
DLD of inodebits lock performance improvementBobi Jam2006-12-191 Requirements1.1 Use-Case requirementsParallel adding, removing, opening, stating �les from one directory are muchfaster.1.2 Functional requirementsAvoid O(N^2) lock operations.2 Functional Speci�cation2.1 IntroductionThis DLD introduces a performance improvement in Lustre DLM plain andinodebits lock management. Because of modern cluster's size, linear list of locksbecomes a bottleneck with millions of clients. This improvement is for handleof large scale usage.The current implementation of the DLM lock management on the server(MDS, OST) side is based on a common lock list for all the granted locks onevery resource. This improvement is to optimize the lock compatibility checkingand searching con�icting locks on the granted list.Skip lists are added into the structure ldlm_lock to optimize the grantedlock list handling: mode, policy skip lists.\begin{lstlisting}struct ldlm_lock {...struct list_head l_sl_mode;struct list_head l_sl_policy;};\end{lstlisting} 1

2.1 Introduction 2 FUNCTIONAL SPECIFICATIONRefer to the �gure above, when lock is not granted, its skip list pointers l_sl_modeand l_sl_policy are pointing to NULL, as lock 0 in the �gure. When a lockis granted and inserted into a resource's granted list (lr_granted), some lock'sskip list pointers will be changed to maintain some invariance, wherein thisdocument, these invariance is called group integrity, which contains:1. If a resource's granted list is empty, the resource's granted list_head(lr_granted) points to itself.2. If a resource's granted list has lock(s) been granted, and if we start fromresource's granted list_head (lr_granted), walking through all locks onthe list by lock's l_res_link.next �eld, before we encounter the resource'sgranted list_head, and if lock m is encountered before lock n, then we saylock m is ahead of lock n. And there is only one lock in the list whosel_res_link.next points to the resource's granted list_head, this lock iscalled the tail of the granted list, as lock n in the �gure .3. Locks with the same request mode (lock->l_req_mode) are grouped, i.e.during the walk-through, before hitting the resource's granted list_headagain, if a lock whose request mode is �rstly encountered, all locks withthe same request mode in the granted list will be met one by one after the�rstly met lock, until a lock with di�erent request mode or the resource'slist_head is met. The lock of the speci�c request mode �rstly met is calledthe head of the mode group (as lock 1 in the �gure), the last met lockof the same request mode is called the tail of the mode group (as lock 5in the �gure). Those locks of the speci�c request mode which is neitherthe head nor the tail of the mode group are called in the middle of themode group (as lock 2,3,4 in the �gure). Some mode group may containonly one lock, and we call this kind of mode group as single element modegroup (as lock m in the �gure).4. If the resource is a LDLM_IBITS resource, for all locks of each modegroup, locks with the same bits policy (lock->l_policy_data.l_inodebits.bits)are grouped in the similar way as mode group does. I.e. during the walk-through in the mode group, before hitting a lock of di�erent request modeor the resource's granted list_head, if a lock whose bits policy is �rstlyencountered, all locks with the same bits policy in the mode group willbe met one by one after the �rstly met lock, until a lock with di�erentbits policy or di�erent request mode is met. The lock of the speci�c bitspolicy �rstly met is called the head of the policy group (as lock 2 in the�gure), the last met lock of the same bits policy is called the tail of thepolicy group (as lock 3 in the �gure). Those locks of the speci�c bitspolicy which is neither the head nor the tail of the policy group are calledin the middle of the policy group (not showed in the �gure). Some policygroup may contain only one lock, and we call this kind of policy group assingle element policy group (as lock 1,4,5 in the �gure).2

