
High Level Design for CIFS Parallel I/O FilterMatt Wu2005/09/071 IntroductionTo simplify lustre windows porting, CIFS parallel I/O �lter is proposed. Firstwe need export lustre mount points with Samba. Then windows system couldaccess the Samba server easily with all lustre components bypassed. Via thisway all the data have to be transferred between the windows client and theSamba server. The connection between these two servers will be a bottleneck.So we need a new windows �le system �lter driver to implement parallel I/O,i.e. redirect the data I/O requests to OST servers. The �lter driver needs toquery the stripe distribution layout and then split the whole I/O into piecesand issue the small requests to di�erent servers where the OSTs locate. Thenthe second step, let Samba directly exports the OST device and windows clientcould directly read or write the exported OST partition. The third step is tocreate a network �le system driver of lustre, Samba and also the �lter driver areto be deserted then.This document only covers the high level design of the �lter driver for the�rst step.2 Requirements
• Capture the I/O to MDS and redirect the requests to the correspondingOST servers3 Network File System ArchitectureWindows manages all the network resources in a unique namespace with UNC(Universal naming convention) standard. The UNC names begin with the char-acters �\\�, which is indicating the resource exists on the network.Windows network �le system driver contains several components:
• Network provider 1



4 PARALLEL I/O FILTER ARCHITECTURE
• MPR (Multiple Provider Router)
• Lan Manager in user mode
• Mup (Multiple UNC Provider)
• File system redirector (it includes the network redirector driver and theLanMan �le system wrapper)Di�erent network �le system has di�erent network provider and the redirectordriver. The provider handles the connections to the remote network server.When an application calls WNet API routines to operate a shared resource, itwill be passed directly to the MPR. Then the MPR dll library will take the calland determines which WNet provider recognizes the resource being accessed.Then the requests will be transferred to kernel space in the end. It's MUPthat will determines which local redirector recognizes the remote resource whichcould be a �le or a device with a UNC name. Thus the callback routines of theredirector driver will be called to process the request.4 Parallel I/O Filter ArchitectureFor every server node, we need start the lustre client: llite to mount it as/mnt/lustre. The Samba should share the lustre mount point in the followingrules:Samba Server Mount Point (Ex) Sharing Name (as UUID) Windows Referrence PathMDS server /mnt/lustre \\mds\lustre \Device\LanmanRedirector\mds\lustreOST1 server /mnt/lustre \\ost1\lustre \Device\LanmanRedirector\ost1\lustreOST2 server /mnt/lustre \\ost2\lustre \Device\LanmanRedirector\ost2\lustre... ... ... ...Then for client side, windows system could connect to every Samba server viaCIFS protocol. The content of \\mds\lustre, \\ost1\lustre and \\ost2\lustre... should be the same. But windows CIFS client could not understand thesecircumstances. For a system with 1 MDS + 2 OSTs as an example, if a �lestripes over OST1 and OST2, when windows client tries to read it's content,the MDS would read the data from OST1 and OST2 via portals protocol, thensend it back to windows side. All the I/O tra�c is to be transported betweenwindows client and the MDS server.

2



5 NAMES MANAGEMENT

With the parallel I/O �lter driver, it will capture the data I/O requests tothe MDS Samba server and redirect the requests to the corresponding OSTservers according to the �le stripe distribution, see the dark red lines in thepicture above. All the meta-data requests will be done on MDS and the realdata I/O requests are to be performed on the OST servers. The network tra�cwill scatter between 3 paris instead of 1 between MDS server and windows client.5 Names Management5.1 Functional Speci�cationOur �lter driver will �lter the LanMan Redirector (NwRdr), thus monitors allthe network operations, that might be a huge tra�c. We must �gure out theI/Oes we concerned. The way is to compare the UNC name to check if it hasthe pre�x of the MDS share path. Ex: �\Device\LanmanRedirector\mds�.The full path name collection is normally to be done when the �le is �rstopened, i.e. in the IRP_MJ_CREATE request handler routine. We need querythe full path of the speci�ed �le and store these information in a generic tableor a hash list for later referrence, because in later I/O requests there's no wayto query the full path name for some cases. With the generic table we can get3



