in Lustre supports the following failover
scenario. When a client attempts to do I/O to a failed Lustre target, it continues to try
until it receives an answer from any of the configured failover nodes for the Lustre
target. A user-space application does not detect anything unusual, except that the
I/0O may take longer than usual to complete.

Lustre failover requires two nodes configured as a failover pair, which must share
one or more storage devices. Lustre can be configured to provide MDT or OST
failover.

m For MDT failover, two MDSs are configured to serve the same MDT. Only one
MDS node can serve an MDT at a time.

m For OST failover, multiple OSS nodes are configured to be able to serve the same
OST. However, only one OSS node can serve the OST at a time. An OST can be
moved between OSS nodes that have access to the same storage device using
umount /mount commands.

To add a failover partner to a Lustre configuration, the --failnode option is used.
This can be done at creation time (using mkfs. lustre) or later when the Lustre
system is active (using tunefs.lustre). For explanations of these utilities, see
mkfs.lustre and tunefs.lustre.

For a failover example, see More Complicated Configurations.

Note — Failover is supported in Lustre only at the file system level. In a complete
failover solution, support for system-level components, such as node failure
detection or power control, is provided by a third party tool.

Caution — OST failover functionality does not protect against corruption caused by
a disk failure. If the storage media (i.e., physical disk) used for an OST fails, Lustre
cannot recover it. We strongly recommend that some form of RAID be used for OSTs.
Lustre functionality assumes that the storage is reliable, so it adds no extra reliability
features.

Chapter 8 Failover 8-3

8.2.1

8.2.2

8.2.3

8-4

MDT Failover Configuration (Active/Passive)

Two MDSs are usually configured as an active/passive failover pair. Note that both
nodes must have access to shared storage for the MDT(s) and the MGS. The primary
(active) MDS manages the Lustre system metadata resources. If the primary MDS
fails, the secondary (passive) MDS takes over these resources and serves the MDTs
and the MGS.

Note — In an environment with multiple file systems, the MDSs can be configured in
a quasi active/active configuration, with each MDS managing metadata for a subset
of the Lustre file system.

OST Failover Configuration (Active/Active)

OSTs are usually configured in a load-balanced, active/active failover configuration.
A failover cluster is built from two OSSs.

Note — OSSs configured as a failover pair must have shared disks/RAID.

In an active configuration, 50% of the available OSTs are assigned to one OSS and the
remaining OSTs are assigned to the other OSS. Each OSS serves as the primary node
for half the OSTs and as a failover node for the remaining OSTs.

In this mode, if one OSS fails, the other OSS takes over all of the failed OSTs. The
clients attempt to connect to each OSS serving the OST, until one of them responds.
Data on the OST is written synchronously, and the clients replay transactions that
were in progress and uncommitted to disk before the OST failure.

Lustre Failover and MMP

The failover functionality in Lustre is supported by the multiple mount protection
(MMP) feature, which protects the file system from being mounted simultaneously to
more than one node. This feature is important in a shared storage environment (for
example, when a failover pair of OSTs share a partition).

Lustre's backend file system, 1diskfs, supports the MMP mechanism. A block in the
file system is updated by a kmmpd daemon at one second intervals, and a sequence
number is written in this block. If the file system is cleanly unmounted, then a special
"clean" sequence is written to this block. When mounting the file system, 1diskfs
checks if the MMP block has a clean sequence or not.

Lustre 1.8 Operations Manual ¢ March 2010

8.2.3.1

Even if the MMP block has a clean sequence, 1diskfs waits for some interval to
guard against the following situations:

m If I/0O traffic is heavy, it may take longer for the MMP block to be updated.
m If another node is trying to mount the same file system, a "race" condition may

occur.

With MMP enabled, mounting a clean file system takes at least 10 seconds. If the file
system was not cleanly unmounted, then the file system mount may require
additional time.

Note — The MMP feature is only supported on Linux kernel versions >= 2.6.9.

Working with MMP

On a new Lustre file system, MMP is automatically enabled by mkfs.lustre at
format time if failover is being used and the kernel and e2fsprogs version support it.
On an existing file system, a Lustre administrator can manually enable MMP when
the file system is unmounted.

Use the following commands to determine whether MMP is running in Lustre and to
enable or disable the MMP feature.

To determine if MMP is enabled, run:
dumpe2fs -h <device>|grep mmp
Here is a sample command:

dumpe2fs -h /dev/sdc | grep mmp
Filesystem features: has_journal ext_attr resize_inode dir_index
filetype extent mmp sparse_super large_file uninit_bg

To manually disable MMP, run:
tune2fs -0 "“mmp <device>
To manually enable MMP, run:
tune2fs -0 mmp <device>

When MMP is enabled, if 1diskfs detects multiple mount attempts after the file
system is mounted, it blocks these later mount attempts and reports the time when
the MMP block was last updated, the node name, and the device name of the node
where the file system is currently mounted.

Chapter 8 Failover 8-5

8.3

8.3.1

8.3.1.1

8-6

Configuring and Using Heartbeat with
Lustre Failover

This section describes how to configure Lustre failover using the Heartbeat cluster
infrastructure daemon.

Creating a Failover Environment

Lustre provides failover mechanisms only at the file system level. No failover
support is provided for system-level components, such as node failure detection or
power control, as would typically be provided in a complete failover solution.
Additional tools are also needed to provide resource fencing, control and monitoring.

Power Management Software

Lustre failover requires power control and management capability to verify that a
failed node is shut down before 1/0 is directed to the failover node. This avoids
double-mounting the two nodes, and the risk of unrecoverable data corruption. A
variety of power management tools will work, but two packages that are commonly
used with Lustre are STONITH and PowerMan.

Shoot The Other Node In The HEAD (STONITH), is a set of power management
tools provided with the Linux-HA package. STONITH has native support for many
power control devices and is extensible. It uses expect scripts to automate control.

PowerMan, available from the Lawrence Livermore National Laboratory (LLNL), is
used to control remote power control (RPC) devices from a central location.
PowerMan provides native support for several RPC varieties and expect-like
configuration simplifies the addition of new devices.

The latest versions of PowerMan are available at:
sourceforge.net/projects/powerman
For more information about PowerMan, go to:

computing.llnl.gov/linux/powerman.html

Lustre 1.8 Operations Manual ¢ March 2010

https://computing.llnl.gov/linux/powerman.html
http://sourceforge.net/projects/powerman

8.3.1.2

8.3.2

Power Equipment

Lustre failover also requires the use of RPC devices, which come in different
configurations. Lustre server nodes may be equipped with some kind of service
processor that allows remote power control. If a Lustre server node is not equipped
with a service processor, then a multi-port, Ethernet-addressable RPC may be used as
an alternative. For recommended products, refer to the list of supported RPC devices
on the PowerMan website.

computing.llnl.gov/linux/powerman.html

Setting up the Heartbeat Software

Lustre must be combined with high-availability (HA) software to enable a complete
Lustre failover solution. Lustre can be used with different HA packages, including
Heartbeat, the Linux-HA software.

For current information about Heartbeat, see linux-ha.org/wiki.

The Heartbeat package is one of the core components of the Linux-HA project.
Heartbeat is highly-portable and runs on every known Linux platform, as well as
FreeBSD and Solaris.

This section describes how to install Heartbeat v2 and configure it with and without
STONITH. Because Heartbeat v1 has simpler configuration files, which can be used
with both Heartbeat v1 and v2, the configuration examples show how to configure
Heartbeat using Heartbeat v1 configuration files.

Heartbeat v2 adds monitoring and supports more complex cluster topologies, and
the Heartbeat v2 configuration is stored as an XML file. To support users with
Heartbeat v2, this section also includes a procedure to migrate Heartbeat v1
configuration files to v2.

Chapter 8 Failover 8-7

http://linux-ha.org/wiki
https://computing.llnl.gov/linux/powerman.html

8.3.2.1

8.3.2.2

8-8

Installing Heartbeat
1. Install Lustre (see Installing Lustre).

2. Install the Heartbeat packages.

Heartbeat v2 requires several packages. This example uses Heartbeat v. 2.1.4. The
required Heartbeat packages are, in order:

m heartbeat-stonith -> heartbeat-stonith-2.1.4-1.x86_64.rpm

m heartbeat-pils -> heartbeat-pils-2.1.4-1.x86_64.rpm

m heartbeat -> heartbeat-2.1.4-1.x86_64.rpm

You can download the Heartbeat packages and guides covering basic setup and
testing here:

www.sun.com/software/products/hpcsoftware/ getit.jsp

Heartbeat packages are available for many Linux distributions. Additionally,
Heartbeat has some dependencies on other packages. It is recommended that you
use a package manager like yum, yast or aptitude to install the Heartbeat
packages and resolve their package dependencies.

Configuring Heartbeat

This section describes Heartbeat configuration and provides a worked example to
illustrate the configuration steps.

Note — Depending on the particular packaging, Heartbeat files may be located in a
different directory or path than indicated in the following procedures.

Lustre 1.8 Operations Manual ¢ March 2010

http://www.sun.com/software/products/hpcsoftware/getit.jsp

For remote power control, both OSS nodes are equipped with a service processor
(SP). The SPs are accessible over the network via their hostnames. Individual node
parameters are listed below.

Parameters Value Description

First OSS node
OSS node o0ss01 First OSS node in the Lustre file system
OST ost01 First OST in the Lustre file system
block device /dev/sda Block device for the first OSS node (oss01)
mount point /mnt/ostl Mount point for the 0ss01 block device (/dev/sda) on the 0ss01 node
hostname oss01lsp Hostname for the first OSS node’s SP
Second OSS node
OSS node 0ss02 Second OSS node in the Lustre file system
OST ost02 Second OST in the Lustre file system
block device /dev/sdb Block device for the second OSS node (oss02)
mount point /mnt/ost02 Mount point for the 0st02 block device (/dev/sdb) on the 0oss02 node

hostname o0ss02sp Hostname for the second OSS node’s SP

Configuring Heartbeat without STONITH

Note — This procedure describes Heartbeat configuration using a v1 configuration
file, which can be used with both Heartbeat v1 and v2. See (Optional) Migrating a
Heartbeat Configuration (v1 to v2) for an optional procedure to convert the v1
configuration file to an XML-formatted v2 configuration file.

Note — Depending on the particular packaging, Heartbeat files may be located in a
different directory or path than indicated in the following procedure. For example,
they may be located in /etc/ha.d/ or /var/lib/heartbeat.

Chapter 8 Failover 8-9

8-10

To configure Heartbeat without STONITH:

1. Create (or edit) the Heartbeat configuration file, /etc/ha.d/ha.cf.

This file must be identical on both nodes.

In this example configuration (without STONITH configuration), the
/etc/ha.d/ha.cf file looks like this:

log file settings

write debug output to /var/log/ha-debug
debugfile /var/log/ha-debug

write log messages to /var/log/ha-log
logfile /var/log/ha-log

use syslog to write to logfiles
logfacility local0

set some time-outs. these values are only recommendations, which
depend e.g. on the 0SS load

send keep-alive packages every 2 seconds

keepalive 2

wait 90 seconds before declaring a node dead

deadtime 90

write a warning to the logfile after 30 seconds without an answer
from the failover node

warntime 30

wait for 120 seconds before declaring a node dead after heartbeat
is brought up

initdead 120

define communication channels

use port 12345 to communicate with fail-over node

udpport 12345

use network interfaces ethO and ib0 to detect a failed node
bcast eth0 ib0

Use manual failback
auto_failback off

node names in this failover-pair. These names must match the
output of “hostname’

node oss01

node oss02

Lustre 1.8 Operations Manual ¢ March 2010

2. Define the resources that will be controlled by Heartbeat by editing the
/etc/ha/d/haresources file.

This file must be identical on both nodes.

In this example configuration, the /etc/ha.d/haresources file looks like this:
0ss0l Filesystem::/dev/sda::/mnt/ost0l::lustre

0ss02 Filesystem::/dev/sdb::/mnt/ost02::1lustre

The resource definition file tells Heartbeat that one file system resource is
associated with 0ss01 and o0ss02. Each resource is defined on separate lines.

The file system resource script takes three inputs separated by "::". The first
parameter is the device name, the second is the mount point and the third is the
file system type.

Depending on the configuration, a resource can be more complex, e.g., software
RAID needs to be assembled before the file system can be mounted. In this case,
an haresources file may look like this:

0ss01 Raidl::/etc/mdadm.conf.oss::/dev/mdl
Filesystem::/dev/mdl::/mnt/ost01l::lustre
0ss02 Raidl::/etc/mdadm.conf.oss::/dev/md2
Filesystem::/dev/md2::/mnt/ost02::lustre

When a resource group is started by Heartbeat, the resources start from left to
right. In this example, the RAID is assembled first, and the file system is mounted
second. If the resource group is stopped, then the file system is unmounted first
and the RAID is stopped second.

Other resource scripts can be found in the /etc/ha.d/resource.d/ folder.

3. Create the /etc/ha.d/authkeys file and fix its permissions.
This file must be identical on both nodes.
In this example configuration, the authkeys file looks like this:
auth 1
1 shal PutYourSuperSecretKeyHere
Make sure that the permissions for this files are set to 0600, by running chmod
0600 /etc/ha.d/authkeys on both nodes.
4. Test the Heartbeat configuration.

Run the following command on both nodes:

service heartbeat start
Check the log files on both nodes to find any problems and fix them.

After the initial deadtime interval, you should see the nodes discover each other's
state and start the Lustre resources associated with them.

Chapter 8 Failover 8-11

8-12

Configuring Heartbeat with STONITH

STONITH automates the process of power control and management. Expect scripts
are dependent on the exact set of commands provided by each hardware vendor. As
a result, any change in the power control hardware or firmware requires that
STONITH be adjusted.

Note — This procedure describes configuring Heartbeat using a v1 configuration file,
which can be used with both Heartbeat vl and v2. See (Optional) Migrating a
Heartbeat Configuration (v1 to v2) for an optional procedure to convert the v1
configuration file to an XML-formatted v2 configuration file.

Note — Depending on the particular packaging, Heartbeat files may be located in a
different directory or path than indicated in the following procedure. For example,
they may be located in /etc/ha.d/ or /var/lib/heartbeat.

