
Lustre Quotas
SC09, Portland, Nov 2009

Johann Lombardi
Lustre Group
Sun Microsystems

1

2

Topics

> Architecture Overview (9 slides)
> Adaptive qunit
> Performance challenge & CMD support
> Quotas on DMU
> Quota overruns & interaction with client's caches
> Quota recovery review & concerns

2

3

Topics

> Architecture Overview (9 slides)
> Adaptive qunit
> Performance challenge & CMD support
> Quotas on DMU
> Quota overruns & interaction with client's caches
> Quota recovery review & concerns

3

4

Architecture Primer

• A centralized server hold the cluster wide limits: the
quota master(s)
> guarantees that global quota limits are not exceeded
> track quota usage on slaves

• Quota slaves
> all the OSTs and MDT(s)
> manage local quota usage/hardlimit
> acquire/release quota space from the master

5

Quota Master(s)

• 1.4/1.6/2.0: 1 single master running on the MDS
• In charge of:
> storing the quota limits for each uid/gid
> accounting how much quota space has been granted to

slaves

• quota information are stored in administrative quota files
> files proper to Lustre (admin_quotafile.usr/grp)
> format identical to the one used in the VFS
> Has mistakenly been using ->write/read for a long time

– Fixed in 1.8.2 to use journaled operations
(read_record/write_record)

6

Quotas Slaves

• All OSTs and MDT(s)
• Rely on ldiskfs quotas
> only use hard limit, not soft limit
> operational quota files are managed by ldiskfs (journaled

quotas since 1.6.5)
> accounting is handled by ldiskfs too

• In charge of returning EDQUOT (quota exceeded)
to the clients when quota is exhausted

7

Acquire/Release Protocol

• Two different RPC types
> DQACQ = Disk Quota ACQuire
> DQREL = Disk Quota RELease

• DQACQ/DQREL RPCs are
> initiated by slaves
> processed by master(s)

• increase/lower the local hardlimit on slaves
• increase/decrease administrative

usage on the master

8

Quota protocol overview:
Enough quota

Clients
LOV

MDS OSS
 3) Send DQACQ request

1) Send bulk write req

7) Reply bulk write: OK

5) Reply to DQACQ: OK grant 100MB

6) Write to disk

ldiskfs quota ok

2) enough local
quota space?

4) Consult admin

quota files. Enough space.

9

4) Consult admin

quota files. Quota exceeded

Clients
LOV

MDS OSS
 3) Send DQACQ request

1) Send bulk write req

7) Reply bulk write:
-EDQUOT

5) Reply to DQACQ: EDQUOT

6) Write to disk

ldiskfs quota
returns EDQUOT

Quota protocol overview:
Quota exceeded - EDQUOT

2) enough local
quota space?

10

Quota space acquisition

• For performance reasons, quota slaves don't
acquire quota for each write request
• The master grants quota to slaves by blocks of qunit
> iunit/bunit default value 5120/128MB
> will need to be bumped soon for performance
> if many writes underway, slaves can try to acquire more

• early qunit acquisition to improve performance
> Slaves also proactively acquire qunit ahead of time
> If remaining quota space < qtune

– a DQACQ RPC is sent
> If remaining quota space > qtune + qunit

– a DQREL RPC is sent

11

Quota flow on the slaves

• Estimate space needed to handle the request
> Also take into account metadata blocks

– extent tree depth
– If not accounted, we may not acquire enough, causing ldiskfs to

return spurious EDQUOT

• If active writes + current usage < local hardlimit
> Don't acquire more and let ldiskfs handle the write

• Otherwise
> Acquire space from master
> Write request could be stuck for a long time if master not

ready
– Fixed in bug 20530

• At most one quota rpc in flight for a given uid/gid

12

Generic Flow of a write request

sync or async?

any quota limits

for this uid/gid?

write data

enough left quota

space to grant one

more qunit?
enough local quota space

to satisfy the request?

write from the

grant cache?

trigger early acquisition

if needed

Client node OSS (quota slave) MDS (quota master)

is the uid/gid

known to be already

over quotas?

queued for

writeback

send w
rite R

PC

write RPC

completed

send dqacq R
PC

write request

 async

 y

es

 no

 1
. write

acknowledged

 sync
2.

