Commit Callback for DMU Transactions

Author: Andreas Dilger

12/24/2007

1 Introduction

In order to know when asynchronous transactions have beamdted to stable stor-

age, Lustre requires a mechanism to update a given OBD d&eVicet _committed_transno
in memory for replying to clients in each RPC. In ext3/Idskiis is accomplished by
hooking a callback function and associated callback datagiven JBD journal han-

dle while that handle is still open, transferring the hartdl¢he transaction at handle
committime, and in the JBD code after a transaction has sstudéy committed to the
journal the commit callback is called.

Implementing a similar mechanism to notify the Lustre codeemw operations have
committed to stable storage for the ZFS DMU is required ineortd maintain the
Lustre functionality and allow asynchronous commit naodifion to the clients.

2 Architecture

The DMU Commit Callback APl implements a mechanism to allbe tipper layers
of the software stack to get asynchronous notification of el transaction events
in order to allow a coherent distributed transaction meigmario be implemented for
Lustre, but without having to know the internal details af transaction mechanism.

This should be accomplished on the DMU by having the callsoeiate callback func-
tions and data with each atomic operation and the caller ti§ietbvia the callback
when this has been committed to stable storage in some manner

3 External Functional specifications
3.1 Prototypes

/* This magic number is internal to the dmu_tx_callback_*() functions */



4 HIGHLEVEL LOGIC

#define DMU_CALLBACK_MAGIC OxcallbacOcallbacfull

typedef char dmu_callback_data_t;

typedef (void dmu_callback_func_t) (dmu_callback_data_t *dcb_data, int error);
typedef struct dmu_callback {

list_node dcb_list; /* linked to tx_callbacks list */
__ub4 dcb_magic; /* magic number to verify header */
dmu_callback_func_t *dcb_func; /* caller function pointer */

dmu_callback_data_t dcb_data[0]; /* caller private data */
} dmu_callback_t;
dmu_callback_data_t *dmu_tx_callback_data_create(size_t bytes);
int dmu_tx_callback_commit_add(dmu_tx_t *tx, dmu_callback_func_t *dcb_data, int error),
dmu_callback_data_t *dcb_data);
int dmu_tx_callback_data_destroy(dmu_callback_data_t *dcb_data);

4 High Level Logic

The DMU makes a transaction handle available to the callee drnas been created via
dmu_tx_create (). While the handle is active, befoiau_tx_commit () is called,
new callbacks can be registered against that handle. Whehahdle is committed
the callbacks will be transferred to the transaction growgper. When the transaction
group is committed to disk all of the callbacks are calledhardefined order.

If there is an error in transaction group processing (e.grugb filesystem, filesystem
read-onlydmu_tx_abort () on transaction handle) any registered callback functions
are called with errno !'= 0 to indicate to the caller that thermpion was not completed
and to give the caller an opportunity to clean up the allatatemory and any asso-
ciated caller state. If a created callback is to be destrdgfdre it is added to the
transaction handle the caller is responsible to destragetfi

The structure ofimu_callback_t is opaque to the caller, so a new functimu_tx_callback_data_create()
will be used to allocate space for the callback data. A sépaiéocation function is

used to avoid having two small allocations and frees for ezdtback (one for the

DMU-internal state indmu_callback_t, and one for the caller's data). Only the
dmu_commit_data_t part of the allocated data is returned to the caller, andebeaf

the structure is private to the DMU. The functi@iu_tx_commit_callback_add ()

regenerates thitnu_callback_t pointer viacontainer_of () or equivalent and ver-

ifies thedcb_magic before registering the callback on theu_tx_t. Multiple call-

backs can be registered odmu_tx_t.