The heartbeat-stonith package comes with a number of pre-defined STONITH scripts
for different power control hardware. Additionally, Heartbeat can be configured to
run an external script. Heartbeat can be configured in two STONITH modes:

m One STONITH command for all nodes found in ha.cf:

stonith <type> <config file>
m One STONITH command per-node:

stonith_host <hostfrom> <stonith_type> <params...>
You can use an external script to kill each node, e.g.:

stonith_host o0ss0l external foo /etc/ha.d/reset-nodeB
stonith_host 0ss02 external foo /etc/ha.d/reset-nodeA

To get the proper STONITH syntax, run:

$ stonith -L

The above command lists supported models.

To list required parameters and specify the configuration filename, run:
$ stonith -1 -t <model>

To attempt a test, run:

$ stonith -1 -t <model> <fake host name>

To test STONITH, use a real hostname. To work with Heartbeat correctly, the external
STONITH scripts should take the parameters {start | stop | status} and return 0 or 1.

Lustre 1.8 Operations Manual ¢ March 2010

8.3.2.3

To add STONITH functionality (using an ipmi service processor) to the configuration
example, add the following lines to the /etc/ha.d/ha.cf configuration file:

define how a node can be powered off in case of a failure. more
details below

stonith_host oss0l external/ipmi o0ss02 oss02sp root changeme lanplus
stonith_host o0ss02 external/ipmi oss0l ossOlsp root changeme lanplus

STONITH is only invoked if one of the failover nodes is no longer responding to
Heartbeat messages and the cluster does stop resources in an orderly manner. If two
cluster nodes can communicate, they usually shut down properly. This means that
many tests do not produce a STONITH, for example:

m Calling init 0, shutdown, or reboot on a node will cause no STONITH

m Stopping Heartbeat on a node stops the resources cleanly and fails them over to
the other node without invoking STONITH.

(Optional) Migrating a Heartbeat Configuration (v1 to v2)

Heartbeat includes a script that enables v1 configuration files to be migrated to v2
XML configuration files. The script reads the v1 configuration files (ha.cf and
haresources), and then writes an XML file to STDOUT. The script is

$ /usr/lib/heartbeat/haresources2cib.py
or
$ /usr/lib64/heartbeat/haresources2cib.py

To redirect the script output after the cib.xml file has been generated, it is
recommended that you check the XML file and change some parameters, such as
resource-stickiness and timeouts, to more appropriate values. For example:

$ /usr/lib64/heartbeat/haresources2cib.py > cib.xml

Then the cib.xml file should than be copied to /var/lib/heartbeat/crm/cib.xml on
both failover nodes.

To test the new configuration, start Heartbeat on both nodes and check the log files.

Note — If a Heartbeat v2 configuration file is available on the system, it is not
necessary to remove the v1 configuration files, as they are ignored.

Chapter 8 Failover 8-13

8.3.3

8.3.3.1

8.3.3.2

8-14

Working with Heartbeat

After Lustre and Heartbeat are correctly configured, the following commands can be
used to control Heartbeat.

Starting Heartbeat

To start Heartbeat, run this command on both failover nodes:
service heartbeat start

After a node fails, start Heartbeat manually and analyze the cause of the problem
before taking over the failed resources. You should NOT start Heartbeat
automatically after a node failure.

Switching Resources Between Nodes

Depending on whether Heartbeat v1 or v2 configuration files are being used, there
are different ways to switch resources between nodes.

For Heartbeat v1 configuration files, two scripts are provided (hb_takeover and
hb_standby), that make it easy to switch resources between failover nodes.
Depending on your system, these scripts are located in /usr/lib/heartbeat/ or
/usr/1lib64/heartbeat/.

The hb_takeover and hb_standby scripts take the following arguments:

m all -- take/fail over all resources

m foreign -- take/fail over foreign resources

m local -- take/fail over local resources only

m failback -- fail/take over foreign resources

Performing an hb_takeover on the current node is equivalent to performing an
hb_standby on the other node.

For Heartbeat v2 configuration files, the crm_resource command is used to interact
with Heartbeat's Cluster Resource Manager and switch resources between nodes. For
more information on crm_resource, see:

linux.die.net/man/8/crm_resource

Lustre 1.8 Operations Manual ¢ March 2010

http://linux.die.net/man/8/crm_resource

To switch resources between nodes:

1. Generate a complete list of resources known to the Heartbeat cluster resource
manager. Run:

crm_resource --list
2. From the list, identify the group name for the resource to fail over.
3. Determine if and where the specified resource is running. Run:
crm_resource -W -r <resource_name>
4. Migrate the resource to the host. Run:
crm_resource -M -r <resource_name> -H <target_host_name>
5. To un-migrate a resource, run:

crm_resource -U -r <resource_name>

Chapter 8 Failover 8-15

8-16 Lustre 1.8 Operations Manual ¢ March 2010

CHAPTER 9

Configuring Quotas

This chapter describes how to configure quotas and includes the following sections:
m Working with Quotas

m Enabling Disk Quotas

m Creating Quota Files and Quota Administration

m Quota Allocation

m Known Issues with Quotas

m Lustre Quota Statistics

9.1

Working with Quotas

Quotas allow a system administrator to limit the amount of disk space a user or
group can use in a directory. Quotas are set by root, and can be specified for
individual users and/or groups. Before a file is written to a partition where quotas
are set, the quota of the creator's group is checked. If a quota exists, then the file size
counts towards the group's quota. If no quota exists, then the owner's user quota is
checked before the file is written. Similarly, inode usage for specific functions can be
controlled if a user over-uses the allocated space.

Lustre quota enforcement differs from standard Linux quota support in several ways:

m Quotas are administered via the 1fs command (post-mount).

m Quotas are distributed (as Lustre is a distributed file system), which has several
ramifications.

m Quotas are allocated and consumed in a quantized fashion.

m Client does not set the usrquota or grpquota options to mount. When quota is
enabled, it is enabled for all clients of the file system; started automatically using
quota_type or started manually with 1fs quotaon.

9.1.1

9-2

Caution — Although quotas are available in Lustre, root quotas are NOT enforced.
1fs setqguota -u root (limits are not enforced)

1fs quota -u root (usage includes internal Lustre data that is dynamic in size
and does not accurately reflect mount point visible block and inode usage).

Enabling Disk Quotas

Use this procedure to enable (configure) disk quotas in Lustre.

1. If you have re-complied your Linux kernel, be sure that CONFIG_QUOTA and
CONFIG_QUOTACTL are enabled. Also, verify that CONFIG_QFMT_V1
and/or CONFIG_QFMT_V2 are enabled.

Quota is enabled in all Linux 2.6 kernels supplied for Lustre.
2. Start the server.

3. Mount the Lustre file system on the client and verify that the Iquota module has
loaded properly by using the 1smod command.

S lsmod

[root@ossl6l ~1# lsmod

Module Size Used by
obdfilter 220532 1
fsfilt_1ldiskfs 52228 1

ost 96712 1

mgc 60384 1

ldiskfs 186896 2 fsfilt_ldiskfs
lustre 401744 0

lov 289064 1 lustre
lgquota 107048 4 obdfilter
mdc 95016 1 lustre
ksocklnd 111812 1

The Lustre mount command no longer recognizes the usrquota and grpquota
options. If they were previously specified, remove them from /etc/fstab.

When quota is enabled, it is enabled for all file system clients (started automatically
using quota_type or manually with 1fs quotaon).

Note — Lustre with the Linux kernel 2.4 does not support quotas.

Lustre 1.8 Operations Manual ¢ March 2010

9.1.11

To enable quotas automatically when the file system is started, you must set the
mdt.quota_type and ost.quota_type parameters, respectively, on the MDT and
OSTs. The parameters can be set to the string u (user), g (group) or ug for both users
and groups.

You can enable quotas at mkfs time (mkfs.lustre --param mdt.quota_type=
ug) or with tunefs.lustre. As an example:

tunefs.lustre --param ost.quota_type=ug Sost_dev

Caution — If you are using mkfs.lustre --param mdt.gquota_type=ug or
tunefs.lustre --param ost.quota_type=ug, be sure to run the command on
all OSTs and the MDT. Otherwise, abnormal results may occur.

Administrative and Operational Quotas

Lustre has two kinds of quota files:

m Administrative quotas (for the MDT), which contain limits for users/groups for
the entire cluster.

m Operational quotas (for the MDT and OSTs), which contain quota information
dedicated to a cluster node.

Lustre 1.6.5 introduced the v2 file format for administrative quota files, with
continued support for the old file format (v1). The mdt . quota_type parameter also
handles ‘1" and ‘2’ options, to specify the Lustre quota versions that will be used. For
example:

--param mdt.quota_type=ugl
--param mdt.quota_type=u2

Lustre 1.6.6 introduced the v2 file format for operational quotas, with continued
support for the old file format (v1). The ost . quota_type parameter handles ‘1" and
‘2" options, to specify the Lustre quota versions that will be used. For example:

--param ost.quota_type=ug2
--param ost.quota_type=ul

For more information about the vl and v2 formats, see Quota File Formats.

Chapter 9 Configuring Quotas 9-3

9.1.2

9-4

Creating Quota Files and Quota Administration

Once each quota-enabled file system is remounted, it is capable of working with disk
quotas. However, the file system is not yet ready to support quotas. If umount has
been done regularly, run the 1fs command with the quotaon option. If umount has
not been done, perform these steps:

1. Take Lustre "offline". That is, verify that no write operations (append, write,
truncate, create or delete) are being performed (preparing to run 1fs
quotacheck). Operations that do not change Lustre files (such as read or
mount) are okay to run.

Caution — When 1fs quotacheck is run, Lustre must NOT be performing any
write operations. Failure to follow this caution may cause the statistic information of
quota to be inaccurate. For example, the number of blocks used by OSTs for users or
groups will be inaccurate, which can cause unexpected quota problems.

2. Run the 1fs command with the quotacheck option:

1fs quotacheck -ug /mnt/lustre

By default, quota is turned on after quotacheck completes. Available options are:
m u — checks the user disk quota information

m g — checks the group disk quota information

The 1fs quotacheck command checks all objects on all OSTs and the MDS to
sum up for every UID/GID. It reads all Lustre metadata and re-computes the
number of blocks/inodes that each UID/GID has used. If there are many files in
Lustre, it may take a long time to complete.

Note — User and group quotas are separate. If either quota limit is reached, a process
with the corresponding UID/GID cannot allocate more space on the file system.

Note — When 1£fs quotacheck runs, it creates a quota file -- a sparse file with a size
proportional to the highest UID in use and UID/GID distribution. As a general rule,
if the highest UID in use is large, then the sparse file will be large, which may affect
functions such as creating a snapshot.

Lustre 1.8 Operations Manual ¢ March 2010

Note — For Lustre 1.6 releases before version 1.6.5, and 1.4 releases before version
1.4.12, if the underlying ldiskfs file system has not unmounted gracefully (due to a
crash, for example), re-run quotacheck to obtain accurate quota information. Lustre
1.6.5 and 1.4.12 use journaled quota, so it is not necessary to run quotacheck after
an unclean shutdown.

In certain failure situations (e.g., when a broken Lustre installation or build is used),
re-run quotacheck after checking the server kernel logs and fixing the root problem.

The 1fs command includes several command options to work with quotas:

m quotaon — enables disk quotas on the specified file system. The file system quota
files must be present in the root directory of the file system.

m quotaoff — disables disk quotas on the specified file system.
m quota — displays general quota information (disk usage and limits)

m setquota — specifies quota limits and tunes the grace period. By default, the
grace period is one week.

Usage:
1fs quotaon [-ugf] <filesystem>
1fs quotaoff [-ug] <filesystem>

1fs quota [-v] [-o0 obd_uuid] [-u <username>|-g <groupname>]
<filesystem>

1fs quota -t <-u|-g> <filesystem>

1fs setquota <-u|--user|-g|--group> <username|groupname>
[-b <block-softlimit>] [-B <block-hardlimit>] [-i <inode-softlimit>]
[-I <inode-hardlimit>] <filesystem>

Examples:
In all of the examples below, the file system is /mnt lustre.
To turn on user and group quotas, run:
$ 1fs quotaon -ug /mnt/lustre
To turn off user and group quotas, run:
$ 1fs quotaoff -ug /mnt/lustre

To display general quota information (disk usage and limits) for the user running the
command and his primary group, run:

S 1fs quota /mnt/lustre

Chapter 9 Configuring Quotas 9-5

9-6

To display general quota information for a specific user ("bob" in this example), run:
$ 1fs quota -u bob /mnt/lustre

To display general quota information for a specific user ("bob" in this example) and
detailed quota statistics for each MDT and OST, run:

$ 1fs quota -u bob -v /mnt/lustre

To display general quota information for the group to which a specific user ("bob" in
this example) belongs, run:

$ 1fs quota -g bob /mnt/lustre

To display general quota information for a specific group ("eng" in this example),
run:

$ 1fs quota -g eng /mnt/lustre
To display block and inode grace times for user quotas, run:
$ 1fs quota -t -u /mnt/lustre
To set user and group quotas for a specific user ("bob" in this example), run:

$ 1fs setquota -u bob 307200 309200 10000 11000 /mnt/lustre

In this example, the quota for user "bob" is set to 300 MB (309200%1024) and the
hard limit is 11,000 files. Therefore, the inode hard limit should be 11000.

Note — For the Lustre command $ 1fs setquota/quota ... the qunit for block is KB
(1024) and the qunit for inode is 1.

The quota command displays the quota allocated and consumed for each Lustre
device. Using the previous setquota example, running this lfs quota command:

$ 1fs quota -u bob -v /mnt/lustre
displays this command output:

Disk quotas for user bob (uid 500):

Filesystem blocks quota 1limit grace files quota limit grace
/mnt/lustre 0 307200 309200 0 10000 11000
lustre-MDT0000_UUID O 0 102400 0 0 5000

lustre-0ST0000_UUID 0 0 102400
lustre-0ST0001_UUID 0 0 102400

Lustre 1.8 Operations Manual ¢ March 2010

9.1.3

Quota Allocation

The Linux kernel sets a default quota size of 1 MB. (For a block, the default is 128
MB. For files, the default is 5120.) Lustre handles quota allocation in a different
manner. A quota must be properly set or users may experience unnecessary failures.
The file system block quota is divided up among the OSTs within the file system.
Each OST requests an allocation which is increased up to the quota limit. The quota
allocation is then quantized to reduce the number of quota-related request traffic. By
default, Lustre supports both user and group quotas to limit disk usage and file
counts.

