Commit-On-Sharing High Level Design

Mike Pershin, Alexander “Zam” Zarochentsev

8 August 2008

1 Introduction

1.1 Definitions

VBR version-based recovery

transaction an atomic operation which reads and possibly writes ludasyfstem state including file and directory attributesgclir
tory entries and file contents

uncommitted data filesystem state updated by one or more transactions buehobynmitted to stable storage

inter-client dependent transactions (alsodependent transaction¥ transaction (B) depends on transaction (A) if:

1. (B) reads from an object after (A) has written to it.
2. (A) and (B) are issued by different clients

recovery connection re-establishment by a client after a serveuriil Recovery is successful if all of the client’s uncomedtt
transactions can be re-executed correctly and its cachbecagvalidated. If recovery fails the client is evicted - ifserases
all cached state and completes all uncompleted transaatiith failure.

recovery dependenceafter a server failure, client (a) is dependent on clientfdbyecovery if clients (a) and client (b) have such
uncommitted transactions (Ta) and (Tb) respectively tha) depends on (Th). Thereby client (a) will be evicted unldient
(b) participates successfully in recovery.

COS Commit on Share - a strategy to eliminate recovery depere@nensuring that inter-client dependent transaction doezal
uncommitted data.

1.2 Background

Consider a situation when an MDS server has crashed orntegtal he clients are reconnecting and re-applying thejuests to
restore connection states. One or more clients missingett@very may cause other clients to abort their transactioesen to be
evicted.

The transactions of the missing clients cannot be applieorebler a transaction that depends on a missing one caniapiptied
correctly and get aborted, the transactions dependingeoalibrted ones get aborted too and so on.

The COS feature attacks the source of these problems byneliimgy dependent transactions. If there are no dependeatmmitted
transactions to re-apply, the clients apply their requiestspendently without a menace of being evicted.

3 FUNCTIONAL SPECIFICATION

2 Requirements

1. Allow clients to recovery independently
2. The mechanism should be optional to allow users to choetseslen performance and reliability
3. No changes in wire protocol are allowed

4. Provide compatibility for old clients

3 Functional Specification

The proposed solution is to detect inter-client dependantstctions and prevent reading of uncommitted data bygdmicommit
between the dependent transactions.

The solution is built around the LDLM. The following are thighlights of the solution:

e A client tracking info added to the lock object. We extendIthim lock policy field by a tag which identifies the client &t
the transaction. The pointis that Idim has no notion of ¢lleehind request unless lock is explicitly requested byntlie

e After a data modification transaction completes, the cpordingPW lock isn’t released immediately. Instead the lock is
converted and preserved until transaction commit.

e ThePW lock gets converted into speci@DSlock. The lock compatible check uses the client trackingiimfation mentioned
above to allow any?W/PR lock from the same client and to conflict with aRR/PW lock from any other clients. An early
lock conflict (before the lock is converted to a COS lock) iseaineption to this lock conversion rule, it is explained inrmo
detail in the Logic section.

e Another client access is detected as a lock conflict of tlemtlock request and tH@OSlock. Once lock conflict happens, we
forcing the transaction to commit.

e A transaction commit releases tB©S locks associated with the transaction.

3.1 Relation with REP-ACK

REP-ACK andCOSare similar. Both mechanisms achieve some levels of gusgaritrecoverability of the request before unlocking
the object and letting further transactions to procd®EP-ACK waits a message from the client that request reply was reg&iv
transaction commitCOS only waits when the transaction reaches the persisterdaggoREP-ACK relies on the client or a disk
storage whileCOS trusts disk storage only.

When dependent transactions are detected we use COS in§fRE&-ACK.

3.2 Concurrent directory access

Concurrent directory access will be supported with pdir@agure which protects hash-associated part of directaty dedicated
Idim resource. COS will apply to hash-associated locks.

3.3 Managing COS

New MDS configuration parameter “commit_on_sharing” adieghable or disable COS, zero value means cos feature Eetisa
any non-zero value means the opposite. It makes the COSddatbe controlled through Iprocfs or Ictl interfaces and eoable
status can be saved as a part of cluster configuration.

4 USE CASES

4 Use Cases

4.1 A client modifies object with no changes in cache

The object is unlocked and has no uncommitted changes

e Client issues an object modification request

e The server takesRW lock on the object

The object gets modified on the server

The PW lock gets converted into a COS lock
The object remain€0S-locked

4.2 The client continues with the write access to the object

The changes made to the object by the client are not yet coaainit disk.

e The client issues an object modification request
e The server requestsRAN lock on the object

e The lock is granted because the COS lock is compatible wigHaak request coming from the same client.

