Laid Locking HLD

Qian YingJin
06/01/24

Contents

1 Requirements
1.1 Avoid locking across multiple OSTs
1.2 Lockingforparity
1.3 Recoverablelock 0L

2 Functional specification
2.1 Definitions.
2.2 Masterlocking
2.3 Mersioningwrite e e
2.4 Time-BasedlLocking

3 Use cases

3.1 Openfile. e
3.2 Writefile
3.3 Remaster
3.4 Truncatefile
3.5 Glimpse size (LAID5 with master locking)
3.6 Extentlock blockingcallback.
3.7 Clientcrash e

4 Logic specification

4.1 MasterLocking
4.1.1 Algorithmofmasterlocking
4.1.2 Lockcallback formasterlocking.

4.2 Sizemanagement
421 Recentlyseensize
4.2.2 Lockvaluebockvector.
423 Glimpsesize e

4.3 Lease-BasedlLocking,
431 Leasephases
4.3.2 \Mersoiningwrite Lo
4.3.3 Algorithm of recoverable locking strategy
434 Leaseterm

NP AW

U'lmm()'l

1 REQUIREMENTS

4.3.5 Handling forfsync operation 10
4.4 Handle write across the boundariesforLAIDO. 10
441 DirectlO 11
4.4.2 \Writebackcache 11
5 State management 12
5.1 Scalability & performance L. 12
5.1.1 Redundantset. 12
5.1.2 Performanceimpact 12
5.1.3 Lazy parity flushing under master locking 12
5.2 Recoverychanges e 12
5.2.1 failure handle forremastering 12
5.2.2 Inconsistentrecoveryo 12
5.3 Diskformatchanges 13
6 Alternatives 13
6.1 Serverbasedlockforparity oL 31
6.1.1 Definition 13
6.1.2 Server-based extent lock for parity control 13
6.1.3 Shortcomings of server-based lock forparity 14
6.1.4 Bandedextentlock 15
6.2 UpdatetheparityonOST, 15
6.2.1 Algorithm of updating the pairty onOST 15
6.2.2 Advantage of updating parityon OST 15
6.2.3 Shortcoming of updating parityon OST 16
6.3 Comparison 16
7 Focus for inspections 16

1 Requirements

1.1 Avoid locking across multiple OSTs

Locking across more than one OST, which results from theewaiross the stripe
boundaries, may cause unexpected problem such as evidtmiemt. For example,
assume a client needs to queue K locks on K OSTs for a writep&aul that last OST
goes down and the client got to time-out for waiting last Igcant. At the same time
the other OSTSs place callback on locks already granted tdigr&. The lock will time
out and hence the client is evicted by first K - 1 OSTs and tinteooudast one.

So we must design new locking model especially for mirror DAdnd LAID5 to
avoid locking accross more than one OST.

1.2 Locking for parity

The file system will lock extents but the parity block is sulbji| a separate lock policy.
One approach is to lock the stripes including the parity klo¬her is to use an

1.3 Recoverable lock 2 FUNCTIONAL SPECIFICATION

optimistic or service based locking scheme for the paribck! When all clients write
to one file, it must be assumed that there will be a significamlver of writes are
partial writes from one client, leading to contention foe tparity block. The cluster
will go as slow as the slowest elements, so the efficiency ofiliag shared parity is
critical.

For the former: locking including the parity block with gte-group-size granular-
ity, it elimates the conflict for parity update and simpliftae processes in degraed case
as client has already acquried locks covered the wholeeggripup for later preread the
necessary stripe units to reconstruct the blocks storeimaf@STs, but it reduces the
concurrency.

For the latter, we have proposed several schemes such & based locking for
parity block and updating parity on OSTs which is discribedhe LAID5_ HLD.lyx.
But they can not resolve the degraded IO well because clifmesed to acquire the PR
locks covered the stripe row to reconstruct the block, winake the locking process
very complex in the degraded case. And for small write it nupstate the parity via
method read-modify-write. In addition, it makes the desi§laid5 very complex.

So we prefer to fromer scheme, but we need to design a mechamiavoid the
locking accross more than one OST.

