
Commit Callback for DMU Transactions

Author: Andreas Dilger

12/24/2007

1 Introduction

In order to know when asynchronous transactions have been committed to stable stor-
age, Lustre requires a mechanism to update a given OBD device’s last_committed_transno
in memory for replying to clients in each RPC. In ext3/ldiskfs this is accomplished by
hooking a callback function and associated callback data toa given JBD journal han-
dle while that handle is still open, transferring the handleto the transaction at handle
commit time, and in the JBD code after a transaction has successfully committed to the
journal the commit callback is called.

Implementing a similar mechanism to notify the Lustre code when operations have
committed to stable storage for the ZFS DMU is required in order to maintain the
Lustre functionality and allow asynchronous commit notification to the clients.

2 Architecture

The DMU Commit Callback API implements a mechanism to allow the upper layers
of the software stack to get asynchronous notification of lowlevel transaction events
in order to allow a coherent distributed transaction mechanism to be implemented for
Lustre, but without having to know the internal details of the transaction mechanism.

This should be accomplished on the DMU by having the caller associate callback func-
tions and data with each atomic operation and the caller is notified via the callback
when this has been committed to stable storage in some manner.

3 External Functional specifications

3.1 Prototypes/* This magic number is internal to the dmu_tx_callback_*() functions */
1

4 HIGH LEVEL LOGIC#define DMU_CALLBACK_MAGIC 0xca11bac0ca11bacfulltypedef char dmu_callback_data_t;typedef (void dmu_callback_func_t)(dmu_callback_data_t *dcb_data, int error);typedef struct dmu_callback {list_node dcb_list; /* linked to tx_callbacks list */__u64 dcb_magic; /* magic number to verify header */dmu_callback_func_t *dcb_func; /* caller function pointer */dmu_callback_data_t dcb_data[0]; /* caller private data */} dmu_callback_t;dmu_callback_data_t *dmu_tx_callback_data_create(size_t bytes);int dmu_tx_callback_commit_add(dmu_tx_t *tx, dmu_callback_func_t *dcb_data, int error),dmu_callback_data_t *dcb_data);int dmu_tx_callback_data_destroy(dmu_callback_data_t *dcb_data);
4 High Level Logic

The DMU makes a transaction handle available to the caller once it has been created viadmu_tx_create(). While the handle is active, beforedmu_tx_commit() is called,
new callbacks can be registered against that handle. When the handle is committed
the callbacks will be transferred to the transaction group proper. When the transaction
group is committed to disk all of the callbacks are called, inno defined order.

If there is an error in transaction group processing (e.g. corrupt filesystem, filesystem
read-only,dmu_tx_abort() on transaction handle) any registered callback functions
are called with errno != 0 to indicate to the caller that the operation was not completed
and to give the caller an opportunity to clean up the allocated memory and any asso-
ciated caller state. If a created callback is to be destroyedbefore it is added to the
transaction handle the caller is responsible to destroy it itself.

The structure ofdmu_callback_t is opaque to the caller, so a new functiondmu_tx_callback_data_create()
will be used to allocate space for the callback data. A separate allocation function is
used to avoid having two small allocations and frees for eachcallback (one for the
DMU-internal state indmu_callback_t, and one for the caller’s data). Only thedmu_commit_data_tpart of the allocated data is returned to the caller, and the rest of
the structure is private to the DMU. The functiondmu_tx_commit_callback_add()
regenerates thedmu_callback_tpointer viacontainer_of()or equivalent and ver-
ifies thedcb_magic before registering the callback on thedmu_tx_t. Multiple call-
backs can be registered on admu_tx_t.

A newtx_callbacks list is added to thedmu_tx structure to hold the list of callbacks
and their data:struct dmu_tx {/** No synchronization is needed because a tx can only be handled

2

4 HIGH LEVEL LOGIC* by one thread.*/list_t tx_holds; /* list of dmu_tx_hold_t */objset_t *tx_objset;struct dsl_dir *tx_dir;struct dsl_pool *tx_pool;uint64_t tx_txg;uint64_t tx_lastsnap_txg;uint64_t tx_lasttried_txg;txg_handle_t tx_txgh;void *tx_tempreserve_cookie;struct dmu_tx_hold *tx_needassign_txh;list_t tx_callbacks; /* list of dmu_callback_t on this dmu_tx */uint8_t tx_anyobj;int tx_err;#ifdef ZFS_DEBUGuint64_t tx_space_towrite;uint64_t tx_space_tofree;uint64_t tx_space_tooverwrite;refcount_t tx_space_written;refcount_t tx_space_freed;#endif};
The per-transaction list of callbacks is moved fromdmu_tx_t totx_state_t in dmu_tx_commit()
by calling a new internal functiontxg_rele_commit_cb(). Thetx_state_t now
tracks the list of alldmu_callback_t that need to be run after a particular transac-
tion group is completed. Thetx_commit_callbacks list is an array ofTXG_SIZE
elements, which results in a separate callback list per in-flight transaction group. Thetx_commit_callbacks[] array is indexed by thedmu_tx_t.tx_txg & TXG_MASK,
which is constant for the lifetime of thedmu_tx_t.typedef struct tx_state {tx_cpu_t *tx_cpu; /* protects right to enter txg */kmutex_t tx_sync_lock; /* protects tx_state_t */krwlock_t tx_suspend;uint64_t tx_open_txg; /* currently open txg id */uint64_t tx_quiesced_txg; /* quiesced txg waiting for sync */uint64_t tx_syncing_txg; /* currently syncing txg id */uint64_t tx_synced_txg; /* last synced txg id */uint64_t tx_sync_txg_waiting; /* txg we're waiting to sync */uint64_t tx_quiesce_txg_waiting; /* txg we're waiting to open */kcondvar_t tx_sync_more_cv;kcondvar_t tx_sync_done_cv;kcondvar_t tx_quiesce_more_cv;

