
Laid Locking HLD

Qian YingJin

06/01/24

Contents

1 Requirements 2
1.1 Avoid locking across multiple OSTs 2
1.2 Locking for parity . 2
1.3 Recoverable lock . 3

2 Functional specification 3
2.1 Definitions . 3
2.2 Master locking . 4
2.3 Versioning write . 4
2.4 Time-Based Locking . 4

3 Use cases 5
3.1 Open file . 5
3.2 Write file . 5
3.3 Remaster . 5
3.4 Truncate file . 5
3.5 Glimpse size (LAID5 with master locking) 5
3.6 Extent lock blocking callback . 6
3.7 Client crash . 6

4 Logic specification 6
4.1 Master Locking . 6

4.1.1 Algorithm of master locking 6
4.1.2 Lock callback for master locking 7

4.2 Size management . 7
4.2.1 Recently seen size . 7
4.2.2 Lock value bock vector . 8
4.2.3 Glimpse size . 8

4.3 Lease-Based Locking . 9
4.3.1 Lease phases . 9
4.3.2 Versoining write . 9
4.3.3 Algorithm of recoverable locking strategy 9
4.3.4 Lease term . 10

1

1 REQUIREMENTS

4.3.5 Handling for fsync operation 10
4.4 Handle write across the boundaries for LAID0 10

4.4.1 Direct IO . 11
4.4.2 Writeback cache . 11

5 State management 12
5.1 Scalability & performance . 12

5.1.1 Redundant set . 12
5.1.2 Performance impact . 12
5.1.3 Lazy parity flushing under master locking12

5.2 Recovery changes . 12
5.2.1 failure handle for remastering 12
5.2.2 Inconsistent recovery . 12

5.3 Disk format changes . 13

6 Alternatives 13
6.1 Server based lock for parity . 13

6.1.1 Definition . 13
6.1.2 Server-based extent lock for parity control 13
6.1.3 Shortcomings of server-based lock for parity 14
6.1.4 Banded extent lock . 15

6.2 Update the parity on OST . 15
6.2.1 Algorithm of updating the pairty on OST 15
6.2.2 Advantage of updating parity on OST 15
6.2.3 Shortcoming of updating parity on OST 16

6.3 Comparison . 16

7 Focus for inspections 16

1 Requirements

1.1 Avoid locking across multiple OSTs

Locking across more than one OST, which results from the write across the stripe
boundaries, may cause unexpected problem such as eviction of client. For example,
assume a client needs to queue K locks on K OSTs for a write. Supposed that last OST
goes down and the client got to time-out for waiting last lockgrant. At the same time
the other OSTs place callback on locks already granted to theclient. The lock will time
out and hence the client is evicted by first K - 1 OSTs and time out on last one.

So we must design new locking model especially for mirror LAID and LAID5 to
avoid locking accross more than one OST.

1.2 Locking for parity

The file system will lock extents but the parity block is subject to a separate lock policy.
One approach is to lock the stripes including the parity block. Another is to use an

2

1.3 Recoverable lock 2 FUNCTIONAL SPECIFICATION

optimistic or service based locking scheme for the parity block. When all clients write
to one file, it must be assumed that there will be a significant number of writes are
partial writes from one client, leading to contention for the parity block. The cluster
will go as slow as the slowest elements, so the efficiency of handling shared parity is
critical.

For the former: locking including the parity block with stripe-group-size granular-
ity, it elimates the conflict for parity update and simplifiesthe processes in degraed case
as client has already acquried locks covered the whole stripe group for later preread the
necessary stripe units to reconstruct the blocks store on failed OSTs, but it reduces the
concurrency.

For the latter, we have proposed several schemes such as server based locking for
parity block and updating parity on OSTs which is discribed in the LAID5_HLD.lyx.
But they can not resolve the degraded IO well because client still need to acquire the PR
locks covered the stripe row to reconstruct the block, whichmake the locking process
very complex in the degraded case. And for small write it mustupdate the parity via
method read-modify-write. In addition, it makes the designof laid5 very complex.

So we prefer to fromer scheme, but we need to design a mechanism to avoid the
locking accross more than one OST.

