
MDS Layering HLD

Mike Pershin

2006-02-27

Contents

1 Introduction 2

2 Requirements 3

3 Functional specification 3

3.1 General notes: . 3

3.2 Definitions . 4

3.3 Architecture Overview . 4

3.4 Functionality overview . 4

3.5 Server Layers . 5

3.5.1 MDT . 5

3.5.2 CMM . 5

3.5.3 MDD . 6

3.5.4 OSD . 6

3.5.5 LOV . 6

3.6 Layers API . 7

4 Use cases 7

4.1 Possible configurations . 7

4.1.1 Single MDS server: . 7

4.1.2 Cacheing MDS . 8

4.2 Recovery . 8

4.2.1 Resent . 8

4.2.2 Replay . 8

4.2.3 Rollback . 9

1

1 INTRODUCTION

5 Logic specification 9

5.1 MDT . 9

5.1.1 LDLM locks . 9

5.1.2 Intents . 9

5.2 CMM . 9

5.2.1 Placement policy . 9

5.2.2 Rollback . 10

5.2.3 Multi-server operations . 10

5.3 MDD . 10

5.4 Logic of operations on MDS in CMD environment10

5.4.1 Create . 10

5.4.2 Unlink . 11

5.4.3 Lookup and Intents . 12

6 State management 13

6.1 Scalability & performance . 13

6.2 Recovery changes . 14

6.3 Protocol changes . 14

6.4 API changes . 14

7 Alternatives 14

7.1 Cacheing MDS issue . 14

7.2 Reduced command set in MDD . 14

8 Focus for inspections 15

1 Introduction

The requirements of many new approaches in design of metadata server demand a clear
understanding of server layers and their functionality. Current document describes this
and should be used as basis for all depended designs.

2

3 FUNCTIONAL SPECIFICATION

2 Requirements

Requirements to the MDS layers are taken from management document and listed
below:

• the MD target or transport layer is needed;

• the MDD (local metadata driver) shouldn’t directly call LVFS but instead layer
on OSD;

• the OSD object API should be extended with some metadata elements, such as
the manipulation of trees, locks and transactions;

• the MDD API should be the same as the Lustre file system requires;

• move all elements of networking into MDT layer. Exports and imports, network
recovery, DLM are strictly belong in the MDC/MDT layers;

• MDD and OSD should not contain per client data structures;

• llite and LMV could run directly on CMM and/or MDD w/o any use of LNET;

• the new locking functionality should be introduced in MDD due to moving all
DLM stuff into MDT level;

• expose transaction API for use by MDD.

3 Functional specification

3.1 General notes:

According to new MDS layering different layers export quitedifferent interfaces to the
upper layers. With this in mind, it stand to reason to question the necessity of having
global obd interface that we have now. For another thing, mdslayers are not *ob-
ject* devices. They deal with meta-data. Probably now, whenmeta-data components
undergo major rewrite it’s a right time to cleanup interfacecore:

• introducestruct mdX (not sure what X should be used) common for all meta-
data layers and separate fromstruct obd;

• introduce some structure for common parts ofstruct obd andstruct mdX
(like reference counting, initialization/finalization, etc.);

• implement every MD layer asstruct mdX plus some layer specific methods
(e.g., abandon current practice of stuffing each and every possible method direc-
tory into common interface).

3

3.2 Definitions 3 FUNCTIONAL SPECIFICATION

3.2 Definitions

FID - object identifier in Lustre. It consist of sequence, id and version. FID is invariant
in Lustre for the object.

FLD - FID location database. The functionality by which FID is translated to the
mdsnum. Due to a possible object migration we need such DB to map FID to the
server number.

3.3 Architecture Overview

There is new layer on MDS named’CMM’ - Cluster Metadata Manager. This layer
will make all functionality related to MD cluster - MDS-MDS interaction, epoch con-
trol, placement policy.

3.4 Functionality overview

The proposed layering is featured by CMM (Clustered Metadata Manager) on top of
MDD. CMM layer takes care about placement policy and uses MDDfor local opera-
tions and a set of MDC - for remote calls. CMM can be removed so MDT will works
on top of MDD (for non-CMD lustre. Do we need this?). So the request handling
algorithm looks like followed:

1. MDT receives the request from client (MDC):

(a) unpack request information;

(b) handle resends;

(c) take needed DLM locks;

(d) call below OBD and send reply to the client.

