Lustre Configuration

February 11, 2008

1 Introduction

This High Level Design document introduces a new configuration and manage-
ment interface for Lustre. Lustre configuration will become dramatically simpler
and be true to the Unix spirit.

1.1 Overview of the mechanisms

We begin with a high level summary of the features that we discuss in this
document. Lustre servers, metadata servers (MDS) and object storage servers
(OSS), use file systems to store data and metadata. These file systems be-
come so called object storage targets (OST) and metadata targets (MDT) in
the global file system. Targets are (almost) invisible to users and of great impor-
tance to administrators. A Lustre format command (mkfs.lustre) is introduced
that stores some additional configuration information on these file systems. To
start services on these file systems, i.e. to activate the targets, a Unix mount
command is issued. If a target is new it automatically joins the cluster, by con-
tacting the configuration management service. Client nodes are also started
with a mount command, and obtain file system configuration information from
the same management service.

Management nodes can request all nodes to transparently update their con-
figurations, using a versioned configuration schema. This provides the capabil-
ity to dynamically add storage targets, migrate data and perform other storage
management tasks. The schema provides a last full version and incremental
updates to older versions of the configuration.

Lustre networking may be used by many file systems in a site, using multiple
networks. In order to start Lustre client and services, nodes need to be aware
how to traverse the networks, using portals routers, to reach management nodes.
This is bootstrap information which cannot be fetched from the management
service. While simple networks that only use TCP/IP or another single network
type are configured automatically, more complex networks are configured via
module parameters at module setup time.

Lustre bootstrap information, i.e. addresses of management nodes, are
passed as arguments to formatting (on servers), and mount commands, and
managed as persistent data in files like /etc/fstab.

1.2 Glossary 1 INTRODUCTION

To enable centrally administered persistent updates to this information on
all cluster nodes, clients and service nodes can use a configuration cache file
which provides persistent storage of this information. The configuration cache
is updated by these nodes in response to update requests from the management
nodes.

1.2 Glossary

namespace The Lustre global file system namespace is mounted on all client
and server nodes.

filesystem A lustre file system is internally made up of a collection of clustered
metadata targets and object storage targets. Each target is offered by a
file system on a metadata server (MDS) or object storage server (OSS)

kernel modules There will be one lustre.o module, this includes portals and
the socknal. Other NALs will be available as separate modules.

servers (OSS/MDS) Are nodes offering services of the network. Service soft-
ware is started at insmod time.

targets (ost/mdt) Define access to data on a file system. Targets are config-
ured and then started by formatting a device as an ext3 file system for
Lustre use and mounting the device as a Lustre file system on the servers.
The namespace offered by the mount is the global namespace of Lustre.

a cluster is configured by configuring and starting a (failover pair of) MDS
server(s) and by adding (pools of) OSS nodes and clustered MD servers

clients are configured and started with a mount command. The mount com-
mand names a management or MDS node and if necessary routers to reach
this node. When clients have caches, the cache device is mounted as a Lus-
tre file system to start the client. When a proxy is used the MDS is the
proxy MDS.

echo clients/servers are configured through insmod.

management nodes For each file system a failover pair of nodes is designated
as the master configuration management nodes. Normally this pair is a
pair of MDS servers.

lustre networking allows clients and servers to communicate with each other.
Lustre networking is configured via module parameters. The default pa-
rameters sets up simple TCP/IP networking.

network A network is a group of nodes that communicate directly with each
other. It is how lustre networking represents a single cluster. Multiple
networks are used to connect clusters together. Each network has a unique
type and number (e.g. tcp3 elan). The number defaults to zero if it is
omitted.

2 EXAMPLE

NID A NID is a lustre networking address, written <address>@<network>.
The network defaults to ’tcp’ if it is omitted. Every node has one NID for
each network it is on.

routers are nodes on more than one network that have been configured to
forward communications between these networks.

route table A route table lists networks and the routers that can reach them.
Nodes that need to communicate with other nodes on different networks
look up the route table to find a suitable router.

NAL stands for network abstraction layer. It is the software that implements
a particular type of network.

2 Example

2.1 Basic Example

Modprobe parameters are not needed if the network used is TCP. If it is Elan
or Voltaire infiniband we would use:

modprobe lustre.o networks=elan
modprobe lustre.o networks=vib

An MDS with a collection of OSS’s with stripe count 3 and stride size 4M is
configured and started as follows:

mds

mkfs.lustre --mdt --fsname=lustrel --stripecount=3 --stripesize=4M \
/dev/hdab
mount . lustre /dev/hdab /mnt/lustre

for each oss:

mkfs.lustre --ost --fsname=lustrel --mgtnode=mgtnodename /dev/hdab
mount.lustre /dev/hdab /mnt/lustre

client
mount . lustre mgtnodename:/lustrel /mnt/lustre

The mgmtnodename would be the MDS host address. Mount.lustre is able to
resolve IP hostnames to addresses. Numerous other options and configurations
can be defined similarly.

To mount an Elan client:

mount 3Q@elan:/fsname /mnt/lustre

2.2 Complex example - an involved single global site wide file &ystEXAMPLE

2.2 Complex example - an involved single global site wide
file system

A site has a configuration to build a site wite global file system. The philosophy
of the deployment has the following elements:

1. Three clusters are deployed. The clusters have fast networks (Elan) with
high port costs. The clusters share a site-wide heavy duty MDS (to become
an MDS cluster in future versions of Lustre), and each cluster has a storage
pool, which while part of the global file system is preferred for that cluster.
There is also a visualization cluster on the IP network that shares the file
system.

2. The MDS nodes are attached to an infiniband network, which is connected
with two portals routers per cluster to the cluster’s Elan networks, elib[1-
3]-[1-2]. The MDS’s are also connected to the site wide IP network through
4 routers ipib[1-4]. The OSS storage pools reside on the IP network. They
are named pooll, pool2, pool3 and they connect with 8 routers per cluster
to the fast cluster networks. The routers are named elip[1-3]-[1-8], each of
which have two gige interfaces and one Elan interface.

3. The IP network is tightly controlled and the OSS nodes flag the packets
arriving from the OSS’ own cluster N through elipN-[1-8] as coming from
a trusted source, not requiring a GSS security context, the MDS nodes do
the same with all packets arriving through the Elan-IB routers.

4. The first OSS pool cannot be read by cluster 2 and 3. On pool2 no file
creations are possible by cluster 1, while cluster 3 cannot write pool2.
Note that the permissions in this model have been chosen incremental, r
< w < ¢ (an alternate choice is possible).

(PLEASE INCLUDE A DRAWING)
Configuration definitions:

Lustre Networking is configured via module parameters. All nodes use the
same settings. It is most convenient to set them in /etc/modprobe.conf.

Separate IP subnets have been used in this configuration so that similar
nodes can share a subnet within the IP cluster. However the networking
infrastructure allows full connectivity. IP interfaces have all been specified
explicitly.

The IB cluster’s IPoIB subnet is 192.168.0.0/24.

The Elan clusters have eip (IP over Elan) subnets of 132.6.[1-3].0/24. This
IP addresses are only relevant to network selection.

The Elan routers on the IB cluster have IPoIB addresses 192.168.0.[1-6]
with ElanIDs 1 and 2 on their respective Elan clusters.

The IP routers on the IB cluster have IPoIB addresses 192.168.0.[1-8],
each with a single GigE NIC (ethl) at 134.9.0.[1-4].

