
High Level Design for TdinalVersion 3.0 / Feb. 23, 2005February 11, 20081 RequirementsThe tdinal is a new nal module for Lustre windows project. It provides thelow-level networking operations to Lustre portals module.Windows kernel does not have kernel socket interfaces as linux. But instead,windows kernel network transport drivers (also referred as protocol drivers)exprot a set of transport driver interfaces (TDI). The TDI de�nes thekernel-mode network interface which is exposed to TDI clients, such as theupper edge of transport protocol stacks (Socket Emulator / NetBios Emulator...).The tdinal is to designed to be a TDI client, using the TDI functionality toimplement the networking operations. And it's to be started from the ksocknalmodule of Lustre linux project. And surely some adaptions are to be done forthe tdinal module.There are several issues that we need pay attention to:1.1 Interacting with TDIAll the linux kernel sockets related part will be removed from tdinal. Andit needs directly call tdi related routines without any extra layers of socketemulator and bu�er conversions.1.2 Asynchronous mechanism.In ksocknal, transmisson and receiving are processed asynchrony. Or the nor-mal working of ksocknal might be blocked, becuse several connections share thesame scheduler thread. It starts s one scheduler thread per processor. Thescheduler thread will be used the same in tdinal.There is another way if we don't implement the asynchronous transfer: usingone thread per connection. But it will bring too much burden and limit thesystem dimension. 1



1.3 Coding/naming conventions 2 TDINAL COMPONENTS1.3 Coding/naming conventionsIt's better to keep an identical coding/naming convention to ksocknal sytle. Thecodes related to nal part should follow this rule.Bur for some pure windows tdi routines, we still keep them windows program-ming sytle (to save time and keep the windows conventions). All these partsare to be put in separate �les.2 Tdinal componentsTdinal architecture:Note: Missing a picture here;The routines can be divided into 4 functionality sets:
• tdi client object management
• tdi connection management
• data process unit
• ksocknal inheritance2.1 Tdi client object managementTDI has 3 types of the network communication entities:
• Transport addresses
• Connection endpoints
• Transport provider control channelsWe need create and use the corresponding tdi objects of these entities to realizeour necessary network operations.2.1.1 File objects of the underlying transport provider:We need �rst obtain the �leobject of the transport provider we concern. Thenwith it we can create address objects and connection objects ...Windows system has several transport providers, such as:
• NetBT.sys provides Netbios protocal over tcp/ip
• Tcpip.sys provides tcp/udp/ip/rawip transportsAt the moment what we concern is the stream (tcp) transport provider: �\De-vice\Tcp� 2



2.2 Tdi connection management 2 TDINAL COMPONENTS2.1.2 File objects of transport address:For tcp transport, the address type is TDI_ADDRESS_IP. The transport ad-dress can contain several typed addresses: such as tcp ip address, netbios nameor ipx address. For our's aspect, we only care the ip address.We can try to open the transport provider's device name: �\Device\Tcp� to getit's �leobject. Let's move further to the way getting the address and connectionobjects.Flow of creating address object:Note: Missing a picture here.Normally we just call ZwCreateFile to open the corresponding transport devicename with a parameter of pre-de�ned EA (extended attributes) bu�er :typedef struct _FILE_FULL_EA_INFORMATION {ULONG NextEntryOffset;UCHAR Flags;UCHAR EaNameLength;USHORT EaValueLength;CHAR EaName[1];} FILE_FULL_EA_INFORMATION, *PFILE_FULL_EA_INFORMATION;The EaName member must be TdiTransportAddress (System de�nes it as astring: "TransportAddress"). Then system will return the address �leobject ifit succeeds.2.1.3 File objects of connection endpoints:This type of �le object represents a connection between the local and the peer.Here's the �ow of creating connection object:Note: missing a picture here.After both address object and connection object are created, we can call TdiBuil-dAssociatedAddress to conjunct the two object, then we can start the connectionor listen operations on the address object.2.2 Tdi connection managementWe'll describe how the tdi connections are created in this section. There aretwo cases: daemon mode and client mode.2.2.1 Daemon mode:In ksocknal, the daemon module (acceptor) is being executed in user mode. Andit could map the user mode socket to kernel space. The connection is accepted3