2.2 lock's insertion into/deletion from a resource's granted list2 FUNCTIONAL SPECIFICATION5. If the resource is a LDLM_PLAIN resource, all lock's l_sl_policy pointto NULL. All lock's l_sl_mode point to NULL except for head lock'sl_sl_mode.next and tail lock's l_sl_mode.prev of mode group which con-tain more than 1 member locks. The head points to the tail lock usinghead lock's l_sl_mode.next and the tail points to the head lock using taillock's l_sl_mode.prev.6. If the resource is a LDLM_IBITS resource, lock's l_sl_mode pointerswill be arranged as describe in invariance item 5, and all lock's l_sl_policypoint to NULL except for those head lock's l_sl_policy.next and tail lock'sl_sl_policy.prev of policy group which contain at least 2 member locks.The head and tail locks of the same policy group in the same mode groupwill link together with their l_sl_policy pointers (using l_sl_policy.nextfor head pointing to tail and l_sl_policy.prev for tail pointing to head).2.2 lock's insertion into/deletion from a resource's grantedlistThe skip list pointers in the ldlm_lock structure only make sense when the lockis granted, i.e. added into resource's granted list.When a lock is created, it's skip list heads are initialized pointing to NULL.When a lock is granted, �rst need to determine where it should be insertedand then inserted into the resource's granted list. The position determinationdescribed as follows:
• If the resource is a LDLM_PLAIN resource, (1) the insert position willbe before the head of the mode group whose request mode is the same asthat of the lock to be inserted. (2) If such mode group can not be found,the lock would be appended after the tail of the granted list, becoming asingle element mode group lock.
• If the resource is a LDLM_IBITS resource, �rst try to �nd the modegroup whose request mode is the same as that of the lock to be inserted.(1) If such mode group can not be found, the lock will be appended afterthe tail of the granted list, becoming a single element mode/policy group;(2) if such mode group is found, keep searching in the mode group to �nda policy group whose inodebits are the same as that of the lock to beinserted, if such policy group can not be found, the lock will be insertedbefore the head lock of the mode group, becoming a single element policygroup and the head of the mode group; (3) if such policy group is found,the lock will be inserted before the head lock of the policy group.As the lock inserted in the granted list, the group integrity maybe compromised,so we need adjust some lock's skip list pointers to maintain the group integrity.
• For LDLM_PLAIN resource. (1) If the insert position is before the headof a mode group which has at least 2 locks, the new lock will replace the3

2.2 lock's insertion into/deletion from a resource's granted list2 FUNCTIONAL SPECIFICATIONoriginal mode group head lock, becomes the new mode group head lock,the new mode group head lock and the mode group tail lock will linktogether with their l_sl_mode pointers, the original mode group headlock's l_sl_mode.next will set to NULL. (2) If the insert position is beforea single element mode group, the new lock and the single element modegroup lock will link together with their l_sl_mode pointers, forming amode group. (3) If the insert position is after the tail of the granted list,the new lock's skip lists need not change, keeping pointing to NULL as asingle element mode group lock.
• For LDLM_IBITS resource. (1) If the insert position is after the tail of thegranted list, the new lock's skip lists need not change, keeping pointingto NULL as a single element mode/policy group lock. (2) If the insertposition is before the head lock of a mode group (two cases is here, oneis the new lock joins a policy group and also becomes the head of themode group; another is the new lock belongs to the mode group while nosame policy group is already there). (a) In case 1, the new lock will takeover the original mode group head lock's role (if it was not a single lockmode group), or link with the original lock forming a mode group (in thecase the original lock is a single lock group); similar actions applies topolicy skip list. (b) In case 2, mode skip list adjustment will abide by thedescription in (a), nothing about policy skip list needs to change. (3) Ifthe insert position is before the head lock of a policy group which has atleast 2 locks while not the head of mode group , the new lock will take overthe original policy group head lock's role as the new policy group headlock . And if the insert position is before a single element policy groupplus the new lock has the same policy bits, they will form a policy group.When a lock is removed from the granted list, the skip list pointers of removedlock need to be restored pointing to NULL again, and the locks in the grantedlist a�ected needs adjust their skip list pointers to maintain the group integrity.Speci�cally:
• For LDLM_PLAIN resource. (1) If the lock to be removed was the headof a mode group, the next lock along the l_res_link list will be the modegroup's new head lock, it and the mode group tail lock will link togetherwith their l_sl_mode pointers; If the next lock happens to be the modegroup tail lock, just initialize its l_sl_mode pointers to NULL; (2) If thelock to be removed was the tail of a mode group, the previous lock alongthe l_res_link list will be the mode group's new tail lock, it and the modegroup head lock will link together with their l_sl_mode pointers; If theprevious lock happens to be the mode group head lock, just initialize itsl_sl_mode pointers to NULL; (3) Otherwise other lock's mode skip listpointers need not change.
• For LDLM_IBITS resource. Beside �x l_sl_mode pointers as describedabove, some lock's l_sl_policy need to change as follows: (1) If the lock4