2.2 Complex example - an involved single global site wide file &ystEXAMPLE

The IP routers on the Elan clusters have ElanIDs [3-10]. They each have
2 GigE NICs (ethl, 134.9.1.[1-24] and eth2, 134.9.2.[1-24]).

options lnet ’ip2nets="vib 192.168.0. % # IB cluster;\

elanl 132.6.1.% # Elan cluster 1;\

elan2 132.6.2.% # Elan cluster 2;\

elan3 132.6.3.% # Elan cluster 3;\
tcp(ethl) 134.9.0.[1-4] # IB/TCP routers;\
tcp(ethl,eth2) 134.9.1.[1-24] # Elan/TCP routers;\

tcp L # The rest of the world"’\

’routes="tcp 192.168.0.[1-8]0@vib # IB cluster routers;\

elanl 192.168.0.[1-2]@vib;\
elan2 192.168.0.[3-4]@vib;\
elan3 192.168.0.[5-6]@vib;\

vib 134.9.0.[1-4]Qtcp # TCP routers;\
elanl 134.9.1.[1-8]@tcp;\
elan2 134.9.2.[9-16]@tcp;\

elan3 134.9.3.[17-24]@tcp;\
vib [1-2]@elan[1-3] # Elan[1-3] routers;\
tcp [3-10]@elan[1-3];"’

Note that the last two routes suffice for all 3 elan clusters because they all
use the same ElanIDs for similar routers.

OSS/MDS-pools are configured with the lformat command.

MDS
mkfs.lustre --mdt --fsname=swgf \
--ostpool=pooll --stripecnt=4 --stripesz=4M \
--access=cQelanl \
--0stpool=pool2 --stripecnt=5 --stripesz=5M \
--access=w@elanl,c@elan2,r@elan3 \
--ostpool=pool3 --stripecnt=6 --stripesz=TM \
--access=c@elan3d,c@elan2,c@elanl \
--failover=mds2@vib --clumanager \
--securenet=elib[1-3]-[0-2] /dev/sdaQ
OSS pool X

mkfs.lustre --ost --fsname=swgfs --ostpool=poolX --heartbeat \
--failover=ossY --mgtnode=mds[1-2]@4 \
--securenet=elipX-[1-8] /dev/sdaP

3 LUSTRE NETWORKING (LNET)

3 Lustre Networking (LNNET)
3.1 LND

Lustre networking provides communication services to lustre clients and servers
over a standard interface. This interface abstracts the actual network hardware
being used, its addressing schemes and transport methods. The software that
understands specific hardware is called the LND which stands for “lustre network
driver”. Each network type has its own LND which is loaded on demand as lustre
networking is configured.

3.2 NID

Lustre servers are addressed by a lustre network ID, called a NID. A NID
consists of a network and an address within that network written as <ad-
dress>[@<network>].

The <network> part of a nid consists of a network type (which determines
the LND) and a number (e.g. “elan3” or “tcp2”) which distinguishes different
instances of the same network type. The network number can be omitted and
it defaults to zero (i.e. “tcp” and “tcp0” mean the same network). If the whole
‘@<network >’ part of a NID is omitted, it defaults to 'tcp’.

The <address> part of a nid is a expressed in the “natural” syntax for the
given network type. For example addresses on an Elan network are numbered
from O - (nnodes - 1), so the node with ElanID 2 has the NID 2@elan. Similarly
134.9.37.164@tcp is a NID on a TCP network. Some lustre utilities allow the
IP address within a NID to be specified using a hostname (e.g. tdev3@tcp),
however this is not permitted in module parameters.

3.3 Networks

All nodes that share the same network number can communicate with each
other. Typically, a single cluster is spanned by a single Lustre network; so no
further network configuration is required for cluster-local communications. Sites
with only a single cluster are therefore very simple to set up.

Multiple networks are used when several clusters all want to share the same
lustre file systems. Nodes that are members of more than one network provide
the connectivity. Services on these nodes can serve their local networks directly,
but they can also be set up as routers. Routers forward communications between
their local networks. They allow clients in the interior of one network to access
servers in the interior of another network.

Nodes that need to communicate with non-local networks look up the des-
tination network in a route table. This table is set up as part of network
configuration. It lists accessible networks and the routers that can reach them.

3.4 Servers with Mulitple NIDs 3 LUSTRE NETWORKING (LNET)

3.4 Servers with Mulitple NIDs

A node’s connection to a lustre network is called a lustre network interface
(LNI). Each LNI has its own NID.

Clients of a Lustre server with multiple NIDs must use the correct NID to
communicate with the server to ensure that their communications are routed
properly. This occurs automatically for all OSTs once the connection to the
MDS so it’s only really important to know which MDS NID to use in the mount
command.

3.5 Configuration

Lustre networking is configured at module load time by setting module param-
eters. These parameters have “sensible” defaults so that lustre can be used
“out-of-the-box” with no configuration in simple situations.

The same set of configuration parameters can be specified for all nodes in
a given site configuration; redundant configuration information is simply dis-
carded.

Under linux 2.6, the lustre configuration network parameters can be viewed
under /sys/modules; generic parameters under "lnet’ ("lustre’ when Inet is merged
into lustre) and LND specific parameters under the corresponding LND’s name.

Under linux 2.4, sysfs is not available, but the LND-specific parameters are
accessible via equivalent paths under /proc.

In the descriptions of network parameters below, the text in brackets fol-
lowing the parameter name shows its default value and a “W” if the parameter
is writeable via sysfs/procfs. Changes to writeable parameters have immediate
effect on a running system.

3.5.1 Network Topology

The network topology module parameters determine which networks a node
should join, whether it should route between these networks and how it com-
municates with non-local networks.

ip2nets (‘) is a string that lists networks, each with a set of IP address ranges.
It has the following syntax...

<ip2nets> :== <net-match> [<comment>] { <net-sep> <net-match> }
<net-match> :== [<w>] <net-spec> <w> <ip-range> { <w> <ip-range> } [<w>]
<net-spec> :== <network> ["(" <interface-list> ")"]

<network> :== <nettype> [<number>]

<nettype> :== "tcp" | "elan" | "openib" |

<iface-list> :== <interface> ["," <iface-list>]

<ip-range> :== <r-expr> "." <r-expr> "." <r-expr> "." <r-expr>

<r-expr> :== <number> | "x" | "[" <r-list> "]"

<r-list> :== <range> ["," <r-list>]

3.5 Configuration 3 LUSTRE NETWORKING (LNET)

<range> :== <number> ["-" <number> ["/" <number>]]
<comment :== "#" { <non-net-sep-chars> }

<net-sep> p== "yt | "\n"

<w> :== <whitespace-chars> { <whitespace-chars> }

The <net-spec> contains enough information to identify the network
uniquely and load an appropriate LND. The LND determines the missing
“address-within-network” part of the NID based on the interfaces it can
use.

The optional <iface-list> specifies which hardware interface the network
can use. LNDs that do not support the <iface-list>> syntax can not be
configured to use particular interfaces just use “what’s there”. Only a
single instance of these LNDs can exist on a node at any time, and the
<iface-list> must be omitted.

The linux kernel version of the TCP LND (the socknal) does support the
<iface-list> syntax. It uses the first interface specified to determine the
local address part of the NID, and it tries to balance network traffic over
all its interfaces. If no interfaces are specified, the socklnd uses all available
interfaces, so it’s important to specify all the interfaces to use, if there are
any interfaces it should not use. !

The <net-match> entries are scanned in the order declared to see if one
of the node’s IP addresses matches one of the <ip-range> expressions. If
there is a match, the <net-spec> specifies the network to instantiate. Note
that it is the first match for a particular network that counts. This can
be used to simplify the match expression for the general case by placing
it after the special cases. For example..

e ip2nets="tcp(ethl,eth2) 134.32.1.[4-10/2]; tcp(ethl) *.*x.*. %"
says that 4 nodes on the 134.32.1.* network have 2 interfaces but all
the rest have 1.

e ip2nets="vib 192.168.0.*; tcp(eth2) 192.168.0.[1,7,4,12]"
describes an IB cluster with 4 nodes at irregular IP addresses that
also have IP interfaces and could be used as routers.