The quota system in Lustre is completely compatible with the quota systems used on
other file systems. The Lustre quota system distributes quotas from the quota master.
Generally, the MDS is the quota master for both inodes and blocks. All OSTs and the
MDS are quota slaves to the OSS nodes. The minimum transfer unit is 100 MB, to
avoid performance impacts for quota adjustments. The file system block quota is
divided up among the OSTs and the MDS within the file system. Only the MDS uses
the file system inode quota.

This means that the minimum quota for block is 100 MB* (the number of OSTs + the
number of MDSs), which is 100 MB* (number of OSTs + 1). The minimum quota for
inode is the inode qunit. If you attempt to assign a smaller quota, users maybe not be
able to create files. The default is established at file system creation time, but can be
tuned via /proc values (described below). The inode quota is also allocated in a
quantized manner on the MDS.

Chapter 9 Configuring Quotas 9-7

9-8

This sets a much smaller granularity. It is specified to request a new quota in units of
100 MB and 500 inodes, respectively. If we look at the setquota example again,
running this 1fs quota command:

1fs quota -u bob -v /mnt/lustre
displays this command output:

Disk quotas for user bob (uid 500):

Filesystem blocks quota limit grace files quota 1limit grace
/mnt/lustre 207432 307200 30920 1041 10000 11000
lustre-MDT0000_UUID 992 0 102400 1041 05000
lustre-0ST0000_UUID 103204%* 0 102400
lustre-0ST0001_UUID 103236* 0 102400

The total quota of 30,920 is allotted to user bob, which is further distributed to two
OSTs and one MDS with a 102,400 block quota.

Note — Values appended with “*” show the limit that has been over-used (exceeding
the quota), and receives this message Disk quota exceeded. For example:

\

$ cp: writing ' /mnt/lustre/var/cache/fontconfig/
beeeeb3dfel32a8a0633a017¢c99cel0-x86.cache’: Disk quota exceeded.

The requested quota of 300 MB is divided across the OSTs. Each OST has an initial
allocation of 100 MB blocks, with iunit limiting to 5000.

Note — It is very important to note that the block quota is consumed per OST and
the MDS per block and inode (there is only one MDS for inodes). Therefore, when
the quota is consumed on one OST, the client may not be able to create files
regardless of the quota available on other OSTs.

Lustre 1.8 Operations Manual ¢ March 2010

Additional information:

Grace period — The period of time (in seconds) within which users are allowed to
exceed their soft limit. There are four types of grace periods:

m user block soft limit
m user inode soft limit
m group block soft limit

m group inode soft limit

The grace periods are applied to all users. The user block soft limit is for all users
who are using a blocks quota.

Soft limit — Once you are beyond the soft limit, the quota module begins to time,
but you still can write block and inode. When you are always beyond the soft limit
and use up your grace time, you get the same result as the hard limit. For inodes and
blocks, it is the same. Usually, the soft limit MUST be less than the hard limit; if not,
the quota module never triggers the timing. If the soft limit is not needed, leave it as
zero (0).

Hard limit — When you are beyond the hard limit, you get -EQUOTA and cannot
write inode/block any more. The hard limit is the absolute limit. When a grace
period is set, you can exceed the soft limit within the grace period if are under the
hard limits.

Lustre quota allocation is controlled by two values quota_bunit_sz and
quota_iunit_sz referring to KBs and inodes respectively. These values can be
accessed on the MDS as /proc/fs/lustre/mds/*/quota_* and on the OST as
/proc/fs/lustre/obdfilter/*/quota_*. The /proc values are bounded by
two other variables quota_btune_sz and quota_itune_sz. By default, the
*tune_sz variables are set at 1/2 the *unit_sz variables, and you cannot set
*tune_sz larger than *unit_sz. You must set bunit_sz first if it is increasing by
more than 2x, and btune_sz first if it is decreasing by more than 2x.

Total number of inodes — To determine the total number of inodes, use 1fs df -i
(and also /proc/fs/lustre/*/*/filestotal). For more information on using
the 1fs df -i command and the command output, see Querying File System Space.

Unfortunately, the statfs interface does not report the free inode count directly, but
instead reports the total inode and used inode counts. The free inode count is
calculated for df from (total inodes - used inodes).

It is not critical to know a file system’s total inode count. Instead, you should know
(accurately), the free inode count and the used inode count for a file system. Lustre
manipulates the total inode count in order to accurately report the other two values.

The values set for the MDS must match the values set on the OSTs.

Chapter 9 Configuring Quotas 9-9

9.14

9.14.1

9-10

The quota_bunit_sz parameter displays bytes, however 1fs setquota uses KBs.
The quota_bunit_sz parameter must be a multiple of 1024. A proper minimum KB
size for 1fs setquota can be calculated as:

Size in KBs = (quota_bunit_sz * (number of OSTS + 1)) / 1024

We add one (1) to the number of OSTs as the MDS also consumes KBs. As inodes are
only consumed on the MDS, the minimum inode size for 1fs setquota is equal to
quota_iunit_sz.

Note — Setting the quota below this limit may prevent the user from all file creation.

Known Issues with Quotas

Using quotas in Lustre can be complex and there are several known issues.

Granted Cache and Quota Limits

In Lustre, granted cache does not respect quota limits. In this situation, OSTs grant
cache to Lustre client to accelerate I/O. Granting cache causes writes to be successful
in OSTs, even if they exceed the quota limits, and will overwrite them.

The sequence is:
1. A user writes files to Lustre.

2. If the Lustre client has enough granted cache, then it returns ‘success’ to users
and arranges the writes to the OSTs.

3. Because Lustre clients have delivered success to users, the OSTs cannot fail
these writes.

Because of granted cache, writes always overwrite quota limitations. For example, if
you set a 400 GB quota on user A and use IOR to write for user A from a bundle of
clients, you will write much more data than 400 GB, and cause an out-of-quota error
(-EDQUOT).

Lustre 1.8 Operations Manual ¢ March 2010

9.14.2

Note — The effect of granted cache on quota limits can be mitigated, but not
eradicated. Reduce the max_dirty_buffer in the clients (can be set from 0 to 512).
To set max_dirty_buffer to 0:

* In releases after Lustre 1.6.5, 1ctl set_param osc.*.max_dirty_mb=0.

* In releases before Lustre 1.6.5, proc/fs/lustre/osc/*/max_dirty_mb; do

echo 512 > $O

Quota Limits

Available quota limits depend on the Lustre version you are using.

m Lustre version 1.4.11 and earlier (for 1.4.x releases) and Lustre version 1.6.4 and
earlier (for 1.6.x releases) support quota limits less than 4 TB.

m Lustre versions 1.4.12, 1.6.5 and later support quota limits of 4 TB and greater in
Lustre configurations with OST storage limits of 4 TB and less.

m Future Lustre versions are expected to support quota limits of 4 TB and greater
with no OST storage limits.

Lustre Version

Quota Limit Per User/Per Group

OST Storage Limit

1.4.11 and earlier < 4TB n/a

1.4.12 => 4TB <= 4TB of storage
1.6.4 and earlier < 4TB n/a

1.6.5 => 4TB <= 4TB of storage
Future Lustre versions => 4TB No storage limit

Chapter 9 Configuring Quotas 9-11

9.14.3

9-12

Quota File Formats

Lustre 1.6.5 introduced the v2 file format for administrative quotas, with 64-bit limits
that support large-limits handling. The old quota file format (v1), with 32-bit limits,
is also supported. Lustre 1.6.6 introduced the v2 file format for operational quotas. A
few notes regarding the current quota file formats:

Lustre 1.6.5 and later use mdt . quota_type to force a specific administrative quota
version (v2 or v1l).

m For the v2 quota file format, (OBJECTS/admin_quotafile_v2.{usr,grp})
m For the v1 quota file format, (OBJECTS/admin_quotafile.{usr,grp})

Lustre 1.6.6 and later use ost.quota_type to force a specific operational quota
version (v2 or v1).

m For the v2 quota file format, (Iquota_v2.{user,group})

m For the v1 quota file format, (Iquota.{user,group})

The quota_type specifier can be used to set different combinations of
administrative/operational quota file versions on a Lustre node:

m "1" - vl (32-bit) administrative quota file, v1 (32-bit) operational quota file (default
in releases before Lustre 1.6.5)

m "2" - v2 (64-bit) administrative quota file, v1 (32-bit) operational quota file (default
in Lustre 1.6.5)

m "3" - v2 (64-bit) administrative quota file, v2 (64-bit) operational quota file (default
in releases after Lustre 1.6.5)

If quotas do not exist or look broken, then quotacheck creates quota files of a
required name and format.

If Lustre is using the v2 quota file format when only v1 quota files exist, then
quotacheck converts old vl quota files to new v2 quota files. This conversion is
triggered automatically, and is transparent to users. If an old quota file does not exist
or looks broken, then the new v2 quota file will be empty. In case of an error, details
can be found in the kernel log of the corresponding MDS/OST. During conversion of
a vl quota file to a v2 quota file, the v2 quota file is marked as broken, to avoid it
being used if a crash occurs. The quota module does not use broken quota files
(keeping quota off).

In most situations, Lustre administrators do not need to set specific versioning
options. Upgrading Lustre without using quota_type to force specific quota file
versions results in quota files being upgraded automatically to the latest version. The
option ensures backward compatibility, preventing a quota file upgrade to a version
which is not supported by earlier Lustre versions.

Lustre 1.8 Operations Manual ¢ March 2010

9.1.5

Lustre Quota Statistics

Lustre includes statistics that monitor quota activity, such as the kinds of quota RPCs
sent during a specific period, the average time to complete the RPCs, etc. These
statistics are useful to measure performance of a Lustre file system.

Each quota statistic consists of a quota event and min_time, max_time and

sum_time values for the event.

Quota Event

Description

sync_acq_req

sync_rel_req

async_acq_req

async_rel_req

wait_for_blk_quota
(Iquota_chkquota)

wait_for_ino_quota
(Iquota_chkquota)

wait_for_blk_quota
(Iquota_pending_commit)

wait_for_ino_quota
(Iquota_pending_commit)

wait_for_pending_blk_quota_req
(qctxt_wait_pending_dqacq)

wait_for_pending_ino_quota_req
(qctxt_wait_pending_dqacq)

Quota slaves send a acquiring_quota request and
wait for its return.

Quota slaves send a releasing_quota request and
wait for its return.

Quota slaves send an acquiring_quota request and
do not wait for its return.

Quota slaves send a releasing_quota request and do
not wait for its return.

Before data is written to OSTs, the OSTs check if the
remaining block quota is sufficient. This is done in
the lquota_chkquota function.

Before files are created on the MDS, the MDS checks
if the remaining inode quota is sufficient. This is
done in the lquota_chkquota function.

After blocks are written to OSTs, relative quota
information is updated. This is done in the
lquota_pending_commit function.

After files are created, relative quota information is
updated. This is done in the
lquota_pending_commit function.

On the MDS or OSTs, there is one thread sending a
quota request for a specific UID/GID for block
quota at any time. At that time, if other threads
need to do this too, they should wait. This is done
in the qctxt_wait_pending_dqacq function.

On the MDS, there is one thread sending a quota
request for a specific UID/GID for inode quota at
any time. If other threads need to do this too, they
should wait. This is done in the
qctxt_wait_pending_dqacq function.

Chapter 9 Configuring Quotas 9-13

Quota Event Description

nowait_for_pending_blk_quota_req On the MDS or OSTs, there is one thread sending a

(qctxt_wait_pending_dqacq) quota request for a specific UID/GID for block
quota at any time. When threads enter
qctxt_wait_pending_dqacq, they do not need to
wait. This is done in the qctxt_wait_pending_dqacq
function.

nowait_for_pending_ino_quota_req On the MDS, there is one thread sending a quota

(qctxt_wait_pending_dqacq) request for a specific UID/GID for inode quota at
any time. When threads enter
qctxt_wait_pending_dqacq, they do not need to
wait. This is done in the qctxt_wait_pending_dqacq
function.

quota_ctl The quota_ctl statistic is generated when 1fs
setquota, 1fs quota and so on, are issued.

adjust_qunit Each time qunit is adjusted, it is counted.

9.1.5.1 Interpreting Quota Statistics

Quota statistics are an important measure of a Lustre file system’s performance.
Interpreting these statistics correctly can help you diagnose problems with quotas,
and may indicate adjustments to improve system performance.

For example, if you run this command on the OSTs:
cat /proc/fs/lustre/lquota/lustre-0ST0000/stats

You will get a result similar to this:

snapshot_time 1219908615.506895 secs.usecs

async_acqg_req 1 samples [us]32 32 32

async_rel_req 1 samples [us]5 5 5

nowait_for_pending blk_qguota_req(gctxt_wait_pending_dgacqg) 1 samples [us] 2 2 2
quota_ctl 4 samples [us]80 3470 4293

adjust_qunit 1 samples [us]70 70 70

In the first line, snapshot_time indicates when the statistics were taken. The
remaining lines list the quota events and their associated data.

In the second line, the async_acq_req event occurs one time. The min_time,
max_time and sum_time statistics for this event are 32, 32 and 32, respectively. The
unit is microseconds (s).

In the fifth line, the quota_ctl event occurs four times. The min_time, max_time
and sum_time statistics for this event are 80, 3470 and 4293, respectively. The unit is
microseconds (s).

9-14 Lustre 1.8 Operations Manual ¢ March 2010

Involving Lustre Support in Quotas Analysis

Quota statistics are collected in /proc/fs/lustre/lquota/.../stats. Each
MDT and OST has one statistics proc file. If you have a problem with quotas, but
cannot successfully diagnose the issue, send the statistics files in the folder to Lustre
Support for analysis. To prepare the files:

1.

Initialize the statistics data to 0 (zero). Run:

lctl set_param lguota.${FSNAME}-MDT*.stats=0
lctl set_param lguota.${FSNAME}-OST*.stats=0

. Perform the quota operation that causes the problem or degraded performance.

. Collect all statistics in /proc/fs/lustre/lquota/ and send them to Lustre Support.

Note the following:

Proc quota entries are collected in these folders:
/proc/fs/lustre/obdfilter/lustre-0STXXXX/quota*
- AND -
/proc/fs/lustre/mds/lustre-MDTXXXX/quota*

Proc quota entries are copied to /proc/fs/lustre/lquota.