2.3 Functions to be added and modi�ed2 FUNCTIONAL SPECIFICATIONto be removed was the head of a policy group, the next lock along thel_res_link list will be the policy group's new head lock, it and the policygroup tail lock will link together with their l_sl_policy pointers; If the nextlock happens to be the policy group tail lock, just initialize its l_sl_policypointers to NULL; (2) If the lock to be removed was the tail of a policygroup, the previous lock along the l_res_link list will be the policy group'snew tail lock, it and the policy group head lock will link together with theirl_sl_policy pointers; If the previous lock happens to be the policy grouphead lock, just initialize its l_sl_policy pointers to NULL; (3) Otherwiseother lock's policy skip list pointers need not change.2.3 Functions to be added and modi�ed2.3.1 plain lock compatibility testPrototype:\lstinline|static inline int ldlm_plain_compat_queue(struct list_head *queue, struct ldlm_lock *req, struct list_head *work_list);|Parameters:queue [input]: the queue to be searched, the improvement applies onlyon granted list;req [input]: the lock whose mode compatibility is to be searched;work_list [input,output]: the list gathering con�icting locksReturn Values: 1 if no con�ict found which includes the @req is already inthe list @queue, 0 otherwise.Description:This method searches con�icts for the plain lock @req in the @queue list ofplain locks (using lockmode_compat() to test whether @req 's request modeis compatible with the lock's request mode being checked). If @work_listis provided, all the con�icting locks are gathered into this list, otherwisethe @queue is walked through until the �rst con�icting lock is found.2.3.2 inodebits lock compatibility testPrototype:\lstinline|static int ldlm_inodebits_compat_queue(struct list_head *queue, struct ldlm_lock *req, struct list_head *work_list);|Parameters:queue [input]: the queue to be searched, the improvement applies onlyon granted list; 5

2.3 Functions to be added and modi�ed2 FUNCTIONAL SPECIFICATIONreq [input]: the lock whose mode and inodebits compatibility are to besearched;work_list [input,output]: the list gathering con�icting locksReturn Values: 1 if no con�ict found which includes the @req is already inthe list @queue, 0 otherwise.Description:This method searches con�icts for the inodebits lock @req in the @queuelist of inodebits locks (using lockmode_compat() to check mode compati-bility and testing whether @req 's request bits are overlapped to lock's), if@req 's request mode is not compatible with lock's request mode while theirbits are overlapped, then the lock is in con�ict with @req. If @work_listis provided, all the con�icting locks are gathered into this list, otherwisethe @queue is walked through until the �rst con�icting lock is found.2.3.3 grant a lockPrototype:\lstinline|void ldlm_grant_lock(struct ldlm_lock *lock, struct list_head *work_list);|Parameters:lock [input]: the lock to be granted;work_list [input,output]: the list gathering the lockReturn Values: noneDescription:For plain and inodebits locks call ldlm_grant_lock_with_skiplist() togrant the lock, otherwise call ldlm_resource_add_lock().2.3.4 grant a lock with skip listPrototype:\lstinline|static void ldlm_grant_lock_with_skiplist(struct ldlm_lock *lock);|Parameters:lock [input]: the lock to be granted;Return Values: noneDescription:This method �nds the proper position the lock should be inserted, theninserts it and adjusts relevant lock's skip list pointers.6