Note that match-all expressions (e.g. *.*.*.*) effectively mask all other
<net-match> entries specified after them; they should be used with cau-
tion.

networks (“tcp”) is an alternative to “ip2nets” which can be used to specify
which networks to instantiate explicitly. The syntax is a simple comma
separated list of <net-spec>s (see above). The default is only used if
neither ’ip2nets’ nor 'networks’ is specified

LConsider a node on the “edge” of an Infiniband network, with a low bandwidth
management ethernet (eth0), IP over IB configured (ipoib0), and a pair of GigE NICs
(ethl,eth2) providing off-cluster connectivity. This node should be configured with ’net-
works="vib,tcp(ethl,eth2)”’ to ensure that the socknal ignores the management ethernet and
IPolB.

3.5 Configuration 3 LUSTRE NETWORKING (LNET)

routes (‘) is a string that lists networks and the NIDs of routers that forward
to them. It has the following syntax...

<routes> :== <route> [<comment>] { <route-sep> <route> }

<route> == [<w>] <net> [<w> <hopcount>] <w> <nid> { <w> <nid> } [<w>]
<comment == "#" { <non-route-sep-chars> }

<w> == <whitespace-chars> { <whitespace-chars> }

<route-sep> :== ";" | "\n"

<hopcount> :== <number>

A simple but powerful expansion syntax is provided, both for target net-
works and router NIDs as follows...

<expansion> :== "[" <entry> { "," <entry> } "]I"
<entry> :== <numeric range> | <non-numeric item>
<numeric range> :== <number> ["-" <number> ["/" <number>]]

The expansion is a list enclosed in square brackets. Numeric items in the
list may be a single number, a contiguous range of numbers, or a strided
range of numbers. For example...

e ’routes="elan 192.168.1.[22-24]0tcp"’ says that network elan0
is adjacent (hopcount defaults to 1), and is accessible via 3 routers on
the tcp network (192.168.1.22@tcp, 192.168.1.23@tcp and 192.168.24@tcp).

e ’routes="[tcp,vib] 2 [8-14/2]@elan"’ says that 2 networks (tcp0
and vib0) are accessible through 4 routers (8@Qelan, 10Q@elan, 12@elan
and 14@elan). The hopcount of 2 means that traffic to both these
networks will be traverse 2 routers; first one of the routers specified
in this entry, then one more.

The default, being the empty string, means that non-local networks are
unreachable.

Routing (i.e. forwarding betwen networks) is enabled If a route includes a
router with a NID that matches one of the node’s own NIDs and routing
has not been disabled explicitly (see “forwarding” below).

Duplicate entries, entries that specify a local network, and entries that
specify routers on a non-local network are ignored. Equivalent entries are
resolved in favour of the route with the shorter hopcount. The hopcount,
if omitted, defaults to 1 (i.e. the remote network is adjacent).

forwarding (*”) is a string that can be set either to “enabled” or “disabled”
for explicit control of whether this nod should act as a router, forwarding
communications between all local networks.

3.5 Configuration 3 LUSTRE NETWORKING (LNET)

3.5.2 Routing and Credits

LNET implements a credit flow control system to ensure that communications
can continue to flow through routers in the presence of congestion and/or dead
peers. The credit system ensures that no single peer can consume all the router’s
resources.

tiny router buffers sets the number of zero-payload router buffers available
for forwarding.

small router buffers sets the number of single-page router buffers available
for forwarding.

large router buffers sets the number of maximum payload router buffers
available for fowarding.

LND credits controls how many concurrent sends in total an instance of the
LND will support before causing communications to block. Many LNDs
also have a module parameter (e.g. “ntx”) that sets the number of pre-
allocated message descriptors, and ’credits’ should be sufficiently less than
this to allow for descriptor allocation in response to RDMA requests.

LND peer_credits controls how many concurrent sends to a particular peer
an instance of the LND will support before causing communications to
that peer to block. When ’peer credits’ is small compared with ’credits’,
many peers have to be unresponsive before “healthy” peers start to be
starved of resources.

This also controls how many router buffers (of any size) any particular
peer may reserve. When this limit has been reached, the router will block
further buffer requests from this peer.

3.5.3 Acceptor

The acceptor is a TCP/IP service that some NALs use to establish communi-
cations. If it is required by a local network and it has not been disabled, the
acceptor listens on a single port for connection requests which it redirects to the
appropriate local network. The acceptor is configured by the following module
parameters.

accept (“secure”) is a string that can be set to any of the following values.

e secure - accept connections only from reserved TCP ports (< 1023).
e all - accept connections from any TCP port.

e none - do not run the acceptor

accept port (988) is the port number on which the acceptor should listen
for connection requests. All nodes in a site configuration that require an
acceptor must use the same port.

10

3.5 Configuration 3 LUSTRE NETWORKING (LNET)

accept backlog (127) is the maximum length that the queue of pending con-
nections may grow to (see listen(2)).

accept timeout (5,W) is the maximum time in seconds the acceptor is al-
lowed to block while communicating with a peer.

accept proto version is the version of the acceptor protocol that should
be used by outgoing connection requests. It defaults to the most recent
acceptor protocol version, but it may be set to the previous version to
allows the node to initiate connections with nodes that only understand
that version of the acceptor protocol. The acceptor can, with some re-
strictions, handle either version (i.e. it can accept connections from both
‘old” and ’'new’ peers). For the current version of the acceptor protocol
(version 1), the acceptor is compatible with old peers if it is only required
by a single local network.

3.5.4 Portals Compatibility

LNET can inter-operate with lustre-portals in single-network configurations to
allow phased upgrades. This is controlled by the 'portals compatibility’ module
parameter as follows...

portals compatibility (“none”) is a string that can have any of the following
values.

e strong - compatible with portals and with LNET running either
strong or weak portals compatibility mode. Set this while any other
nodes are still running portals.

e weak - Not compatible with portals, but compatible with LNET
running in any mode.

e none - Not compatible with portals, or with LNET running in strong
portals compatibility mode.

In summary, when first introducing LNET to a site running portals, all LNET
nodes should be set to “strong” compatibility. When the last portals node has
been replaces by LNET, LNET nodes may be rebooted in “weak” compatibility
mode. When all LNET nodes are running in “weak” compatibility mode, LNET
can be booted as normal.

3.5.5 Other generic parameters

config _on_load (1) is a boolean that determines whether lustre networking
should configure itself at module load time (set) or on first use (clear).

11

3.5 Configuration 3 LUSTRE NETWORKING (LNET)

3.5.6 Kernel TCP/IP NAL

The socknal is connection based and uses the acceptor to establish communica-
tions via sockets with its peers.

It supports multiple instances and load balances dynamically over multiple
interfaces. If no interfaces are specified by the “networks” module parameter,
all non-loopback IP interfaces are used.

The address-within-network is determined by the address of the first IP
interface an instance of the socknal is using.