2. CMM chooses all servers involved in operation and send depended request if
needed:

(a) apply metadata policy using request parameters and someother info from
MDT if needed, e.g. client NID;

(b) for local operation just call MDD;

(c) for complex operation:

i. split operation to several parts;

ii. do epoch negotiation;
iii. call remote operation on selected MDC;

iv. call local operation on MDD

(d) get all results and return with combined one;

4

3.5 Server Layers 3 FUNCTIONAL SPECIFICATION

(e) queries and updates FLD.

3. MDD is local metadata device that receives all local callsfrom CMM

(a) take all needed locks;

(b) start transaction if needed;

(c) execute operation via OSD.

4. MDC acts in the same way as on client:

(a) prepare request;

(b) send it to the corresponding MDS.

3.5 Server Layers

3.5.1 MDT

This is transport level. It contains:

• all network functionality, so other layers (except for MDC)know nothing about
network;

• LDLM functionality. Other layers shouldn’t use LDLM at all;

• resentfunctionality;

• intent handling.

This layer takes care about all networking components. The ideal case is that MDC/MDT
are removed so llite/LMV on the client could run on top of CMM or MDD directly. To
provide this MDC and MDD should have similar API. MDC/MDT canpack/unpack fs
operations in optimal way to improve network performance, but this should be trans-
parent for upper/bottom layers.

3.5.2 CMM

Clustered Metadata Manager provides inter-server communitcation related to CMD en-
vironment and decides how data will be/should be distributed across the cluster. CMM
does the following:

• apply placement policy if needed;

• handlesFLD - FID Location Database;

5

3.5 Server Layers 3 FUNCTIONAL SPECIFICATION

• redirects operation to theMDD directly or do complex operation with requesting
the remoteMDS;

• support the array ofMDC drivers that manage the metadata traffic to the remote
MDT ;

• in addition to the standard set of fs operationsCMM supports partial operations
for cross-ref objects support;

• rollback functionality (just because it is needed for multi-MDS environment only
and not needed w/o CMD) - snapshot control, epoch negotiation, undo log

3.5.3 MDD

Metadata layer. There all metadata operations are processed:

• MDD API can be used by CMM/LMV on both MD server and client to provide
local operations with metadata

• MDD is local driver and know nothing about CMD.

• MDD uses OSD as a storage device.

3.5.4 OSD

Objects storage layer:

• provides API for object operations

• exports transaction API

• exports locking API

• exports index API

• provides access to the FLD

3.5.5 LOV

LOV layer is need on MDS to provide connection with OSSes. It cannot be placed nor
in MDT or CMM - because they don’t exists in several configurations. It seems MDD
should be connected to the LOV

6

3.6 Layers API 4 USE CASES

3.6 Layers API

The ordinary filesystem methods:

• lookup()
• create()
• link()
• unlink()
• rename()
• symlink()
• open()
• close()
• setattr/getattr()

The partial methods due to CMD functionality:

• create_object()
• delete_object()
• link_obj()
• unlink_obj()

4 Use cases

4.1 Possible configurations

4.1.1 Single MDS server:

MDT => MDD => OSD: no CMM layer and therefore no placement policy, no roll-
back, no partial operations calling.

7

4.2 Recovery 4 USE CASES

4.1.2 Cacheing MDS

The idea is MDD is started locally on client and works as cacheMD server. This
implies thatllite should be able to run on top of MDD. While this looks simple there
is one issue - all files will belong to one server so after flushing they will be placed
also on one MD server. For Lustre setup with only one MDS server this is ok, but it
becomes the problem for CMD. It is possible to change fid_sequence rapidly, but in
absence of LMV this will be done w/o any policy.

To solve this issue the following scheme can be used:

The LMV is used on top of several local MDD. In that case it doesusual things but
instead array of MDC it has array of MDD. It can be actually oneMDD that used in all
LMV targets. Therefore thecreate() can looks like the following:

1. llite callsmd_create(lmv, ...);

2. LMV choose the server (fid_seq) and callmd_create() on selected target MDS
- MDD actually;

3. MDD do the usual operations with locking, transactions, etc. and call own OSD
(that could be the one OSD for all)

It is the one of possible approach and additional inspection/review is needed while
DLD/PROTO stage. Another way is listed in ’Alternatives’ section 7

4.2 Recovery

The existence of CMM will not break recovery things.

4.2.1 Resent

The resent functionality can be done in MDT, possibly with assistance from MDD/OSD.
CMM policy for resent helper is just passthrough it directlyto the local MDD.