 w
rit

eb
ac

k

 no

 yes

 w
rite

acknowledged

 y

es

no

 yes: ignore quota limit

 send reply

 yes: grant a qunit to the slave

 no: deny acq request

 no: let ldisfks

return EDQUOT

send dqacq R
PC

don't wait for the reply

13

Topics

> Architecture Overview
> Adaptive qunit
> Performance challenge & CMD support
> Quotas on DMU
> Quota overruns & interaction with client's caches
> Quota recovery review & concerns

13

14

OST1 OST2 OST3

150MB quota free
=> can still handle

0MB quota free & MDS
has no more quota space
=> Return EDQUOT

150MB quota free
=> can still handle

• Slaves can have up to qunit + qtune of unused quota space
• Quota space granted by the master cannot be claimed back
• Consequence:
> If the master has already granted all the quota space to

slaves, some slaves may return EDQUOT while some others
still have free quota space

Problem with static qunit value

15

• What happens from the user point of view:
> writes on objects stored on OST3 returns EDQUOT
> 'lfs quota' reports quota usage far from limit
> writes on objects stored on OST1 & 2 are successful

• Users/Admins expect quotas to work on lustre like on any
local fs and are disturbed by this

OST1 OST2 OST3

150MB quota free
=> can still handle

0MB quota free & MDS
has no more quota space
=> Return EDQUOT

150MB quota free
=> can still handle

User perception

16

Adapting qunit value dynamically

• The idea is quite simple:
> enlarge qunit size when far from quota limit
> shrink qunit size when getting closer to quota limit

• The dynamic qunit patch improves
> quota accuracy when close to quota limit

– the new qunit size is broadcasted to slaves after shrinking

> support for small quotas
> allow us to bump qunit significantly

– needed for performance
– without leaking too much quota space

• Landed for 1.4.12 and 1.6.5
> bug 10600

17

Qunit shrink/enlarge policy
• quota_boundary_factor: thresholds triggering qunit inc/decrease
> If left_quota < quota_boundary_factor * ost_num * current_qunit,

– qunit is shrunk
> If left_quota > 2* quota_boundary_factor * ost_num * current_qunit

– qunit is bumped
> default value of quota_boundary_factor is 4

• Factor by which qunit size grows/shrinks: quota_qs_factor
> Default value is 2

• min/max qunit value can be set: quota_least_qunit / quota_qunit
> default set to 1/5120 for inodes and 1MB/128MB for blocks

• If quota usage is oscillating around the threshold, we don't want to change
qunit too often
> quota_switch_seconds is how long to wait before growing again after shrinking
> default value is 300s

18

Informing slaves of qunit change

• As said, unused quota space cannot be claimed back …
• But the new qunit value is broadcasted to all the slaves
> opc OST_QUOTA_ADJUST_QUNIT sent by master to slaves
> Inform slaves of new qunit value
> Slave releases unused quota space according to new value
> Not sent in parallel today :(, patch under testing

• Address quota space leak issue mentioned before
> Definitely improved accuracy
> Still not a reliable solution

– Master doesn't wait for slave to ack the broadcast before
processing new dqacq req

– Being addressed in bug 17381

19

Topics

> Architecture Overview
> Adaptive qunit
> Performance challenge & CMD support
> Quotas on DMU
> Quota overruns & interaction with client's caches
> Quota recovery review & concerns

19

20

Impact on Performance (1/2)

• Additional actions are required on slaves when quotas are
enabled
> ldiskfs needs to maintain block/inode accounting for each uid/gid
> qunit must be acquired from the master

– additional RPCs are required

• Enabling quotas has no significant performance impact today
because
> The early qunit acquisition algorithm looks pretty efficient
> The quota master is powerful enough to handle quota requests in a

timely manner

• We now have many quota statistics to investigate performance
issue
> bug 15058, landed in 1.6.6

21

Impact on Performance (2/2)
• Still, performance challenges remain
> 2,000 OSTs @ 500MB/s with 100MB qunit requires 10,000 RPCs

to be processed on the master

• Thoughts:
> Using several quota masters
> Increasing qunit (max qunit size is 128MB today)
> Granting more to slaves initially and relying on the broadcast

mechanism to claim unused qunits back
> Improvement to the dynamic qunit are needed