The object gets modified

The client lock is released, the COS lock remains

4.3 The client continues with the read access to the object

The changes made to the object by this client are not yet ctiethtd disk.

e The client issues a request to fetch data from an object
e The server requestsRR lock on the object

e The lock is granted because the COS lock is compatible wigHaak request coming from the same client

The object gets accessed

The client lock is released, the COS lock remains

4.4 A client writes to the object recently modified by anotherclient

The object was write locked and modified by another cliestctianges are not yet committed to the disk.

e A clientissues an object modification request

e The server requests a PW lock on the object

e LDLM finds the lock request conflicting with the COS lock
e LDLM calls the BAST registered with the lock

The BAST triggers a transaction commit

The COS lock is released by a transaction commit hook

The lock request is granted

The object gets modified

4.5 A client reads the object recently modified by anothemtli 5 LOGIC SPECIFICATION

4.5 A client reads the object recently modified by another cént

The object was write locked and modified by another cliestctianges are not yet committed to the disk.

e A clientissues a request to fetch data from an object

e LDLM finds the lock request conflicting with the COS lock
e LDLM calls the BAST registered with the lock

e The BAST triggers a transaction commit

e The COS lock is released by a transaction commit hook

The lock request is granted

The client fetches the object data

4.6 Parallel file creation in one directory

A bunch of clients create files in one directory, file name hadlisions considered as rare

e Clients take locks on hash-associated lock resources dithetory
e The locks get converted to COS locks

e Subsequent file creations are compatible with the COS loasti€ause no transaction commits

4.7 Enable COS

e A userissues Ictl config_param command
Ictl set_param mdt.*.commit_on_sharing=1

e |ctl communicates with the MDS server using procfs integfac

e local MDS servers change their cos status

4.8 Disable COS

e A userissues Ictl config_param command
Ictl set_param mdt.*.commit_on_sharing=0

e Ictl communicates with the local MDS servers using proctsriface

e local MDS servers change their cos status

5 Logic Specification

5.1 Storing client id within Idlm_lock object

The Idim_policy_data_t structure (part of Idim_lock oli)eis extended to store connection cookie. The field is i@l at lock
request creation and is used to check whether a COS lock aralt adquest are compatible (see below).

5.2 COS lock 5 LOGIC SPECIFICATION

5.2 COSlock

COS lock objects have a new lock mode, LCK_COS.

COS locks live only on resource’s granted queue, as resitVdflocks conversion. COS locks cannot be requested. COS lock
cannot be on resource’s waiting queue.

The Idlm_inodebits_compat_queue() function is changembtopare request locks and COS locks.
COS lock compatibility table:

| Lockrequest | COS lock |

PR/same client | compatible

PW/same client | compatible
PR/another client| no
PW/another client no

5.3 Triggering transaction commit

We define a BAST method for any PW lock taken by server. HowekierBAST can be called before the PW lock is converted to
COS lock. The transaction might not be started and theretilinmgto commit yet. The BAST should perform a commit onlyhiét
lock has been converted to COS lock already.

If the BAST is called before the lock gets converted, the logkflict doesn’t necessary mean that we get transactiomdepey,
PWI/PR locks from one client may generate a lock conflict as W¢d have to do additional check over the lock and the lockiesg
to find whether there is a transaction dependency or not.

The check is like the COS compatibility check defined aboueye have no COS lock yet:

| Lockrequest [existing PW lock]
PR/same client independent
PW/same client independent

PR/another client dependent

PW/another client dependent

If it is found that transactions are dependent, we want th& ii@dification transaction to be committed synchronously.

We introduce new “force commit” bit in the lock flags. The kstset when transaction dependency is detected but the otk is
yet converted to a COS one. The bit keeps the informationtadboged of commit until the data modification is completed tued
transaction can be committed.

The key modifications to the data modification routine andaloeking AST are illustrated by the following flowchart dragns:

The commits are are done asynchronously, by another thi¥adinly ask it to commit the transactions. After the threachicots
the transactions it calls commit hook where saved locksajeaised.

However commit start could be issued more then once for @mséction. There is number of reasons for that: many COS liock
one resource and thereby many BAST messages and many lockees involved into the transaction. Some of the syncsstam

come late when the transaction has been committed alreathpyl have a negative effect of forcing the next transactiarommit.

The negative effect isn’t measured yet and considered asi@ior now.

5.4 Server reply and client ACK

If we don’t use ACK for releasing the locks and the requestdae’t set the LNET_ACK_REQ flag with the server reply.

5.5 Saving COS lock until commit

REP-ACK already has an infrastructure (ptlrpc_save_ltzkpve and keep locks until client ACK or transaction comiwé reuse
that whole infrastructure for COS. The COS lock will be keptiutransaction commit because we don’t require client Aoke
sent on the server reply.

8 FOCUS OF INSPECTION

6 State Management

7 Alternatives

7.1 Lazy commit

We don’t force commit immediately after inter-client dedency is found, but have coming client to wait a commit triggeby
timeout or other reasons.

8 Focus of Inspection