2.3 Functions to be added and modi�ed2 FUNCTIONAL SPECIFICATION2.3.5 search granted lock positionPrototype:\lstinline|static int search_granted_lock(struct list_head *queue, struct ldlm_lock *req, struct ldlm_lock **lockp);|Parameters:queue [input]: the grant list where search acts on;req [input]: the lock whose position to be located;lockp [output]: the position where lock should be inserted before, orNULL indicating @req should be appended to @queue.Return Values:Bit-masks combination of following values indicating in which way thelock need to be inserted.
• LDLM_JOIN_NONE - nothing about skip list needs to be �xed;
• LDLM_MODE_JOIN_RIGHT - @req needs join right becomingthe head of a mode group;
• LDLM_POLICY_JOIN_RIGHT - @req needs join right becomingthe head of a policy group.Description:This method �nds a position for insertion. Match is de�ned as the samelock mode and the same policy only for inodebits locks.If the @queue is a LDLM_PLAIN resource's granted list, this method willsearch to �nd the head lock of the group whose request mode is the same asthat of@req, and assign that lock to@lockp, returns LDLM_MODE_JOIN_RIGHT.If no such mode group could be found, @lockp returns NULL, mean-ing @req should be appended to the tail of the granted list, returnsLDLM_JOIN_NONE.If the @queue is a LDLM_IBITS resource's granted list, this method will�rstly �nd the head lock of the mode group whose request mode is the sameas that of @req, and further search all locks in the mode group to �nd thehead lock of the policy group whose inodebits is the same as that of @req,and assign that lock to @lockp, returns LDLM_POLICY_JOIN_RIGHT;if the lock is also the head of a mode group or a single mode group lock, re-turns LDLM_POLICY_JOIN_RIGHT | LDLM_MODE_JOIN_RIGHT.If no such mode group can be found @lockp returns NULL and functionreturns LDLM_JOIN_NONE; If �nd such mode group while does not�nd such policy group, the head of the mode group will be assigned to@lockp, function returns LDLM_MODE_JOIN_RIGHT.7

4 LOGIC SPECIFICATION3 Use Cases3.1 Enqueue a lockWhen a lock is enqueued, ldlm_lock_enqueue() calls ldlm_processing_policy_table[]methods to process the lock.3.2 Reprocess a queueReprocess locks on the converting and/or waiting list, it calls ldlm_processing_policy_table[]methods to check if some waiting locks are to be granted.3.3 Grant a lockGrants a lock. There are no con�icting locks by that time.3.4 Handle completion callbackIt calls ldlm_grant_lock to grant the lock on the client when the server con�rmsthe lock is obtained.3.5 Cancel a lockIt cancels a granted lock.4 Logic Speci�cation4.1 Determining a lock's positionAccording the HLD, skip lists are added to struct ldlm_lock to optimize thegranted lock list compatibility checking and searching con�icting locks.The l_sl_{mode|policy} is used to link the head and the tail lock of a groupof the same request mode/inodebits. And locks in the middle of the group havetheir l_sl_{mode|policy} point to NULL.So there should be a way to judge whether a lock in the group is the heador tail of the group.\begin{lstlisting}#define LDLM_SL_HEAD(skip_list) ((skip_list)->next != NULL)#define LDLM_SL_TAIL(skip_list) ((skip_list)->prev != NULL)#define LDLM_SL_EMPTY(skip_list) ((skip_list)->next == NULL && (skip_list)->prev == NULL)\end{lstlisting}
8

4.2 Find lock compatibility from a list 4 LOGIC SPECIFICATION4.2 Find lock compatibility from a list\lstinline|int ldlm_plain_compat_queue(struct list_head *queue, struct ldlm_lock *req, struct list_head *work_list)|
• if the @queue is a granted list, check the head ofthe first mode group, if it's mode is compatiblewith the @req, jump over to the tail of the modegroup (via l_sl_mode.next) and check next group.
• if the @work_list exists, we need collect allincompatible locks on the @queue. And when the headlock of a group is found to be incompatible with the@req, all members in this mode group will becollected.\begin{lstlisting}static inline int ldlm_plain_compat_queue(structlist_head *queue, struct ldlm_lock *req, structlist_head *work_list){list_head *tmp;struct ldlm_lock *lock;int compat = 1;...list_for_each(tmp, queue){lock = list_entry(tmp, struct ldlm_lock, l_res_link);if (lockmode_compat(lock->l_req_mode, req->l_req_mode)){/* jump to next mode group */if (LDLM_SL_HEAD(&lock->l_sl_mode))tmp = &list_entry(lock->l_sl_mode.next, structldlm_lock, l_sl_mode)->l_res_link;continue;}if (!work_list)RETURN(0);compat = 0;if (lock->l_blocking_ast)ldlm_add_ast_work_item(lock, req, work_list);if (LDLM_SL_HEAD(&lock->l_sl_mode)) {/* add all members of the mode group */do {tmp = lock->l_res_link.next;lock = list_entry(tmp, struct ldlm_lock, l_res_link);if (lock->l_blocking_ast)ldlm_add_ast_work_item(lock, req, work_list);} while (!LDLM_SL_TAIL(&lock->l_sl_mode));9

