MDS Layering HLD

Mike Pershin

2006-02-27

Contents
1 Introduction
2 Requirements

3 Functional specification
3.1 Generalnotes: e
3.2 Definitions.
3.3 Architecture Overview
3.4 Functionalityoverview
3.5 ServerLayers e
351 MDT ...
352 CMM e
353 MDD
354 0OSD
355 LOV ... e
3.6 LayersAPl e

4 Use cases

4.2 RECOVEIY . . . i i i e e e e e e e
421 Resent.
422 Replay
423 Rollback

INTRODUCTION

5 Logic specification

51 MDT
5.1.1 LDLM locks
5.1.2 Intents

52 CMM
5.2.1 Placement policy
5.2.2 Rollback

53 MDD

5.4 Logic of operations on MDS in CMD environment

541 Create
5.4.2 Unlink

5.4.3 Lookup and Intents

6 State management

6.1 Scalability & performance
6.2 Recovery changes

6.3 Protocol changes

6.4 APIchanges

7 Alternatives

7.1 Cacheing MDS issue
7.2 Reduced command setin MDD

8 Focus for inspections

1 Introduction

The requirements of many new approaches in design of metadater demand a clear
understanding of server layers and their functionalityir€ut document describes this

and should be used as basis for all depended designs.

3 FUNCTIONAL SPECIFICATION

2 Requirements

Requirements to the MDS layers are taken from managementnusat and listed
below:
o the MD target or transport layer is needed;

e the MDD (local metadata driver) shouldn’t directly call L8Fbut instead layer
on OSD;

e the OSD object API should be extended with some metadateealssuch as
the manipulation of trees, locks and transactions;

e the MDD API should be the same as the Lustre file system regjuire

e move all elements of networking into MDT layer. Exports amgborts, network
recovery, DLM are strictly belong in the MDC/MDT layers;

e MDD and OSD should not contain per client data structures;
e llite and LMV could run directly on CMM and/or MDD w/o any us€IloNET;

e the new locking functionality should be introduced in MDDedio moving all
DLM stuff into MDT level;

e expose transaction API for use by MDD.

3 Functional specification

3.1 General notes:

According to new MDS layering different layers export qudifferent interfaces to the
upper layers. With this in mind, it stand to reason to questiiee necessity of having
global obd interface that we have now. For another thing, fagsrs are not *ob-
ject* devices. They deal with meta-data. Probably now, wineta-data components
undergo major rewrite it's a right time to cleanup interfaoee:

e introducestruct mdX (not sure what X should be used) common for all meta-
data layers and separate freiruct obd;

e introduce some structure for common partssefuct obd andstruct mdX
(like reference counting, initialization/finalizatiortce);

e implement every MD layer astruct mdX plus some layer specific methods
(e.g., abandon current practice of stuffing each and evessiple method direc-
tory into common interface).

3.2 Definitions 3 FUNCTIONAL SPECIFICATION

3.2 Definitions

FID -objectidentifierin Lustre. It consist of sequence, id aadsion. FID is invariant
in Lustre for the object.

FLD - FID location database. The functionality by which FID iartslated to the
mdsnum. Due to a possible object migration we need such DBafoFIiD to the
server number.

3.3 Architecture Overview

There is new layer on MDS name@MM’ - Cluster Metadata Manager. This layer
will make all functionality related to MD cluster - MDS-MD$tieraction, epoch con-
trol, placement policy.

3.4 Functionality overview

The proposed layering is featured by CMM (Clustered Metadiédnager) on top of
MDD. CMM layer takes care about placement policy and uses M@mDocal opera-
tions and a set of MDC - for remote calls. CMM can be removed §TWill works
on top of MDD (for non-CMD lustre. Do we need this?). So theuest handling
algorithm looks like followed:

1. MDT receives the request from client (MDC):

(a) unpack request information;

(b) handle resends;

(c) take needed DLM locks;

(d) call below OBD and send reply to the client.

2. CMM chooses all servers involved in operation and senctiggd request if
needed:

(a) apply metadata policy using request parameters and stireeinfo from
MDT if needed, e.g. client NID;

(b) for local operation just call MDD;
(c) for complex operation:

i. split operation to several parts;

ii. do epoch negotiation;
iii. call remote operation on selected MDC;
iv. call local operation on MDD

(d) get all results and return with combined one;

3.5 Server Layers 3 FUNCTIONAL SPECIFICATION

(e) queries and updates FLD.
3. MDD is local metadata device that receives all local dadismn CMM

(a) take all needed locks;
(b) start transaction if needed;
(c) execute operation via OSD.