To maintain compatibility, old quota proc entries in the following folders are
not deleted in the current Lustre release (although they may be deprecated in
the future):

/proc/fs/lustre/obdfilter/lustre-0STXXXX/
- AND -
/proc/fs/lustre/mds/lustre-MDTXXXX/

Only use the quota entries in /proc/fs/lustre/lquota/.

Chapter 9 Configuring Quotas 9-15

9-16 Lustre 1.8 Operations Manual ¢ March 2010

CHAPTER 1 0

RAID

This chapter describes software and hardware RAID, and includes the following
sections:

m Considerations for Backend Storage
m Insights into Disk Performance Measurement

m Lustre Software RAID Support

10-1

10.1

10.1.1

Considerations for Backend Storage

Lustre's architecture allows it to use any kind of block device as backend storage. The
characteristics of such devices, particularly in the case of failures vary significantly
and have an impact on configuration choices.

This section surveys issues and recommendations regarding backend storage.

Selecting Storage for the MDS or OSTs

MDS

The MDS does a large amount of small writes. For this reason, we recommend that
you use RAID1 for MDT storage. If you require more capacity for an MDT than one
disk provides, we recommend RAID1 + 0 or RAID10. LVM is not recommended at
this time for performance reasons.

OST

A quick calculation (shown below), makes it clear that without further redundancy,
RAIDS is not acceptable for large clusters and RAID6 is a must.

Take a 1 PB file system (2,000 disks of 500 GB capacity). The MTTF! of a disk is about
1,000 days. This means that the expected failure rate is 2000/1000 = 2 disks per day.
Repair time at 10% of disk bandwidth is close to 1 day (500 GB at 5 MB/sec = 100,000
sec = 1 day).

If we have a RAID 5 stripe that is 10 disks wide, then during 1 day of rebuilding, the
chance that a second disk in the same array fails is about 9 / 1000 ~= 1/100. This
means that, in the expected period of 50 days, a double failure in a RAID 5 stripe
leads to data loss.

So, RAID 6 or another double parity algorithm is necessary for OST storage.

For better performance, we recommend that you create RAID sets with no more than
8 data disks (+1 or +2 parity disks) as this will provide more IOPS from having
multiple independent RAID sets.

10-2

1. Mean Time to Failure

Lustre 1.8 Operations Manual ¢ March 2010

10.1.2

File system: Use RAIDS5 with 5 or 9 disks or RAID6 with 6 or 10 disks, each on a
different controller. The stripe width is the optimal minimum I/O size. Ideally, the
RAID configuration should allow 1 MB Lustre RPCs to fit evenly on a single RAID
stripe without an expensive read-modify-write cycle. Use this formula to determine
the stripe_width.

<stripe_width> = <chunksize> * (<disks> - <parity disks>) <=1 MB

where <parity_disks> is 1 for RAID5/RAID-Z and 2 for RAID6/RAID-Z2. If the
RAID configuration does not allow <chunksize> to fit evenly into 1 MB, select
<chunksize>, such that <stripe_width> is close to 1 MB, but not larger.

For example, RAID6 with 6 disks has 4 data and 2 parity disks, so we get:
<chunksize> <= 1024kB/4; either 256kB, 128kB or 64kB

The <stripe_width> value must equal <chunksize> * (<disks> -
<parity_disks>). Use it for OST file systems only (not MDT file systems).

$ mkfs.lustre --mountfsoptions="stripe=<stripe_width_blocks>"

External journal: Use RAID1 with two partitions of 400 MB (or more), each from
disks on different controllers.

To set up the journal device (/dev/mdJ), run:
S 'mke2fs -0 journal_dev -b 4096 /dev/mdJ'

Then run --reformat on the file system device (/dev/mdx), specifying the RAID
geometry to the underlying ldiskfs file system, where:

<chunk_blocks> = <chunksize> / 4096
<stripe_width_blocks> = <stripe_width> / 4096:

$ mkfs.lustre --reformat ...
--mkfsoptions "-j -J device=/dev/mdJ -E stride=<chunk_blocks>" /dev/mdX

Reliability Best Practices

It is considered mandatory that you use disk monitoring software, so rebuilds
happen without any delay.

We recommend backups of the metadata file systems. This can be done with LVM
snapshots or using raw partition backups.

Chapter 10 RAID 10-3

10.1.3

Understanding Double Failures with Hardware
and Software RAID5

Software RAID does not offer the hard consistency guarantees of top-end enterprise
RAID arrays. Hardware RAID guarantees that the value of any block is exactly the
before or after value and that ordering of writes is preserved. With software RAID,
an interrupted write operation that spans multiple blocks can frequently leave a
stripe in an inconsistent state that is not restored to either the old or the new value.
Normally, such interruptions are caused by an abrupt shutdown of the system.

If the array functions without disk failures, but experiences sudden power-down
incidents, such as interrupted writes on journal file systems, these events can affect
file data and data in the journal. Metadata itself is re-written from the journal during
recovery and is correct. Because the journal uses a single block to indicate a complete
transaction has committed after other journal writes have completed, the journal
remains valid. File data can be corrupted when overwriting file data; this is a known
problem with incomplete writes and caches. Recovery of the disk file systems with
software RAID is similar to recovery without software RAID. Using Lustre servers
with disk file systems does not change these guarantees.

Problems can arise if, after an abrupt shutdown, a disk fails on restart. In this case,
even single block writes provide no guarantee that (as an example), the journal will
not be corrupted. Follow these requirements:

m If the power down of a system using software RAID is followed by a disk failure
before the RAID array can be re-synchronized, the disk file system needs a file
system check and any data that was being written during the power loss may be
corrupted.

m If a RAID array does not guarantee before/after semantics, the same requirement
holds.

We consider this to be a requirement for most arrays that are used with Lustre,
including the successful and popular DDN arrays.

With RAID6 this check is not required with a single disk failure, but is required
with a double failure upon reboot after an abrupt interruption of the system.

10-4 Lustre 1.8 Operations Manual ¢ March 2010

10.1.4

10.1.5

Performance Tradeoffs

Writeback cache can dramatically increase write performance on any type of RAID
array.? Unfortunately, unless the RAID array has battery-backed cache (a feature only
found in some higher-priced hardware RAID arrays), interrupting the power to the
array may result in out-of-sequence writes. This causes problems for journaling.

If writeback cache is enabled, a file system check is required after the array loses
power. Data may also be lost because of this.

Therefore, we recommend against the use of writeback cache when data integrity is
critical. You should carefully consider whether the benefits of using writeback cache
outweigh the risks.

Formatting Options for RAID Devices

When formatting a file system on a RAID device, it is beneficial to specify additional
parameters at the time of formatting. This ensures that the file system is optimized
for the underlying disk geometry. Use the --mkfsoptions parameter to specify
these options when formatting the OST or MDT.

For RAID 5, RAID 6, RAID 1+0 storage, specifying the -E stride = <chunksize>
option improves the layout of the file system metadata ensuring that no single disk
contains all of the allocation bitmaps. The <chunksize> parameter is in units of
4096-byte blocks and represents the amount of contiguous data written to a single
disk before moving to the next disk. This is applicable to both MDS and OST file
systems.

For more information on how to override the defaults while formatting MDS or OST
file systems, see Options for Formatting the MDT and OSTs.

2. Client writeback cache improves performance for many small files or for a single, large file alike. However, if
the cache is filled with small files, cache flushing is likely to be much slower (because of less data being sent
per RPC), so there may be a drop-off in total throughput.

Chapter 10 RAID 10-5

10.1.5.1 Creating an External Journal

If you have configured a RAID array and use it directly as an OST, it houses both
data and metadata. For better performance®, we recommend putting OST metadata
on another journal device, by creating a small RAID 1 array and using it as an
external journal for the OST.

It is not known if external journals improve performance of MDTs. Currently, we
recommend against using them for MDTs to reduce complexity.

No more than 102,400 file system blocks will ever be used for a journal. For Lustre's
standard 4 KB block size, this corresponds to a 400 MB journal. A larger partition can
be created, but only the first 400 MB will be used. Additionally, a copy of the journal
is kept in RAM on the OSS. Therefore, make sure you have enough memory available
to hold copies of all the journals.

To create an external journal, perform these steps for each OST on the OSS:

1. Create a 400 MB (or larger) journal partition (RAID 1 is recommended).
In this example, /dev/sdb is a RAID 1 device, run:

$ sfdisk -uC /dev/sdb << EOF
> ,50,L
> EOF

2. Create a journal device on the partition. Run:
S mke2fs -b 4096 -0 journal_dev /dev/sdbl

3. Create the OST.
In this example, /dev/sdc is the RAID 6 device to be used as the OST, run:

S mkfs.lustre --ost --mgsnode=mds@osib \
--mkfsoptions="-J device=/dev/sdbl" /dev/sdc

4. Mount the OST as usual.

3. Performance is affected because, while writing large sequential data, small I/ O writes are done to update
metadata. This small-sized I/O can affect performance of large sequential I/O with disk seeks.

10-6 Lustre 1.8 Operations Manual ¢ March 2010

10.1.6

Handling Degraded RAID Arrays

Lustre 1.8.2 and later versions include functionality that notifies Lustre if an external
RAID array has degraded performance (resulting in a degraded OST), either because
a disk has failed and not been replaced, or because a disk was replaced and is
undergoing a rebuild. To avoid a global performance slowdown due to a degraded
OST, the MDS can avoid the OST for new object allocation if it is notified of the
degraded state.

The new file (called "degraded"), in /proc/fs/lustre/obdfilter/{0ST}, marks
the OST as degraded if it is written with a "1" (or any non-zero value), until a "0" is
written to it. Therefore, "1" should be written to the file when the array becomes
degraded and "0" should be written when the array becomes healthy.

If the OST is remounted due to a reboot or other condition, the flag resets to "0".

10.2

Insights into Disk Performance
Measurement

Several tips and insights for disk performance measurement are provided below.
Some of this information is specific to RAID arrays and/or the Linux RAID
implementation.

m Performance is limited by the slowest disk.

Before creating a software RAID array, benchmark all disks individually. We have
frequently encountered situations where drive performance was not consistent for
all devices in the array. Replace any disks that are significantly slower than the
rest.

m Disks and arrays are very sensitive to request size.

To identify the optimal request size for a given disk, benchmark the disk with
different record sizes ranging from 4 KB to 1 to 2 MB.

Note — Try to avoid sync writes; probably subsequent write would make the stripe
full and no reads will be needed. Try to configure RAID arrays and the application so
that most of the writes are full-stripe and stripe-aligned.

Chapter 10 RAID 10-7

m (Suggested) MDT setup for maximum performance.
RAID1 with an internal journal and two disks from different controllers.

If you need a larger MDT, create multiple RAID1 devices from pairs of disks, and
then make a RAIDO array of the RAID1 devices. This ensures maximum reliability
because multiple disk failures only have a small chance of hitting both disks in the
same RAID1 device.

Doing the opposite (RAID1 of a pair of RAIDO devices) has a 50% chance that
even two disk failures can cause the loss of the whole MDT device. The first
failure disables an entire half of the mirror and the second failure has a 50%
chance of disabling the remaining mirror.

10.3

10.3.0.1

Lustre Software RAID Support

A number of Linux kernels offer software RAID support, by which the kernel
organizes disks into a RAID array. All Lustre-supported kernels have software RAID
capability, but Lustre has added performance improvements to the RHEL 4 and
RHEL 5 kernels that make operations even faster?. Therefore, if you are using
software RAID functionality, we recommend that you use a Lustre-patched RHEL 4
or 5 kernel to take advantage of these performance improvements, rather than a SLES
kernel.

Enabling Software RAID on Lustre

This procedure describes how to set up software RAID on a Lustre system. It requires
use of mdadm, a third-party tool to manage devices using software RAID.

1. Install Lustre, but do not configure it yet. See Installing Lustre.

2. Create the RAID array with the mdadm command.

The mdadm command is used to create and manage software RAID arrays in
Linux, as well as to monitor the arrays while they are running. To create a RAID
array, use the --create option and specify the MD device to create, the array
components, and the options appropriate to the array.

Note — For best performance, we generally recommend using disks from as many
controllers as possible in one RAID array.

4. These enhancements have mostly improved write performance.

10-8 Lustre 1.8 Operations Manual ¢ March 2010

To illustrate how to create a software RAID array for Lustre, the steps below
include a worked example that creates a 10-disk RAID 6 array from disks
/dev/dsk/c0t0d0 through cOtod4 and /dev/dsk/c1t0d0 through cltodd4.
This RAID array has no spares.

For the 10-disk RAID 6 array, there are 8 active disks. The chunk size must be
chosen such that <chunksize> <= 1024KB/8. Therefore, the largest valid chunk
size is 128KB.

a. Create a RAID array for an OST. On the OSS, run:

$ mdadm --create <array_device> -c <chunksize> -1 \
<raid_level> -n <active_disks> -x <spare_disks> <block_devices>

where:

<array_device> RAID array to create, in the form of /dev/mdx

<chunksize> Size of each stripe piece on the array’s disks (in KB);
discussed above.

<raid_level> Architecture of the RAID array. RAID 5 and RAID 6 are
commonly used for OSTs.

<active_disks> Number of active disks in the array, including parity disks.

<spare_disks> Number of spare disks initially assigned to the array. More
disks may be brought in via spare pooling (see below).

<block_devices List of the block devices used for the RAID array; wildcards
> may be used.

For the worked example, the command is:

$ mdadm --create /dev/mdl0 -c¢ 128 -1 6 -n 10 -x 0 \
/dev/dsk/c0t0d[01234] /dev/dsk/clt0d[01234]

This command output displays:

mdadm: array /dev/mdl0 started.

We also want an external journal on a RAID 1 device. We create this from two
400MB partitions on separate disks: /dev/dsk/c9t0d20p1 and
/dev/dsk/c1t0d20p1

Chapter 10 RAID 10-9

b. Create a RAID array for an external journal. On the OSS, run:

$ mdadm --create <array_device> -1 <raid_level> -n \
<active_devices> -x <spare_devices> <block_devices>

where:
<array_device> RAID array to create, in the form of /dev/mdX
<raid_level> Architecture of the RAID array. RAID 1 is

recommended for external journals.

<active_devices> Number of active disks in the RAID array, including
mirrors.