Changes to parameters marked with a "Wc” only have effect when connec-
tions are established. Existing connections are not affected by changes to them.

timeout (50,W) is the time in seconds that communications may be stalled
before the NAL will complete them with failure.

credits (256) the maximum number of concurrent sends.

peer_ credits (8) the maximum number of concurrent sends to any individual
peer. Also the maximum number of router buffers any particular peer can
use concurrently.

nconnds (4) sets the number of connection daemons.

min_reconnectms (1000,W) is the minimum connection retry interval in mil-
liseconds. This sets the time that must elapse before the first retry after a
failed connection attempt. As connections attempts fail, this time is dou-
bled on each successive retry up to a maximum of 'max_reconnectms’.

max_reconnectms (60000,W) is the maximum connection retry interval in
milliseconds.

eager ack (0 on linux, 1 on darwin,W) is a boolean that determines whether
the socknal should attempt to flush sends on message boundaries.

typed conns (1,Wc) is a boolean that determines whether the socknal should
use different sockets for different types of message. When clear, all commu-
nication with a particular peer takes place on the same socket. Otherwise
separate sockets are used for bulk sends, bulk receives and everything else.

min_bulk (1024,W) determines when a message is considered “bulk”.

buffer size (8388608,Wc) sets the socket buffer size. Note that changes to
this parameter may be rendered ineffective by other system-imposed
limits (e.g. /proc/sys/net/core/wmem max etc).

nagle (0,Wc) is a boolean that determines if nagle should be enabled. It should
never be set in production systems.

keepalive idle (30,Wc) is the time in seconds that a socket can remain idle
before a keepalive probe is sent. 0 disables keepalives

12

3.5 Configuration 3 LUSTRE NETWORKING (LNET)

keepalive intvl (2,Wc) is the time in seconds to repeat unanswered keepalive
probes. 0 disables keepalives.

keepalive count (10,Wc) is the number of unanswered keepalive probes be-
fore pronouncing socket (hence peer) death.

irq_ affinity (1,Wc) is a boolean that determines whether to enable IRQ affin-
ity. When set, the socknal attempts to maximize performance by handling
device interrupts and data movement for particular (hardware) interfaces
on particular CPUs. This option is not available on all platforms.

zc_min_frag (2048,W) determines the minimum message fragment that should
be considered for zero-copy sends. Increasing it above the platform’s
PAGE_SIZE will disable all zero copy sends. This option is not avail-
able on all platforms.

3.5.7 QSW NAL

The gswnal is connectionless, therefore it does not need the acceptor.

It is limited to a single instance, which uses all Elan “rails” that are present
and load balances dynamically over them.

The address-with-network is the node’s Elan ID. A specific interface cannot
be selected in the “networks” module parameter.

tx maxcontig (1024) is a integer that specifies the maximum message pay-
load in bytes to copy into a pre-mapped transmit buffer.

ntxmsgs (256) is the maximum number of message descriptors for sending
messages and mapping RDMA buffers.

credits (128) is the maximum number of concurrent sends.

peer credits (8) is the maxumum number of concurrent sends to a single peer
and also the maximum number of router buffers that can be used at any
time by a single peer.

nrxmsg _small (256) is the number of “small” receive buffers to post (typically
everything apart from bulk data).

ep_envelopes small (2048) is the number of message envelopes to reserve
for the “small” receive buffer queue. This determines a breakpoint in
the number of concurrent senders. Below this number, communication
attempts are queued, but above this number, the pre-allocated envelope
queue will fill, causing senders to back off and retry. This can have the
unfortunate side effect of starving arbitrary senders, who continually find
the envelope queue is full when they retry. This parameter should therefore
be increased if envelope queue overflow is suspected.

nrxmsg _large (64) is the number of “large” receive buffers to post.

13

3.5 Configuration 3 LUSTRE NETWORKING (LNET)

ep_envelopes large (256) is the number of message envelopes to reserve for
the “large” receive buffer queue. See “ep envelopes small” above for a
further description of message envelopes.

optimized puts (32768,W) is the smallest bulk payload that will be RDMA-
ed.

optimized gets (1,W) is the smallest non-routed GET that will be RDMA-
ed.

3.5.8 RapidArray NAL

The ranal is connection-based and uses the acceptor to establish connections
with its peers.

It is limited to a single instance, which uses all (both) RapidArray devices
present. It load balances over them using the XOR of the source and destination
NIDs to determine which device to use for any communication.

The address-within-network is determined by the address of the single IP
interface that may be specified by the “networks” module parameter. If this is
omitted, the first non-loopback IP interface that is up, is used instead.

n_connd (4) sets the number of connection daemons.

min_reconnect interval (1,W) is the minimum connection retry interval in
seconds. This sets the time that must elapse before the first retry after
a failed connection attempt. As connections attempts fail, this time is dou-
bled on each successive retry up to a maximum of ‘'max__reconnect__interval’.

max_reconnect interval (60,W) is the maximum connection retry interval
in seconds.

timeout (30,W) is the time in seconds that communications may be stalled
before the NAL will complete them with failure

ntx (256) is the number of message descriptors for sending and mapping RDMA
buffers.

credits (128) is the maximum number of concurrent sends.

peer_ credits (32) is the maximum number of concurrent sends to a single
peer and also the maximum number of router buffers that a single peer
can use concurrently.

fma cq_size (8192) is the number of entries in the RapidArray FMA com-
pletion queue to allocate. It should be increased if the ranal starts to issue
warnings that the FMA CQ has overflowed. This is only a performance
issue.

max__immediate (2048,W) is the size in bytes of the smallest message that
will be RDMA-ed, rather than being included as immediate data in an
FMA. All messages over 6912 bytes must be RDMA-ed (FMA limit).

14

3.5 Configuration 3 LUSTRE NETWORKING (LNET)

3.5.9 Voltaire NAL

The vibnal is connection based, establishing reliable queue-pairs over infiniband
with its peers. It does not use the acceptor for this.

It is limited to a single instance, which uses a single HCA that can be
specified via the “networks” module parameter. It this is omitted, it uses the
first HCA in numerical order it can open.

The address-within-network is determined by the IPolIB interface corre-
sponding to the HCA used.

Changes to parameters marked with a "Wc” only have effect when connec-
tions are established. Existing connections are not affected by changes to them.

service number (0x11b9a2) is the fixed IB service number on which the NAL
listens for incoming connection requests. Note that all instances of the
vibnal on the same network must have the same setting for this parameter.

arp_retries (3,W) is the number of times the NAL will retry ARP while it
establishes communications with a peer.

min_reconnect interval (1,W) is the minimum connection retry interval in
seconds. This sets the time that must elapse before the first retry after
a failed connection attempt. As connections attempts fail, this time is dou-
bled on each successive retry up to a maximum of ‘max_reconnect interval’.

max_reconnect interval (60,W) is the maximum connection retry interval
in seconds.

timeout (50,W) is the time in seconds that communications may be stalled
before the NAL will complete them with failure.

ntx (256) is the number of message descriptors used for sending or mapping
RDMA buffers.

credits (128) is the maximum number of concurrent sends.

peer_credits (8) is the maximum number of concurrent sends to a single peer
and also the maximum number of router buffers that any single peer can
use concurrently.

concurrent peers (1152) is the maximum number of queue pairs, and there-
fore the maximum number of peers that the instance of the NAL may
communicate with.

hca basename (“InfiniHost”) is used to construct HCA device names by ap-
pending the device number.

ipif basename (“ipoib”) is used to construct IPoIB interface names by ap-
pending the same device number as is used to generate the HCA device
name.

15

3.5 Configuration 3 LUSTRE NETWORKING (LNET)

local ack timeout (0x12,Wc) is a low-level QP parameter. It should not be
changed from the default unless advised.

retry cnt (7,Wc) is a low-level QP parameter. It should not be changed from
the default unless advised.

rnr_cnt (6,Wc) is a low-level QP parameter. It should not be changed from
the default unless advised.

ror_nak timer (0x10,Wc) is a low-level QP parameter. It should not be
changed from the default unless advised.

fmr remaps (1000) controls how often FMR mappings may be reused before
they must be unmapped. It should not be changed from the default unless
advised.

cksum (0,W) is a boolean that determines whether messages (NB not RDMAs)
should be checksummed. This is a diagnostic feature that should not be
enabled normally.