2.2 Tdi connection management 2 TDINAL COMPONENTSand built in user mode, then mapped into ksocknal. Linux kernel provides sucha mechansim.But in windows system there's no such a mechanism of mapping a user-modesocket to kernel tdi object. Windows socket apis are realized in user mode andthe relationship between user mode socket and kernel mode tdi object is undoc-umented. So there's no formal way to get the corresponding kernel tdi address/ connection objects for a user mode socket handle. As a result, we have to putthe acceptor part into kernel space, i.e., we'll start a daemon thread to listeningon the user speci�ed port.For a listening tdi object, we must set the following callbacks to correctly acceptnew incoming requests:Event callback DescriptionClientEventConnect To be triggered when new requests commingFlow of connection creation (server):1. acceptor issues an ioctl of NAL_CMD_START_DAEMON (new ioctlcode in tdinal).2. ksocknal_cmd gets triggerred to process the ioctl cmd.3. ksockna_cmd will call ksocknal_start_daemon to create a daemon ksock_conn_tand start the dademon thread, then let the daemon listen on the user spec-i�ed port.4. the daemon thread will create a new tdi address object and prepare (cre-ate/associate) the backlog listeing children conenctions, then set the Clien-tEventConnect event callback to be ready for incoming connection re-quests .5. in case a peer issues a connection request to the listening port, the Clien-tEventConnect callback will be triggerred to accept the connecting re-quest. Then the accepted connection is built ready and to be put into theaccepted queue. In the end it will wake up the deamon thread.6. the daemon thread is woken up and gets the conenction. Then ksock-nal_create_conn will be called to craete/initialize the ksocknal_conn_tstrucutre, create the peer and scheule the data request.7. now the connection is ready for data transferring.2.2.2 Client mode:For a sender client, it just need to issue a TDI_CONNECT Irp to build theconnection to the listening daemon. 4



2.3 Data process unit 2 TDINAL COMPONENTSFlow of connection creation (client):1. ptlctl will issue an ioctl of NAL_CMD_CONNECT_PEER (new ioctlcmd) to kernel2. ksocknal_cmd gets triggerred to process NAL_CMD_CONNECT_PEER3. ksocknal_cmd just calls the corresponding tdi routines to create address/ conneciton objects and associate them, then issue the TDI_CONNECTIrp to the transport driver. The underlying transport will make the realconnecton between the two nodes. Then it will call ksocknal_creaet_conn.4. ksocknal_create_conn in turn will build the ksocknal connection and cre-ate the peer/route/conection structures.5. after that's done, the connection is ready for data transferring.2.3 Data process unit2.3.1 Data receivingFor data receiving part, TDI provides several event calbacks to process the in-coming data: Callback DescriptionReceiveEventHandler Normally small bu�er transferChainedReceiveHandler Bulk bu�er transfer (via MDL )ReceiveExpeditedHandler Out-of-band: normal small bu�er transferChainedReceiveExpeditedHandler Out-of-band: bulk bu�er transfer (via MDL)We need implement all these event callbacks to achieve a completely asyn-chronous process. These callbacks are to be set up correctly with the TDIaddress object. Then the callbacks will be triggered once the peer sends datavia the connection. All the callbacks are running at DISPATCH_LEVEL andwe are expected to return as quickly as possible. There's an issue that at thetime callback is triggerred the portals might not prepare well the bu�ers yet.We must maintain a bu�er queue to receive and store all the tsdus (transportservice data unit, it could be a data bu�er or chained MDL).Flow of data receiving:1. when the socknal connetion is built and initialized, the call of ksock-nal_new_packet will schedule a receive request of portals message headerin size_of(ptl_hdr_t) bytes.2. when the remote peer sends data, the tdi callbacks TDI_EVENT_RECEIVE/ TDI_EVENT_RECEIVE_EXPEDITED / TDI_EVENT_CHAINED_RECEIVEwill be triggerred. Which callback will be triggerred depends on thesize of the tsdu data and the options. For a bulked data tra�c, the5