4. MDC acts in the same way as on client:

(a) prepare request;
(b) send it to the corresponding MDS.

3.5 Server Layers
3.5.1 MDT

This is transport level. It contains:

¢ all network functionality, so other layers (except for MDKE)ow nothing about

network;

e LDLM functionality. Other layers shouldn’t use LDLM at all;

e resentfunctionality;

e intent handling.
This layer takes care about all networking components. déal icase is that MDC/MDT
are removed so llite/LMV on the client could run on top of CMMNMDD directly. To
provide this MDC and MDD should have similar APl. MDC/MDT cpack/unpack fs

operations in optimal way to improve network performanas,this should be trans-
parent for upper/bottom layers.

3.5.2 CMM

Clustered Metadata Manager provides inter-server comication related to CMD en-
vironment and decides how data will be/should be distrihateross the cluster. CMM
does the following:

e apply placement policy if needed;

e handled-LD - FID Location Database;

3.5 Server Layers 3 FUNCTIONAL SPECIFICATION

e redirects operation to tHdDD directly or do complex operation with requesting
the remoteMDS;

e support the array d¥IDC drivers that manage the metadata traffic to the remote
MDT;

¢ in addition to the standard set of fs operati@dM supports partial operations
for cross-ref objects support;

¢ rollback functionality (just because it is needed for mDS environment only
and not needed w/o CMD) - snapshot control, epoch negatiatiodo log

3.5.3 MDD

Metadata layer. There all metadata operations are pratesse

e MDD API can be used by CMM/LMV on both MD server and client teopide
local operations with metadata

e MDD is local driver and know nothing about CMD.

e MDD uses OSD as a storage device.

3.54 0OSD

Objects storage layer:

e provides API for object operations

exports transaction API

exports locking API

exports index API

provides access to the FLD

3.55 LOV

LOV layer is need on MDS to provide connection with OSSesaltrmt be placed nor
in MDT or CMM - because they don't exists in several configionas. It seems MDD
should be connected to the LOV

3.6 Layers API 4 USE CASES

3.6 Layers API

The ordinary filesystem methods:

e lookup()
e create()
e link()

e unlink()
e rename()
e symlink()
e open()

e close()

e setattr/getattr()
The partial methods due to CMD functionality:

e create_object()
e delete_object()
e link_obj()

e unlink obj()

4 Use cases

4.1 Possible configurations

4.1.1 Single MDS server:

MDT => MDD => OSD: no CMM layer and therefore no placement policy, no roll-
back, no partial operations calling.

4.2 Recovery 4 USE CASES

4.1.2 Cacheing MDS

The idea is MDD is started locally on client and works as caet® server. This
implies thatllite should be able to run on top of MDD. While this looks simplerthe
is one issue - all files will belong to one server so after flngtthey will be placed
also on one MD server. For Lustre setup with only one MDS getis is ok, but it
becomes the problem for CMD. It is possible to change fid_secge rapidly, but in
absence of LMV this will be done w/o any policy.

To solve this issue the following scheme can be used:

The LMV is used on top of several local MDD. In that case it dassal things but
instead array of MDC it has array of MDD. It can be actually &@D that used in all
LMYV targets. Therefore thereate() can looks like the following:

1. llite callsmd_create(lmv, ...);

2. LMV choose the server (fid_seq) and eall create () on selected target MDS
- MDD actually;

3. MDD do the usual operations with locking, transactions, and call own OSD
(that could be the one OSD for all)

It is the one of possible approach and additional inspettorew is needed while
DLD/PROTO stage. Another way is listed in 'Alternativestten 7

4.2 Recovery

The existence of CMM will not break recovery things.

4.2.1 Resent

The resent functionality can be done in MDT, possibly witkistsince from MDD/OSD.
CMM policy for resent helper is just passthrough it dire¢tiythe local MDD.

4.2.2 Replay

Replay operations can be done as original operation. Rilbad FID remove the

difference with ordinary commands. MDT know the epoch of tasnmitted snapshot
and will pass to the CMM only needed replay operations. DusHfback all servers

in cluster will undo depended operations as well, so CMM dilthe same things as
for ordinary request with depended replays to the remote Bdes if needed. FLD is

updated also as needed.