4.2 Find lock compatibility from a list 4 LOGIC SPECIFICATION}}RETURN(compat);}\end{lstlisting}\lstinline|int ldlm_inodebits_compat_queue(struct list_head *queue, struct ldlm_lock *req, struct list_head *work_list)|
• if the @queue is a granted list, check the head ofthe first mode group, if it's mode is compatiblewith the @req, jump over to the tail of the modegroup (via l_sl_mode.next) and check next modegroup.
• if a incompatible mode group is found, then checkpolicy group in the same way as processing the modegroup.
• if the @work_list exists, we need collect allincompatible locks on the @queue. And when the headlock of a policy group is found to be incompatiblewith the @req, all members in the policy group willbe collected.\begin{lstlisting}static int ldlm_inodebits_compat_queue(struct list_head*queue, struct ldlm_lock *req, struct list_head*work_list){struct list_head *tmp, *tmp_tail;struct ldlm_lock *lock;int compat = 1;ldlm_mode_t req_mode = req->l_req_mode;_u64 req_bits = req->l_policy_data.l_inodebits.bits;...list_for_each(tmp, queue) {lock = list_entry(tmp, struct ldlm_lock, l_res_link);if (lockmode_compat(lock->l_req_mode, req->l_req_mode)){/* jump to next mode group */if (LDLM_SL_HEAD(&lock->l_sl_mode))tmp = &list_entry(lock->l_sl_mode.next, structldlm_lock, l_sl_mode)->l_res_link;continue;}tmp_tail = tmp;if (LDLM_SL_HEAD(&lock->l_sl_mode))tmp_tail = &list_entry(lock->l_sl_mode.next, structldlm_lock, l_sl_mode)->l_res_link;for (;;) { 10

4.3 Search position a new granted lock should be inserted4 LOGIC SPECIFICATION/* locks whose bits overlapped are conflicting locks */if (lock->l_policy_data.l_inodebits.bits & req_bits) {/* found conflicting policy */if (!work_list)RETURN(0);compat = 0;if (lock->l_blocking_ast)ldlm_add_ast_work_item(lock, req, work_list);/* add all members of the policy group */if (LDLM_SL_HEAD(&lock->l_sl_policy)) {do {tmp = lock->l_res_link.next;lock = list_entry(tmp, struct ldlm_lock, l_res_link);if (lock->l_blocking_ast)ldlm_add_ast_work_item(lock, req, work_list);} while(!LDLM_SL_TAIL(&lock->l_sl_policy));}} else {/* jump to next policy group */if (LDLM_SL_HEAD(&lock->l_sl_policy))tmp = &list_entry(lock->l_sl_policy.next, structldlm_lock, l_sl_policy)->l_res_link;}if (tmp == tmp_tail)break;elsetmp = tmp->next;lock = list_entry(tmp, struct ldlm_lock, l_res_link);} // for locks in a mode group} // for each lock in the granted queueRETURN(compat);}\end{lstlisting}4.3 Search position a new granted lock should be inserted\lstinline|static int search_granted_lock(struct list_head *queue, struct ldlm_lock *req, struct ldlm_lock **lockp)|
• Only defines plain lock and inodebits lock.� plain lock: finds the head lock of the @reqmode group. If the to-be-checked lock's requestmode differs from that of @req, jumps over alllocks in the mode group until the @queue is met,meaning no such request mode locks are found inthe list, assign NULL to @lockp indicating @req11

