
1 ROLLBACK - HLD1 Rollback - HLD1.1 Engineering RequirementsRollback is a recovery mechanism for a cluster of metadata servers. If the systemcrashes due to a power failure or due to multiple MDS failures, the problem thatwe face is that the state of the cluster may not represent a valid �le system.The reason it may not is that transactions on di�erent nodes may be related toa single operation at the �le system level. Some of these transactions may belost in the crash, others may have committed to disk.In order to address this problem, the nodes will engage in a distributedalgorithm that restores the disk state to a snapshot which we will call an imagesnapshot. Nodes will rollback to the snapshot, based on an undo log.The requirements for this component are:1. De�ne the image snapshots2. When a cluster failure takes place, calculate what operations to undo oneach node, so that a consistent snapshot is reached.3. During normal operation, discard of the portion of the undo-operation logthat is not needed for undo in case of recovery.1.2 De�nitions & Speci�cations1.2.1 Image snapshotsClients contact a metadata server to initiate the execution of a �le system oper-ation, this leads to a an operation on the initiating MDS itself which we call anfsop. The initiating metadata server may involve another metadata server inthe process: this other metadata server executes a dependent operation whichwe call a depop. In two cases (rename and directory split) more nodes orrepeated transactions can be involved, and we build a stack of initiating anddependent calls: each node starts at most one depop on another node.Each metadata server executes memory transactions which follow a start/stoppattern. The memory transactions are collected into a disk transaction whichsees open/commit operations. The disk transactions on each node are strictlyordered. If transaction A is started before B, then A will belong to a disktransaction equal or earlier than B. Each memory transaction has a Lustretransaction number and a corresponding undo record in an llog, which is trans-actionally maintained. Transaction numbers and undo records commit in anordered fashion to disk wrt to the order introduced by the transaction number.File system operations (fsops) have dependencies, e.g. a �le in a directorythat doesn't exist yet cannot be created. The dependencies are determined bythe read and write set of the memory transactions associated with the transac-tions. If two transactions have an overlap in this read-write set, they are calleddependent. On a single node, the start and stop events of dependent transac-tions are serialized by the �le system. By using locks and because start order1

1.3 Logic of transactions and undo records 1 ROLLBACK - HLDis preserved in disk transactions the disk images of �le systems on single nodesare consistent wrt the fsop dependencies.De�nition A image snapshot of a clustered metadata �le system is a diskimage that has the following properties:1. For all �le system operations P depending on Q: if the e�ect of P isin the image, so is that of Q.2. For all fsops which involve dependencies among the metadata servertransactins: If the initiating transaction of a �le system operation isin the image, so are all its dependencies.A transaction on a node belonging to a snapshot and not to a previoussnapshot on that node is said to lie in the epoch of that snapshot.Clearly an image snapshot is a �le system that is reachable by �le system oper-ations and all transactions and their dependency stack are completely incorpo-rated.1.3 Logic of transactions and undo records1.3.1 Transaction organizationThe initiator will begin a �le system operation by taking su�ciently many or-dered DLM locks to prevent dependent transactions from starting until the locksare released.The node then reads its current epoch. It sends a request to a node requiredfor a depop including the epoch number, in an order determined by the natureof the �le system operation.The node receiving the request also takes locks to prevent dependent opera-tions from starting. It then looks at the epoch in the request and if it is largerthan its current epoch forwards the epoch locally. It recursively contacts othernodes for depops.When a node receives a reply from nodes which again includes an epoch,and possibly moves the epoch number for this transaction forward to the epochreceived. But it does not take into account any increase of the epoch on thesince sending the request for the dependent operation. Finally this node in turnreplies to the initiator with the epoch number. In this way, the highest epochnumber is chosen along the line up and down the dependent operations.Now all nodes have agreed on the same epoch number and each can startand complete a disk transaction in that epoch. Finally they release locks.The initiator replies to the client.Note that the epoch can increase and a transaction may be started in thelater epoch on a node, before a transaction is start which the node had agreedearlier to execute in an earlier epoch.So when a new epoch is started it is true that no transactions from thatepoch have executed already, but transactions belonging to a previous epoch2