1.3 Recoverable lock

Another requirement for Laid locking is to achieve the gdwttif the client crashes,
the locks for redundant file are recoverable. The lockingguols can be extentded to
ensure consistency pessimistically in the following walythe client crashes holding
a write lock, then the lock server on OST detects the cliglgdand marks the target
range suspect and recomputes the parity on recovery toeeitsarconsistent before
granting the lock to another client. This requires mairitajrthe lock state at the OSTs
on stable storage so that on recovery the lock server camdegethe suspect objects
and associated ranges. But this pessimistic scheme makesperations expensive
since the state of each lock operation must be recorded aisf@nt storage. So we
need design a optimistic mechanism to reduce the overhdadlobperation.

2 Functional specification

2.1 Definitions

e Master locking - Choose an objects in the redundant set of a file stripping ove
as a master object. All the extent lock operations for 10 plate on the lock
resource: master object.

e Server-based locking - Lock operations just places on the lock server. locks
don’t enqueue and cache in the local lock namespace.

2.2 Master locking 2 FUNCTIONAL SPECIFICATION

2.2 Master locking

In the original design for locking of mirror LAID and LAID5¢ acquires extent lock
from all lock servers the set of “related” redundant obj€Etsr LAID1/LAIDO1, it is
all mirrors; For LAIDS, it is all objects the file stripping ev) resides on. Now we
introduce a new locking strategy: Master locking. By thignitacan not only reduce
the lock operations but also avoid locking accross many O it involves the
remastering process when the lock server master objedesesn occurs failure.

If the read, write or locking operation fails and involvesrad out, the related ob-
ject needs to marked as “failed” on MDS, and MDS should coti the remastering
process for all client open this file. At the same time, MDSutaipdate the LOV de-
scriptor on all clients and mark the corresponding OSC atireg otherwise all client
would incur the timeout.

2.3 \ersioning write

The generic idea of versioning write is that: Each object @T®eeps the new version
of blocks for the write protected by the extent lock from ntie¢ and cancels the old
blocks, commits the new versions when the whole stripe ggbape updated. By this
protocol, system can suffer client and stroage-node cuaiklrds in all case of LAID,
and avoids the excess work of two-phase commits. Althoglorirg write is mainly
used for recovery and beyond the scope of locking, but oueimpntation is combined
with lock strategy. So here we mainly focus on how to commet tlew version and
discard the old blocks via lock strategy and just give outthugh design of disk format
and manage of various version from different client and irsistent recovery about it.

2.4 Time-Based Locking

The lease is defined as the time that a lock is presumed to kit Vallease defines

a contract between a client and a server in which the sengnipes to respect the
clients’ locks for a specified period. In our LAID design ledsased lock can be just
used for write locking. The lock server grants a extnet lacklient with a lease. As

the extentlock is granted with stripe-group-size gramtyldén case of LAID5, OST can

identify the write as new version of file data during valid ipdrof lease; At the time

the lease nearly expires, client flushes all cache data ilothe=xtent, then notifies the
OSTs the entire stripe groups has commited and replace dhiglatks with the new

version. After that renew the lease if necessary. That iayw $se lease to time-out
client locks. We use this time-out mechanism to implemeatétoveryable lock.

To implement time-based locking the following functiomaktill needs be done:

e client takes extent lock with a lease from lock server.
o |f alease is not renewed in time, the locks are broken.

e When a lease expires, the server can be assured that thendiemger acts on
the locked data, and can safely redistribute locks to otlents after inconsis-
tent recovery for the suspect extent of the lock.

3 USE CASES

3 Use cases

3.1

3.2

3.4

Open file
When client opens the file, MDS returns the index of mastegaitip client.

All clients take lock operations on the same master object.

Write file
For LAIDS5, client extands the extent lock with stripe-gresige granularity.
Acquire the extent lock from the lock server master objesides on.

After that, wirte the data to cache and release the extekt loc

Remaster

When detect that the OST master object resides on occunsfadllient will start
the remaster process.

Client sends a RPC to MDS to request changeing the mastestobje

MDS chooses another object in the redundant set as the netsnmoagect.
MDS notifies all clients to replace the master object with rlea/ one by lock
callback.

Truncate file

Client performs a truncate operation on a file.

Extend the start of the extent lock PW/[attr->ia_size, OBBJBCT_EOF] with
stripe-group-size granularity (start = attr->ia_size &ife_size - 1).