3.5.10 OpenlB NAL

The openibnal is connection based and uses the acceptor to establish reliable
queue-pairs over infiniband with its peers.

It is limited to a single instance that uses only IB device 0.

The address-within-network is determined by the address of the single IP
interface that may be specified by the “networks” module parameter. If this is
omitted, the first non-loopback IP interface that is up, is used instead. It uses
the acceptor to establish connections with its peers.

n_connd (4) sets the number of connection daemons. The default is 4.

min_reconnect interval (1,W) is the minimum connection retry interval in
seconds. This sets the time that must elapse before the first retry after
a failed connection attempt. As connections attempts fail, this time is dou-
bled on each successive retry up to a maximum of ‘'max_reconnect__interval’.

max_reconnect interval (60,W) is the maximum connection retry interval
in seconds.

timeout (50,W) is the time in seconds that communications may be stalled
before the NAL will complete them with failure.

ntx (384) is the number of message descriptors for sending or mapping RDMA
buffers.

credits (256) is the maximum number of concurrent sends.

peer_credits (16) is the maximum number of concurrent sends to any in-
dividual peer and also the maximum number of router buffers that any
individual peer can use concurrently.

16

3.6 Route tracking. 4 LUSTRE CONFIGURATION

concurrent peers (1024) is the maximum number of queue pairs, and there-
fore the maximum number of peers that the instance of the NAL may
communicate with.

cksum (0,W) is a boolean that determines whether messages (NB not RDMAs)
should be checksummed. This is a diagnostic feature that should not be
enabled normally.

3.6 Route tracking.

On TCP networks it is desirable for Lustre to have knowledge of the IP address
from which incoming packets were sent out before they reached the destination.
This can be the source node in case of a direct connection or it can be the last
router in a routed Lustre network.

The events associated with packet deliver carry a field to encode this IP
address.

4 Lustre Configuration

4.1 Management nodes

This section considers the features in which management nodes play a role. The
management nodes hold the descriptors for OST’s and MDT’s, serve configura-
tion data to clients when these perform a mount of a Lustre file system, and the
management nodes propagate updates of configuration elements to all clients.

The management nodes can store the configuration in a partition solely used
for configuration data, in a partition which is used as an MDT service partition
or in a file which is formatted as a file system.

The management service can be a failover service relying on shared storage,
as is done for MDS and OSS targets.

4.2 Initial cluster configuration

The proposal of this design is to define formatting commands and insmod com-
mands that configure a cluster completely. This means that the following se-
quence configures and starts a cluster:

1. Correctly insmod lustre.o to set up Portals routing and network defini-
tions.

2. Format and start the management node, normally the primary MDT

3. Format and start each OST. The first time an OST (or an additional
clustered MDT) is started by mounting it, the node communicates with the

management node which modifies the configuration of the Lustre cluster
through the addition the OST/MDT.

17

4.2 Initial cluster configuration 4 LUSTRE CONFIGURATION

4. Restart the management node which exports a configuration including all
new OST and MDT targets

5. Start all clients with a mount command

Initial implementation After the initial startup in the given order, nodes can
be started in any order. The initial implementation will target exactly the
sequence above and random starting order thereafter.

Target implementation The next implementation step is to arrange online
addition of OST and MDT targets. At this point, step 4 above will not be
necessary and the order of startup can be relaxed, clients can be started
any time.

The final implementation step is to arrange online addition and removal of
routers (subject to interest from our routing customers).

4.2.1 File System Startup

The file system can be started by issuing insmod commans on routers and mount
commands on all other nodes, in any order. If redundant Portals routers are
available startup will use them without significant delays. If some targets are
not available startup will proceed without delays and access the nodes when
they become available. Warnings will be issued to notify operators of targets
that have failed to start.

4.2,2 File System Management

Dynamic, online OST addition (as well as removal of OST and MDT addition
to a cluster) is desirable. For this typically the primary MDT nodes will double
as management nodes that can communicate with clients and OSS’s in the
filesystem to request these do a configuration refresh. Each file system has its
own management nodes.

A configuration refresh request can be handled by a client as follows:

1. Immediate handling results in transparent updates to the configuration.
All system calls complete normally while a configuration changes.

2. Handling upon reconnect allows a client to fetch all the changes to the
configuration that were made since it last connected. This way of handling
is not transparent, but the semantics are that of an eviction.

3. Handling upon remount is simpler. In this case the client simply fetches
the final configuration of the cluster and uses it.

The dynamic OST addition is based on mechanisms similar to those developed
for Hendrix.

18

4.2 Initial cluster configuration 4 LUSTRE CONFIGURATION

Initial implementation Additional targets can be incorporated by bringing
clients down and repeating step 3-5. OST targets can be administratively
removed by an update command on the MDS followed by unmounting and
re-mounting clients.

Target implementation Step 3 can be repeated at any time to add new tar-
gets. Dynamic updates on the management node can define new pools
and can remove OST’s.

4.2,3 Failure management

All Lustre services are failover, including the management service. To start
clients, the management service must be running. To add targets the manage-
ment service must be running. If the management service is not running or not
reachable due to network failures, client startup and target addition commands
will succeed when the service becomes available.

OST targets have an involved failure model which includes handling the case
of unrecoverable damage and ultimate removal of the target.

1. Normal operation of an OST involves clients waiting for target recovery
through failover or reboot. By default these waits become interruptible
after a timeout period. In a future release a maximal value for the wait
can be configured after which errors are returned to waiting system calls.

2. An OST which has failed and will require time to possibly can be marked
administratively as failed. Cients trying to access a failed OST will get
immediate errors when trying to read or write data to objects on the OST.
New object creations will avoid the failed OST, to render a file system
nominally useful.

3. An OST which cannot be repaired can be removed from the cluster.
When this is done system calls will mask failures to reach missing data,
i.e. data on the removed OST and treat the missing data as a sparse
region in the file. The option has dubious semantics must be used with
extreme prejudice

Initial implementation The commands to fail and remove an OST com-
mands are issued on all clients and MDS nodes.

Target implementation The commands can be issued on any node and are
propagated throughout the file system by the management nodes.

4.2.4 Configuration update protocol

All nodes in the tree take a configuration lock at their parent node, changes
in part of the configuration are announced through a lock callback. These
locks are locks on an auxiliary resource related to configuration and not related
to file system locks. However, the standard Lustre device (formally obd device)

19

5 CONFIGURATION UTILITY SPECIFICATION

infrastructure is used to manage the locks. The locks are primarily used because
of their convenient callback infrastructure and automatic removal when nodes
stop pinging.

A recursive tree update protocol allows changes in configurations to be prop-
agated.

The primary purpose of the update protocol is to provide information about
new servers to clients and eliminate long-term non-responsive routers and servers
from their configuration, such as declaring an OST failed. The protocol gives
nodes enough time to quiesce, without incurring timeouts and update their
configuration. Connection imports will register their configuration versions on
all server exports and servers can be configured to evict imports that do not
have up-to-date configurations running. A newly connecting client must fetch
the most up to date configuration.

The nature of the protoocol is simple. All nodes acquire a configuration lock
upon mount and fetch the configuration information. When the lock callback
issued, nodes have an opportunity to flush buffers, drop the lock and fetch the
updated protocol. Nodes that do not respond are evicted, which allows them
to reconnect later, still semi-transparently. Eviction involves the loss of cached
data and can lead to application errors.

Server nodes start from information stored in their disk file system. A new
server contacts the master management node and informs it of its addition to the
cluster. In the distant future, management nodes can be dynamically changed
through a slightly more involved handshake.

4.2.5 Topology

! no more route managers (fttb) !

