
Lustre Client GSS with Linux Keyrings

Eric Mei <ericm@clusterfs.com>

2008.07.22

1 Introduction

This document describes how Lustre use keyring to populate and manage the client gss
context, to replace current mechanism which use pipefs.

2 Requirements

• Use keyring on Lustre client for gss/kerberos context acquiring.

• Try to still keep pipefs mechanism a functional option.

• Although keyring is only available in Linux at this moment, we need to keep as
much portable as we can.

• Make it possible to support the special authentication requirement from NRL.

3 Functional Specification

3.1 Keyring Services

Keyring is relatively new to Linux kernel. Although it’s carefully designed & imple-
mented, there’s no real user of keyring so far in or outside ofkernel so far as we know.
So there’s chances that some of keyring doesn’t fit Lustre very well. We have to “work
around” it, patching the kernel is not acceptable at least for now.

Keyring provides following services for distributed file systems:

• Kernel upcall into user space, this is generally used by obtaining secure user
context.

• System call API & user space tools to manipulate keys.

1



3.2 Authentication at Navy Research Labs 3 FUNCTIONAL SPECIFICATION

• In-kernel key management.

• Well-organized thread/process/session keyrings. This may help us implement
PAG functionality in the future.

3.2 Authentication at Navy Research Labs

NRL has following situations about Kerberos authentication:

• No file-based credential anymore. A customized credential cache that talks to
a special credential cache server started by the user as partof the initial login
process is used.

• Only processes that are children of the initial login process can access the user’s
credentials.

3.3 Lustre GSS with Keyrings

• A new instance of GSS policy will be defined. It share the sameptlrpc_sec_sops
with current one, but redefineptlrpc_sec_copsandptlrpc_ctx_opsto use services
of upcall and context management from keyring. We don’t needour own hash
table of contexts anymore.

• Current client side daemonlgssdwill be obsolete.

• A user space programlgss_keyringwill be implemented, which is called when
kernel request a new security context. This program should finish all GSS/Kerberos
context negotiation, and feed the final data back to the kernel.

• To work in computing environment at NRL, some extra stuff is needed, but we
don’t implement them immediately until we are told to:

– A user space tool will be implemented, which manipulating Kerberos cre-
dentials just like whatkinit is doing, but store in kernel space via keyring
interface.

– Thelgss_keyringshould be modified that store/retrieve any credential into/from
kernel via keyring interface.

– In kernel, key request function should be able to use in-kernel Kerberos
TGT as a temporary authentication key.

2



5 LOGIC SPECIFICATION

4 Use Cases

4.1 Create a new context

• Upper level request a newptlrpc_cli_ctx.

• Keyring search existed contexts, create a new key K.

• Keyring issue an upcall tolgss_keyringto refresh K.

• Thelgss_keyringnegotiate with GSS server, and pass down the final context data
into kernel, then exit.

• Keyring instantiate K, as well as theptlrpc_cli_ctxstructure.

• The newptlrpc_cli_ctxreturned back to upper layer.

4.2 Create a new context timeout

• Upper level request a newptlrpc_cli_ctx.

• Keyring create a new key K, issue an upcall tolgss_keyringto refresh K.

• The lgss_keyringstuck with network, or get killed before finish.

• After waiting certain time, keyring revoke K and return error to upper level.

5 Logic Specification

5.1 General Considerations

In general, we keep current security API mostly unchanged and fit keyring into the
framework. Current pipefs mechanism will be transformed toone kind of gss policy
instance, and keyring will become another instance. Some kind of user-supplied option
to determine which instance to use.

• Structurekeycould be considered a header managed by general keyring code.
Structureptlrpc_cli_ctxand underlying mechanism data will be separately al-
located, and point to each other. Destroy a key will lead to destroy associated
ptlrpc_cli_ctxas well.

• Upper layer only seeptlrpc_cli_ctx, they have no idea whether keyring or pipefs
are used. It also means that a small amount of context information, e.g. sta-
tus, expiry, etc., will be duplicated in bothptlrpc_cli_ctxandkey. We think it’s
acceptable as a small price of portability.

3



5.2 API definition 5 LOGIC SPECIFICATION

• Keyring treat a key with zero refcount as unused and intend torelease it immedi-
ately. We have to hold a “base” reference for any key which still in use (ongoing
initiation, initiated, ongoing destroy), and drop the reference when we find it is
not usable anymore.

• Keyring trees are global, so UID is not enough anymore to label a key. The
unique ID should somehow composed by part of UID, target UUID, client UUID,
connect count, etc..

• All ptlrpc_cli_ctxshould be linked together, or linked into associatedptlrpc_sec
structure, to be iterated through easily. Because keyring doesn’t have interface
to operate on multiple entries in one iteration.

• Context hash table which now lives in structureptlrpc_secshould be moved to
another place, as well as the associated management functions, thus pipefs (or
maybe more) policy instance can utilize them.