4.2.2 Replay

Replay operations can be done as original operation. Rollback and FID remove the
difference with ordinary commands. MDT know the epoch of last committed snapshot
and will pass to the CMM only needed replay operations. Due torollback all servers
in cluster will undo depended operations as well, so CMM willdo the same things as
for ordinary request with depended replays to the remote MD server if needed. FLD is
updated also as needed.

8

5 LOGIC SPECIFICATION

4.2.3 Rollback

CMM can interoperate with servers and can be used for epoch controlling. This will
works with help of MDC/MDT or by direct request to the MDD. As epoch is not
network-related value but number of local snapshot so thereis no network part in CMM
- it just callsmd_get_info() from one of server.

Neither MDT nor CMM have access to the transaction API, so undo log cannot be
recorded in these layers. MDD will do undo log for each operation transactionally.

5 Logic specification

5.1 MDT

MDT layer should hide all network parts from CMM/MDD. Therefore neither CMM
nor MDD will know whether are they working under MDT or directly under llite/LMV.
This implies that MDT should use the same operation like llite/LMV while working
with CMM or MDD.

5.1.1 LDLM locks

MDT handles all LDLM locks and this requires lookup method tobe exported from
MDD to get FID from the name

5.1.2 Intents

Thelookup() operation involves the intents. The MDT takes care about them and
calls appropriate functions from bottom layers.

5.2 CMM

CMM layer is a key component of CMD. It contains all CMD functionality actually.
Client-side CMD-related layer is calledLMV.

5.2.1 Placement policy

When CMM receives the operation it should recognize all involved servers. For exis-
tent object CMM check fid_sequence and gets MDS number from FLD. For any new
object CMM chooses the target server and updates FLD with newrecord. In this case
the defined policy should be applied to choose MDS and that policy should be dupli-
cated in LMV on client.

9

5.3 MDD 5 LOGIC SPECIFICATION

5.2.2 Rollback

Rollback is recovery mechanism in a cluster. The CMM will take care about all stuff
related to the rollback - epoch control and undo logging. Epoch is controlled through
negotiation with all MD servers periodically or during inter-server operation. CMM
takes care that cross-ref operation will be done in one epoch. Another part of rollback
functionality in CMM is undo log - it can be done by using llog functionality that all
OBDs have already.

5.2.3 Multi-server operations

CMD is featured by cross-ref operations which contain two parts - remote and local,
e.g. create_object(), insert_name() as parts ofcreate(). These partial com-
mands have to be added to the MDD/MDT API.

5.3 MDD

The main idea about MDD that it is ’local’ layer and knows nothing about network,
CMD, etc. MDD can be used by CMM, MDT directly or llite on client, so MDD API
should contains all needed methods to provide such wide functionality. Logic of MDD
is described in MDD_OSD HLD in details.

5.4 Logic of operations on MDS in CMD environment

The proposed solution implies that MDD should support as usual set of fs operations -
create/link/unlink/etc. as partial operations appeared due to CMD - create_obj/insert_name/etc.
The common set of operations is needed in MDD because it can beused w/o CMM.
The set of partial operations is needed because the different MDS can do each part.
Due to this the CMM should check is the operations local or distributed and use the
appropriate method.

Alternate solution is described in ’Alternatives’ section7

5.4.1 Create

llite: invokemd_create() on LMV

LMV: apply placement policy and assign FID for the new child, callmd_create()
on parent’s MDC

MDC: send request to the needed MDT

MDT: receive request, unpack and callmdt_create() :

10

5.4 Logic of operations on MDS in CMD environment5 LOGIC SPECIFICATIONmdt_create(obd, pfid, name, cfid, flags, ...){fid_lock(pfid, LCK_PW);md_create(obd, pfid, name, cfid, flags, ...);fid_unlock(pfid, LCK_PW);}
CMM: called from MDT. Determine all servers involved, split operation if neededint cmd_create(obd, pfid, name, cfid, ...) {/* check the child */mdsnum = fld_lookup(cfid);if (mdsnum == local) {/* call MDD operation */md_create(mdsnum, pfid, name, cfid, ...);} else {/* split operation to call it on different targets */error = md_create_obj(mdsnum, cfid, ...);if (!error) {/* insert name locally */md_create_name(local, pfid, name, cfid, ...);}}}cmm_create_obj(cfid, ...) {...}
MDD: called from CMM, care about locking/transaction and complete operations

with calling OSD

5.4.2 Unlink

MDT :mdt_unlink(obd, pfid, name, ...){fid_lock(pfid, ...);cfid = md_lookup(obd, name);fid_lock(cfid, ...)md_unlink(obd, pfid, name, cfid, ...);fid_unlock(cfid, ...);fid_unlock(pfid, ...);}
11