1.3 Logic of transactions and undo records 1 ROLLBACK - HLDmay still be running. So the �rst transaction in a new epoch is easily identi�edwhen scanning backward, but not the last.1.3.2 Identifying the last committed snapshot locallyWhen a server plans to get involved in a transaction, it takes a reference on thecurrent epoch. Taking this reference is atomic with respect to increasing theepoch, and takes into account that a message received from a remote node tostart a dependent transaction may have just increased the epoch.While the transaction and dependencies are being negotiated with otherservers, the reference may move to a later snapshot. The reference is droppedwhen the transaction is closed in memory.Hence references can only be taken on epoch equal or higher than the currentone, older epochs will not get new references, and we merely have to let thecommits drain to discover that the epoch has committed. But note that epochsmay commit out of order, and an epoch as a whole has only committed ifall previous epochs have committed and the transactions in the epoch havecommitted.If the refcount of the epoch is 0 and the current epoch is bigger, the serverrecords the last transaction closed in the epoch, both on disk and in memory;the record on disk should be a consequence of the commit of the transactionas with the last transno. The commit callback of this transaction, togetherwith the and the commit callback of that transaction is an indication that thetransactions in that epoch have committed.1.3.3 RollbackA cluster can rollback to the last committed snapshot. To do so, it scans theundo log in backward order until encountering the �rst transaction in the newepoch. Notice that during this scan, some records might be encountered that areof a previous epoch, preceded by records from the latest epoch. Those recordsshould be skipped during the undo operation. We will see below that they cannever be dependent on records of the last epoch.1.3.4 Client Recovery and Image SnapshotsTraditionally clients replay un-committed transactions, these are communicatedto clients by metadata servers trhough last committed numbers. Client recoveryinteracts with snapshots by starting replay after the rollback has completed.The MDS nodes collectively determine the last committed snapshot. Clientsretain all transactions with transaction numbers that are beyond the last com-mitted snapshot, and free those before. The issue that needs to be addressed iswhich transactions have been undone and which were not. This information isavailable from the undo log: each undo operation includes a cancellation of thecorresponding undo record.During replay on the server, the server scans the bitmaps in the undo log todetermine if a transaction o�ered for replay by the client requires replay.3

1.4 Logic of snapshot coordination 1 ROLLBACK - HLD1.3.5 Avoiding un-necessary undo recordsAs we explained in the introduction, local �le systems roll back convenientlyto a consistent state. With good choices of metadata placement, there will bemany transactions that are local to a particular MDS. The question is underwhat circumstances we can avoid writing undo records for such transactions.The answer is easy: if the transaction depends on objects from a certainepoch then we need to know that this epoch is globally committed and will notbe rolled back during recovery before we can stop writing undo records.The mechanism for this is to record in the inodes (in a 32bit EA) what theepoch is in which it is being committed when a distributed transaction happens.Transactions that are local to one MDS compare the last globally committedsnapshot with the epochs found in the inode numbers. If the epochs in the inodenumbers are at least as old as the globally committed snapshot, there is no needto write undo records. The new or modi�ed objects created in this transactionset the dependent epoch EA to the latest epoch found in the dependencies.1.3.6 Encouraging early commitIf usage indicates that fsops that involve dependent operations are quite rarethen it may be bene�cial to immediately:1. begin a new snapshot2. nodes involved in the distributed transaction begin to commit the previousepoch3. nodes can stop recording undo information for certain transactions (seeabove) when the global commit of this epoch is con�rmed.1.4 Logic of snapshot coordination1.4.1 General approachOur snapshot algorithm is quite cheap, it can be done with 3K messages, whereK is the number of targets in the metadata cluster. We propose snapshots arefrequently recorded (every second for example) by a rotating coordinating node,called the coordinator.With the response to a snapshot control message, received possibly asyn-chronously by the coordinator, the last completed and commited epoch on eachnode can be reported. The coordinator will send a second message requestingpurging of unneeded undo records immediately after its knows the collective an-swer from all K nodes, but the coordinator only does this if it has moved sincethe last purge. This message also indicates to other nodes that the snapshot hascompleted and the next MDS node can become the leader for the next snapshot.In case of recovery the last committed and completed epoch are again col-lected and all nodes again roll back to the end of the last epoch committed onall nodes. 4

1.4 Logic of snapshot coordination 1 ROLLBACK - HLD1.4.2 Snapshot algorithmEach undo transaction log will label the undo records as belonging to a snapepoch, using an integer. A snapshot is the transition from one epoch tothe next. The node will record transactionally which is the current epoch onthe node, it will transactionally record when it transitions and �nally and atwhich undo log record number the previous epoch ended, using the mechanismsdescribed above.Each snapshot needs a coordinator. All K MDS nodes have a server index iand the coordinator for snapshot p is the MDS with index i = p % K.This node now:1. Sends a control message to all other MDS servers, this can be done inparallel. The control message handler moves the epoch forward. (messagetype snapcontrol)2. Each node reports back to the coordinator when the previous snapshothas comitted (snapstatus message type, with a STATUS_LOCAL �ag).3. The coordinator reports to all nodes when all nodes have committed theprevious snapshot (snapstatus message type with a STATUS_GLOBALand STATUS_PURGE �ag). Nodes can now initiate purging of un-neededundo records and stop recording undo information for certain transactions.These three steps conclude the snapshot.We have seen above that other nodes may be eager to initiate a snapshot andcommit. They can do this with a 4th type of message, sent to the coordinatorof the epoch they wish to start. Probably not more than 10 snapshots shouldbe started in a second, and hopefully it is normally a very infrequent operation.Hence:1. Nodes can initiate a snapshot and send a snapcontrol message to thecoordinator.2. Nodes should not initiate a new snapshot before 100ms have passed sincethe previous snapshot.If the snapshot fails to conclude, the coordinator invokes recovery of the meta-data cluster.1.4.3 RecoveryWhen a cluster goes into recovery the metadata server with index i = 1 isresponsible to gather the current and last committed snapshot from all nodeswith a snapreqstatus message.The process begins similarly to the 3 steps discussed in the previous message.1. Node i = 1 connects to all other metadata servers and enquires aboutexisting exports for the targets. If no target su�ered transaction rollbackdue to a restart, no undo is necessary. Resending will undo the damage.5