5 LOGIC SPECIFICATION

4.2.3 Rollback

CMM can interoperate with servers and can be used for epattnatiing. This will
works with help of MDC/MDT or by direct request to the MDD. Apach is not
network-related value but number of local snapshot so tkere network partin CMM
- it just callsmd_get_info() from one of server.

Neither MDT nor CMM have access to the transaction API, sooulod cannot be
recorded in these layers. MDD will do undo log for each operetransactionally.

5 Logic specification

5.1 MDT

MDT layer should hide all network parts from CMM/MDD. Theoeé neither CMM
nor MDD will know whether are they working under MDT or dirgctinder llite/LMV.
This implies that MDT should use the same operation like/liMV while working
with CMM or MDD.

5.1.1 LDLM locks

MDT handles all LDLM locks and this requires lookup methodmexported from
MDD to get FID from the name

5.1.2 Intents

The Lookup () operation involves the intents. The MDT takes care abounthad
calls appropriate functions from bottom layers.

5.2 CMM

CMM layer is a key component of CMD. It contains all CMD furartality actually.
Client-side CMD-related layer is callddvV.

5.2.1 Placement policy

When CMM receives the operation it should recognize all imw0d servers. For exis-
tent object CMM check fid_sequence and gets MDS number froB. FHor any new
object CMM chooses the target server and updates FLD withreeard. In this case
the defined policy should be applied to choose MDS and thatyshould be dupli-
cated in LMV on client.

5.3 MDD 5 LOGIC SPECIFICATION

5.2.2 Rollback

Rollback is recovery mechanism in a cluster. The CMM willdalare about all stuff
related to the rollback - epoch control and undo logging. dipis controlled through
negotiation with all MD servers periodically or during intgerver operation. CMM
takes care that cross-ref operation will be done in one eplsbther part of rollback
functionality in CMM is undo log - it can be done by using llagnctionality that all

OBDs have already.

5.2.3 Multi-server operations

CMD is featured by cross-ref operations which contain twagparemote and local,
€.9. create_object (), insert_name() as parts okreate(). These partial com-
mands have to be added to the MDD/MDT API.

5.3 MDD

The main idea about MDD that it is 'local’ layer and knows rinthabout network,
CMD, etc. MDD can be used by CMM, MDT directly or llite on clierso MDD API
should contains all needed methods to provide such widdituratity. Logic of MDD
is described in MDD_OSD HLD in details.

5.4 Logic of operations on MDS in CMD environment

The proposed solution implies that MDD should support asbset of fs operations -
create/link/unlink/etc. as partial operations appeateztd CMD - create_obj/insert_name/etc.
The common set of operations is needed in MDD because it casdstw/o CMM.

The set of partial operations is needed because the diff&fB%$ can do each part.

Due to this the CMM should check is the operations local otrithsted and use the
appropriate method.

Alternate solution is described in ’Alternatives’ section

5.4.1 Create

llite: invokemd_create() on LMV

LMV: apply placement policy and assign FID for the new child, séllcreate ()
on parent's MDC

MDC: send request to the needed MDT

MDT: receive request, unpack and aadlt _create() :

10

5.4 Logic of operations on MDS in CMD environmen6 LOGIC SREICATION

mdt_create(obd, pfid, name, cfid, flags, ...){
fid_lock(pfid, LCK_PW);
md_create(obd, pfid, name, cfid, flags, ...);

fid_unlock(pfid, LCK_PW);

CMM: called from MDT. Determine all servers involved, split ogigon if needed

int cmd_create(obd, pfid, name, cfid, ...) {
/* check the child */
mdsnum = f1d_lookup(cfid);

if (mdsnum == local) {
/* call MDD operation */

md_create(mdsnum, pfid, name, cfid, ...);

} else {
/* split operation to call it on different targets */
error = md_create_obj(mdsnum, cfid, ...);

if (lerror) {
/* insert name locally */

md_create_name(local, pfid, name, cfid, ...);
}
}
}
cmm_create_obj(cfid, ...) {
}

MDD: called from CMM, care about locking/transaction and corgleperations
with calling OSD

5.4.2 Unlink
MDT :
mdt_unlink(obd, pfid, name, ...){
fid_lock(pfid, ...);
cfid = md_lookup(obd, name);
fid_lock(cfid, ...)
md_unlink(obd, pfid, name, cfid, ...);
fid_unlock(cfid, ...);
fid_unlock(pfid, ...);
}