4.3 Search position a new granted lock should be inserted4 LOGIC SPECIFICATIONshould be appended to the queue; if the headlock of such mode group is found, assign thehead lock to @lockp.� inodebits lock: first search for the samerequest mode group the way as describe above inplain lock section. If no such same requestmode group is found, assign NULL to @lockp; if asame mode group is found, search through themode group by inodebits. If no same inodebitsis found, assign the head lock of the mode groupto @lockp, otherwise assign the head lock of thefound policy group to @lockp.\begin{lstlisting}#define LDLM_JOIN_NONE 0#define LDLM_MODE_JOIN_RIGHT 1#define LDLM_MODE_JOIN_LEFT (1 < < 1)#define LDLM_POLICY_JOIN_RIGHT (1 < < 2)#define LDLM_POLICY_JOIN_LEFT (1 < < 3)int search_granted_lock(struct list_head *queue,struct ldlm_lock *req, struct ldlm_lock **lockp){struct list_head *tmp, *tmp_tail;struct ldlm_lock *lock, *mode_head_lock;__u64 req_bits =req->l_policy_data.l_inodebits.bits;int rc = LDLM_JOIN_NONE;...list_for_each(tmp, queue) {lock = list_entry(tmp, struct ldlm_lock,l_res_link);if (lock->l_req_mode != req->l_req_mode) {if (LDLM_SL_HEAD(&lock->l_sl_mode))tmp = &list_entry(lock->l_sl_mode.next, structldlm_lock, l_sl_mode)->l_res_link;continue;}/* found the same mode group */if (lock->l_resource->lr_type == LDLM_PLAIN) {*lockp = lock;return LDLM_MODE_JOIN_RIGHT;} 12

4.3 Search position a new granted lock should be inserted4 LOGIC SPECIFICATIONif (lock->l_resource->lr_type == LDLM_IBITS) {tmp_tail = tmp;if (LDLM_SL_HEAD(&lock->l_sl_mode))tmp_tail = &list_entry(lock->l_sl_mode.next, structldlm_lock, l_sl_mode)->l_res_link;mode_head_lock = lock;for (;;) {if (lock->l_policy_data.l_inodebits.bits ==req_bits) {/* lock of matched policy is found */*lockp = lock;rc |= LDLM_POLICY_JOIN_RIGHT;/* the policy group head is also a mode group heador a single mode group lock */if (LDLM_SL_HEAD(&lock->l_sl_mode) || (tmp ==tmp_tail && LDLM_SL_EMPTY(&lock->l_sl_mode)))rc |= LDLM_MODE_JOIN_RIGHT;return rc;}if (LDLM_SL_HEAD(&lock->l_sl_policy))tmp = &list_entry(lock->l_sl_policy.next, structldlm_lock, l_sl_policy)->l_res_link;if (tmp == tmp_tail) /* reached the end of the modegroup */break;else /* next policy group */tmp = tmp->next;lock = list_entry(tmp, struct ldlm_lock,l_res_link);} /* for all locks in the matched mode group *//* no matched policy group is found, insert beforethe mode group head lock */*lockp = mode_head_lock;return LDLM_MODE_JOIN_RIGHT;} // inodebits lock} // for locks in queue*lockp = NULL;return LDLM_JOIN_NONE;}\end{lstlisting} 13

4.4 Grant a lock 4 LOGIC SPECIFICATION4.4 Grant a lock\lstinline|void ldlm_grant_lock(struct ldlm_lock *lock, struct list_head *work_list)|
• If the resource type of the lock is plain lock orinodebits lock, call ldlm_grant_lock_with_skiplist()to grant the lock;
• Otherwise just add the lock to the resource.\begin{lstlisting}void ldlm_grant_lock(struct ldlm_lock *lock, structlist_head *work_list){struct ldlm_resource *res = lock->l_resource;...lock->l_granted_mode = lock->l_req_mode;if (res->lr_type == LDLM_PLAIN || res->lr_type ==LDLM_IBITS)ldlm_grant_lock_with_skiplist(lock);elseldlm_resource_add_lock(res, &res->lr_granted, lock);...}\end{lstlisting}\lstinline|void ldlm_grant_lock_with_skiplist(struct ldlm_lock *lock)|
• call search_granted_lock() to find the position(assigned to @lockp) the lock should be inserted,search_granted_lock() also returns the way in whichskip lists needs to change;
• insert the @lock before @lockp if @lockp is notNULL, otherwise @lock is appended to the tail ofthe granted list;
• adjust skip lists according to whatsearch_granted_lock() returns.\begin{lstlisting}static void ldlm_grant_lock_with_skiplist(structldlm_lock *lock){int join = LDLM_JOIN_NONE;struct ldlm_lock *lockp = NULL;...join =search_granted_lock(&lock->l_resource->lr_granted, lock,&lockp);if (!lockp) 14

