
HLD of mmap support in LustreFebruary 7, 20081 RequirementsDistributed mmap functionality in Lustre including:
• execution of �les.
• shared mappings between clients for read/write SHARED mappings.
• correct handling of PRIVATE mappings.Current situation (before mmap patch): access pages via mmap path are notprotected by ldlm extent locks.(Note: all 'lock' in this article means ldlm extent lock)2 Functional Speci�cationWe need to cover the page accessing not only from read/write path, but alsofrom mmap path. To achieve this goal:
• Override mmap() operation with our own ll_�le_mmap().
• Override vm_operation with our own ll_�le_vm_ops.static struct vm_operations_struct ll_file_vm_ops = { .nopage = ll_nopage,.open = ll_open,.close = ll_close,#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)).populate = ll_populate,#endif};
• In ll_nopage(), acquire lock before page cache installation, then drop itafter installation �nished.
• Clean PTEs mapping to lustre �le on lock revocation. Which would gen-erate pagefault on futrue memory accessing.1

• In read/write path, lock both the read/write region and mmapped regionorderly to avoid deadlock. Introduce ll_tree_lock structure to achievethis.
• Never drop the lock covering a mmaped �le to LRU, these locks shouldbe put in LRU as soon as the �le is unmapped.3 Use Cases3.1 case 1: running a �le on lustre1> Kernel mmap the bin �le as PRIVATE | DENYWRITE, loader mmap theshare library as PRIVATE | READABLE (for code segment) or PRIVATE| READWRITE (for data segment).2> ll_�le_mmap was called to setup the vm_ops of mapped vma as ll_�le_vm_ops.3> The process try to read the mmapped address, which arose pagefault (nopage).4> Kernel enter do_no_page(), it calls ll_nopage to acquire lock, install page,then drop lock. Then it setup PTE of the page.5> On the lock revocation, clear PTEs of the lock covering range (except thecopied page's PTE), then truncate the covering pages.6> Next access to the unprotected address will induce pagefault again.3.2 case 2: shared mmap write (or read)1> Client A and Client B calls sys_mmap to mmap the same �le as SHAREDWRITABLE.2> Each sys_mmap calls ll_�le_mmap to setup the vm_ops of mapped vmaas ll_�le_vm_ops.3> Client A write to the portion of mmaped bu�er, which induce no page fault,kenerl enter do_no_page().4> do_no_page() calls ll_nopage to acquire lock, install page, drop lock.5> Client B write to the mmaped bu�er, which induce no page fault and lockacquisition too.6> The lock on Client A was revoked, and the PTEs was cleared.

2

3.3 case 3: private mmap write (or read)The di�erent of private mmap with shared mmap is that:1> 2.4: The PTEs of private mmap region will not be cleared on lock revo-cation. Because their pages maybe copied pages.2> 2.6: The PTEs of copied pages will not be cleared on lock revocation.4 Logic DescriptionThe changes in llite module:
• Add ll_tree_lock structure and tree lock functions.
• Add ll_�le_vm_ops structure and ll_�le_mmap() operation.
• Add functions to clean PTEs of speci�ed range.
• modify ll_�le_read()/ll_�le_write() functions.
• modify ll_pgcache_remove_extent() function.The changes in ldlm module:
• Add ldlm_cli_join_lru(). Which can join/split all unused locks of thespeci�ed resource to/from LRU.
• Add lock �ag LDLM_FL_NO_LRU for indicating if the this lock shouldbe in LRU.The changes in lov module:
• Add lov_join_lru().The changes in osc module:
• Add osc_join_lru().The changes in obd module:
• Add obd_join_lru() operation.5 State Management5.1 The LRU of unused locks
• The unused lock which covering mmap �le will not be drop in LRU;
• As soon as there is one portion of �le be mmapped, all the unused locksof this �le would be split from the LRU.
• As soon as all the the portions of �le be unmapped, all the unused locksof this �le would be added into the LRU3

5.2 Page mapping
• If the page is mapped to some inode, the page mapping should be set asthe inode's i_mapping.
• If the page is newly copied page, the page mapping should be set as NULL.
• If the page has been swapped, the page mapping should be swapper_space.6 Protocol, API's, Disk formatNo con�guration changing, no disk format changing. Need a new operationobd_join_lru() for obd device.7 Scalability and performance
• To avoid canceling locks for running �le under lock pressure, we introduceobd_join_lru facilities.8 RecoveryImagine the scenario like that: A client is evicted while a process is runing, afterrecovery, the running binary has been changed by other clients, thus the processrun into an unpredictable condition now. So we should check if the binary �le ischanged before reading page on nopage fault, if it changed, just terminate theprocess instantly.9 AlternativesN/A10 Focus for inspection
• Serveral known races: change inode size without i_sem hold; lock onlycovering page cache installation but not covering the PTE setup phase.
• If there is any case missed in pagefault path?
• If the vm operations: open(), close() are proper for track mapping �les?

4