22

CMD Support

• May want to use several quota master to spread the load across
several MDSs

• Provide uid-gid / MDT mapping
> Hash on uid/gid does not work well with dynamic MDT

addition

• But one given uid is still limited to one master
> Not a problem if we bump qunit & improve broadcast

mechanism

23

Topics

> Architecture Overview
> Adaptive qunit
> Performance challenge & CMD support
> Quotas on DMU
> Quota overruns & interaction with client's caches
> Quota recovery review & concerns

23

24

DMU/ZFS quota

• Used to only support quotas on fileset
• per uid/gid quota support has been landed to ZFS
> Need to migrate to a new “layout”
> Quota accounting always enabled, no quotacheck

functionality is provided
– what if accounting goes wrong …

> Quota not really accurate since we don't exactly know how
much space will be needed

• DMU
> register callback invoked when file is written to disk

– ZPL registers its own callback
> Provide API to consult current disk usage

25

Supporting quota on top of DMU

• Interfacing with DMU API
> Register our own callback
> Get current disk usage

• Estimating how much space needed for a write
> And returning EDQUOT from lquota instead of ldiskfs

• Maintaining our own operational quota files on
slaves

26

Space Accounting with DMU

• Already have data structures storing per-uid info
> aka lqs
> records pending write, req in flight, current qunit size, ...

• Registering our own callback to DMU
> Just update current usage & pending write when this

callback is called
> DMU updates accounting on disk as part of same

transaction

27

What to account?

• difficult to predict how much space is needed
> because of metadata blocks

• But less important than with ldiskfs
> since quota exceeded is now returned by lquota

• Should just make a reasonable estimation
> some quota overruns is tolerated
> or just discard metadata blocks totally?

28

Storing quota info on disk

• Maintaining our own operational quota files on
slaves

> Should not be big deal since we already do this on master
with administrative quota files

> Just need to store hardlimit
> Using sparse files? (Nikita)

– Indexed by uid/gid

29

Some other things to think about ...

• Rewrite allocates new blocks
> Need to make sure it is accounted correctly

• Capability to ignore quota enforcement
• Porting to DMU requires to change the quota interface
> same scheme can be implemented with ldiskfs
> Do we want/have to do this?

– No, means supporting 2 different quotas APIs at the same time

30

Topics

> Architecture Overview
> Adaptive qunit
> Performance challenge & CMD support
> Quotas on DMU
> Quota overruns & interaction with client's caches
> Quota recovery review & concerns

30

31

Quota overruns

• Client nodes cache dirty data behind server's back
> Up to max_dirty_mb (=32MB) per OSC
> Grant cache prevents getting ENOSPC on writeback

• Today, no interactions between the grant cache and quotas
• If a user is over quota already, slaves
> still accept writes from the grant cache
> but inform the client in the reply that it should stop caching dirty

data for this uid/gid
> This causes quota overruns that can be significant

– Worst case scenario: # clients * # ost * 32MB

32

Workaround landed

• Ask the client to stop caching data sooner rather than later

• Tunable via /proc, namely quota_sync_blk (bug16642)

• Unfortunately, does not address all the cases

33

How to address quota overruns?

• introducing some quota knowledge on the client
> Allow granting quota space to client

• Quota space could be granted as part of DLM locks
> Claim quota space back via callbacks (glimpses)

• Merging quota & grant space
> although quota is per-user/group
> We don't always know the uid/gid on lock enqueue

– But can be fixed easily

34

Topics

> Architecture Overview
> Adaptive qunit
> Performance challenge & CMD support
> Quotas on DMU
> Quota overruns & interaction with client's caches
> Quota recovery review & concerns

34

35

Quota recovery

• Quotas info are now journaled on both master & slaves
• Master recovery
> master contacts all slaves and asks for local hardlimit
> compute global quota usage and update admin quota files
> If one slave is missing, recovery is aborted

• Slave recovery
> Check current usage against hardlimit
> acq/rel unused quota space above/below qunit + qtune

36

Slave (re)integration

• OST addition (online or not) is not handled properly
• quotacheck needs to be run first on a new OST
> but currently, this requires a full quotacheck :(
> would be easy to fix by triggering quotacheck once the OST joins

the fs

• Worse, the new OST is not said what users have quota
enforced
> so this new OST won't try to acquire space from master

• Same can happen if one OST has been down for some time
> Won't see updates on quota limit

• Holes in slave recovery

37

Johann Lombardi
johann@sun.com

37

Lustre quotas

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