5.2 Use Case 5 NAMES MANAGEMENTthe path name of the �le to construct the names on OST servers.The Fcb pointer (FileObject->FsContext) could be treated as a unique keymagic for every �le. It's stored in pair with the full path name. All thenames with the pre�x �\Device\LanmanRedirector\mds\� should be recordedby the �lter driver. Then for later I/O requests, the names on OST should beconstructed from it, just like �\Device\LanmanRedirector\ost1\a.dat�, �\De-vice\LanmanRedirector\ost2\a.dat�. With the full path name, we can redirectthe I/O requests to the corresponding OST servers.There also another issue on naming management: rename operations. Weneed trace the renaming operations to update the �le name modi�cations, oth-erwise the I/O to the newly renamed �les will be missed.5.2 Use CaseN/A5.3 Logic Speci�cation
• Structure for Name Entrytypedef struct _NAME_ENTRY {USHORT Magic; /* Magic */USHORT Flags; /* Flags */ULONG RefCount; /* Refer count */PVOID FsContext; /* Key (Fcb) */UNICODE_STRING Name; /* Full path name in unicode */} NAME_ENTRY, *PNAME_ENTRY;The structure of NameEntry and name string bu�er should be allocated fromthe NonPagedPool to ensure the safe access under IRQL > PASSIVE_LEVEL.Generic table will be used to manage the name entries. System already providesthe runtime routines to operate on generic tables.
• Creation: Query Full Name in IRP_MJ_CREATEWe can deduce the �le names from the user speci�ed parameters, but only forlimited cases. So we'd better issue a name query request after the create/openirp is completed successfully, then complete the irp maually to return to theupper �lters or the I/O manager. The s�lter example in ifskit realizes it via akernel support routine: ObQueryNameString. We can reuse it for our purpose.
• Update: Trace Renaming in IRP_MJ_SET_INFORMATION / FileRe-nameInformationThis part is not realized in s�tler source. We need implement it on our own.There are two core structures related for the rename operation: IO_STACK_LOCATION.Parameters.SetFileand FILE_RENAME_INFORMATION structure stored in Irp->AssociatedIrp.SystemBu�er.Therenaming process could be divided to 3 cases deponding on the complexity:4



5.4 State Machine 6 EA OPERATIONS1. Simple Rename: SetFile.FileObject is NULL.2. Fully Quali�ed Rename: SetFile.FileObject is non-NULL and FILE_RENAME_INFORMATION.RootDiris NULL.3. Relative Rename: SetFile.FileObject and FILE_RENAME_INFORMATION.RootDirare both non-NULL.For case 1 and 2, we can get full pathes for the old and new �le names in notrouble. But for case 3, we need some extra processing to retrieve full pathesand do the substitution of NameEntry.Name inside the generic table.
• Destruction: Release the bu�ers in IRP_MJ_CLOSEWhen the �le is no longer used, system will issue an IRP_MJ_CLOSE to theopened �le. If it's the last reference, all the information in memory of the �lewill be destroyed. So that's the just time we need remove the NameEntry fromthe generic table and release the memory of the bu�ers.5.4 State Machine
• Access to the generic table should be under global lock protection.
• NameEntry's lifecycle is controlled by the reference count (NameEntry.RefCount).The referrence count is to be increased by 1 in IRP_MJ_CREATE and de-creased in IRP_MJ_CLOSE. When the referrence count becomes ZERO,we need release the NameEntry to system memory.6 EA Operations6.1 Functional Speci�cationThe stripe distribution information is to be stored in �lov_dist� EA for everyinode and the Samba servers information (ip address, netbios name, UUID) isto be stored in �ost_map� EA of root inode. The details are in the HLD / DLDdocuments of �LOV EA Support�.Windows system need implement the EA query routines to get the contentof these EAs via Samba server. These jobs are already done during the ext3protocol test. Also a patch for Samba was made then.All the EA querying jobs are done via a kernel support routine: ZwQueryEaFile.6.2 Use CaseN/A

5



6.3 Logic Speci�cation 7 SECURITY SUPPORT6.3 Logic Speci�cation1. Open the �le with proper user's context (see next seciton: Security Sup-port) with ZwCreateFile2. Initialize parameters FILE_FULL_EA_INFORMATION and FILE_GET_EA_INFORMATION3. Call ZwQueryEaFile to query the whole EA list or the value of a speci�edEA6.4 State ManagementN/A7 Security Support7.1 Functional Speci�cationAs we know, the CIFS sharing protocol needs a user name / password certi�ca-tion to access a speci�ed network resource. Only after loging on correctly couldwe access the shared resource.We can do it manually and make system cache the certi�cation information,then we can bypass the manually logon process when trying to access the sharedresource. We could also write a user program using WNet routines (WNetAd-dConnection) to logon the Samba server automatically to privilege the user tothe access of the remote servers.But for any case, for our �lter driver, only in that speci�y process context,we are privileged. If we want to operate on the shared resource on a di�erentcontext or thread, the security manager might deny our requests.Fortunately windows system provides us a powerful technique to accomplishthe impersonation. With this technique, we can store the credentials when weare in the user's context (normally in IRP_MJ_CREATE) and restore it inother circumstances as like the operation is just performed by the user itself.7.2 Use CaseN/A7.3 Logic Speci�cation1. the �rst request to open/create �le (IRP_MJ_CREATE) is in the user'scontext. It carries the user's security token. At this time we could createthe SECURITY_CLIENT_CONTEXT with routine SeCreateClientSe-curity to store the user's credentials. We could also do this process in anioctl handler routine and store it for global usage.6