1.3 Recoverable lock

Another requirement for Laid locking is to achieve the goal that If the client crashes,
the locks for redundant file are recoverable. The locking protocols can be extentded to
ensure consistency pessimistically in the following way: If the client crashes holding
a write lock, then the lock server on OST detects the client failed and marks the target
range suspect and recomputes the parity on recovery to ensure it is consistent before
granting the lock to another client. This requires maintaining the lock state at the OSTs
on stable storage so that on recovery the lock server can determine the suspect objects
and associated ranges. But this pessimistic scheme makes lock operations expensive
since the state of each lock operation must be recorded on persistent storage. So we
need design a optimistic mechanism to reduce the overhead oflock operation.

2 Functional specification

2.1 Definitions

• Master locking - Choose an objects in the redundant set of a file stripping over
as a master object. All the extent lock operations for IO justplace on the lock
resource: master object.

• Server-based locking - Lock operations just places on the lock server. locks
don’t enqueue and cache in the local lock namespace.

3

2.2 Master locking 2 FUNCTIONAL SPECIFICATION

2.2 Master locking

In the original design for locking of mirror LAID and LAID5, it acquires extent lock
from all lock servers the set of “related” redundant objects(For LAID1/LAID01, it is
all mirrors; For LAID5, it is all objects the file stripping over) resides on. Now we
introduce a new locking strategy: Master locking. By this way it can not only reduce
the lock operations but also avoid locking accross many OSTs. But it involves the
remastering process when the lock server master object resides on occurs failure.

If the read, write or locking operation fails and involves a time out, the related ob-
ject needs to marked as “failed” on MDS, and MDS should coordinate the remastering
process for all client open this file. At the same time, MDS should update the LOV de-
scriptor on all clients and mark the corresponding OSC as inactive, otherwise all client
would incur the timeout.

2.3 Versioning write

The generic idea of versioning write is that: Each object on OST keeps the new version
of blocks for the write protected by the extent lock from client , and cancels the old
blocks, commits the new versions when the whole stripe groups have updated. By this
protocol, system can suffer client and stroage-node crash failures in all case of LAID,
and avoids the excess work of two-phase commits. Althogh verioning write is mainly
used for recovery and beyond the scope of locking, but our impelmentation is combined
with lock strategy. So here we mainly focus on how to commit the new version and
discard the old blocks via lock strategy and just give out therough design of disk format
and manage of various version from different client and inconsistent recovery about it.

2.4 Time-Based Locking

The lease is defined as the time that a lock is presumed to be valid. A lease defines
a contract between a client and a server in which the server promises to respect the
clients’ locks for a specified period. In our LAID design lease-based lock can be just
used for write locking. The lock server grants a extnet lock to client with a lease. As
the extent lock is granted with stripe-group-size granulairty in case of LAID5, OST can
identify the write as new version of file data during valid period of lease; At the time
the lease nearly expires, client flushes all cache data in thelock extent, then notifies the
OSTs the entire stripe groups has commited and replace the old blocks with the new
version. After that renew the lease if necessary. That is to say, use lease to time-out
client locks. We use this time-out mechanism to implement the recoveryable lock.

To implement time-based locking the following functionality still needs be done:

• client takes extent lock with a lease from lock server.

• If a lease is not renewed in time, the locks are broken.

• When a lease expires, the server can be assured that the client no longer acts on
the locked data, and can safely redistribute locks to other clients after inconsis-
tent recovery for the suspect extent of the lock.

4

3 USE CASES

3 Use cases

3.1 Open file

• When client opens the file, MDS returns the index of master object to client.

• All clients take lock operations on the same master object.

3.2 Write file

• For LAID5, client extands the extent lock with stripe-group-size granularity.

• Acquire the extent lock from the lock server master object resides on.

• After that, wirte the data to cache and release the extent lock.

3.3 Remaster

• When detect that the OST master object resides on occurs failure, client will start
the remaster process.

• Client sends a RPC to MDS to request changeing the master object.

• MDS chooses another object in the redundant set as the new master object.

• MDS notifies all clients to replace the master object with thenew one by lock
callback.

3.4 Truncate file

• Client performs a truncate operation on a file.

• Extend the start of the extent lock PW[attr->ia_size, OBD_OBJECT_EOF] with
stripe-group-size granularity (start = attr->ia_size & (stripe_size - 1).

• Client gets the exten lock from master object.

• Client contracts to OSTs to punch the objcts.

• Client cancels the extent lock.