Client gets the exten lock from master object.
Client contracts to OSTs to punch the objcts.

Client cancels the extent lock.

Glimpse size (LAID5 with master locking)

Client requests a extent lock PR[0, OBD_OBJECT_EOF] toqutothe size
from the server master object resides on with a GLIMPSE flag.

The lock server (OST) will reply to the client when the glirepsallback have
been finished. The Ivb contained size information or Ivb eerst retruned to the
client in the completion. (Details see subsection 4.3).

3.6 Extentlock blocking callback 4 LOGIC SPECIFICATION

Client sents lock request NL[0, OBD_OBJECT_EOF] for othbjeots to get
the object size informtion if necessary.

Client merges the object size to get the file size information

Client cancels the extent lock from the server master obgsitles on.

3.6 Extent lock blocking callback

e The lock callback just places on the master object. But inctdback func-
tion, we still need to flush the cache in the same extent ofrathgects in the
redundant set.

o After flushing, send messages to all object in the redundatribscommit the
write in the lock extent.

3.7 Client crash

o After the client crashes, the extent lock grant to this ¢lieil break when the
lease expires.

e when detect the failure of client by the lease expiring, O&irts inconsistent
recovery according to the extent lock.

e Other clients want to acquire a conflicting extent lock adyegrant to the non-
responding client (maybe crash, maybe disconnect with B€)(the requested
client must wait until the lease expires.

4 Logic specification

To meet new functionality Laid locking should work out théidaving fields.

4.1 Master Locking
4.1.1 Algorithm of master locking

Here “Master locking” is short for that just acquire the ettéock form the master
object in the redundant set (For mirror LAID, it is one of thenors; For LAID5, the
extent should be extanded with stripe-group-size graityjarAlthough it can reduce
the concurrency of file 10, but it also reduces the count okloperations and the
chance of locking failure and simplify the design of LAID5h& algorithm of master
locking is described as follow: (Here we don't consider tbenplex failures such as
network failure, network partition. For example, MDS calkt@ OST but the client
can not.)

1. When client opens a file for r/'w, MDS will return the indexmoéster object with
timestamp (it usually the index of first object and the OSE#ides on must be
active) of the redundant sets, and stores this informatiditei inode.

4.2

Size management 4 LOGIC SPECIFICATION

7.
8.

. All'lock acquirements just place on the master objectst ihto say, for mirror

LAID, client just acquires locks from one of the mirrors; floAID5, client just
acquires locks with stripe-group-size granularity but wpest the lock has pro-
tected the entire stripe groups and lock the same exteng¢iattier objects in the
redundant set.

. When read, write, lock operation fails and involves a tintethe client notifies

MDS by a RPC. MDS marks the related object as “failed”.

. If the object is one of master objects of file (For LAIDO1,la fnay have several

master objects), MDS still needs to coordinate the remast@rocess. MDS
first chooses another object in the redundant set as magéet the OST which
resides on is active, and then notify the clients openedfileito change the
master object and this can be done by the mechanism similataek callback.
The callback message should contain the following infoiomatfailed object id
and new master object id and the timestamp of remastering.

. When the client receives the remastering message, filsiceethe master object

and mark the failed object as unwritable, then flush all cashike lock extent
but skipping the failed object, and cancel the extent locu&ed for the failed
master object in the local lock namespace.

. After MDS receives all related client replies, reply segxto the clients initiate

and want the remastering.
If timeout occurs to one of the client, MDS will evict theesit.

After that, all operation is done as normal.

4.1.2 Lock callback for master locking

The lock callback just places on the master object. In cak&tb5, because we think
the master lock covers the same extent in the other objedteimedundant set, so
client should also flush the caches belongs to the other tshjethe same extent in the
blocking ast.

4.2

Size management

4.2.1 Recently seen size

In the original lock strategy, we can obtain the recentlynsgiee of the objects in the
peggyback Ivb of lock opertion, But for master locking itasquires locks from one
of redundant objects, so we may need a special process édipiaczase of LAID5:

e When request a extent lock, client sends the lock requestioderver master

object resides on if can not find a match lock in the local loaknespace.