11

5.4 Logic of operations on MDS in CMD environmen6 LOGIC SREICATION

CMM:
int cmm_unlink(pfid, name, cfid, ...) {
mdsnum = f1d_lookup(cfid);
if (mdsnum == local) {
/* call MDD x/
md_unlink(local, pfid, name, cfid, ...);
} else {
/* remote operation */
error = md_unlink_obj(mdsnum, cfid, ...);
if (lerror) {
/* remove the directory entry */
md_delete_name(local, pfid, name, cfid,
}
}
}
cmm_unlink_obj(cfid, ...) {
}

5.4.3 Lookup and Intents

llite: callmd_lookup() with needed intents, then call other operations -open ()
ormd_getattr() as needed

LMV/MDC: aftermd_lookup () results can have results also for followisigen/getattr

or do additional RPC for this

MDT: can receive th@ookup () from client with IT_OPEN or IT_GETATTR. cfid is
passed only in O_CREAT case

mdt_lookup(obd, pfid, name, cfid, ...){
fid_lock(pfid,...);
fid = md_lookup(obd, pfid, name, ...);

if (!'fid && !'cfid) {
return -ENOENT;
}

if (IT_OPEN) {
if (md_open(obd, fid, cfid, ...)) {
// £ill openhandle;

}
}
if (IT_GETATTR) {
md_getattr(obd, fid, ...);

12

6 STATE MANAGEMENT

}
fid_unlock(pfid);
}
CMM:
cmm_lookup(pfid, name, ...) {
md_lookup(pfid, name, ...);
}
cmm_open(fid, cfid, ...) {
mdsnum = f1d_lookup(fid);
if (mdsnum == local) {
/* call MDD */
md_open(local, fid, cfid, ...);
} else {
return -ERESTART;
}
}
cmm_getattr(cfid, ...) {
}

MDD: while Lookup () is trivial, theopen () need detailed view. We need open here
because MDT/CMM layers are optional and llite can eglen() directly on

MDD
mdd_open (fid, cfid, ...) {
if (cfid) { // O_CREATE case
osd_create_obj();
lov_create_obj();
}
//get refcount to the object
osd_get_object(cfid, ...);
}

The comment is needed here abeBRESTART return code. When the current MDS
cannot provide intent-related data it returns just lookapadvith -ERESTART code.
Therefore a client will do additional RPC to the other MDS.

6 State management

6.1 Scalability & performance

MDS layering changes are initiated in view of clear desigd emde. It shouldn’t hurt
performance and scalability

13

6.2 Recovery changes 7 ALTERNATIVES

6.2 Recovery changes

Recovery API is changed due to new layering. Network pagsraMDT, the MDD
should export API for replay and reply reconstruction and\Cshould provide cluster-
wide recovery - rollback. There are separated HLDs for this.

6.3 Protocol changes

Locking should be changes to the parent-child order insté&dD order. While chil-
dren can be at remote server, the parent-child order becoatesal but FID order will
be difficult to implement.

6.4 APIchanges

This design implies that MDD can be used by client directly MMDC/MDT. Therefore
the APl of MDC and MDD should be the same.

7 Alternatives

7.1 Cacheing MDS issue

Alternative solution to the 4.1.2

The problem is - there is only one cacheing MDS but logicditg Ishould works
like with several one. Therefore some new level is needetviiibonly apply the
placement policy and select FID-sequence. That level caksian top of LMV - in
that case all requests will be redirected to proper serverondop of MDD directly
- in that case all requests will go to the local storage. Pbséi is not even 'layer’
between llite and LMV but some kind of library that can be ubgdlite directly.

7.2 Reduced command setin MDD

Alternative solution to the 5.4

This solution suppose that MDD provides only set of basiaafiens with name and
object like insert/delete name, create/remove object, &teerefore CMM split any
command into such sub-operations and call them. This wilpify CMM operations
due to they will looks similar for cross-ref operations andlbcal one. But this means
also that MDD cannot used by llite/LMV or MDT directly, becsithey works in
terms of usual operations. Therefore the CMM should alwaysded on top of MDD
to provide set of usual operations. There are several probigith this solution but
proposed way should be reviewed while DLD/PROTO stages.

14

8 FOCUS FOR INSPECTIONS

8 Focus for inspections

15