Management nodes form a spanning tree, the root is formed by route man-
agers. A Lustre cluster may have a routing management tree and multiple file
system management trees, which start at level one of the route management
tree. Changes are only made at the root of management trees.

5 Configuration Utility Specification

5.1 mkfs.lustre

mkfs.lustre (--ost|--mdt|--mgmt) [--configmgr] [--netmgr]\
--fsname=<fsname> --targetid=<string>\
[--mgtnode=<hostdesc>[,<alt hostdesc>]]\
[--failover=<hostdesc> (--clumanager|--heartbeat)]\
[--stripecount=<cnt> --stripesize=<size>]\
[--stripeindex=<index>]\

[--ostpool=<poolname> --access=<access desc> --stripecount=<cnt>\

--stripesize=<size>]\
[--smfsopts <smfs options>]\

20

5.1 mkfs.lustre 5 CONFIGURATION UTILITY SPECIFICATION

[--ext3opts <ext3 options>]\
(--loop <filename>|<partition>) \
device

5.1.1 Options
ost|mdt This file system is a metadata or object target

[-configmgr| This target offers configuration management services for this file
system. This means this node can be used in a client mount com-
mand to obtain client configuration logs from this target.

[-netmgr] This target offers ping, trap and other network management services
used by Lustre for this file system. This flag is typically used by
the primary MDS target and also by the client file system that is
mounted on the failover server for this file system.

[-configdev=<devicel|file>>] Use the device or file to store the configuration data
instead of the target partition. This is mandatory if the target file
system is a memory based file system like tmpfs.

[-failover=<address> (—clumanager|-hearbeat)] Use the server at <address>
as a failover node for this target. Use clumanager or heartbeat to
configure the service for this target. On the failover node a client
file system will be mounted where the target mounts.

—fsname=<name> This parameter is a name of not more than 8 characters for
the file system. Mkfs.lustre labels file systems and uses the fsname
and targetid to provide labels for OSS and MDS file systems.

[-targetid=<string>] If the target id argument is given, mkfs.lustre labels the
partition with a logical name, and requests the MDS to use this
name, prefixed with the fsname to name the target on this server.
The recommended (and default) targetid’s are -ost<index> and
-mdt<index>. With this mkfs.lustre writes labels on the target
partitions as <fsname>-ost<index> or <fsname>-mdt<index>.
Here index is a hex integer of up Oxfffe (index Oxffff is reserved). This
naming requires the administrator to query the Lustre file system
about the indices already in use. It provides defense against confu-
sion arising from device names, which sometimes change if devices
are added or removed from systems.

If this argument is not given, no label is written and the MDT will
name the target as <fsname> <ost|mdt><index>.

[-nolabels] The disk partition on this node is not labeled. The use of this option
is not recommended.

[-stripeindex=<idx>] Add the server partition at index <idx> in the LOV or
LMYV descriptor. Index can be an arbitrary integer smaller than

21

5.2 mount.lustre 5 CONFIGURATION UTILITY SPECIFICATION

the maximum OST target number (XXX is this true or necessary?)
Stripes normally go over OST’s of consecutive indexes and it is de-
sirable to avoid this if multiple targets have consecutive stripes on
one server. This option can be used to influence this. If the index is
already taken, the mount will fail and the MDS will issue a warning
message.

—ostpool=<name> For OST’s this OST will be added in the pool as the next
OST in the pool. On MDT’s this declares a new OST pool. It is
typically followed by a stripecount and stripesize argument, which
then applies to this pool. If a poolname is declared on an MDT, no
default stripe parameters can be given and each pool much be given
stripe parameters.

—stripecount=<count> Use <count> stripes in on the OST’s or in the pool
named by the preceeding poolname command.

—stripesize=<bytes> Bytes to use per stripe.

—loop the device to be formatted is a regular file and will be used through
a loop device.

5.1.2 Description

Format a file system for use as an OST or MDT target.

5.2 mount.lustre

mount.lustre -o

[maxwait=<secs>] [timeout=<secs>]

[uluid=<uid>] [ulgid=<gid>]

<mds hostdesc>[,<alt mds hostdesc]:/<fsname> <mtpt>
5.2.1 Description

Mount.lustre starts services for targets. It must be issued to make targets
available in the Lustre cluster. The command is normally invoked by the service
management features of clumanager or heartbeat, and not by the operator, to
ensure the service is started on exactly one node.

5.3 umount.lustre

5.4 lIfs listtargets

1fs listtargets <mtpt>

Show a list of all target names, primary and failover server addresses associated
with the file system.

22

5.5 Ifs export 5 CONFIGURATION UTILITY SPECIFICATION

5.5 Ifs export

1fs export stop <mdt|ost mtpt>

1fs export failover <mdt|ost mtpt>

1fs export fsname=<fsname> [root_squash,no_setuid,net-desc:perm]

1fs export setfailover --host=<host addr> --tgt=<target name>\
<lustre mtpt>

1fs export addpool --ostpool=<pool3name> --stripecnt=<cnt>\
--stripesz=<size> <lustre mtpt>

1fs export delpool --ostpool=<pool3name> <lustre mtpt>

1fs export fail ost=<ost name> <fs mtpt>

1fs export remove osshost=<oss hostdesc>\
osspart=<oss partition> <fs mtpt>

5.5.1 Description

stop Stop the service on the target associated with the mountpoint. Clients
will experience failures and cannot recover systems calls in progress
upon reconnect. This is an online command.

failover Stop the target but retain export related information that allows
clients to reconnect to a failover or rebooted instance of this target.
This is an online command.

setconfigmgr Set the management that this target uses to the <host addr>
or provide a primary and secondary management node as <host
addr>,<failover host addr>.

setnetmgr Set the network management node for this target, as for setmgr.
setfailover Set the failover host for the target to the given <host addr>

addpool Add a pool with <poolname> and the specified striping information
for this pool.

delpool Remove the pool from the configuration, only possible if the pool
has no more targets registered

fail Put the named ost on the file system in failed mode, i.e. it is not
available right now and errors are returned without attempting to
contact the OST.

remove Remove the OST from the configuration permanently. Now when
reading, missing data is returned as 0’s and upon writing, new ob-
jects are created to replace missing objects.

addost Add an OST the configuration. This command only updates the
configuration data on the management node.

23

5.6 Ifs migrate 6 OPERATIONAL SCENARIOS

addmdt Add an MDT the configuration. This command only updates the
configuration data on the management node.

The commands that are not marked as online can be issued to a Lustre mounted
file system or to that same file system mounted as ext3.

5.6 Ifs migrate

1fs migrate --srcost=<source ost name>\
--dstost=<destination ost name> <fs mtpt>

5.6.1 Description

XXX NOTE this needs a pool variant that allows re-striping of data while it is
being migrated.
Migrate the data from the source OST to the target OST.

6 Operational Scenarios

Note that mount commands can be given in any order, after the system has
been mounted the first time. Below a '\’ (backslash) continuation character is
used to indicate that commands are too long to fit on one text line.

In all examples below the management node is the MDS. To be precise the
management service is started as the initial part of the startup of the primary
MDT.

All targets that are configured for failover must have some kind of shared
storage among two server nodes.

6.1 IP network, Single MDS, single OST, no failover

mds
mkfs.lustre --mdt --fsname=<fsname> --tgtid=mdt<idx>\
<mds partition>
mount.lustre <mds partition> <mds mtpt>
0ss

mkfs.lustre --ost --fsname=<fsname> ——tgtid=ost<idx>\
--mgtnode=<hostdesc> <oss partition>
mount.lustre <oss partition> <oss mtpt>

In a secure environment, the OSS connection to the MDS is authorized on the
grounds of a Kerberos service ticket for the MDS and a kerberos principal ticket
for the OSS. The OSS principal has OSS addition priviliges on the MDS.