<spare_devices> Number of spare disks initially assigned to the RAID
array. More disks may be brought in via spare pooling
(see below).

<block_devices> List of the block devices used for the RAID array;
wildcards may be used.

For the worked example, the command is:

$ mdadm --create /dev/md20 -1 1 -n 2 -x 0 /dev/dsk/c0t0d20pl \
/dev/dsk/cl1t0d20pl

This command output displays:

mdadm: array /dev/md20 started.

We now have two arrays - a RAID 6 array for the OST (/dev/md20), and a RAID
1 array for the external journal (/dev/md20).

The arrays will now be re-synced, a process which re-synchronizes the various
disks in the array so their contents match. The arrays may be used during the
re-sync process (including formatting the OSTs), but performance will not be as
high as usual. The re-sync progress may be monitored by reading the
/proc/mdstat file.

Next, you need to create a RAID array for an MDT. In this example, a RAID 10
array is created with 4 disks: /dev/dsk/c0t0dl, c0t0d3, c1t0dl, and c1t0d3.
For smaller arrays, RAID 1 could be used.

10-10 Lustre 1.8 Operations Manual ¢ March 2010

c. Create a RAID array for an MDT. On the MDT, run:

$ mdadm --create <array_device> -1 <raid_level> -n \
<active_devices> -x <spare_devices> <block_devices>

where:
<array_device> RAID array to create, in the form of /dev/mdX
<raid_level> Architecture of the RAID array. RAID 1 or RAID 10 is

recommended for MDTs.

<active_devices> Number of active disks in the RAID array, including
mirrors.

<spare_devices> Number of spare disks initially assigned to the RAID
array. More disks may be brought in via spare pooling
(see below).

<block_devices> List of the block devices used for the RAID array;
wildcards may be used.

For the worked example, the command is:

$ mdadm --create -1 10 -n 4 -x 0 /dev/mdl0 /dev/dsk/c[01]1t0d[13]

This command output displays:

mdadm: array /dev/mdl0 started.

If you creating many arrays across many servers, we recommend scripting this
process.

Note — Do not use the --assume-clean option when creating arrays. This could
lead to data corruption on RAID 5 and will cause array checks to show errors with all
RAID types.

Chapter 10 RAID 10-11

3. Set up the mdadm tool.

The mdadm tool enables you to monitor disks for failures (you will receive a
notification). It also enables you to manage spare disks. When a disk fails, you can
use mdadm to make a spare disk active, until such time as the failed disk is
replaced.

Here is an example mdadm.conf from an OSS with 7 OSTs including external
journals. Note how spare groups are configured, so that OSTs without spares still
benefit from the spare disks assigned to other OSTs.

ARRAY /dev/mdl0 level=raid6 num-devices=10
UUID=e8926d28:0724ee29:65147008:08df0bdl spare-group=raids
ARRAY /dev/mdll level=raid6 num-devices=10 spares=1
UUID=7b045948:acd4edfcd:£9d7a279:17b468cd spare-group=raids
ARRAY /dev/mdl2 level=raid6 num-devices=10 spares=1
UUID=29d8c0£0:d9408537:39c8053e:bd476268 spare-group=raids
ARRAY /dev/mdl3 level=raid6 num-devices=10
UUID=1753fa96:£d83a518:d49fc558:9ae3488c spare-group=raids
ARRAY /dev/mdl4d level=raid6 num-devices=10 spares=1
UUID=7£0ad256:0b3459a4:d7366660:cf6c7249 spare-group=raids
ARRAY /dev/mdl5 level=raid6 num-devices=10
UUID=09830fd2:1cac8625:182d9290:2blccf2a spare-group=raids
ARRAY /dev/mdl6 level=raid6 num-devices=10
UUID=32bflbl2:4787d254:29e76bd7:684d7217 spare-group=raids
ARRAY /dev/md20 level=raidl num-devices=2 spares=1
UUID=bcfb5f40:7a2ebd50:03111587:8b393b86 spare-group=journals
ARRAY /dev/md21 level=raidl num-devices=2 spares=1
UUID=6c82d034:3f5465ad:11663a04:58fbc2dl spare-group=journals
ARRAY /dev/md22 level=raidl num-devices=2 spares=1
UUID=7¢c7274c5:8b970569:03c22¢c87:e7a40ell spare-group=journals
ARRAY /dev/md23 level=raidl num-devices=2 spares=1
UUID=46ecd502:039cd6d9:dd7e163b:dd9%b2620 spare-group=journals
ARRAY /dev/md24 level=raidl num-devices=2 spares=1
UUID=5c099970:2a9919e6:28c9b741:3134be7e spare-group=journals
ARRAY /dev/md25 level=raidl num-devices=2 spares=1
UUID=b44a56c0:01893164:4416e0b8:75beabcd spare-group=journals
ARRAY /dev/md26 level=raidl num-devices=2 spares=1
UUID=2adf9d0f:2b7372c5:4e5£483f:3d9%9a0a25 spare-group=journals

Email address to notify of events (e.g. disk failures)
MAILADDR admin@example.com

10-12 Lustre 1.8 Operations Manual ¢ March 2010

4. Set up periodic checks of the RAID array.

We recommend checking the software RAID arrays monthly for consistency. This
can be done using cron and should be scheduled for an idle period so
performance is not affected.

To start a check, write "check" into /sys/block/ [ARRAY] /md/sync_action.
For example, to check /dev/md10, run this command on the Lustre server:
$ echo check > /sys/block/mdl0/md/sync_action

5. Format the OSTs and MDT, and continue with normal Lustre setup and
configuration.

For configuration information, see Configuring Lustre.

Note — Per Bugzilla 18475, we recommend that stripe_cache_size be set to 16KB
(instead of 2KB).

These additional resources may be helpful when enabling software RAID on Lustre:
s md(4), mdadm(8), mdadm.conf(5) manual pages
m Linux software RAID wiki: http://linux-raid.osdl.org/

m Kernel documentation: Documentation/md.txt

Chapter 10 RAID 10-13

http://linux-raid.osdl.org/

10-14 Lustre 1.8 Operations Manual ¢ March 2010

CHAPTER 1 1

Kerberos

11.1

This chapter describes how to use Kerberos with Lustre and includes the following
sections:

m What is Kerberos?

m Lustre Setup with Kerberos

What is Kerberos?

Kerberos is a mechanism for authenticating all entities (such as users and services) on
an “unsafe” network. Users and services, known as "principals”, share a secret
password (or key) with the Kerberos server. This key enables principals to verify that
messages from the Kerberos server are authentic. By trusting the Kerberos server,
users and services can authenticate one another.

Caution — Kerberos is a future Lustre feature that is not available in current
versions. If you want to test Kerberos with a pre-release version of Lustre, check out
the Lustre source from the CVS repository and build it. For more information on
checking out Lustre source code, see CVS.

111

http://wiki.lustre.org/index.php?title=Open_CVS

11.2

11.2.1

11.2.1.1

Lustre Setup with Kerberos

Setting up Lustre with Kerberos can provide advanced security protections for the
Lustre network. Broadly, Kerberos offers three types of benefit:

m Allows Lustre connection peers (MDS, OSS and clients) to authenticate one
another.

m Protects the integrity of the PTLRPC message from being modified during
network transfer.

m Protects the privacy of the PTLRPC message from being eavesdropped during
network transfer.

Kerberos uses the “kernel keyring” client upcall mechanism.

Configuring Kerberos for Lustre

This section describes supported Kerberos distributions and how to set up and
configure Kerberos on Lustre.

Kerberos Distributions Supported on Lustre

Lustre supports the following Kerberos distributions:

m MIT Kerberos 1.3.x

m MIT Kerberos 1.4.x

m MIT Kerberos 1.5.x

m MIT Kerberos 1.6 (not yet verified)

On a number of operating systems, the Kerberos RPMs are installed when the

operating system is first installed. To determine if Kerberos RPMs are installed on
your OS, run:

rpm -ga | grep krb
If Kerberos is installed, the command returns a list like this:

krb5-devel-1.4.3-5.1
krb5-1ibs-1.4.3-5.1
krb5-workstation-1.4.3-5.1
pam_krb5-2.2.6-2.2

11-2 Lustre 1.8 Operations Manual ¢ March 2010

Note — The Heimdal implementation of Kerberos is not currently supported on
Lustre, although it support will be added in an upcoming release.

11.2.1.2 Preparing to Set Up Lustre with Kerberos
To set up Lustre with Kerberos:
1. Configure NTP to synchronize time across all machines.
2. Configure DNS with zones.
3. Verify that there are fully-qualified domain names (FQDNs), that are resolvable

in both forward and reverse directions for all servers. This is required by
Kerberos.

4. On every node, install flowing packages:
m libgssapi (version 0.10 or higher)

Some newer Linux distributions include libgssapi by default. If you do not have
libgssapi, build and install it from source:
http:/ /www.citi.umich.edu/projects/nfsv4/linux/libgssapi/libssapi-0.10.tar.gz

= keyutils

Chapter 11 Kerberos 11-3

http://www.citi.umich.edu/projects/nfsv4/linux/libgssapi/libgssapi-0.10.tar.gz

11.2.1.3

Configuring Lustre for Kerberos
To configure Lustre for Kerberos:
1. Configure the client nodes.

a. For each client node, create a lustre_root principal and generate the keytab.

kadmin> addprinc -randkey lustre_root/client_host.domain@REALM

kadmin> ktadd -e aesl28-cts:normal lustre_root/client_host.domain@REALM

b. Install the keytab on the client node.

Note — For each client-OST pair, there is only one security context, shared by all
users on the client. This protects data written by one user to be passed to an OST by
another user due to asynchronous bulk I/O. The client-OST connection only
guarantees message integrity or privacy; it does not authenticate users.

2. Configure the MDS nodes.

a. For each MDS node, create a lustre_mds principal and generate the keytab.

kadmin> addprinc -randkey lustre_mds/mdthost.domain@REALM
kadmin> ktadd -e aesl28-cts:normal lustre_mds/mdthost.domain@REALM

b. Install the keytabl on the MDS node.
3. Configure the OSS nodes.

a. For each OSS node, create a lustre_oss principal and generate the keytab.

kadmin> addprinc -randkey lustre_oss/osthost.domain@REALM
kadmin> ktadd -e aesl28-cts:normal lustre_oss/osshost.domain@REALM

b. Install the keytab on the OSS node.

Tip — To avoid assigning a unique keytab to each client node, create a general
lustre_root principal and keytab, and install the keytab on as many client nodes as
needed.

kadmin> addprinc -randkey lustre_root@REALM
kadmin> ktadd -e aesl28-cts:normal lustre_root@REALM

Remember that if you use a general keytab, then one compromised client means that
all client nodes are insecure.

11-4 Lustre 1.8 Operations Manual ¢ March 2010

General Installation Notes

m The host.domain should be the FQDN in your network. Otherwise, the server may
not recognize any GSS request.

m To install a keytab entry on a node, use the ktutil! utility.
m Lustre supports these encryption types for MIT Kerberos 5, v1.4 and higher:
m des-cbc-cre
m des-cbc-md5
m des3-hmac-shal
m aesl128-cts
m aes256-cts
m arcfour-hmac-md5

For MIT Kerberos 1.3.x, only des-cbc-md5 works because of a known issue
between libgssapi and the Kerberos library.

Note — The encryption type (or enctype) is an identifier specifying the encryption,
mode and hash algorithms. Each Kerberos key has an associated enctype that
identifies the cryptographic algorithm and mode used when performing
cryptographic operations with the key. It is important that the enctypes requested by
the client are actually supported on the system hosting the client. This is the case if
the defaults that control enctypes are not overridden.

1. Kerberos keytab file maintenance utility.

Chapter 11 Kerberos 11-5

11.2.1.4 Configuring Kerberos
To configure Kerberos to work with Lustre:
1. Modify the files for Kerberos:

$ /etc/krb5.conf
[libdefaults]
default_realm = CLUSTERFS.COM

[realms]

CLUSTERFS.COM = {

kdc = mdsl6.clustrefs.com
admin_server = mdslé6.clustrefs.com

}

[domain_realm]
.clustrefs.com = CLUSTERFS.COM
clustrefs.com = CLSUTREFS.COM

[logging]
default = FILE:/var/log/kdc.log

2. Prepare the Kerberos database.

3. Create service principals so Lustre supports Kerberos authentication.

Note — You can create service principals when configuring your other services to
support Kerberos authentication.

11-6 Lustre 1.8 Operations Manual ¢ March 2010

4. Configure the client nodes. For each client node:
a. Create a lustre_root principal and generate the keytab:

kadmin> addprinc -randkey lustre_root/client_host.domain@REALM
kadmin> ktadd -e aesl28-cts:normal
lustre_root/client_host.domain@REALM

This process populates /etc/krb5.keytab, which is not human-readable. Use
the ktutil program to read and modify it.

b. Install the keytab.

Note — There is only one security context for each client-OST pair, shared by all
users on the client. This protects data written by one user to be passed to an OST by
another user due to asynchronous bulk I/O. The client-OST connection only
guarantees message integrity or privacy; it does not authenticate users.

5. Configure the MDS nodes. For each MDT node, create a lustre_mds principal,
and generate and install the keytab.

kadmin> addprinc -randkey lustre_mds/mdthost.domain@REALM
kadmin> ktadd -e aesl28-cts:normal
lustre_mds/mdthost.domain@REALM

6. Configure the OSS nodes. For each OST node, create a lustre_oss principal, and
generate and install the keytab.

kadmin> addprinc -randkey lustre_oss/oss_host.domain@REALM
kadmin> ktadd -e aesl28-cts:normal
lustre_oss/oss_host.domain@REALM

To save the trouble of assigning a unique keytab for each client node, create a general
lustre_root principal and its keytab, and then install the keytab on as many client
nodes as needed.

kadmin> addprinc -randkey lustre_root@REALM
kadmin> ktadd -e aesl28-cts:normal lustre_root@REALM

Note — If one client is compromised, all client nodes become insecure.

For more detailed information on installing and configuring Kerberos, see:

http:/ /web.mit.edu/Kerberos/krb5-1.6/#documentation

Chapter 11 Kerberos 11-7

http://web.mit.edu/Kerberos/krb5-1.6/#documentation

11.2.1.5 Setting the Environment

Perform the following steps to configure the system and network to use Kerberos.