3.5 Glimpse size (LAID5 with master locking)

• Client requests a extent lock PR[0, OBD_OBJECT_EOF] to protect the size
from the server master object resides on with a GLIMPSE flag.

• The lock server (OST) will reply to the client when the glimpse callback have
been finished. The lvb contained size information or lvb vector is retruned to the
client in the completion. (Details see subsection 4.3).

5

3.6 Extent lock blocking callback 4 LOGIC SPECIFICATION

• Client sents lock request NL[0, OBD_OBJECT_EOF] for other objects to get
the object size informtion if necessary.

• Client merges the object size to get the file size information.

• Client cancels the extent lock from the server master objectresides on.

3.6 Extent lock blocking callback

• The lock callback just places on the master object. But in thecallback func-
tion, we still need to flush the cache in the same extent of other objects in the
redundant set.

• After flushing, send messages to all object in the redundant set to commit the
write in the lock extent.

3.7 Client crash

• After the client crashes, the extent lock grant to this client will break when the
lease expires.

• when detect the failure of client by the lease expiring, OST starts inconsistent
recovery according to the extent lock.

• Other clients want to acquire a conflicting extent lock already grant to the non-
responding client (maybe crash, maybe disconnect with the OST), the requested
client must wait until the lease expires.

4 Logic specification

To meet new functionality Laid locking should work out the following fields.

4.1 Master Locking

4.1.1 Algorithm of master locking

Here “Master locking” is short for that just acquire the extent lock form the master
object in the redundant set (For mirror LAID, it is one of the mirrors; For LAID5, the
extent should be extanded with stripe-group-size granularity) . Although it can reduce
the concurrency of file IO, but it also reduces the count of lock operations and the
chance of locking failure and simplify the design of LAID5. The algorithm of master
locking is described as follow: (Here we don’t consider the complex failures such as
network failure, network partition. For example, MDS can talk to OST but the client
can not.)

1. When client opens a file for r/w, MDS will return the index ofmaster object with
timestamp (it usually the index of first object and the OST it resides on must be
active) of the redundant sets, and stores this information in file inode.

6

4.2 Size management 4 LOGIC SPECIFICATION

2. All lock acquirements just place on the master objects. That is to say, for mirror
LAID, client just acquires locks from one of the mirrors; forLAID5, client just
acquires locks with stripe-group-size granularity but we expect the lock has pro-
tected the entire stripe groups and lock the same extent in the other objects in the
redundant set.

3. When read, write, lock operation fails and involves a timeout, the client notifies
MDS by a RPC. MDS marks the related object as “failed”.

4. If the object is one of master objects of file (For LAID01, a file may have several
master objects), MDS still needs to coordinate the remastering process. MDS
first chooses another object in the redundant set as master object the OST which
resides on is active, and then notify the clients opened thisfile to change the
master object and this can be done by the mechanism similar with lock callback.
The callback message should contain the following information: failed object id
and new master object id and the timestamp of remastering.

5. When the client receives the remastering message, first replace the master object
and mark the failed object as unwritable, then flush all cachein the lock extent
but skipping the failed object, and cancel the extent lock acquired for the failed
master object in the local lock namespace.

6. After MDS receives all related client replies, reply success to the clients initiate
and want the remastering.

7. If timeout occurs to one of the client, MDS will evict the client.

8. After that, all operation is done as normal.

4.1.2 Lock callback for master locking

The lock callback just places on the master object. In case ofLAID5, because we think
the master lock covers the same extent in the other objects inthe redundant set, so
client should also flush the caches belongs to the other objects in the same extent in the
blocking ast.

4.2 Size management

4.2.1 Recently seen size

In the original lock strategy, we can obtain the recently seen size of the objects in the
peggyback lvb of lock opertion, But for master locking it just acquires locks from one
of redundant objects, so we may need a special process especailly in case of LAID5:

• When request a extent lock, client sends the lock request to lock server master
object resides on if can not find a match lock in the local lock namespace.

7

4.2 Size management 4 LOGIC SPECIFICATION

• After acquired the extent lock from lock server, client mustalso request lock NL
to the OSTs other objects reside on. Notice: this kind lock isa little similar with
glimpse lock, it executed as an intent associdated with the lock and resource to
get the size information.

• After get the recently seen size information, client storesthem inlois of various
objects.