24

6.2 IP Network, one MDS striped collectiofi ofOPFRATIONAL SCENARIOS

client

mount . lustre <hostdesc>:/<fsname> <cli mtpt>

6.2 IP Network, one MDS striped collection of OSS

mds

mkfs.lustre --mdt --fsname=<fsname> ——stripecount=<cnt>\
--stripesize=<size> <mds partition>
mount.lustre <mds partition> <mds mtpt>

for each oss:

mkfs.lustre --ost --fsname=<fsname>\
--mgtnode=<hostdesc> <oss partition>
mount.lustre <oss partition> <oss mtpt>

client

mount . lustre <hostdesc>:/<fsname> <cli mtpt>

6.3 IP Network, failover MDS

For failover, storage holding target data must must be available as shared stor-
age to failover server nodes. Failover nodes are statically configured as mount
options.

mds

mkfs.lustre --mdt --fsname=<fsname>\
--failover=<failover mds hostdesc> (--clumanager|--heartbeat)\
<mds partition>

mount.lustre <mds partition> <mds mtpt>

0ss
mkfs.lustre --ost --fsname=<fsname>\
--mgtnode=<mds hostdesc>,<failover mds hostdesc>\
<oss partition>
mount.lustre <oss partition> <oss mtpt>
client

mount.lustre <mds hostdesc>[,<failover mds hostdesc>]:/<fsname>\
<cli mtpt>

25

6.4 IP Network, failover MDS & OSS 6 OPERATIONAL SCENARIOS

6.4 IP Network, failover MDS & OSS

mds

0oss

client

mkfs.lustre --mdt --fsname=<fsname>\
--failover=<failover mds hostdesc> (--clumanager |--heartbeat)\
<mds partition>

mount.lustre <mds partition> <mds mtpt>

mkfs.lustre --ost --fsname=<fsname>\
--mgtnode=<mds hostdesc>[,<failover mds hostdesc>]\
--failover=<failover oss hostdesc> (--clumanager|--heartbeat)\
<oss partition>

mount.lustre <oss partition> <oss mtpt>

mount.lustre <mds hostdesc>[,<failover mds hostdesc>]:/<fsname>\
<cli mtpt>

6.5 Stopping a service
On the OSS or MDS in question

mds/oss

1fs export stop <mds|oss mtpt>
umount.lustre <mds|oss mtpt>

This stops the server unconditionally. It removes client export information and
does not perform a failover to another server. Issuing the umount command
without stopping the service will report that the file system is busy.

6.6 Forcing failover

On the OSS or MDS one wishes to failover to the failover host issue the following

command:

mds/oss

umount -f <mds|oss mtpt>

This perserves client export information. When the service for the target is
restarted on the failover node, or on the same node, the clients will reconnect
to this server.

26

6.7 Re-addressing a failover node 6 OPERATIONAL SCENARIOS

6.7 Re-addressing a failover node

Readdressing the failover node is an example of a dynamic update. If such
updates are of a permanent nature, clients only derive value from this if they
have a config cache file, see??.

1fs export --setfailover=<host desc> <fsname> \
<mds|oss partition label>

This command is run on the node serving the target provided by the partition.
It replaces the currently recorded failover host descriptor, if any, and writes the
one given on the command line. This command requests a modification at the
management node.

Alternatively

1fs export --host=<host desc> --setfailover=<hostdesc> --label=<target label> <lustre

can be issued on any server.

6.8 Local mounts through network

The following configuration sets up MDS, OSS on one node. The MDS will
mount a client file system using the loopback portals transport, which has host-
descriptor lo. The OSS mounts its file system as a loopback mount of that
of the MDS through the Ib option to mount.lustre. There is a further client
file system connecting to this through TCP networking, and finally a client file
system using loopback portals transport:

mds/oss/client

mkfs.lustre --fsname=<fsname> --mdt <mds partition>

mkfs.lustre --fsname=<fsname> --ost --mgtnode=lo <oss partition>
mount.lustre <mds partition> <mds mtpt>

mount.lustre -o loop <oss partition> <oss mtpt>

mount.lustre localhost:<fsname> <cli mtpt>

mount.lustre lo:<fsname> <cli mtpt>

6.9 Start Lustre on a client or server node, ignoring the
management network

Add the following option to the mount command, where ethQ is the interface
that should not be used as a transport:

mount.lustre -o ignoreif=ethO

Without this option, all available addresses on all interfaces will be bonded.

27

6.10 Mounting a Lustre server but no serviie OPERATIONAL SCENARIOS

6.10 Mounting a Lustre server but no service

Add the following mount option to the server mount commands:
mount.lustre -o nosvc

Note: OSS’s will still be able to connect to integrate into the file system

6.11 Adding an OSS/MDS to an existing file system
On the new OSS or MDS:

mds/oss:

mkfs.lustre --fsname=<fsname> (--ost|--mdt) --mgtnode=<mds hostdesc>[,<other mds hostde
mount.lustre <partition> <new mtpt>

To add an OSS or MDS target at a particular index in the LOV or LMV add
the —stripeindex—=<index> option to the mkfs.lustre command.

6.12 Security policies on some interface for the MDS

! I think this needs to be in the network section !

The following commands configure the service for <fsname> to have weak
security on elan, and for all traffic originating from a class C family of IP
192.168.1.0/0.0.0.255:

mds/oss:

mkfs.lustre --fsname=<fsname> -secure=elan -secure=192.168.1.0/0.0.0.255 <mds partitior

6.13 Configure a client with a persistent write back cache

On the client format a loop device cache for oss and mds cache combined with
mkfs.lustre:

mkfs.lustre --loop --ost --mdt --cachefor=<mds hostdesc>[,<mds2 hostdesc> ..]:/<fsname>
Now simply mount the cache:

mount.lustre -o loop <cache file> <cli mtpt>

28

6.14 Configure a replicating proxy cluster 6 OPERATIONAL SCENARIOS

6.14 Configure a replicating proxy cluster
Select MDS and OSS nodes acting as a proxy cluster

mkfs.lustre -mds -proxyfor=<mds hostdesc>[,<mds2 hostdesc>,...] <proxy device>
mkfs.lustre -oss mds=<mds proxy hostdesc> <proxy ossl device>
mkfs.lustre -oss mds=<mds proxy hostdesc> <proxy oss2 device>

It is possible to specify only an MDS proxy or only an OSS proxy. To connect
a client to the file system through a proxy

mount.lustre <mds proxy hostdesc>//fsname

6.15 Pools

To define a pool of OSS’s for a Lustre file system, each with a stripe and access
pattern, issue the following mkfs.lustre command:

mkfs.lustre --mdt --ostpool=<poollname> --stripecount=<cntl> --access=c01,r02,w03 --ost

Here network 1 has create (i.e. read, write and create access), network 2 only
read-only access and network 3 has read-write access, but cannot create objects.
To add a new pool, on a running or non-mounted Lustre server

1fs export --persist --ostpool=<pool3name> (<device>|<label>|<mds mtpt>)

To add an OSS into a certain pool configure them as:

mkfs.lustre -oss -pool=<poolname> -mds=<mds hostdesc> -fsname=<fsname> <oss partition>

6.16 Target configuration
Often it is desirable to protect subtrees of a file system quite differently.

mkfs.lustre -mds -fsname=<fsname> <mds device>

mount.lustre -o nosvc

1fs export fsname=<fsname> [root_squash,no_setuid,net-desc:perm]

1fs export fsname=<fsname>/<subdir> [root_squash] [ro] [nosetuid] [net-desc:perm]

6.17 Echo client & Single OST server

mkfs.lustre --mds --oss -echo <mds oss device>
mount.lustre <mds oss device> /mnt/lustre
insmod echoclient mds=<mds oss hostdesc> lustre.o

29

6.18 Striped OST echo server 6 OPERATIONAL SCENARIOS

Now this client can be driven Ictl or through /proc. Or if the lov on the echo
client is not desirable, use

insmod echoclient mds=<mds oss hostdesc> lov=no lustre.o

Without this option the echo client is layered, as usual on the lov which layers
on the osc. With the lov=no option, the echo client speaks directly to the OSC.
This option can also be used with llite.