System-wide Configuration

1. On each MDT, OST, and client node, add the following line to /etc/fstab to
mount them automatically.

nfsd /proc/fs/nfsd nfsd defaults O 0

2. On each MDT and client node, dd the following line to /etc/request-key.conf.

oP

create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g T %P

o

Networking

If your network is not using SOCKLND or InfiniBand (and uses Quadrics, Elan or
Myrinet, for example), configure a /etc/lustre/nid2hostname (simple script that
translates a NID to a hostname) on each server node (MDT and OST). This is an
example on an Elan cluster:

#!/bin/bash
set -x
exec 2>/tmp/$ (basename $0) .debug

convert a NID for a LND to a hostname, for GSS for example

called with three arguments: 1nd netid nid

$1nd will be string "QSWLND", "GMLND", etc.
Snetid will be number in hex string format, like "Ox1l6", etc.
$nid has the same format as S$netid

output the corresponding hostname, or error message leaded by a '@’
for error logging.

Ind=$1

netid=$2
nid=3$3

11-8 Lustre 1.8 Operations Manual ¢ March 2010

11.2.1.6

uppercase the hex

nid=$(echo $nid | tr '[abcdef]' '[ABCDEF]')
and convert to decimal

nid=$ (echo -e "ibase=16\n${nid/#0x}" | bc)
case $1lnd in

QSWLND) # simply stick "mtn" on the front

echo "mtn$nid"

*) echo "@unknown LND: S$1lnd"

esac

Building Lustre

If you are compiling the kernel from the source, enable GSS during configuration:

./configure --with-linux=path_to_linux_source --enable-gss - \

other-options

When you enable Lustre with GSS, the configuration script checks all dependencies,
like Kerberos and 1ibgssapi installation, and in-kernel SUNRPC-related facilities.

When you install lustre-xxx.rpm on target machines, RPM again checks for

dependencies like Kerberos and 1ibgssapi.

Chapter 11

Kerberos

11-9

11.2.1.7

Running GSS Daemons

If you turn on GSS between an MDT-OST or MDT-MDT, GSS treats the MDT as a
client. You should run 1gssd on the MDT.

There are two types of GSS daemons: 1gssd and 1lsvcgssd. Before starting Lustre,
make sure they are running on each node:

m OST: 1svcgssd

m MDT: 1svcgssd

m CLI: none

Note — Verbose logging can help you make sure Kerberos is set up correctly. To use
verbose logging and run it in the foreground, run 1svcgssd -vvv -f

-v increases the verbose level of a debugging message by 1. For example, to set the
verbose level to 3, run 1svcgssd -v -v -v

-f runs 1lsvcgssd in the foreground, instead of as daemon.

We are maintaining a patch against nfs-utils, and bringing necessary patched files
into the Lustre tree. After a successful build, GSS daemons are built under
lustre/utils/gss and are part of lustre-xxxx.rpm.

11-10 Lustre 1.8 Operations Manual ¢ March 2010

11.2.2 Types of Lustre-Kerberos Flavors

There are three major flavors in which you can configure Lustre with Kerberos:
m Basic Flavors
m Security Flavor

m Customized Flavor

Select a flavor depending on your priorities and preferences.

11.2.2.1 Basic Flavors

Currently, we support six basic flavors: null, plain, krb5n, krb5a, krb5i, and krb5p.

RPC Message Bulk Data
Basic Flavor Authentication Protection Protection Remarks

null N/A N/A N/A* Almost no performance
overhead. The on-wire RPC
data is compatible with old
versions of Lustre (1.4.x,

1.6.x).
plain N/A null checksum Carries checksum (which
(adler32) only protects data mutating

during transfer, cannot
guarantee the genuine
author because there is no
actual authentication).

krb5n GSS/Kerberos5 null checksum No protection of the RPC
(adler32) message, adler32 checksum
protection of bulk data;
light performance
overhead.

Chapter 11 Kerberos 11-11

RPC Message Bulk Data

Basic Flavor Authentication Protection Protection Remarks
krbb5a GSS/Kerberos5 partial checksum Only the header of the RPC
integrity (adler32) message is integrity

protected, adler32
checksum protection of
bulk data, more
performance overhead
compared to krb5n.

krb5i GSS/Kerberos5 integrity integrity RPC message integrity
[shal] protection algorithm is
determined by actual
Kerberos algorithms in use;
heavy performance
overhead.

krb5p GSS/Kerberos5 privacy privacy RPC message privacy
[shal/aes128] protection algorithm is
determined by actual
Kerberos algorithms in use;
heaviest performance
overhead.

* In Lustre 1.6.5, bulk data checksumming is enabled (by default) to provide integrity checking using the adler32
mechanism if the OSTs support it. Adler32 checksums offer lower CPU overhead than CRC32.

11.2.2.2 Security Flavor

A security flavor is a string that describes what kind of security transform is
performed on a given PTLRPC connection. It covers two parts of messages, the RPC
message and BULK data. You can set either part in one of the following modes:

m null — No protection
m integrity — Data integrity protection (checksum or signature)

m privacy — Data privacy protection (encryption)

11-12 Lustre 1.8 Operations Manual ¢ March 2010

11.2.2.3 Customized Flavor

In most situations, you do not need a customized flavor, a basic flavor is sufficient for
regular use. But to some extent, you can customize the flavor string. The flavor string
format is:

base_flavor[-bulk{nip}[:hash_alg[/cipher_alg]l]]
Here are some examples of customized flavors:

plain-bulkn

Use plain on the RPC message (null protection), and no protection on the bulk
transfer.

krb5i-bulkn
Use krb5i on the RPC message, but do not protect the bulk transfer.

krb5p-bulki
Use krb5p on the RPC message, and protect data integrity of the bulk transfer.

krb5p-bulkp:sha512/aes256
Use krb5p on the RPC message, and protect data privacy of the bulk transfer by
algorithm SHA512 and AES256.
Currently, Lustre supports these bulk data cryptographic algorithms:
m Hash:
n adler32
= crc32
n md5
» shal [/ sha256 [sha384 | sha512
n wp256 | wp384 [wp512
m Cipher:
n arcd
n aes128 / aes192 | aes256
n cast128 / cast256
n twofish128 | twofish256

Chapter 11 Kerberos 11-13

11.2.2.4

11.2.2.5

Specifying Security Flavors

If you have not specified a security flavor, the CLIENT-MDT connection defaults to
plain, and all other connections use null.

Specifying Flavors by Mount Options

When mounting OST or MDT devices, add the mount option (shown below) to
specify the security flavor:

mount -t lustre -o sec=plain /dev/sdal /mnt/mdt/

This means all connections to this device will use the plain flavor. You can split this
sec=flavor as:

mount -t lustre -o sec_mdt={flavorl},sec_cli={flavorl}/dev/sda \
/mnt /mdt/

This means connections from other MDTs to this device will use flavorl, and
connections from all clients to this device will use flavor2.

Specifying Flavors by On-Disk Parameters

You can also specify the security flavors by specifying on-disk parameters on OST
and MDT devices:

tune2fs -o security.rpc.mdt=flavorl -o security.rpc.cli=flavor2 \
device

On-disk parameters are overridden by mount options.

Mounting Clients

Root on client node mounts Lustre without any special tricks.

11-14 Lustre 1.8 Operations Manual ¢ March 2010

11.2.2.6

Rules, Syntax and Examples

The general rules and syntax for using Kerberos are:

<target>.srpc.flavor.<network>[.<direction>]=flavor

m <target>: This could be file system name or specific MDT/OST device name. For

example, lustre, lustre-MDT0000, lustre-OST0001.

m <network>: LNET network name of the RPC initiator. For example, tcp0, elanl,

02ib0.

m <direction>: This could be one of cli2mdt, cli2ost, mdt2mdt, or mdt2ost. In
most cases, you do not need to specify the <direction> part.

Examples:

m Apply krb5i on ALL connections:

mgs> lctl conf_param lustre.srpc.flavor.default=krb5i

m For nodes in network tcp0, use krb5p. All other nodes use null.

mgs> lctl conf param lustre.srpc.flavor.tcpO=krb5p

mgs> lctl conf_param lustre.srpc.flavor.default=null

m For nodes in network tcp0, use krb5p; for nodes in elanl, use plain; Among other
nodes, clients use krb5i to MDT/OST, MDT use null to other MDTs, MDT use
plain to OSTs.

mgs>
mgs>
mgs>
mgs>
mgs>
mgs>

lctl
lctl
lctl
lctl
lctl
lctl

conf_param
conf_param
conf_param
conf_param
conf_param
conf_param

lustre.
lustre.
lustre.
lustre.
lustre.
lustre.

srpc.
srpc.
.flavor

srpc

srpc.
srpc.
.flavor

srpc

flavor.
flavor.
.default.cli2mdt=krb51
.default.cli2ost=krb51

flavor

flavor.
.default.mdt2ost=plain

tcpO0=krb5p
elanl=plain

default.mdt2mdt=null

Chapter 11 Kerberos 11-15

11.2.2.7 Authenticating Normal Users

On client nodes, non-root users must use kinit to access Lustre (just like other
Kerberized applications). kinit is used to obtain and cache Kerberos ticket-granting
tickets. Two requirements to authenticating users:

m Before kinit is run, the user must be registered as a principal with the Kerberos
server (the Key Distribution Center or KDC). In KDC, the username is noted as
username@REALM.

m The client and MDT nodes should have the same user database.
To destroy the established security contexts before logging out, run 1fs flushctx:
1fs flushctx [-k]

Here -k also means destroy the on-disk Kerberos credential cache. It is equivalent to
kdestroy. Otherwise, it only destroys established contexts in the Lustre kernel.

11-16 Lustre 1.8 Operations Manual ¢ March 2010

CHAPTER 1 2

Bonding

This chapter describes how to set up bonding with Lustre, and includes the following
sections:

m Network Bonding

m Requirements

m Using Lustre with Multiple NICs versus Bonding NICs
m Bonding Module Parameters

m Setting Up Bonding

m Configuring Lustre with Bonding

12.1

Network Bonding

Bonding, also known as link aggregation, trunking and port trunking, is a method of
aggregating multiple physical network links into a single logical link for increased
bandwidth.

Several different types of bonding are supported in Linux. All these types are
referred to as “modes,” and use the bonding kernel module.

Modes 0 to 3 provide support for load balancing and fault tolerance by using
multiple interfaces. Mode 4 aggregates a group of interfaces into a single virtual
interface where all members of the group share the same speed and duplex settings.
This mode is described under IEEE spec 802.3ad, and it is referred to as either “mode
4” or “802.3ad.”

(802.3ad refers to mode 4 only. The detail is contained in Clause 43 of the IEEE 8 - the
larger 802.3 specification. For more information, consult IEEE.)

1241

12.2 Requirements

The most basic requirement for successful bonding is that both endpoints of the
connection must support bonding. In a normal case, the non-server endpoint is a
switch. (Two systems connected via crossover cables can also use bonding.) Any
switch used must explicitly support 802.3ad Dynamic Link Aggregation.

The kernel must also support bonding. All supported Lustre kernels have bonding
functionality. The network driver for the interfaces to be bonded must have the
ethtool support. To determine slave speed and duplex settings, ethtool support is
necessary. All recent network drivers implement it.

To verify that your interface supports ethtool, run:

which ethtool
/sbin/ethtool

ethtool ethO
Settings for ethO:
Supported ports: [TP MII]
Supported link modes: 10baseT/Half 10baseT/Full/
100baseT/Half 100baseT/Full
Supports auto-negotiation: Yes
Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
Advertised auto-negotiation: Yes
Speed: 100Mb/s
Duplex: Full
Port: MIT
PHYAD: 1
Transceiver: internal
Auto-negotiation: on
Supports Wake-on: pumbg
Wake-on: d
Current message level: 0x00000001 (1)
Link detected: yes

12-2 Lustre 1.8 Operations Manual ¢ March 2010

ethtool ethl

Settings for ethl:
Supported ports: [TP MII]
Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
Supports auto-negotiation: Yes
Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
Advertised auto-negotiation: Yes
Speed: 100Mb/s
Duplex: Full
Port: MIT
PHYAD: 32
Transceiver: internal
Auto-negotiation: on
Supports Wake-on: pumbg
Wake-on: d
Current message level: 0x00000007 (7)
Link detected: yes
To quickly check whether your kernel supports bonding, run:
grep ifenslave /sbin/ifup
which ifenslave
/sbin/ifenslave

Note — Bonding and ethtool have been available since 2000. All Lustre-supported
kernels include this functionality.

Chapter 12 Bonding 12-3

12.3 Using Lustre with Multiple NICs versus
Bonding NICs

Lustre can use multiple NICs without bonding. There is a difference in performance
when Lustre uses multiple NICs versus when it uses bonding NICs.

Whether an aggregated link actually yields a performance improvement proportional
to the number of links provided, depends on network traffic patterns and the
algorithm used by the devices to distribute frames among aggregated links.
Performance with bonding depends on:

m Out-of-order packet delivery

This can trigger TCP congestion control. To avoid this, some bonding drivers
restrict a single TCP conversation to a single adapter within the bonded group.

m Load balancing between devices in the bonded group.

Consider a scenario with a two CPU node with two NICs. If the NICs are bonded,
Lustre establishes a single bundle of sockets to each peer. Since ksocklnd bind
sockets to CPUs, only one CPU moves data in and out of the socket for a
uni-directional data flow to each peer. If the NICs are not bonded, Lustre
establishes two bundles of sockets to the peer. Since ksocklnd spreads traffic
between sockets, and sockets between CPUs, both CPUs move data.

12-4 Lustre 1.8 Operations Manual ¢ March 2010

12.4

Bonding Module Parameters

Bonding module parameters control various aspects of bonding.

Outgoing traffic is mapped across the slave interfaces according to the transmit hash
policy. For Lustre, we recommend that you set the xmit_hash_policy option to the
layer3+4 option for bonding. This policy uses upper layer protocol information if
available to generate the hash. This allows traffic to a particular network peer to span
multiple slaves, although a single connection does not span multiple slaves.

$ xmit_hash_policy=layer3+4

The miimon option enables users to monitor the link status. (The parameter is a time
interval in milliseconds.) It makes an interface failure transparent to avoid serious
network degradation during link failures. A reasonable default setting is 100
milliseconds; run:

$ miimon=100

For a busy network, increase the timeout.