4.2.2 Lock value bock vector

Here we introduce lock value block vector. The lock resourcefor master object in
LDLM on OST contains the lock value block vector, in which maybe also store lvb
of other objects in the redundant set returned by clients. Itis mainly used by glimpse
callback.

4.2.3 Glimpse size

The client get the file size by doing a size glimpse callback. The process of size probe
by glimpse under master locking is as following:

• Client send a extent lock request PR[0, -1] with glimpse flag to the lock server
master object resides on.

• If the lock resource for master object has no other incompatible locks:

• 1) Ther server will grant the lock to client just with the sizeinformaion of master
object.

• 2) Similar with recently seen size, client sends NL lock request (intent lock) to
the other objects to get the size information.

• 3) Client gets file size by mergeing the objects’ size .

• 4) Client cancels the extent lock PR[0, -1].

• If the lock resource on lock server has incompatible locks:

• 1) The lock server first scans all locks of the resource and choose the highest of
the PW locks which are larger than the size in the LVB and performs a glimpse
callback.

• 2) In case of LAID5, Glimpse callback does not cause the lock to be relinquished
but instead the client granted the lock returns the KMSs of all objects to the lock
server on OST.

• 3) The lock server packs these size information of all objects into the LVB vector
and reply to client with the flag HAS_LVB_VECTOR.

• 4) When client receives the reply with flag HAS_LVB_VECTOR, unpacks all
objects’ size from the LVB vector, and then compute the file size.

• 5) After that, client cancels the extent lock.

8

4.3 Lease-Based Locking 4 LOGIC SPECIFICATION

4.3 Lease-Based Locking

In distributed systems, a node will occasionally become unresponsive. Other machines
cannot determine whether a non-responding machine has crashed, is stalled or merely
in a network partition. Lease-based lock can easily solved these failure. But here we
focus on how to utilize the new lock strategy to achieve consistency and simplify the
recovery.

4.3.1 Lease phases

In the lease-based locking, we still use master locking for the redundant file. The lease
is subdivided into three phase: Lease valid (T1), flush period (T2), renewal period (T3).
T1 contains two part: maximum amount of time writting the data to cache should take,
plus the time file pages in the lock extent could cache on client. T2 is the amount of
time flushing cache to OST should take. T3 is the amount of timerenewal lease should
take.

4.3.2 Versoining write

Every lock request for write passes with a version number. The version number is:
UUID + timestamp + range, where the UUID is UUID of client starts the write opera-
tion, timestamp could beinode->i_mtimeor the time client start the lock operation, the
range is the extent of the lock. All pages during this write are tagged with the version
number. The pages send to OST with version number, too. Before client notifies the
object the block in the version can be committed, all writes to the object are regarded
as the new version. New version values in the object data can store like ext3COW (
reference the paper - “ext3COW: The Design, Implementationand Analysis of Meta-
data for a Time-Shifting File system”). Objects on OST can manage the new version
blocks by two hierarchy: client_UUIT / timestamp, and we cansave this information
in the EA of the object.

4.3.3 Algorithm of recoverable locking strategy

The algorithm of recoverable locking strategy is discribedas follow:

1. Client A sends extent lock request with the version numberV(version).

2. Lock server on OST grants a extent lock L with a proper term lease to client A.

3. After acquired, the lock L cached on local lock namespace of client is tagged
with the version number. When client finds a compatible extent lock on local
namespace and if the left lease is not enough to write the datato cache, the client
renews the lease immediately.

4. Client A begins to write the data into cache. Every page covered by the extent
lock is taged with the version it belongs to: {UUID, Timestamp, Range}. At the
end of T1, DLM on client begins to flush the cache in the extent of lock L.

9

4.4 Handle write across the boundaries for LAID0 4 LOGIC SPECIFICATION

5. During the period of T1 and T2 before send commit message , all data write to
object on OST are stored as new version blocks.

6. After finish flushing, the client notifies all objects in theredundant set to commit
the blocks with the version of the lock.

7. When OST receives commit message to the object with version V(A, T, R)
(where the A is short for client A, T is short for timestamp, R is short for range),
all new version block of the object, generated by the client Aand with timestamp
smaller that T, can be committed and the old blocks can be canceled.

8. Client can also peggy a flag in the commit message to indicate whether it want
to renew the lock or cancel it to the lock server master objectresides on.

9. If client want to renew the lock, the lock server will give anew term lease to the
client, and extentd expire time of the lock on OST’s lock namespace and so does
client after receive the repay from OST.