2.3 Data process unit 2 TDINAL COMPONENTSbulk transfer callback TDI_EVENT_CHAINED_RECEIVE / Chaine-dReceiveHandler will be actived.3. then the tdi callback will receive all the incoming data in the tsdu andqueue it into the our own tsdu bu�er queue. It also needs to wake up thescheduler thread.4. the scheduler thread now is woken up and processes the receive request ofptl_hdr_t via ksocknal_process_receive5. ksocknal_process_receive will call ksocknal_receive to read payload intothe pre-allocated bu�er.6. similarly, ksocknal_receive calls ksocknal_recv_iov or ksocknal_recv_kiov.And ksocknal_recv_iov or ksocknal_recv_kiov will move the data fromtsdu bu�ers to the the connection data bu�er.7. after the data is received, we are back to ksocknal_process_receive. ksock-nal_process_receive is to process the SOCKNAL_RX_HEADER caseand call lib_parse with the received ptl_hdr_t.8. then potoals lib_parse routine will prepare memory bu�er and issue a newreceive request to read all the payload into the prepared bu�er. lib_parsecalls ksocknal_recv or ksocknal_recv_pages to schedule the new receiverequest.9. then it starts a new loop of these steps, but the state for ksocknal_process_receiveis changed to SOCKNAL_RX_BODY now.2.3.2 Data transmissionFor data transmission part, though TDI is well designed for asynchonous, thetransport driver of tcp/ip could not support bu�er sending, i.e., the event call-back mechanism of ClientEventSendPossible is not supported. However we canuse the asynchrous feature of windows I/O mechanism, because windows I/OIrp process is designed as a asynchronous procedure. We can use it to realizeNON_BLOCKING transmissions.In case that the underlying transprot driver could not send the bu�er imme-diately, it will queue the bu�er internally and return STATUS_PENDING tothe caller leaving h the irp request un-completed. At later time that the datatransmission is completed, the transport driver will complete the original Irprequest via IoCompleteRequest. Then our irp completion routine will be trig-gered and we can re-gain the chance to �nalize the transmission and wake upthe scheduler thread.But there's a potential race between the tdi sending routine and the comple-tion routine. Because whether the TDI_SEND request succeeds or fails, the6



2.3 Data process unit 2 TDINAL COMPONENTScompletion routine will be called always. And in completion routine we haveno way to identify the original TDI_SEND call is successful or not. Normallyfor a successful call of IoCallDriver to issue the Irp to the underlying transportdriver, CompletionRoutine will be called before IoCallDriver returns; for thecase the call is pended, IoCallDriver returns STATUS_PENDING before Com-pletionRoutine is triggered. But it's not always true.Here we can intorduce a reference count in Irp compeltion context. First we addtwo references on it. Then both the Irp completion routine and TDI_SENDcall (after IoCallDriver returns) dereference the reference count. The last oneto dereference is to do the Irp cleanup job.Flow of data transmission:1. portals will call the ksocknal callbacks: ksocknal_send or ksocknal_send_pagesto process a sending request.2. then ksocknal_send or ksocknal_send_pages will call ksocknal_sendmsg.3. ksocknal_sendmsg will allocate a ltx structure to encapsule all the infor-mation inside, then call ksocknal_launch_packet.4. ksocknal_launch_packet will queue the ltx to the corresponding connec-tion, then wake up the corresponding scheduler thread (ksocknal_queue_tx_lockedis to do this job).5. the scheduler thread will be woken up and call ksocknal_process_transmit.6. Then ksocknal_transmit will be called by ksocknal_process_transmit.7. ksocknal_transmit will call ksocknal_send_iov or ksocknal_send_kiovto process the transmission request.8. ksocknal_send_iov or ksocknal_send_kiov will collect all the bu�ers andlock them into MDL to them paged-in, then issue the TDI_SEND Irp tothe transport driver.9. If it returns STATUS_PENDING, (-EAGAIN) will be returned to ksock-nal_scheduler. Then the tx will be re-queued to the conn->ksnc_tx_queue,but conn->ksnc_tx_ready will be kept as 0, so the conn structure won'tbe queued to sched->kss_tx_conns. It's the duty of the Irp completionroutine to re-active the scheduler to process the conn's requests.10. If step 9 succeeds with STATUS_SUCCESS, that means the payload isfullly sent out, now if the caller does not drops the last reference of thecompletion context, it will do the same to step 9. Otherwise, it will returnwith (rc > 0). Then ksocknal_transmit will loop until all the payloadis sent out, and in trun return to ksocknal_process_transmit. ksock-nal_process_transmit will �nialize the tx and return to ksocknal_schedulerwith (rc > 0). 7



2.4 ksocknal inheritance 3 SUMMARY11. When the Irp completion routine is triggered, if it drops the last referenceof the completion context, it will do the cleanup jobs and re-active theconnection object to be scheduled. If not, it just do nothing and returnto system. The corresponing job will be done by the caller function.2.4 ksocknal inheritanceMost of this part will be kept the same to ksocknal part, at least the logicsare the same. Just some modi�cations about linux socket interfaces / bu�ermanagement (iov/kiov) / connections management are to be made to fully usethe advantage of tdi.The details of this section are to be convered in the DLD document.3 SummaryN/A

8