3

4 HIGH LEVEL LOGICkcondvar_t tx_quiesce_done_cv;kcondvar_t tx_timeout_exit_cv;kcondvar_t tx_exit_cv; /* wait for all threads to exit */uint8_t tx_threads; /* number of threads */uint8_t tx_exiting; /* set when we're exiting */list_t tx_commit_callbacks[TXG_SIZE]; /* post-commit callbacks */kthread_t *tx_sync_thread;kthread_t *tx_quiesce_thread;kthread_t *tx_timelimit_thread;} tx_state_t;
In lib/libzpool/txg.c::txg_sync_thread(), afterspa_sync() is finished writ-
ing the data to disk the pending callbacks are called. In the majorify of cases the error
parameter is 0, but when there is read-only support for the DMU then the callbacks
need to be called with a non-zero error (e.g. EROFS) to indicate that the operation was
not committed to disk. The callbacks are responsible for freeing the callback mem-
ory, so there is little to do other than removing the items from the list and calling the
callbacks./* iterate over commit callbacks on this txg */for (dcb = list_head(&txg->txg_commit_callbacks[txg & TXG_MASK]),next = dcb ? list_next(&txg->txg_callbacks, dcb) : NULL;dcb;dcb = next,next = dcb ? list_next(&txg->txg_callbacks, dcb) : NULL) {dmu_callback_func_t *dcb_func = dcb->dcb_func;list_remove(&txg->txg_callbacks, dcb);dcb_func(dcb->dcb_data, 0 /* non-zero if SPA read-only */);}
Each callback function is required to free the allocated data itself when it is called
and has finished with the data. Because the callback data contains private state that is
needed by the DMU, the callback data must be freed with the functiondmu_tx_data_callback_destroy().
If the callback is not yet registered with thedmu_tx_t then the caller must also destroy
the callback data withdmu_tx_data_callback_destroy().

The callback function receives as parameters thedmu_callback_data_t passed as
the parameter todmu_tx_commit_callback_add()and anerror parameter that in-
dicates if there was an error committing the data to disk.

4

5 USE-CASE SCENARIOS

5 Use-Case Scenarios

5.1 Describe use cases for all normal and abnormal uses of exter-
nally visible functions.

dmu_tx_callback_data_create()returns a pointer to admu_commit_data_t at least
as large as the requested transaction data size, or NULL if there is an allocation
failure. The allocated memory must be freed by the caller usingdmu_tx_callback_data_destroy(),
either within the registered callback function (afterdmu_tx_callback_commit_add()
is called) or directly if the callback will never be registered for some reason.

dmu_tx_callback_commit_add() returns 0 for success, or EINVAL if there is an in-
valid parameter passed to the function. This function validates the passedtx (if
possible), anddb_data.dcb_magic. As the callback data should be preallo-
cated viadmu_tx_callback_data_create() and thetx should be always be
held, an error can only happen in the case of coding errors or memory corruption.

dmu_tx_callback_data_destroy()will free the supplied dcb and return 0 for success.
If the thedcb_magic value is incorrect EINVAL will be returned and no ac-
tion taken. This can only fail if there is a coding error or memory corruption.
This function is always used by the external caller, either from within the reg-
istered commit callback function or directly for unregistered callbacks, and not
the DMU.

dcb_callback_func_t() will be called when the transaction group has committed to
disk. If error is 0 then the operation completed successfully, otherwise the
operation did not complete. In either case, the allocated memory must be freed
with dmu_tx_callback_data_destroy().

5.2 Describe use cases demonstrating interoperability between the
software with and without this module.

For ZFS there should be no interoperability issues, as the callback functionality will
remain unused in the code and thetx_commit_callbacks list will always be empty
so no action will be taken.

For Lustre this change is required for proper functionalityof recovery, so no release
can be made without it. All code changes are internal to the DMU and the Lustreudmu
calling code so no interoperability issues should arise.

5.3 Describe use cases demonstrating any scalability use cases men-
tioned in the architecture document.

For uses by Lustre the commit callback has a very low overhead(non-sleeping locks,
and the free of the callback data), so there is not anticipated to be any scalability issues

5

9 ALTERNATIVES/QUESTIONS

different than those already existing with ldiskfs. The list of callbacks is only walked
once at commit time, and each element is being removed from the list. As there is no
defined order for the callbacks there are no sorting or other ordering requirements and
items can be inserted into thetx_callbacks list in O(1).

6 State Machine Design

6.1 Locking

The transaction handle’stx_callbacks list does not need to be locked, as only a sin-
gle processor can be active on a single transaction at one time, per comment atstructdmu_tx declaration. The transaction group’stx_commit_callbacks list also does
not itself need any locking at callback time, as the transaction commit is also handled
by a single processor, and the transactions are removed fromthe list before the trans-
action is called, so even if thedmu_callback_t is passed to another thread before
freeing there is no risk of list corruption.

Thetx_commit_callbacks list does need to be locked during the short time that the
callbacks are moved fromdmu_tx_t totx_state_t in dmu_tx_commit->txg_rele_commit_cb().
This would use the per-txg lock indmu_tx_t->tx_txghsimilar totxg_rele_to_sync().

6.2 Disk state changes

None.

7 Test Plan

A simple test program that links into the DMU could be constructed, or PIOS could
be modified to register callbacks to monitor the time taken for each write to commit to
disk.

8 Plan Review

9 Alternatives/Questions

Polling the underlying transaction group number to determine when it is committed to
disk would also be possible, but is considerably less flexible.

6

