CMD MDS Recovery HLD

Mike Pershin

February 7, 2008

1 Introduction

Introduction of CMD leads to many changes on MD server andients sides. The re-
covery is one of several areas where changes are quite bégchidnges will occur due
to rollback functionality, more strict layering on serverdamulti-MDS environment.
This document describes basic recovery changes in CMD.

2 Requirements

The CMD environment requires the reviewed recovery due tonwanges in func-
tionality. The new recovery design should cover the follogvissues:

e recovery cases occurred due to cross-ref situations;

¢ land all recovery fixes from CMD?2 if they are applicable still

e changes in recovery logic due to FID introducing;

e client and server changes due to rollback;

e changes due to moving network things to the MDT level;

e changes in recovery API to make it explicit and clear;

e recovery and inter-server communications;

e proper orphan handling;

e multi-threaded recovery approach investigation.



3 FUNCTIONAL SPECIFICATION

3 Functional specification

Changes in MDS layering imply that all networks functiobakhould be placed in
MDT layer but MDD is quite simple and do only local stuff. Tleésre recovery cases
will be handled in MDT or CMM level with assistance from OSDsgibly.

3.1 Recovery changes due to an new layered MDS
3.1.1 LAST_RCVD file handling

MDT receives the request from client and the LAST_RCVD filewdd be updated
also. Moreover this should be done in one transaction witraton itself. The trans-
action callback in MDT is used to update the LAST_RCVD.

3.1.2 Last committed transaction

MDT should supply the clients with last_committed_trangacdata, so client can
purge committed requests. This will be changed due to rckllfanctionality - the

last_ committed_epoch will be used instead of this. Theildetdll be in rollback

DLD.

3.1.3 Reconstruction

The MDT should contains the methods for reconstruction.rédlonstructions can be
done inside the MDT using the normal MD API. The reconstarctvill be easier in
some cases due to FID.

3.2 Replay changes
3.2.1 Rollback changes

Client cares about pending requests using the last_coedreftoch value instead of
transaction number. It is enough while normal operation,itpease of MDS failure
the information is needed from LAST_RCVD file also.

3.2.2 FID and replay

With fids the replay becomes simpler. Replay functionalityttee MDS looks similar
to the usual operations in the most cases and reuse the usthalds greatly because of
FID design. The open/create replay becomes simpler duetiath that client always
knows FID for open/create operation;

Server part for replaying is also changed because it mayappy part of replays by
checking the undo log.



3.3 Cross-ref recovery issues 3 FUNCTIONAL SPECIFICATION

3.3 Cross-ref recovery issues
3.3.1 Timeout on the client

The delay of cross-ref command execution can invoke thedirnat the client:

1. Client send the request

2. MDS1 received it and ask MDS2 for it's part of action. MD%hd the request
later than client obviously

3. MDS2 didn’t answer for a long time so timeout on client vaiicur. There are
two cases:

(&) MDS2 is failed
(b) network delay

4. While MDS2 was the point of failure the MDS1 looks guiltyr the client.
The solution were implemented in CMD?2. It implies the foliog:
1. no reconnection is accepted while there is requests igress from the same
client
2. MDS failure are tracked by clients and timeouts will betposed until MDS

will return back. See theascading-timeouts-hld for details.

Another solution are the periodic keep-alive messagesdalibnt that MDS1 sends
until MDS2 recovers.

3.3.2 New requests and partial requests

Due to cross-ref operations there are many cases occur weljeests should be done
in different manner or additional checks are needed - fomgta using FID instead of
name, partial operations like creating the object but noteegetc.

3.3.3 MDS-MDS recovery

The MDS acts as client while talking with another one. Therethe resend and replay
will be done while MDS-MDS recovery. The only exception iseaof rollback - in
that case the initial MDS should drop all queues related heroMDS because these
requests will be replayed/resent by clients after rollbaitkbe done.



5 LOGIC SPECIFICATION

4 Use cases

All use cases are intended to 11/17 tests. The cluster iedtap and clients runs
several applications. One of the node is failed and otheesfotients shouldn’t be
affected. Due to requirements of test 17 the recovery tinoeilshbe not more than 5
minutes in each case.

4.1 Client failure

Clientis failed and normal operations should continue.edtfients and servers should
receive no errors.

4.2 Singe MDS failure in CMD

One MDS is failed, recovered and normal operations continue

4.3 OST failure

OST is failed and recovery is started, clients should getrrmre

5 Logic specification

5.1 Recovery and new MDS API
5.1.1 Updating the LAST_RCVD
The LAST_RCVD is updated by using callback, registered byTvDhere is corre-

sponding API in new layered MDS. Also, another callback lwabe used to reserve
enough space in transaction handle to do LAST_RCVD update.

5.1.2 Resent and reconstruction

Resent should affect only recovered MDS, all cross-refsakeuld be handled prop-
erly.

Reconstruction methods are the same as in old MDS but thaysarg new API.
5.1.3 Replay and FID simplifications

Replay request uses the same methods like ordinary comnidnedFID of object is
defined by client in both cases, therefore the only diffeeda¢the MSG_REPLAY flag



5.2 Cross-ref recovery handling 6 STATE MANAGEMENT

5.2 Cross-ref recovery handling

Let's suppose that client requests the MDS1 which in turnMBIS2 for part of oper-
ation. MDS-MDS recovery happens when MDS2 didn’t answeiniet

5.2.1 Timeouts dependencies

After MDS2 failure the timeout on client will happens at fivgith start of recovery for
MDS1 which is not failed actually. To avoid such situatioa timeouts for MDS-MDS
request can be smaller than one for client-MDS requestss digsn’'t guarantee that
client will gets no timeout, but reduce the probability oEkievent.

If this situation will occur the client will wait for MDS1-MI32 recovery

5.2.2 MDS1 failure
MDS1 can fail after the remote operation is done. In this cadg future rollback

functionality will helps to undo partial changes in the ¢ars

6 State management

6.1 State invariants

FID is invariant so replay will use the same FID as ordinargragions did.

6.2 Scalability & performance

Multiple request ability can affect the performance andatmity greatly.

6.3 Recovery changes

The case of client failure is not affected by the new recoegproaches.

6.4 Protocol changes

PtIRpc functionality should use the last_committed epadhe in reply to the clients
when rollback will be introduced.