4.5 Cancel a lock 4 LOGIC SPECIFICATIONlist_add_tail(&lock->l_res_link,&lock->l_resource->lr_granted);elselist_add_tail(&lock->l_res_link, &lockp->l_res_link);/* fix skip lists */if (join & LDLM_MODE_JOIN_RIGHT) {if (LDLM_SL_EMPTY(&lockp->l_sl_mode)) {lock->l_sl_mode.next = &lockp->l_sl_mode;lockp->l_sl_mode.prev = &lock->l_sl_mode;} else if (LDLM_SL_HEAD(&lockp->l_sl_mode)) {lock->l_sl_mode.next = lockp->l_sl_mode.next;lockp->l_sl_mode.next = NULL;lock->l_sl_mode.next->prev = &lock->l_sl_mode;}}if (join & LDLM_POLICY_JOIN_RIGHT) {if (LDLM_SL_EMPTY(&lockp->l_sl_policy)) {lock->l_sl_policy.next = &lockp->l_sl_policy;lockp->l_sl_policy.prev = &lock->l_sl_policy;} else if (LDLM_SL_HEAD(&lockp->l_sl_policy)) {lock->l_sl_policy.next = lockp->l_sl_policy.next;lockp->l_sl_policy.next = NULL;lock->l_sl_policy.next->prev = &lock->l_sl_policy;}}...}\end{lstlisting}4.5 Cancel a lock\lstinline|void ldlm_lock_cancel(struct ldlm_lock *req)|
• If to-be-canceled lock is the head of a mode group,set @req->l_sl_mode to the @req->l_res_link.nextlock, if it happens to point to itself, NULL it;adjust @req->l_sl_mode.next's lock's l_sl_mode.prevalso.
• If to-be-canceled lock is the tail of a mode group,set @req->l_sl_mode to the @req->l_sl_mode.prevlock, if it happens to point to itself, NULL it;adjust @req->l_sl_mode.prev's lock's l_sl_mode.nextalso.
• The similar thing happens with l_sl_policy.
• Remove @req from the granted list.15

4.5 Cancel a lock 4 LOGIC SPECIFICATION\begin{lstlisting}void ldlm_lock_cancel(struct ldlm_lock *req){struct ldlm_lock *lock;...if (LDLM_SL_HEAD(&req->l_sl_mode)) {lock = list_entry(req->l_res_link.next, structldlm_lock, l_res_link);if (req->l_sl_mode.next == &lock->l_sl_mode) {lock->l_sl_mode.prev = NULL;} else {lock->l_sl_mode.next = req->l_sl_mode.next;lock->l_sl_mode.next->prev = &lock->l_sl_mode;}req->l_sl_mode.next = NULL;} else if (LDLM_SL_TAIL(&req->l_sl_mode)) {lock = list_entry(req->l_res_link.prev, structldlm_lock, l_res_link);if (req->l_sl_mode.prev == &lock->l_sl_mode) {lock->l_sl_mode.next = NULL;} else {lock->l_sl_mode.prev = req->l_sl_mode.prev;lock->l_sl_mode.prev->next = &lock->l_sl_mode;}req->l_sl_mode.prev = NULL;}if (LDLM_SL_HEAD(&req->l_sl_policy)) {lock = list_entry(req->l_res_link.next, structldlm_lock, l_res_link);if (req->l_sl_policy.next == &lock->l_sl_policy) {lock->l_sl_policy.prev = NULL;} else {lock->l_sl_policy.next = req->l_sl_policy.next;lock->l_sl_policy.next->prev = &lock->l_sl_policy;}req->l_sl_policy.next = NULL;} else if (LDLM_SL_TAIL(&req->l_sl_policy)) {lock = list_entry(req->l_res_link.prev, structldlm_lock, l_res_link);if (req->l_sl_policy.prev == &lock->l_sl_policy) {lock->l_sl_policy.next = NULL;} else {lock->l_sl_policy.prev = req->l_sl_policy.prev;lock->l_sl_policy.prev->next = &lock->l_sl_policy;}req->l_sl_policy.prev = NULL;16

5 STATE SPECIFICATION}ldlm_resource_unlink_lock(lock);...}\end{lstlisting}5 State Speci�cation5.1 LockingAll the lock list operations are performed under lr_lock held.5.2 RecoveryNo recovery implications are involved.

17