5.4 Logic of operations on MDS in CMD environment5 LOGIC SPECIFICATION

CMM:int cmm_unlink(pfid, name, cfid, ...) {mdsnum = fld_lookup(cfid);if (mdsnum == local) {/* call MDD */md_unlink(local, pfid, name, cfid, ...);} else {/* remote operation */error = md_unlink_obj(mdsnum, cfid, ...);if (!error) {/* remove the directory entry */md_delete_name(local, pfid, name, cfid, ...);}}}cmm_unlink_obj(cfid, ...) {...}
5.4.3 Lookup and Intents

llite: call md_lookup() with needed intents, then call other operations -md_open()
or md_getattr() as needed

LMV/MDC: aftermd_lookup() results can have results also for followingopen/getattr
or do additional RPC for this

MDT: can receive thelookup() from client with IT_OPEN or IT_GETATTR. cfid is
passed only in O_CREAT casemdt_lookup(obd, pfid, name, cfid, ...){fid_lock(pfid,...);fid = md_lookup(obd, pfid, name, ...);if (!fid && !cfid) {return -ENOENT;}if (IT_OPEN) {if (md_open(obd, fid, cfid, ...)) {// fill openhandle;}}if (IT_GETATTR) {md_getattr(obd, fid, ...);

12

6 STATE MANAGEMENT}fid_unlock(pfid);}
CMM:cmm_lookup(pfid, name, ...) {md_lookup(pfid, name, ...);}cmm_open(fid, cfid, ...) {mdsnum = fld_lookup(fid);if (mdsnum == local) {/* call MDD */md_open(local, fid, cfid, ...);} else {return -ERESTART;}}cmm_getattr(cfid, ...) {...}
MDD: while lookup() is trivial, theopen() need detailed view. We need open here

because MDT/CMM layers are optional and llite can callopen() directly on
MDDmdd_open (fid, cfid, ...) {if (cfid) { // O_CREATE caseosd_create_obj();lov_create_obj();}//get refcount to the objectosd_get_object(cfid, ...);}

The comment is needed here about-ERESTART return code. When the current MDS
cannot provide intent-related data it returns just lookup data with-ERESTART code.
Therefore a client will do additional RPC to the other MDS.

6 State management

6.1 Scalability & performance

MDS layering changes are initiated in view of clear design and code. It shouldn’t hurt
performance and scalability

13

6.2 Recovery changes 7 ALTERNATIVES

6.2 Recovery changes

Recovery API is changed due to new layering. Network parts are in MDT, the MDD
should export API for replay and reply reconstruction and CMM should provide cluster-
wide recovery - rollback. There are separated HLDs for this.

6.3 Protocol changes

Locking should be changes to the parent-child order insteadof FID order. While chil-
dren can be at remote server, the parent-child order becomesnatural but FID order will
be difficult to implement.

6.4 API changes

This design implies that MDD can be used by client directly w/o MDC/MDT. Therefore
the API of MDC and MDD should be the same.

7 Alternatives

7.1 Cacheing MDS issue

Alternative solution to the 4.1.2

The problem is - there is only one cacheing MDS but logically llite should works
like with several one. Therefore some new level is needed that will only apply the
placement policy and select FID-sequence. That level can works on top of LMV - in
that case all requests will be redirected to proper server - or on top of MDD directly
- in that case all requests will go to the local storage. Possibly it is not even ’layer’
between llite and LMV but some kind of library that can be usedby llite directly.

7.2 Reduced command set in MDD

Alternative solution to the 5.4

This solution suppose that MDD provides only set of basic operations with name and
object like insert/delete name, create/remove object, etc. Therefore CMM split any
command into such sub-operations and call them. This will simplify CMM operations
due to they will looks similar for cross-ref operations and for local one. But this means
also that MDD cannot used by llite/LMV or MDT directly, because they works in
terms of usual operations. Therefore the CMM should always be used on top of MDD
to provide set of usual operations. There are several problems with this solution but
proposed way should be reviewed while DLD/PROTO stages.

14

8 FOCUS FOR INSPECTIONS

8 Focus for inspections

15