Anewtx_callbacks listis added to thému_tx structure to hold the list of callbacks
and their data:

struct dmu_tx {
/%

* No synchronization is needed because a tx can only be handled



4 HIGHLEVEL LOGIC

* by one thread.
*/
list_t tx_holds; /* list of dmu_tx_hold_t */
objset_t *tx_objset;
struct dsl_dir *tx_dir;
struct dsl_pool *tx_pool;
uint64_t tx_txg;
uint64_t tx_lastsnap_txg;
uint64_t tx_lasttried_txg;
txg_handle_t tx_txgh;
void *tx_tempreserve_cookie;
struct dmu_tx_hold *tx_needassign_txh;
list_t tx_callbacks; /* list of dmu_callback_t on this dmu_tx */
uint8_t tx_anyobj;
int tx_err;
#ifdef ZFS_DEBUG
uint64_t tx_space_towrite;
uint64_t tx_space_tofree;
uint64_t tx_space_tooverwrite;
refcount_t tx_space_written;
refcount_t tx_space_freed;
#endif
s

The per-transaction list of callbacks is moved frému_tx_ttotx_state_tindmu_tx_commit ()
by calling a new internal functionxg_rele_commit_cb(). Thetx_state_t now

tracks the list of alldmu_callback_t that need to be run after a particular transac-

tion group is completed. Thex_commit_callbacks list is an array ofTXG_SIZE

elements, which results in a separate callback list peighitftransaction group. The
tx_commit_callbacks[] array is indexed by thému_tx_t.tx_txg & TXG_MASK,

which is constant for the lifetime of thianu_tx_t.

typedef struct tx_state {

tx_cpu_t *tx_cpu; /* protects right to enter txg */
kmutex_t tx_sync_lock; /* protects tx_state_t */

krwlock_t tx_suspend;

uint64_t tx_open_txg; /* currently open txg id */

uint64_t tx_quiesced_txg; /* quiesced txg waiting for sync */
uint64_t tx_syncing_txg; /* currently syncing txg id */
uint64_t tx_synced_txg; /* last synced txg id */

uint64_t tx_sync_txg_waiting; /* txg we’re waiting to sync */
uint64_t tx_quiesce_txg_waiting; /* txg we’re waiting to open */
kcondvar_t tx_sync_more_cv;

kcondvar_t tx_sync_done_cv;

kcondvar_t tx_quiesce_more_cv;



4 HIGHLEVEL LOGIC

kcondvar_t tx_quiesce_done_cv;

kcondvar_t tx_timeout_exit_cv;

kcondvar_t tx_exit_cv; /* wait for all threads to exit */

uint8_t tx_threads; /* number of threads */

uint8_t tx_exiting; /* set when we’re exiting */

list_t tx_commit_callbacks[TXG_SIZE]; /* post-commit callbacks */
kthread_t *tx_sync_thread;

kthread_t *tx_quiesce_thread;

kthread_t *tx_timelimit_thread;

} tx_state_t;

In1lib/libzpool/txg.c: :txg_sync_thread (), afterspa_sync() is finished writ-
ing the data to disk the pending callbacks are called. In thprify of cases the error
parameter is 0, but when there is read-only support for thdJOhen the callbacks
need to be called with a non-zero error (e.g. EROFS) to ineliteat the operation was
not committed to disk. The callbacks are responsible fagifrg the callback mem-
ory, so there is little to do other than removing the itemsrfriie list and calling the
callbacks.

/* iterate over commit callbacks on this txg */
for (dcb = list_head(&txg->txg_commit_callbacks[txg & TXG_MASK]),
next = dcb 7 list_next(&txg->txg_callbacks, dcb) : NULL;
dcb;
dcb = next,
next = dcb 7 list_next(&txg->txg_callbacks, dcb) : NULL) {
dmu_callback_func_t *dcb_func = dcb->dcb_func;
list_remove (&txg->txg_callbacks, dcb);
dcb_func(dcb->dcb_data, O /* non-zero if SPA read-only */);

Each callback function is required to free the allocatea diself when it is called

and has finished with the data. Because the callback datainemtrivate state that is

needed by the DMU, the callback data must be freed with thetiomdmu_tx_data_callback_destroy().
If the callback is not yet registered with thau_tx_t then the caller must also destroy

the callback data witdmu_tx_data_callback_destroy().