10. If lock server don’t receive any renewal message when thelease expires, it will
regard the client as failure, revoke the extent lock and involve a recovery process
according to the lock extent.

4.3.4 Lease term

Long lease terms are significantly more efficient both for theclient and server on files
that are accessed repeatedly and have relatively little write-sharing. But it also adds
the amount of suspect extent after failure on recovery; While short lease terms can
minimize the delay resulting from client and server failures but it could affect the per-
formance. So the DLM should return with each lock an idea of how much data should
be cached, how long the cache time in the lease should be. The DLM can also scale
the amount of time for the lease based on count of clients granted the lock and object
count of the redundant set.

4.3.5 Handling for fsync operation

After .fsync operaion, all cache should be committed to objects on OSTs. Successful
fsync operation should commit all new version blocks generated by this client. So after
sync the caches, we should also send a commit message to all objects to cancel the old
blocks and commit new version from this client.

4.4 Handle write across the boundaries for LAID0

For LAID0, we still face the problem that locking acorss morethan one OST when
write across the stripe boundaries. Here just give out the proposed design.

For a big write across the stripe boundaries, we subdivided the write extent E into
small extents in the various objects: {e(1), e(2), e(3),...} and store this information in
the loi.

10

4.4 Handle write across the boundaries for LAID0 4 LOGIC SPECIFICATION

4.4.1 Direct IO

For direct IO, we can acquire and cancel the extent in function lov_brw_async, that is
to say process as the following sequence: lock the extent e(i), write data to object o(i),
unlock the extent e(i). And this lock could even be server based lock.

4.4.2 Writeback cache

For writeback cache, we acquire the extent lock e(i) when write the first page belonged
to the object o(i); Unlock the extent lock when write the lastpage in the extent of the
object. (Is there any problem that acquire the extent lock during the page locked??).

Another way to avoid locking across more than one OST is that:We change
the ll_file_write/read,in which we don’t usegeneric_file_write/read ;Instead we di-
vide the user data buf into stripe_count pieces according tothe metadata information:
stripe_count, stripe_pattern, stripe_size. And then the lock acquirement, writing data
to cache and lock release just places and acts on their own assocaited object just like
the scheme of Direct_IO above. The pseudo code is shown as follow:static ssize_t ll_file_write(struct *file, const char *buf,size_t count, loff_t *ppos){ ...struct lov_stripe_md *lsm;struct ldlm_extent sub_extent;char *sub_buf;...for (i = 0; i < lsm->lsm_stripe_count; i++) {sub_buf = NULL;sub_buf = get_stripe_buf(buf, count, ppos, lsm, &sub_extent);if (sub_buf == NULL)continue;ll_tree_lock(...sub_buf, sub_extent...);ll_file_stripe_write(...);ll_tree_unlock(...);}...}
For mmap wirte, it usually doesn’t exist this problem.

11

5 STATE MANAGEMENT

5 State management

5.1 Scalability & performance

5.1.1 Redundant set

To simplify the recovery for LAID, all OSTs in the cluster would be better to divide
into many sets such as mirror sets, LAID5 sets with 3 objects and LAID5 sets with 4
objects, etc. So that we can reduce the count of OSTs involve the recovery for LAID,
make the distributed log for LAID recovery collected more easily.

5.1.2 Performance impact

• “Divide write” for LAID0: It has little impact on the performance because in
this scheme the extra work is divide the use buf to sub set and it doesn’t add the
workload and latency of lock and write operations.

• Version write: Version write will impact the performance. Because the extent
lock are best nerver refreshed with leases, but just sit there for the little envi-
ronment with little write sharing and frequently repeated write; Another is that
every new version number must store in the EA of the object when first write to
the object in this version and delete when the new version is committed.

5.1.3 Lazy parity flushing under master locking

Under master locking, we can delay flush parity even until therenewal or callback of
the extent lock. By this way, it can greatly reduce the latency of updating parity and
improve the performance.

5.2 Recovery changes

5.2.1 failure handle for remastering

• When client wants to initiate the remastering but find MDS is unrespondable, it
should discard all cache and report error immediately. (This client may be also
evicted by MDS)

• When MDS coordinates the remastering process but one of the client opened
the file occurs failure, the MDS should evict the client and notify OSTs the file
stripping over to evict the client.