12.5

Setting Up Bonding
To set up bonding;:

1. Create a virtual 'bond' interface by creating a configuration file in:

/etc/sysconfig/network-scripts/ # vi /etc/sysconfig/ \
network-scripts/ifcfg-bond0

2. Append the following lines to the file.

DEVICE=bond0

IPADDR=192.168.10.79 # Use the free IP Address of your network
NETWORK=192.168.10.0

NETMASK=255.255.255.0

USERCTL=no

BOOTPROTO=none

ONBOOT=yes

Chapter 12 Bonding 12-5

3. Attach one or more slave interfaces to the bond interface. Modify the eth0 and
ethl configuration files (using a VI text editor).

a. Use the VI text editor to open the ethO configuration file.
vi /etc/sysconfig/network-scripts/ifcfg-eth0
b. Modify/append the ethO file as follows:

DEVICE=ethO
USERCTL=no
ONBOOT=yes
MASTER=bond0
SLAVE=yes
BOOTPROTO=none

c. Use the VI text editor to open the ethl configuration file.
vi /etc/sysconfig/network-scripts/ifcfg-ethl
d. Modify/append the ethl file as follows:

DEVICE=ethl
USERCTL=no
ONBOOT=yes
MASTER=bond0
SLAVE=yes
BOOTPROTO=none

4. Set up the bond interface and its options in /etc/modprobe.conf. Start the slave
interfaces by your normal network method.

vi /etc/modprobe.conf
a. Append the following lines to the file.

alias bond0 bonding
options bond0 mode=balance-alb miimon=100

b. Load the bonding module.

modprobe bonding
ifconfig bond0 up
ifenslave bond0 eth0 ethl

5. Start/restart the slave interfaces (using your normal network method).

Note — You must modprobe the bonding module for each bonded interface. If you
wish to create bond0 and bond1, two entries in modprobe . conf are required.

12-6 Lustre 1.8 Operations Manual ¢ March 2010

The examples below are from RedHat systems. For setup use:
/etc/sysconfig/networking-scripts/ifcfg-* The OSDL website referenced
below includes detailed instructions for other configuration methods, instructions to
use DHCP with bonding, and other setup details. We strongly recommend you use
this website.

http:/ /linux-net.osdl.org/index.php/Bonding

6. Check /proc/net/bonding to determine status on bonding. There should be a file
there for each bond interface.

cat /proc/net/bonding/bond0
Ethernet Channel Bonding Driver: v3.0.3 (March 23, 2006)

Bonding Mode: load balancing (round-robin)
MII Status: up

MII Polling Interval (ms): O

Up Delay (ms): 0

Down Delay (ms): O

Slave Interface: ethO

MII Status: up

Link Failure Count: 0

Permanent HW addr: 4c:00:10:ac:61:e0

Slave Interface: ethl

MII Status: up

Link Failure Count: 0

Permanent HW addr: 00:14:2a:7c:40:1d

Chapter 12 Bonding 12-7

http://linux-net.osdl.org/index.php/Bonding

12-8

7. Use ethtool or ifconfig to check the interface state. ifconfig lists the first bonded
interface as “bond0.”

ifconfig
bond0

ethO

ethl

Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

inet addr:192.168.10.79 Bcast:192.168.10.255 \
Mask:255.255.255.0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1
RX packets:3091 errors:0 dropped:0 overruns:0 frame:0
TX packets:880 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

RX bytes:314203 (306.8 KiB) TX bytes:129834 (126.7 KiB)

Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
RX packets:1581 errors:0 dropped:0 overruns:0 frame:0
TX packets:448 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:162084 (158.2 KiB) TX bytes:67245 (65.6 KiB)
Interrupt:193 Base address:0x8c00

Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
RX packets:1513 errors:0 dropped:0 overruns:0 frame:0
TX packets:444 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:152299 (148.7 KiB) TX bytes:64517 (63.0 KiB)
Interrupt:185 Base address:0x6000

Lustre 1.8 Operations Manual ¢ March 2010

12.5.1 Examples

This is an example of modprobe. conf for bonding Ethernet interfaces ethl and eth?2
to bond0:

cat /etc/modprobe.conf

alias eth0 8139too

alias scsi_hostadapter sata_via
alias scsi_hostadapterl usb-storage
alias snd-card-0 snd-via82xx
options snd-card-0 index=0

options snd-via82xx index=0

alias bond0 bonding

options bond0 mode=balance-alb miimon=100
options lnet networks=tcp

alias ethl via-rhine

cat /etc/sysconfig/network-scripts/ifcfg-bond0

DEVICE=bond0

BOOTPROTO=none

NETMASK=255.255.255.0

IPADDR=192.168.10.79 # (Assign here the IP of the bonded interface.)
ONBOOT=yes

USERCTL=no

ifcfg-ethx

cat /etc/sysconfig/network-scripts/ifcfg-eth0
TYPE=Ethernet
DEVICE=ethO0
HWADDR=4c:00:10:ac:61:e0
BOOTPROTO=none
ONBOOT=yes

USERCTL=no

IPV6INIT=no

PEERDNS=yes

MASTER=bond0

SLAVE=yes

Chapter 12 Bonding 12-9

In the following example, the bond0 interface is the master (MASTER) while eth(
and eth1 are slaves (SLAVE).

Note — All slaves of bond0 have the same MAC address (Hwaddr) — bond0. All
modes, except TLB and ALB, have this MAC address. TLB and ALB require a unique
MAC address for each slave.

$ /sbin/ifconfig

bond0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0
UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1

RX packets:7224794 errors:0 dropped:0 overruns:0 frame:0

TX packets:3286647 errors:1 dropped:0 overruns:1 carrier:0
collisions:0 txqueuelen:0

ethOLink encap:EthernetHwaddr 00:CO0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0
UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:3573025 errors:0 dropped:0 overruns:0 frame:0

TX packets:1643167 errors:1 dropped:0 overruns:1l carrier:0
collisions:0 txqueuelen:100

Interrupt:10 Base address:0x1080

ethlLink encap:EthernetHwaddr 00:CO0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0
UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:3651769 errors:0 dropped:0 overruns:0 frame:0

TX packets:1643480 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txgqueuelen:100

Interrupt:9 Base address:0x1400

12-10 Lustre 1.8 Operations Manual ¢ March 2010

12.6 ~ Configuring Lustre with Bonding

Lustre uses the IP address of the bonded interfaces and requires no special
configuration. It treats the bonded interface as a regular TCP/IP interface. If needed,
specify “bond0” using the Lustre networks parameter in /etc/modprobe

options lnet networks=tcp (bond0)

12.6.1 Bonding References

We recommend the following bonding references:

In the Linux kernel source tree, see documentation/networking/bonding. txt
http:/ /linux-ip.net/html/ether-bonding.html

http:/ /www.sourceforge.net/projects/bonding

This is the bonding SourceForge website:

http:/ /linux-net.osdl.org/index.php/Bonding

This is the most extensive reference and we highly recommend it. This website
includes explanations of more complicated setups, including the use of DHCP with
bonding.

Chapter 12 Bonding 12-11

http://www.sourceforge.net/projects/bonding
http://linux-net.osdl.org/index.php/Bonding
http://linux-ip.net/html/ether-bonding.html

12-12 Lustre 1.8 Operations Manual ¢ March 2010

CHAPTER 1 3

Upgrading and Downgrading
Lustre

The chapter describes how to upgrade and downgrade between different Lustre
versions and includes the following sections:

Supported Upgrades

Lustre Interoperability

Upgrading Lustre 1.6.x to 1.8.x

Upgrading Lustre 1.8.x to the Next Minor Version

Downgrading from Lustre 1.8.x to 1.6.x

13-1

13.1

Supported Upgrades

For Lustre 1.8.x, the following upgrades are supported:
m Lustre 1.6.x (latest version) to Lustre 1.8.x (latest version)

m Lustre 1.8.x (any minor version) to Lustre 1.8.x (latest version)

13.2

13-2

Lustre Interoperability

Lustre interoperability enables 1.8.x servers ("new" servers) to work with 1.6.x clients
("old" clients), 1.6.x servers ("old" servers) to work with 1.8.x clients ("new" clients),
and "mixed" environments with 1.6.x and 1.8.x servers. For example, half of each OSS
failover pair could be upgraded to enable a quick reversion to 1.6 by powering down
the 1.8 servers.

This table describes interoperability between Lustre clients, OSTs and MDTs with
different versions of Lustre installed.

Lustre Component Interoperability with Other Lustre Components

Clients ¢ Old, live clients can communicate with old /new/mixed servers
¢ Old clients can start up using old/new/mixed servers
* New clients can start up using old/new/mixed servers

Note - Old clients cannot mount a file system that was created by a new
MDT.

OSTs ¢ Old OSTs can communicate with new clients/MDT

* New OSTs can only be started after the MGS has been started
(typically this means "after the MDT has been upgraded")

MDTs e Old MDT can communicate with new clients
* New, co-located MGS/MDT can be started at any point
¢ New, non co-located MDT can be started after the MGS starts

Lustre 1.8 Operations Manual ¢ March 2010

13.3

Upgrading Lustre 1.6.x to 1.8.x

Two upgrade paths are supported to meet the upgrade requirements of different
Lustre environments.

m Complete file system - All servers and clients are shut down and upgraded at the
same time. See Performing a Complete File System Upgrade.

m Rolling upgrade - Individual servers (or their failover partners) and clients are
upgraded one at a time, so the file system never goes down. See Performing a
Rolling Upgrade.

Note — If you upgrade some Lustre components to 1.8.x but not others (such as
running 1.8 clients in a file system with 1.6 OSTs), and run a mixed environment, you
may see one or more warnings similar to this:

LustreError: 3877:0: (socklnd_cb.c:2228:ksocknal_recv_hello())
Unknown protocol version (2.x expected) from 192.168.2.43

This warning is given when the 1.6 and 1.8 components use different protocols. It can
be safely ignored because the Lustre components negotiate a common protocol. In
this example, the 1.8 clients fall back to use the 1.6 protocol with the 1.6 OSTs.

Chapter 13 Upgrading and Downgrading Lustre 13-3

13.3.1 Performing a Complete File System Upgrade

This procedure describes a complete file system upgrade in which 1.8.x Lustre
packages are installed on multiple 1.6.x servers and clients, requiring a file system
shut down. If you want to upgrade one Lustre component at a time and avoid the
shutdown, see Performing a Rolling Upgrade.

Tip — In a Lustre upgrade, the package install and file system unmount steps are
reversible; you can do either step first. To minimize downtime, this procedure first
performs the 1.8.x package installation, and then unmounts the file system.

1. Make a complete, restorable file system backup before upgrading Lustre.

2. Install the 1.8.x packages on the Lustre servers and/or clients.
Some or all servers can be upgraded. Some or all clients can be upgraded.
For help determining where to install a specific package, see TABLE 3-1 (Lustre
packages, descriptions and installation guidance).

a. Install the kernel, modules and ldiskfs packages. For example:

$ rpm -ivh
kernel-lustre-smp-<ver> \
kernel-ib-<ver> \
lustre-modules-<ver> \
lustre-ldiskfs-<ver>

b. Upgrade the utilities/userspace packages. For example:
$ rpm -Uvh lustre-<ver>
c. If a new e2fsprogs package is available, upgrade it. For example:

$ rpm -Uvh e2fsprogs-<ver>

There may or may not be a new e2fsprogs package with a Lustre upgrade. The
e2fsprogs release schedule is independent of Lustre releases.

d. (Optional) If you want to add optional packages to your Lustre system,
install them now.

13-4 Lustre 1.8 Operations Manual ¢ March 2010

3. Shut down the file system.

Shut down the components in this order: clients, then the MDT, then OSTs.
Unmounting a block device causes Lustre to be shut down on that node.

a. Unmount the clients. On each client node, run:
umount <mount point>

b. Unmount the MDT. On the MDS node, run:
umount <mount point>

¢. Unmount the OSTs (be sure to unmount all OSTs). On each OSS node, run:
umount <mount point>

4. Unload the old Lustre modules by either:
m Rebooting the node
-OR -

m Removing the Lustre modules manually. Run lustre_rmmod several times and
use lsmod to check the currently loaded modules.

5. Start the upgraded file system.
Start the components in this order: OSTs, then the MDT, then clients.

a. Mount the OSTs (be sure to mount all OSTs). On each OSS node, run:
mount -t lustre <block device name> <mount point>

b. Mount the MDT. On the MDS node, run:
mount -t lustre <block device name> <mount point>

¢. Mount the file system on the clients. On each client node, run:
mount -t lustre <MGS node>:/<fsname> <mount point>

If you have a problem upgrading Lustre, contact us via the Bugzilla bug tracker.

Chapter 13 Upgrading and Downgrading Lustre 13-5

https://bugzilla.lustre.org

13.3.2

13-6

Performing a Rolling Upgrade

This procedure describes a rolling upgrade in which one Lustre component (server or
client) is upgraded and restarted at a time while the file system is running. If you
want to upgrade the complete Lustre file system or multiple components at a time,
requiring a file system shutdown, see Performing a Complete File System Upgrade.

Note — The suggested upgrade order is the MGS first, then OSTs, then the MDT, and
then clients. These are general guidelines, and specific upgrade requirements can be
found in the release notes for a given Lustre version. If no particular restrictions are
stated, then the suggested upgrade order may be rearranged; bear in mind that the
suggested order is the most heavily tested by the Lustre team.

Note — If the Lustre component to be upgraded is an OSS in a failover pair, follow
these special upgrade steps to minimize downtime:

1. Fail over the server to its peer server, so the file system remains available.
2. Install the Lustre 1.8.x packages on the idle server.

3. Unload the old Lustre modules on the idle server by either:

Rebooting the node

-OR -

Removing the Lustre modules manually by running the lustre_rmmod command
several times and checking the currently loaded modules with the 1smod command.

4. Fail back services to the idle (now upgraded) server.
5. Repeat Steps 1 to 4 on the peer server.

This limits the outage (per OSS) to a single server for as long as it takes to fail over.