7.4 State Management 8 PARALLEL I/O DISPATCH2. when we want to access the restricted resources in other context, we needimpersonate the user's context. The routine SeImpersonateClientEx doesthis for us.3. after the restricted operations are done, then restore the context to theoriginal one by calling PsRevertToSelf.7.4 State ManagementWe can use the SECURITY_CLIENT_CONTEXT as a global information.Then no need to care the state. If we wants to use one security context per �le(NameEntry), we can create and destroy the seucrity context according to thelifecycle of NameEntry.8 Parallel I/O Dispatch8.1 Functional Speci�cationThe core I/O functions are processed by IRP_MJ_READ / IRP_MJ_WRITEhandler routines. For our redirecting purpose, it's ok only to redirect noncachedI/O (including paging I/O). The cached I/O are to be ignored.The typical procedure of windows I/O is like the followings:
• Cached Reading Process:1. User issues a reading request.2. IRP_MJ_READ (cached I/O) is to be called ultimately to the �le systemdriver.3. The �le system driver should initialize the cache support for the �le if it'snot initialized yet. Then the cache manager will enable the read aheadbehavior for the �le object.4. Fsd will call CcCopyRead to prepare the pages for the request and re-turn to the user. Attention here: at the monment there's no any datamanipulation yet.5. Then the user will try to access the pages, which will cause a page fault.6. Then the page fault will get to the fsd. IRP_MJ_READ is called again,with Paging I/O (NonCached I/O) �ags set.7. The fsd should perform the disk I/O to read data from disk to systemmemory (cache).8. After that's done, system could restore from the page fault handler to theuser. Then the user's reading request is satis�ed.7



8.2 Use Case 8 PARALLEL I/O DISPATCH
• Cached Writing Process:1. User issues a write request.2. Fsd routine IRP_MJ_WRITE (cached I/O is to be called.3. Initialize the cache support for the �le if it's not initialized. Then thecache manager will enable the read ahead / laze write behavior for the �leobject.4. Fsd will call CcCopyWrite to prepare the pages and write data into thecache pages, then return to user.5. User is noti�ed that it succeeds to write data. (But now the data is stillin the cache.)6. The cache manager will issue a request of IRP_MJ_WRITE (paging I/O,non-cached) to write all the cache into the underlying disk devices.7. Then �le system driver will perform the disk I/O to write data to the disk.All the writing process is �nished.These two handler callbacks could be called at both at irql PASSIVE_LEVELand APC_LEVEL (paging I/O). The ZwReadFile/ZwWriteFile routines areforbidden to be called for any IRQL other than PASSIVE_LEVEL. And thereare restrictions on these two routines even we use WorkItems. We'd betterconstruct our own Irp with high �ixibility and issue them to the OST servers.8.2 Use CaseN/A8.3 Logic Speci�cation1. Check whether the �le I/O is to the MDS server ? (Is FileObject->FsContextin the global generic table ?)2. If yes. Then construct the object path names of the OSTs. EA query-ing might be needed to get the ost_map EA. Security context should beimpersnated before the EA querying call.3. Then query the �le's stripe distribution information from MDS server.4. Parse the stripe distribution information and split the memory block intopieces.5. Impersonate security context if needed, open the �le objects on the OSTservers.6. Construct irps for the opened �le objects (calling IoAllocateIrp ...)8



8.4 State Management 10 REFERENCES7. Issue the sub requests to the OST servers. We could get the device objectfrom the �le's FileObject.8. When the last sub irp is completed and none of them fails, then completethe original irp with success.9. If one of them fails, then do the failover procedure: retrieve the ost_mapand lov_dist, jump to step 4.8.4 State ManagementN/A9 Focus of Inspection1. The design is reasonable ? Could be better ?2. Could there be possible DLM deadlocks ?3. Possiblity of stale cache in client side.10 References1. Help documents of Ifskit 20032. OSR documents in Ifskit 20033. Windows NT File System Internals by Rajeev Nagar4. Inside windows 2000 3th by David Solomon and Mark Russinovich5. Documents on http://www.osronline.com6. Lustre book

9