6.18 Striped OST echo server

mkfs.lustre -mds <mds device>
mount.lustre <mds device> <mds mtpt>
insmod echoserver mds=<mds hostdesc> lustre.o

The latter command is issued on each OSS in the stripes and it adds the OST
to the MDS LOV desscriptor.

6.19 Long term failure and removal of OSS targets

An OSS target can be operating normally. In this mode, if a client does not get
a response it will wait indefinitely for the OSS target or its failover target to be
present and process the request. The wait is interruptible, should a client want
to abort waits.

1fs export fail osshost=<oss hostdesc> osspart=<oss partition> <fs mtpt>

After this command is issued the OSC’s will update the information about
this target and they will fail all writes, by returning errors on the client. This
command can be issued on any node, provided administrative priviliges are
available. All I/O read and write to the OST fails in this mode.

A next decision step regarding the OST is that it may never return to the
cluster. Now it needs to be administratively removed. Some customers prefer to
have no further complaints from the removed OST and return 0’s on reads and
make writes successful by writing new objects. To put the OST in that mode:

1fs export remove osshost=<oss hostdesc> osspart=<oss partition> <fs mtpt>

6.20 Migration

mkfs.lustre -oss -mgtnode=<mds hostspec> -fsname=<fsname> <new oss device>
mount.lustre -nosvc <new oss device> <oss mtpt>
1fs migrate -srcossname=<oss hostdesc> -srcosspart=<oss partition> -dstossname=<oss hos

30

8 IMPLEMENTATION ROADMAP

Similarly a new pool of OSS’s may be added and data from one pool can be
migrated to another:

1fs migrate -srcpool=<pool name> -dstpool=<pool name> <fs mtpt>

MDS migration is arranged similarly.

7 State management

To facilitate atomic updates, the configuration state is written transactionally
in shared storage, accessible by any server and its failover partner. The config-
uration consists of several parts:

1. A version number

2. Change entries from all previous versions, tagged to allow any version
to roll forward. Change entries exist for adding, failing, removing and
readdressing servers.

3. A full record of the last version:

(a) A number of client parameters can be fetched, such as timeouts.

(b) All nodes will fetch the latest LOV descriptors which contain the
pool names, stripe policies, permissions and OSS nodes for the pool.
LOV descriptors can be very large - approximately 200 OSS’s can
be stored per 4K page. The OSS node descriptor contains a host
descriptor and alternate host descriptor and an index.

(¢) An LMYV descriptor, similar to the LOV descriptor, but typically
smaller.

(d) The routing table.

In addition to MDS managed state, it is assumed that the site can manage
distribution of mount maps and /etc/modules.conf to manage parameters that
cannot be fetched from servers (e.g. router nodes).

8 Implementation roadmap

8.1 Current state

e libcfs and portals are still separate modules, but the network can be ini-
tialised fully (as described above) with insmod portals and all required
NAL modules are loaded on demand.

e lconf has been altered to edit out all network configuration.

31

8.2

Next steps 8 IMPLEMENTATION ROADMAP

portals router is included in the portals module. It is consulted when
first sending into the network, but NALs still interface directly to it for
message forwarding.

Socknal and gswnal implement all tunables as module variables. Other
NALs will be converted as required.

Socknal can discover all local interfaces. The same old interface matching
code is still there (i.e. a client with 1 interface connecting to a server
with 2 interfaces sticks to the “published” interface of the server. We’ll
either have to implement a “reconnect on this interface” protocol, or get
convinced that clients connecting to all server interfaces is a good idea to
achieve load balance in multi-NIC server with single-NIC client situations.

lctl network prints all local NIDs.

lctl network unconfigure is required at teardown so that portals can
release the NALs and allow them to unload. Once all the NALs have been
unloaded, portals can be unloaded. lconf has been altered to run this and
attempt to unload all known NALs when it unloads the ptlrpc module.

libefs /nidstring.c implements common NID/string operations. It can be
included in the kernel, from liblustre and from general userspace utilities.

lustre configuration still uses XML. The NIDs specified in this XML must
be “new style” address@network NIDs.

lustre only uses a single portals NI.

All this is on portals b_hd newconfig and lustre bl 4 newconfig.

8.2 Next steps
8.2.1 Landing on portals HEAD and lustre HEAD /bl 4/b_cray

Imminent

8.2.2 Connection handling

Ptlrpc connection structures are removed. Client obds have two slots for ad-
dresses, primary and failover (no multiple failover alternatives at this point).
During failover the role of primary and secondary is switched.

XML would still be used to specify the address and failover address of OST’s
and MDT’s, for storage in the confobd llog. No lctl net commands will be needed
anymore at this point. Portals should be branched and the branch should be
be committed and used with Lustre HEAD (no routing on HEAD).

32

8.3 Portals - phase 2 10 CHANGELOG

8.2.3 Packet flagging

insmod can take arguments such that the socknal flags events with an integer,
when packets coming in from one or more ranges of IP addresses.

insmod can take an argument to declare that all packets on a certain interface
or NAL are flagged with an integer.

Each of these special packet sources must optionally be able to use a different
integer to flag events (so that for example we can have different flags for no-
security and no-encryption.

Commit code for Lustre HEAD
8.3 Portals - phase 2

Subject to funding.

8.3.1 Configuration cache files

8.3.2 Dynamic updates for router failure notifications

9 Outstanding issues

1. It seems that non-routed multiple network installations may benefit from
the nettype. Produce examples

2. Consider the role of the Lustre filesets and mount objects.
Consider raid 1 and 5 repair commands for OST’s
Consider if implementing the target implementation at once is possible

Index value

ook w

10 Changelog

2005/03/15 First draft
2005/03/16 Add more variety to targets

2005/03/22 Describe Lustre.o, give a very involved networking example. Try
to clarify management tree. Become clear that insmod parameters con-
figure networking and mount parameters configure file systems. Become
clear that without management nodes performing online updates of con-
figurations this is equally useful as current configuration mechanisms.

2005/03/22 Explain how fsnames need to be combined with acronyms like oss
and an integer index to allow everything to be crammed into 16 character
ext3 labels.

2005/04/02 Incorporate internal feedback. Incorporate comments from LLNL.

33

10 CHANGELOG

. Clarify the role of NIDs and host interface addresses in “Usage of the
portals api”

. Objections to the ignoreif parameter, we like what we have, perhaps
use an option only-configured-ifs

. I have come to like the pools idea to address uniform allocation poli-
cies. Removing the security bits from it as Terry proposes is perhaps
good.

. Include description of failure handling during startup and target ad-
dition.

5. Describe update protocol in more detail

6. Discuss the umount.lustre interaction with failover services.

7. Give an example where stripe index is used. Can we do this auto-

matically? Doesn’t seem easy.

2005,/04,/03 Incorporate comments from Evan Felix: be more clear about tar-
gets and servers.

2005/05,/23 Network configuration brought up to date.

2005/05/28 Screen the document. Questions remain about:

1. Easy handling of target id names

2. prepare for MDT pools, so change —pool to —ostpool

2005/05/31

1. Remove flagging. Instead we add an IP source address to the event.

This separates Lustre security policy (which can be per file system)
from flagging policy.

2. Note that data migration has to respect pools.

34