Lustre 1.8 Operations Manual ¢ March 2010

1. Make a complete, restorable file system backup before upgrading Lustre.

2. Install the 1.8.x packages on the Lustre component (server or client).

For help determining where to install a specific package, see TABLE 3-1 (Lustre
packages, descriptions and installation guidance).

a. Install the kernel, modules and ldiskfs packages. For example:

$ rpm -ivh
kernel-lustre-smp-<ver> \
kernel-ib-<ver> \
lustre-modules-<ver> \
lustre-ldiskfs-<ver>

b. Upgrade the utilities/userspace packages. For example:
$ rpm -Uvh lustre-<ver>
c. If a new e2fsprogs package is available, upgrade it. For example:

$ rpm -Uvh e2fsprogs-<ver>

There may or may not be a new e2fsprogs package with a Lustre upgrade. The
e2fsprogs release schedule is independent of Lustre releases.

d. (Optional) If you want to add optional packages to your Lustre system,
install them now.

3. Unload the old Lustre modules by either:
m Rebooting the node
-OR -

m Removing the Lustre modules manually. Run lustre_rmmod several times and
use 1smod to check the currently-loaded modules.

4. If the upgraded component is a server, fail back services to it.

If you have a problem upgrading Lustre, contact us via the Bugzilla bug tracker.

Chapter 13 Upgrading and Downgrading Lustre 13-7

https://bugzilla.lustre.org

13.4

Upgrading Lustre 1.8.x to the Next Minor
Version

To upgrade Lustre 1.8.x to the next minor version, for example, Lustre 1.8.0.1 > 1.8.x,
follow these procedures:

m To upgrade the complete file system or multiple file system components at the
same time, requiring a file system shutdown, see Performing a Complete File
System Upgrade

m To upgrade one Lustre component (server or client) at a time, while the file system
is running, see Performing a Rolling Upgrade

13.5

13-8

Downgrading from Lustre 1.8.x to 1.6.x

This section describes how to downgrade from Lustre 1.8.x to 1.6.x. Only file systems
that were upgraded from 1.6.x can be downgraded to 1.6.x. A file system that was
created or reformatted under Lustre 1.8.x cannot be downgraded.

Two paths are available to meet the downgrade requirements of different Lustre
environments.

m Complete file system - File system is shut down and all servers and clients are
downgraded at once. See Performing a Complete File System Downgrade.

m Individual servers / clients - Individual servers and clients are downgraded one
at a time and restarted (a "rolling downgrade"), so the file system never goes
down. See Performing a Rolling Downgrade.

Lustre 1.8 Operations Manual ¢ March 2010

13.5.1

Performing a Complete File System Downgrade

This procedure describes a complete file system downgrade in which 1.6.x Lustre
packages are installed on multiple 1.8.x servers and clients, requiring a file system
shut down. If you want to upgrade one Lustre component at a time and avoid the
shutdown, see Performing a Rolling Downgrade.

Tip — In a Lustre downgrade, the package install and file system unmount steps are
reversible; you can do either step first. To minimize downtime, this procedure first
performs the 1.6.x package installation, and then unmounts the file system.

1. Make a complete, restorable file system backup before downgrading Lustre.
2. Verify that 1.6.x packages are installed on the Lustre servers and/or clients.

a. Check that the kernel, modules and ldiskfs packages are installed.

The 1.6.x kernel, modules and ldiskfs packages should be on all nodes because
of the earlier upgrade to 1.8.x, unless they were removed after the upgrade.

If it is necessary to install kernel, modules or 1diskfs packages, use the rpm
-ivh command. For example:

S rpm -ivh
kernel-lustre-smp-<ver> \
kernel-ib-<ver> \
lustre-modules-<ver> \
lustre-ldiskfs-<ver>

For help determining where to install a specific package, see TABLE 3-1 (Lustre
packages, descriptions and installation guidance).

b. Install the utilities/userspace packages, using the --oldpackage option. For
example:

rpm -Uvh --oldpackage lustre-<ver>

Note — You do not need to downgrade or take any action with e2fsprogs.

Chapter 13 Upgrading and Downgrading Lustre 13-9

3. Shut down the file system.

Shut down the components in this order: clients, then the MDT, then OSTs.
Unmounting a block device causes Lustre to be shut down on that node.

a. Unmount the clients. On each client node, run:
umount <mount point>

b. Unmount the MDT. On the MDS node, run:
umount <mount point>

¢. Unmount the OSTs (be sure to unmount all OSTs). On each OSS node, run:
umount <mount point>

4. Unload the old Lustre modules by either:
m Rebooting the node
-OR -

m Removing the Lustre modules manually. Run lustre_rmmod several times and
use lsmod to check the currently loaded modules.

5. Start the downgraded file system.
Start the components in this order: OSTs, then the MDT, then clients.

a. Mount the OSTs (be sure to mount all OSTs). On each OSS node, run:
mount -t lustre <block device name> <mount point>

b. Mount the MDT. On the MDS node, run:
mount -t lustre <block device name> <mount point>

¢. Mount the file system on the clients. On each client node, run:
mount -t lustre <MGS node>:/<fsname> <mount point>

If you have a problem downgrading Lustre, contact us via the Bugzilla bug tracker.

13-10 Lustre 1.8 Operations Manual ¢ March 2010

https://bugzilla.lustre.org

13.5.2

Performing a Rolling Downgrade

This procedure describes a rolling downgrade in which one Lustre component
(server or client) is downgraded and restarted at a time while the file system is
running. If you want to downgrade the complete Lustre file system or multiple
components at a time, requiring a file system shutdown, see Performing a Complete
File System Downgrade.

Note — If the Lustre component to be downgraded is an OSS in a failover pair, follow
these special downgrade steps to minimize downtime:

1. Fail over the server to its peer server, so the file system remains available.
2. Install the Lustre 1.8.x packages on the idle server.

3. Unload the old Lustre modules on the idle server by either:

Rebooting the node

-OR -

Removing the Lustre modules manually by running the lustre_rmmod command
several times and checking the currently loaded modules with the 1smod command.

4. Fail back services to the idle (now upgraded) server.
5. Repeat Steps 1 to 4 on the peer server.

This limits the outage (per OSS) to a single server for as long as it takes to fail over.

Chapter 13 Upgrading and Downgrading Lustre 13-11

1. Make a complete, restorable file system backup before downgrading Lustre.

2. Install the 1.6.x packages on the Lustre component (server or client).

For help determining where to install a specific package, see TABLE 3-1 (Lustre
packages, descriptions and installation guidance).

a. Install the kernel, modules and ldiskfs packages. For example:

$ rpm -ivh
kernel-lustre-smp-<ver> \
kernel-ib-<ver> \
lustre-modules-<ver> \
lustre-ldiskfs-<ver>

b. Downgrade the utilities/userspace packages, using the --oldpackage
option. For example:

$ rpm -Uvh --oldpackage lustre-<ver>

Note — You do not need to downgrade or take any action with e2fsprogs.

3. Unload the old Lustre modules by either:
m Rebooting the node
-OR -

m Removing the Lustre modules manually. Run lustre_rmmod several times and
use 1smod to check the currently-loaded modules.

4. If the upgraded component is a server, fail back services to it.

If you have a problem upgrading Lustre, contact us via the Bugzilla bug tracker.

13-12 Lustre 1.8 Operations Manual ¢ March 2010

https://bugzilla.lustre.org

CHAPTER 1 4

Lustre SNMP Module

The Lustre SNMP module reports information about Lustre components and system
status, and generates traps if an LBUG occurs. The Lustre SNMP module works with
the net-snmp. The module consists of a plug-in (lustresnmp.so), which is loaded by
the snmpd daemon, and a MIB file (Lustre-MIB. txt).

This chapter describes how to install and use the Lustre SNMP module, and includes
the following sections:

m Installing the Lustre SNMP Module

m Building the Lustre SNMP Module

m Using the Lustre SNMP Module

141

14.1

Installing the Lustre SNMP Module

To install the Lustre SNMP module:
1. Locate the SNMP plug-in (lustresnmp.so) in the base Lustre RPM and install it.
/usr/lib/lustre/snmp/lustresnmp.so

2. Locate the MIB (Lustre-MIB.txt) in /usr/share/lustre/snmp/mibs/Lustre-MIB.txt
and append the following line to snmpd.con.

dlmod lustresnmp /usr/lib/lustre/snmp/lustresnmp.so

3. You may need to copy Lustre-MIB.txt to a different location to use few tools. For
this, use either of these commands.

~/ .snmp/mibs
/usr/local/share/snmp/mibs

14.2

14-2

Building the Lustre SNMP Module

To build the Lustre SNMP module, you need the net-snmp-devel package. The
default net-snmp install includes a snmpd. conf file.

1. Complete the net-snmp setup by checking and editing the snmpd.conf file,
located in /etc/snmp

/etc/snmp/snmpd.conf

2. Build the Lustre SNMP module from the Lustre src.rpm
m Install the Lustre source
m Run ./configure

m Add the --enable-snmp option

Lustre 1.8 Operations Manual ¢ March 2010

14.3 Using the Lustre SNMP Module

Once the Lustre SNMP module in installed and built, use it for purposes:
m For all Lustre components, the SNMP module reports a number and total and free
capacity (usually in bytes).

m Depending on the component type, SNMP also reports total or free numbers for
objects like OSD and OSC or other files (LOV, MDC, and so on).

m The Lustre SNMP module provides one read /write variable, sysStatus, which
starts and stops Lustre.

m The sysHealthCheck object reports status either as healthy' or not healthy' and
provides information for the failure.

m The Lustre SNMP module generates traps on the detection of LBUG
(lustrePortalsCatastropeTrap), and detection of various OBD-specific healthchecks
(lustreOBDUnhealthyTrap).

Chapter 14 Lustre SNMP Module 14-3

14-4 Lustre 1.8 Operations Manual ¢ March 2010

CHAPTER 1 5

Backup and Restore

Lustre provides backups at the file system-level, device-level and file-level. This
chapter describes how to backup and restore on Lustre, and includes the following
sections:

m Backing up a File System

m Backing up a Device (MDS or OST)
m Backing up Files

m Restoring from a File-level Backup

m Using LVM Snapshots with Lustre

15.1

Backing up a File System

Backing up a complete file system gives you full control over the files to back up, and
allows restoration of individual files as needed. File system-level backups are also the
easiest to integrate into existing backup solutions.

File system backups are performed from a Lustre client (or many clients working
parallel in different directories) rather than on individual server nodes; this is no
different than backing up any other file system.

However, due to the large size of most Lustre file systems, it is not always possible to
get a complete backup. We recommend that you back up subsets of a file system.
This includes subdirectories of the entire file system, filesets for a single user, files
incremented by date, and so on.

15-1

15.2

15.2.1

15-2

Backing up a Device (MDS or OST)

In some cases, it is useful to do a full, device-level backup of an individual device
(MDS or OST), before replacing hardware, performing maintenance, etc. Doing full
device-level backups ensures that all of the data is preserved in the original state and
is the easiest method of doing a backup.

Note — A device-level backup of the MDS is especially important because, if it fails
permanently, the entire file system would need to be restored.

If hardware replacement is the reason for the backup or if a spare storage device is
available, it is possible to do a raw copy of the MDS or OST from one block device to
the other, as long as the new device is at least as large as the original device. To do
this, run:

dd if=/dev/{original} of=/dev/{new} bs=1M

If hardware errors cause read problems on the original device, use the command
below to allow as much data as possible to be read from the original device while
skipping sections of the disk with errors:

dd if=/dev/{original} of=/dev/{new} bs=4k conv=sync,noerror count=
{original size in 4kB blocks}

Even in the face of hardware errors, the ext3 file system is very robust and it may be
possible to recover the file system data after running e2fsck -f on the new device.

Backing Up the MDS

This procedure provides another way to back up the MDS.
1. Make a mount point for the file system. Run:
mkdir -p /mnt/mds
2. Mount the file system. Run:
mount -t ldiskfs {mdsdev} /mnt/mds
3. Change to the mount point being backed up. Run:

cd /mnt/mds

Lustre 1.8 Operations Manual ¢ March 2010

15.2.2

4. Back up the EAs. Run:

getfattr -R -d -m '.*' -P . > ea.bak

Note — In most distributions, the getfattr command is part of the "attr" package.
If the get fattr command returns errors like Operation not supported, then the
kernel does not correctly support EAs. Stop and use a different backup method or
contact us for assistance.

5. Verify that the ea.bak file has properly backed up the EA data on the MDS.
Without this EA data, the backup is not useful. Look at this file with "more" or
a text editor. For each file, it should have an item similar to this:

file: ROOT/mds_md5sum3.txt

trusted.lov=
0s0AVRCWEAAABXOKUCAAAAAAAAAAAAAAAAAAAQAAEAAADDSQOAAAAAAAAAAAAAANAA
AAAAAAEAAAA=

6. Back up all file system data. Run:

tar czvf {backup file}.tgz --sparse .

Note — In Lustre 1.6.7 and later, the --sparse option reduces the size of the backup
file. Be sure to use it in the tar command.

7. Change directory out of the mounted file system. Run:
cd -
8. Unmount the file system. Run:

umount /mnt/mds

Note — When restoring an MDT backup on a different node as part of an MDT
migration, you also have to change server NIDs and use the --writeconf

command to re-generate the configuration logs. See Changing a Server NID and
osc.myth-OST0004-osc-ffff88006dd20000.filesfree=129651.

Backing Up an OST

Follow the same procedure as Backing Up the MDS (except skip Step 5) and, for each
OST device file system, replace mds with ost in the commands.

Chapter 15 Backup and Restore 15-3

15.3

15.3.1

15-4

Backing up Files

In other cases, it is desirable to back up only the file data on an MDS or OST instead
of the entire device, e.g., if the device is very large but has little data in it, if the
configuration of the parameters of the ext3 filesystem need to be changed, to use less
space for the backup, etc.

In this situation, it is possible to mount the ext3 filesystem directly from the storage
device, and do a file-level backup. Lustre MUST STOP be stopped on this node.

Backing up Extended Attributes

In Lustre, each OST object has an extended attribute (EA) that contains the MDT
inode number and stripe index for the object. The EA’s striping information includes
the location of file data on the OSTs and OST pool membership. The EA data must be
backed up or the file backup will not be useful. Current backup tools do not properly
save the EA data, so the following extra steps are required.

1. Make a mountpoint for the file system.
mkdir /mnt/mds

2. Mount the filesystem.
mount -t ldiskfs {olddev} /mnt/mds

3. Change to the mountpoint being backed up.
cd /mnt/mds

4. Back