5.2.2 Inconsistent recovery

When the client crashes, a recovery process will trigger by the expiring of the lease.
The OST master object resides on will notify all objects in the redundant set to roll-
back to a consistent state by discarding the new version blocks in the lock extent; Or
reconstruct suspect rangs in the uncommitted new versions srored in EA.

12

5.3 Disk format changes 6 ALTERNATIVES

In the case of single OST’s failure which will result in inconsistent write, we can
notify the master object write a log record contains the suspect extent of inconsistent
write when send commit message to all objects in the redundant set, or log the state
of all lock extents after failure into stable storage; Another way is that allocate spare
object as a log object when create the redundant file and use itto log the inconsitent
write extent or write all data of the failed object to the spare object.

5.3 Disk format changes

We use a disk-oriented copy-on-write scheme to support our file versioning, which is
very similar with ext3COW. The copies of data blocks for the new version exist only
on disk not in memory. Any write to the file with a new version number from client
creates a new physical version. The first step is to duplicatethe inode which initially
share all data block in common with the old one. The first time that a logical block
in the new version is updated, allocates a new physical disk block to hold the data and
subsequent updates to the same data with same version numberare also written to the
new block, preserving old block for the old version. When commit the write, we just
need to commit the index blocks (direct blocks and indirect blocks) of new version and
discard the old one.

Version number should save both in the EA and in inode of the object. Every write
rpc to the object should be checked whether the write extent is intersect with the new
version but from yet another client. As write extent from different clients should be
disjoint, so when occured this case, it should involve the recovery or optimistic lazy
commit.

6 Alternatives

6.1 Server based lock for parity

6.1.1 Definition

Server based lock is a kind of lock that the lock just sets in the namespace of lock
server, doesn’t cache in local namesapace of client (we can not execute lock match on
client for this kind locks) and it is difficult from the callback lock which usually also
enqueue the lock in the local namespace. Lustre uses callback extent lock to cache the
data on client. But we can not do that for server-based extentlock.

As there is only one lock and one unlock message per high-level operation (up-
date parity), the protocol is trivially two-phase and therefore serializable. And the lock
server on OST will queues a client’s lock request if there is an conflicting outstand-
ing lock on the requested range. Once all the conflicting locks have been released, a
response is returned to the client.

6.1.2 Server-based extent lock for parity control

The alternative strategy for laid locking is that use serverbased lock for parity which is
a separated lock strategy from callback extent lock used by data. Server based lock for

13

6.1 Server based lock for parity 6 ALTERNATIVES

parity control is for short durations when caches are flushed- for these locks the focus
is on rapid acquiring and releasing when multiple writes involve the same file stripe
group.

All the process under this lock strategy for LAID5 could be same as master lock-
ing except the process of updating and syncing the parity which is described as the
following:

1. Acquire the server-based extent lock covered the syncingparity.

2. Preread the old parity data.

3. Compute the new parity and write to object.

4. Release the server-based extent lock.

6.1.3 Shortcomings of server-based lock for parity

Server based lock for parity has several shortcomings:

1. Old parity can not cache on client .

2. The parity could be only updated via method read-modify-write which would
badly hurt the perfromance according to current LAID5 design.

3. Make the design of LAID5 complex.

4. Make the IO in degraded case more complex.

As we use server-based lock for parity, which means that parity can not be cached on
client. Every time update the parity via method read-modify-write we must preread the
parity blocks from OST, it would result in bad performance for small reprated write
with high locality and random write.

The following is the reason why this lock strategy can not support reconstruct-write
for writeback cache:

• Supposed that a stripe row on client A contains three strip units {D1, D2, P3}
where P3 is the parity stripe unit. D1, D2 are marked as SU_DIRTY, which
indicates it is a full write.

• At some time, client B wants to do a partial write to D1. At the blocking ast of
lock callback, client A would just flush the cache D1 and also the old data cache
of D1 should be discarded. Here we can not update the parity via reconstruct-
write as the D2 may be diritied again in the future but we have no way to know
that for mmap write, so we delay the parity update until the flushing of last pages
in this stripe row (Details see the LAID5_HLD.lyx).

• After that, client A may begin to flush D2. But as the old cache of D1 is invalid,
client A can only update the parity via method read-modify-write —It leads that
the before write of D1 have not updated the parity because we are intented to
update parity via method reconstruct-write.