• Reverse context on server has a special flag to indicate it doesn’t associate with
anykey.

5.2 API definition

5.2.1 ptlrpc_sec_cops

Some of the API functions keep unchanged, but maybe add some sanity checking code
which specifically related to keyring:

• create_sec() / destroy_sec()

• install_rctx()

• alloc_reqbuf() / free_reqbuf() / enlarge_reqbuf()

• alloc_repbuf() / free_repbuf()

Redefine following API functions:

• lookup_ctx(): Directly call key_request() to search, create, refresh a context.

Add following API functions:

• release_ctx(): Destroy the context. Called when the user drop the reference of
ctx to 0.

• flush_ctx_cache(): Flush out contexts which satisfy the selected criterion

4



5.3 Asynchronous Upcalls 5 LOGIC SPECIFICATION

Remove following API functions:

• create_ctx(): Same as before, but make sure the context and key are associated
with each other.

• destroy_ctx(): Same as before, but taking care of the association between context
and key.

5.2.2 ptlrpc_ctx_ops

Some of the API functions keep almost unchanged, but again need more keyring related
sanity checking:

• sign() / verify()

• seal() / unseal()

• wrap_bulk() / unwrap_bulk()

Redefine following API functions:

• display(): Also display associated key information.

• match(): Find the key, and compare.

• refresh(): Initiate keyring upcall to user space (which seems likely has been fired
off at this point??).

Add following API functions:

• validate(): Call to determine the context is valid to be used.

• die(): Call to invalidate the context by force.

5.3 Asynchronous Upcalls

Thread performing keyring upcall won’t return until the upcall finished, but we’d like
the upcall be asynchronous. To work around it, whenlgss_keyringis called, it forked
into two processes; One process notify kernel immediately to instantiate the key and
exit, with this chance kernel populate the key with generalptlrpc_cli_ctxdata, and
return to caller (Note at this moment keyring think the key has been instantiated, but
Lustre know it’s not); The other process continue the gss negotiation with server, and
update kernel key with the final context data.

Only the parent process can assume authority of target key, which will get lost by
fork(). So the parent process need obtain all the additionalauthentication data needed
before fork the child.

One drawback of this mechanism is an extrafork() of lgss_keyringis needed, hope it’s
not too big deal because half of them are very short lived.

5



5.4 Upcall Timeout 5 LOGIC SPECIFICATION

5.4 Upcall Timeout

Keyring has no built-in mechanism to timeout an ongoing upcall. To solve this, when
key get first notification and populate genericptlrpc_cli_ctxdata, we set the key time-
out a suitable value which act like a upcall timeout.

There’s still a chance that thelgss_keyringprocess crashed before notifying kernel,
thus the calling process will hang there forever. But firstlythe chance is extremely
small; Secondly we still can add our own timeout code before calling request_key().

TODO: coordinate the timeout with Adaptive Timeouts.

5.5 lgss_keyring

After thefork(), the parent notify kernel and exit immediately; The child firstly daemo-
nize itself (completely detach from its parent), it might benecessary because we want
to let kernel think the parent process is the all of the upcall, thus when parent process
end the upcall is considered end. Then the child do context negotiation similar to lgssd,
and parse context and feed final data back to kernel and exit.

The lgss_keyringwill be called in root’s context, upcall parameter should indicate
which user we are serving. Also there are parameters about thread/process/session
keyring of the caller, which allow us access auth_key and other related information of
the real user. Maybe we can setuid to make it running a little safer, not so important
though.

5.6 Expiry detection

Keyring has no active expiry detection mechanism. It only cleanup dead keys when
found one key is dead. We mark the context dead whenkey_validate() return -EKEYEXPIRED,
and drop the base reference of key. This leave a chance that a key without user get ex-
pired but still be cached until another key dies. An alternative is a dedicated thread
iterating through all contexts periodically.

5.7 Process Keyring control

By default key will be linked to process’s session keyring ifit present. This is not good
for root user, because we want all root processes share the same key, no matter which
session it belongs to, even in PAG mode. But we can use anotherbehavior of keyring,
which is when session keyring is not present, a default user session keyring will be
used. So we can do following to solve this:

• When starting Lustre internal threads (ptlrpcd, ptlrpc service, pinger, etc.), drop
current .session keyring.

6



5.8 Cleanup Keys 8 FOCUS FOR INSPECTIONS

• When normal root process (e.g. mount.lustre) request a key,we temporarily
drop its session keyring; After we hold the key the original session keyring will
be restored.

5.8 Cleanup Keys

Keys will be destroyed when its reference dropped to zero. But during key creation,
it might be linked into various kind of keyrings which hold references on key and
might not be released automatically when Lustre cleanup. Sowe’d better record which
keyring the key linked to, and unlink them when revoking the key.

6 State Management

Will not hurt scalability, performance, or recovery. No wire or disk format changes.

7 Alternatives

N/A.

8 Focus For Inspections

N/A.

7