The callback function receives as parametersditie_callback_data_t passed as
the parameter tdmu_tx_commit_callback_add() and anerror parameter that in-
dicates if there was an error committing the data to disk.



5 USE-CASE SCENARIOS

5 Use-Case Scenarios

5.1 Describe use cases for all normal and abnormal uses of ext
nally visible functions.

dmu_tx_callback data create()returns a pointer to amu_commit_data_t at least
as large as the requested transaction data size, or NULEriétils an allocation
failure. The allocated memory must be freed by the callergdiu_tx_callback_data_destroy(),
either within the registered callback function (afiewx:_tx_callback_commit_add ()
is called) or directly if the callback will never be registdrfor some reason.

dmu_tx_callback _commit_add() returns O for success, or EINVAL if there is an in-
valid parameter passed to the function. This function eadd the passetk (if
possible), andib_data.dcb_magic. As the callback data should be preallo-
cated viadmu_tx_callback_data_create() and thetx should be always be
held, an error can only happen in the case of coding errorgarany corruption.

dmu_tx_callback data_destroy()will free the supplied dcb and return O for success.
If the thedcb_magic value is incorrect EINVAL will be returned and no ac-
tion taken. This can only falil if there is a coding error or nwegncorruption.
This function is always used by the external caller, eitmemfwithin the reg-
istered commit callback function or directly for unregiste callbacks, and not
the DMU.

dcb_callback_func_t() will be called when the transaction group has committed to
disk. If error is O then the operation completed successfully, otherwise t
operation did not complete. In either case, the allocateshong must be freed
with dmu_tx_callback_data_destroy().

5.2 Describe use cases demonstrating interoperability beeen the
software with and without this module.

For ZFS there should be no interoperability issues, as thleack functionality will
remain unused in the code and the commit_callbacks list will always be empty
S0 no action will be taken.

For Lustre this change is required for proper functionadtyecovery, so no release
can be made without it. All code changes are internal to théJzavid the Lustrexdmu
calling code so no interoperability issues should arise.

5.3 Describe use cases demonstrating any scalability usesea men-
tioned in the architecture document.

For uses by Lustre the commit callback has a very low overfieait-sleeping locks,
and the free of the callback data), so there is not antiaiptatée any scalability issues



9 ALTERNATIVES/QUESTIONS

different than those already existing with Idiskfs. Thé i§callbacks is only walked
once at commit time, and each element is being removed frerigh As there is no
defined order for the callbacks there are no sorting or ottaerong requirements and
items can be inserted into the_callbacks listin O(1).

6 State Machine Design

6.1 Locking

The transaction handletsc_callbacks list does not need to be locked, as only a sin-
gle processor can be active on a single transaction at oee pien comment attruct
dmu_tx declaration. The transaction groug’s_commit_callbacks list also does
not itself need any locking at callback time, as the trangacommit is also handled
by a single processor, and the transactions are removedtfr@iist before the trans-
action is called, so even if thému_callback_t is passed to another thread before
freeing there is no risk of list corruption.

Thetx_commit_callbacks list doesneed to be locked during the short time that the
callbacks are moved frommu_tx_ttotx_state_tindmu_tx_commit->txg_rele_commit_cb().
This would use the per-txg lock timu_tx_t->tx_txghsimilartotxg_rele_to_sync().

6.2 Disk state changes

None.

7 Test Plan

A simple test program that links into the DMU could be consted, or PIOS could
be modified to register callbacks to monitor the time takererh write to commit to
disk.

8 Plan Review

9 Alternatives/Questions

Polling the underlying transaction group number to detaemwhen it is committed to
disk would also be possible, but is considerably less flexibl