14

6.2 Update the parity on OST 6 ALTERNATIVES

6.1.4 Banded extent lock

To solve the problem above for full write, we propose a new lock strategy banded extent
lock: When flush the caches in the extent of the callbacking extent lock, we also flush
the caches in the same extent from other objects in the redundant set; At the same time
update and sync the parity, which is very similar with the processing of extent lock
with stripe-group-size granulairty (master locking); Andthen discard the old cache of
data units. After that the blocking ast is counted as finished.

6.2 Update the parity on OST

6.2.1 Algorithm of updating the pairty on OST

In the LAID5_HLD.lyx, we also propose yet another design: update the parity on OST.
It is based on the following formula: A + B + C = A + C + B, where the“+” is short
for XOR operation. That is to say executing XOR operation outof order can get the
same result. In this strategy, we needn’t take any lock for parity control. The algorithm
is described as follow:

1. Client just acquires callback extent lock for the data, not acquiring any lock for
the parity.

2. Client also uses banded extent lock to handle the lock callback and flush the
cache when occured lock conflict.

3. When client updates the parity, If all data units in the stripe row are in cache
we can update via method reconstruct-write, and mark the parity page as PAR-
ITY_OVERWRITE; If it is a partial write, we calculate the P(update) = D(new)
+ D(old) and mark the parity page as PARITY_UPDATE.

4. On OST if the received parity page is marked as PARITY_OVERWRITE, just
write to the disk; If it is marked as PARITY_UPDATE, we shouldfirst read the
old pairty block P(old), and calculate the new parity P(new)= P(old) + P(update),
and then write to disk.

5. For read in the degraded mode, the client still needs to acquire or extend extent
locks from other objects with stripe-group-size alignmentto preread the old data
and reconstruct the unacessable blocks.

6.2.2 Advantage of updating parity on OST

• It doesn’t need complex remastering process.

• Have no effect on the size management and maybe recovery.

15

7 FOCUS FOR INSPECTIONS

6.2.3 Shortcoming of updating parity on OST

• Parity updating for partial write must finish on OST. It adds the OSTs’ workload.

• To avoid confliction, OST must update and write the parity from various clients
in a serializeable way.

• Processing of IO in degrade is very complex. E.x. we must takePR lock to
cover the stipe row to read the old data and reconstruct the failed blocks in the
read context when occur OST failure suddenly.

• When occured inconsistent write (casued by network problem), It is necessary
to notify other clients opened the file by lock callback on MDS.

6.3 Comparison

We will give out a comparison of various lock strategies by a sample in the following.
Assume that the stripping information of a file is that: stripe count 3, stripe_size 1M;E
stands for the extent of a write request; Master object is obj1. ELCK is short for extent
lock; MLCK is short for master locking; SLCK is short for server-based lock; NLCK
is short for non-lock for parity.LAID0 | LAID5 | stripe patternS1 S2 S3 | S1 S2 P1 | stripe size 1MS4 S5 S6 | S3 P2 S4 | stripe size 1MS7 S8 S9 | P3 S5 S6 | stripe size 1M... | |obj1 obj2 obj3| obj1 obj2 obj3 | stripe count 3OST1 OST2 OST3| OST1 OST2 OST3 |

Pattern Lock stragegy Write extent ELCK on obj1 ELCK on obj2 ELCK on obj3

LAID0 Original ELCK [1M, 4M-1] [1M, 2M-1] [0, 1M-1] [1, 1M -1]
LAID1 Master Locking [1M, 4M - 1] [1M, 4M - 1] NULL NULL Just take lock
LAID5 Mater Locking [1M, 4M -1] [0, 2M-1] NULL NULL Just take lock
LAID5 Master Locking [1M, 3.5M-1] [0, 2M-1] NULL NULL Extend
LAID5 Service-based lock [1M, 4M-1] [1M, 2M-1] [0, 1M-1] [1M, 2M-1] Need SLCK for
LAID5 Update on OSTs [1M, 4M-1] [1M, 2M-1] [0, 1M-1] [1M, 2M-1] Non lock

7 Focus for inspections

• Does it have any serious bad effect on the current recovery scheme that taking
extent lock with stripe-group-size granularity just from master object?

• Is there any opptimistic strategy for laid locking, such as time ordering? And
any suggestions?

16

