
High Level Design for group locksMay 5, 20061 Functionality speci�cationPossibility to lock �les (inodes) for exclusive access by only processes belongingto a logical group of processes.2 Logic speci�catioNTo support certain HPC installations, Lustre supports a group I/O lock. Thesemantics of the lock are as follows:1. All processes in a group of cooperating processes:(a) the processes share a group id, a 32 bit integer, which is generatedin a way outside of the scope of this document.(b) mark the �le as not requiring normal extent locks, and mark the �ledescriptor (as �usual�) as blocking or non blocking.(c) take a concurrent GROUP lock on a [0,EOF] extent associated witha �le. The concurrent GROUP lock is passed the group id.(d) explicitly release this lock when done with their I/O, preceeded by a�ush of cached data.(e) when the �le is closed, deliberately or through exit, the group locksare dropped2. Readers/writers on other nodes take [a,b]R/W locks which cannot begranted when group locks are present. Such readers can receive:(a) can be made to wait forever, interruptably. This is good for blocking�le descriptors.(b) can get -EWOULDBLOCK, this is good for �le descriptors that havebeen marked as non-blocking.(c) group enqueues with a di�erent group id must wait for the currentgroup and PR/PW locks to be released.1



In case (a) this behavior causes further group locks to have to wait until theread is satis�ed. This is not desirable, so we will let group locks jump over thewaiting lists if other group locks have already been granted.3 State managementThis lock can be held for unspeci�ed amount of time by a client, so usual lockrevocations timeouts are not applicable to these locks.4 Protocol, APIs, disk formatNew lock mode LCK_GROUP is added to support such a locking mode. Thislock mode is only used for EXTENT locks. Access to this sort of locks is possiblethrough ioctls:
• LL_IOC_GROUP_LOCK would get a group lock on a �le. ioctl's argargument reperesents 32bit �group id�.
• LL_IOC_GROUP_UNLOCKwoulo release a group lock previously grantedon a �le. ioctl's arg argument represents 32bit �group id� and should matchthat used at LL_IOC_GROUP_LOCK time.5 Scalability and performanceIt is believed that certain processes using this sort of locks will see speed burst,because several nodes can read and write the �le at the same time without anylocks bouncing around. Applications should be specially written to get use ofthis feature and to avoid any possible races.6 RecoveryNo implications.7 AlternativesNone known.8 ConcernsIf a node holding such a lock would die, normal access to a �le locked by thislock would be stalled until the node is evicted.2