1.4 Logic of snapshot coordination 1 ROLLBACK - HLD2. If merely one target failed and the clients and other servers stayed up, norollback is necessary, replay will �x the problems.3. During this enquiry node i = 1 requests status from all nodes and computesthe globally last committed snapshot.4. It sends a snapstatus message with �ags STATUS_GLOBAL | STA-TUS_ROLLBACK to indicate to what point servers should rollback.5. When this completes messages are received by node i = 1 of type STA-TUS_LOCAL.6. When all messages have arrived the coordinator sends a message to allnodes of type STATUS_GLOBAL | STATUS_ROLLB_COMPL.7. Nodes proceed to accept replay and resent messages.1.4.4 Snapshot control messages and piggybacked messagesThe leader sends a control message to each node in the cluster to start thesnapshot. Because commit order and message order is not the same, each nodemust also piggy back its current epoch number on each request. Compare theLai-Yang algorithm for meaningful snapshots in message passing systems (cf.Tel, page 343).The idea of the algorithm is that several actions can trigger the epoch tomove forward, and all of them must be honored:1. A control message initiates a new epoch. All transactions starting afterthe control message start in the new epoch, as described in detail above.2. If a request for a dependent operation is received, its receipt treated as acontrol message followed by the request for the dependent transaction.3. If a reply to a dependency comes from a node with a higher epoch thanthe recipients epoch, the recipient(a) moves the receiving memory transaction to the higher epoch.(b) starts the planned transactions in the new epoch and future planninguses the new epoch.It is easy to convince oneself that a stack of dependent transactions is pulled intothe latest epoch, even if the dependency messages arrive before control messagesarrive. This is important, because if the dependent transactions crossed anepoch, undo might remove a partial �le system operation.Also note that not all concurrently running transactions will lie in the sameepoch. Once a dependent transaction has reported its epoch to the initiatingtransaction it must not change its epoch.6

1.5 Details of epoch control 1 ROLLBACK - HLD1.5 Details of epoch controlEach node manages its epoch number as follows:1. The epoch increase is atomic wrt:(a) starting a memory transaction. But memory transactions can be inprogress while the epoch increases.(b) sending a message to exchange epoch information and initiating alocal transaction and a dependent transaction.(c) replies from nodes preparing dependent transactions2. There are two kinds of increases, the �rst is called a control increase, thesecond a dependency increase:(a) A control message is sent from the coordinator to another node tomove the epoch from n to n+1, if the node has not already done so.We call this a control increase. Nodes that desire to urgently movethe epoch forward can do so and request the coordinator to sendmore messages.(b) Each request thati. prepares for a dependent transaction, orii. a request which prepares to or reads data for an fsop on a de-pendent node oriii. a reply to one of these twoincludes the epoch number of the sender. If the epoch number ofthe sender is higher than that of the receiver, i.e. if such a messagearrives before a control message, the epoch number is increased ton+1. We call this a dependency increase for the receiving transactionand call it a control increase for all other transactions.3. A running memory transaction is said to adopt the epoch increase if it willlabel its llog record with n+1, otherwise it is said to ignore the increase.(a) On any node, all transactions planned or transactions which werenot planned but started after the increase mark the llog records withn+1, ie. they adopt the increase.(b) Planned transactions always adopt dependency increases.4. When the increase is done each node writes an llog to a �le which recordsthe epoch boundary. The �le contains two integers, the current epoch,and the last written record in the llog �le. A reverse scan of the undo logcan stop at this record number.The epoch boundary record is needed in case a node does not have trans-actions in the new epoch, and to facilitate an easily determined endpointof the reverse undo log scan. 7

1.6 Issues for inspection 1 ROLLBACK - HLDTheorem: Assume all nodes in the cluster are in epoch n+1. The e�ect of alloperations caused by llog records with label <= n form an image snapshot.Proof: If an fsop involves dependent transactions, the algorithm above showsthat the entire group of the initiating and dependent transactions fall inthe same epoch.If fsop B reads from A (making B a dependent fsop on A) then the epochof B is at least as large as that of A, because the reply to the readingoperation may cause a dependent increase (see 2-b-(iii) above) .1.6 Issues for inspection1. It may be advantageous to record the snapshot right at the end of thedisk transaction. It would be worth puzzling about the generic rollbackbehavior.

8

