HLD of mmap support in Lustre

February 7, 2008

1 Requirements
Distributed mmap functionality in Lustre including;:
e execution of files.
e shared mappings between clients for read/write SHARED mappings.

e correct handling of PRIVATE mappings.

Current situation (before mmap patch): access pages via mmap path are not
protected by ldlm extent locks.
(Note: all "lock’ in this article means ldlm extent lock)

2 Functional Specification

We need to cover the page accessing not only from read/write path, but also
from mmap path. To achieve this goal:

e Override mmap() operation with our own 1l_file_ mmap().

e Override vim_ operation with our own Il file vm _ops.

static struct vm_operations_struct 11_file_vm_ops = {

.open = 11_open,
.close = 1l1_close,

#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0))
.populate = 11_populate,

#endif

s

e In Il nopage(), acquire lock before page cache installation, then drop it
after installation finished.

e Clean PTEs mapping to lustre file on lock revocation. Which would gen-
erate pagefault on futrue memory accessing.

.nopage



e In read/write path, lock both the read/write region and mmapped region
orderly to avoid deadlock. Introduce 1l tree lock structure to achieve
this.

e Never drop the lock covering a mmaped file to LRU, these locks should
be put in LRU as soon as the file is unmapped.

3 Use Cases

3.1 case 1: running a file on lustre

1> Kernel mmap the bin file as PRIVATE | DENYWRITE, loader mmap the
share library as PRIVATE | READABLE (for code segment) or PRIVATE
| READWRITE (for data segment).

2> 1l file_mmap was called to setup the vin_ops of mapped vma as1ll_file vm_ops.

3> The process try to read the mmapped address, which arose pagefault (no
page).

4> Kernel enter do_no_page(), it calls 1l nopage to acquire lock, install page,
then drop lock. Then it setup PTE of the page.

5> On the lock revocation, clear PTEs of the lock covering range (except the
copied page’s PTE), then truncate the covering pages.

6> Next access to the unprotected address will induce pagefault again.

3.2 case 2: shared mmap write (or read)

1> Client A and Client B calls sys _mmap to mmap the same file as SHARED
WRITABLE.

2> Each sys _mmap calls 1l _file _mmap to setup the vin_ops of mapped vma
as 1l file vm_ops.

3> Client A write to the portion of mmaped buffer, which induce no page fault,
kenerl enter do_no_ page().

4> do_no_page() calls Il nopage to acquire lock, install page, drop lock.

5> Client B write to the mmaped buffer, which induce no page fault and lock
acquisition too.

6> The lock on Client A was revoked, and the PTEs was cleared.



3.3 case 3: private mmap write (or read)

The different of private mmap with shared mmap is that:

1> 2.4: The PTEs of private mmap region will not be cleared on lock revo-
cation. Because their pages maybe copied pages.

2> 2.6: The PTEs of copied pages will not be cleared on lock revocation.

4 Logic Description

The changes in llite module:
e Add Il tree lock structure and tree lock functions.
e Add 1l file vm_ops structure and 1l _file mmap() operation.
e Add functions to clean PTEs of specified range.
e modify I file read()/ll file write() functions.
e modify Il pgcache remove extent() function.
The changes in ldlm module:

o Add ldlm_cli_join_lru(). Which can join/split all unused locks of the
specified resource to/from LRU.

e Add lock flag LDLM_FL NO_LRU for indicating if the this lock should
be in LRU.

The changes in lov module:
e Add lov_join lIru().

The changes in osc module:
e Add osc_join_Iru().

The changes in obd module:

e Add obd_join_lru() operation.

5 State Management
5.1 The LRU of unused locks

e The unused lock which covering mmap file will not be drop in LRU;

e As soon as there is one portion of file be mmapped, all the unused locks
of this file would be split from the LRU.

e As soon as all the the portions of file be unmapped, all the unused locks
of this file would be added into the LRU



5.2 Page mapping

e If the page is mapped to some inode, the page mapping should be set as
the inode’s i _mapping.

e If the page is newly copied page, the page mapping should be set as NULL.

o If the page has been swapped, the page mapping should be swapper _space.

6 Protocol, API’s, Disk format

No configuration changing, no disk format changing. Need a new operation
obd join_lru() for obd device.

7 Scalability and performance

e To avoid canceling locks for running file under lock pressure, we introduce
obd _join Iru facilities.

8 Recovery

Imagine the scenario like that: A client is evicted while a process is runing, after
recovery, the running binary has been changed by other clients, thus the process
run into an unpredictable condition now. So we should check if the binary file is
changed before reading page on nopage fault, if it changed, just terminate the
process instantly.

9 Alternatives

N/A

10 Focus for inspection

e Serveral known races: change inode size without i sem hold; lock only
covering page cache installation but not covering the PTE setup phase.

e If there is any case missed in pagefault path?

e If the vm operations: open(), close() are proper for track mapping files?