4.2

Size management 4 LOGIC SPECIFICATION

After acquired the extent lock from lock server, client maisb request lock NL
to the OSTs other objects reside on. Notice: this kind locklittle similar with
glimpse lock, it executed as an intent associdated withdble &nd resource to
get the size information.

After get the recently seen size information, client stahesn inlois of various
objects.

4.2.2 Lock value bock vector

Here we introduce lock value block vector. The lock resodozemaster object in
LDLM on OST contains the lock value block vector, in which rbayalso store Ivb
of other objects in the redundant set returned by clients riainly used by glimpse
callback.

4.2.3 Glimpse size

The client get the file size by doing a size glimpse callbadie process of size probe
by glimpse under master locking is as following:

Client send a extent lock request PR[0, -1] with glimpse ftathe lock server
master object resides on.

If the lock resource for master object has no other incorbfsakbcks:

1) Ther server will grant the lock to client just with the sinformaion of master
object.

2) Similar with recently seen size, client sends NL lock regju(intent lock) to
the other objects to get the size information.

3) Client gets file size by mergeing the objects’ size .
4) Client cancels the extent lock PR[O, -1].
If the lock resource on lock server has incompatible locks:

1) The lock server first scans all locks of the resource andsithe highest of
the PW locks which are larger than the size in the LVB and peréoa glimpse
callback.

2) In case of LAID5, Glimpse callback does not cause the lodietrelinquished
but instead the client granted the lock returns the KMSslaftgécts to the lock
server on OST.

3) The lock server packs these size information of all olsjettb the LVB vector
and reply to client with the flag HAS_LVB_VECTOR.

4) When client receives the reply with flag HAS _LVB_VECTORpacks all
objects’ size from the LVB vector, and then compute the fite si

5) After that, client cancels the extent lock.

4.3 Lease-Based Locking 4 LOGIC SPECIFICATION

4.3 Lease-Based Locking

In distributed systems, a node will occasionally becomesiponsive. Other machines
cannot determine whether a non-responding machine hdsectas stalled or merely
in a network partition. Lease-based lock can easily soliedé failure. But here we
focus on how to utilize the new lock strategy to achieve cgtesicy and simplify the
recovery.

4.3.1 Lease phases

In the lease-based locking, we still use master lockinglferedundant file. The lease
is subdivided into three phase: Lease valid (T1), flush pgfi@), renewal period (T3).
T1 contains two part: maximum amount of time writting theadat cache should take,
plus the time file pages in the lock extent could cache on tli€f is the amount of
time flushing cache to OST should take. T3 is the amount of tenewal lease should
take.

4.3.2 \ersoining write

Every lock request for write passes with a version number Jdrsion number is:
UUID + timestamp + range, where the UUID is UUID of client stathe write opera-
tion, timestamp could bieode->i_mtimeor the time client start the lock operation, the
range is the extent of the lock. All pages during this write tagged with the version
number. The pages send to OST with version number, too. Bel@nt notifies the
object the block in the version can be committed, all writethie object are regarded
as the new version. New version values in the object datatcae ke ext3COW (
reference the paper - “ext3COW: The Design, ImplementatimhAnalysis of Meta-
data for a Time-Shifting File system”). Objects on OST camage the new version
blocks by two hierarchy: client UUIT / timestamp, and we same this information
in the EA of the object.

4.3.3 Algorithm of recoverable locking strategy

The algorithm of recoverable locking strategy is discribedollow:

1. Client A sends extent lock request with the version nunwgeersion).
2. Lock server on OST grants a extent lock L with a proper terasé to client A.

3. After acquired, the lock L cached on local lock namespdadient is tagged
with the version number. When client finds a compatible ext@ek on local
namespace and if the left lease is not enough to write thetdatche, the client
renews the lease immediately.

4. Client A begins to write the data into cache. Every pageoed by the extent
lock is taged with the version it belongs to: {UUID, TimestanRange}. At the
end of T1, DLM on client begins to flush the cache in the extédak L.

4.4 Handle write across the boundaries for LAIDO 4 LOGIC SHHCATION

5. During the period of T1 and T2 before send commit messaljelata write to
object on OST are stored as new version blocks.

6. After finish flushing, the client notifies all objects in ttreglundant set to commit
the blocks with the version of the lock.

7. When OST receives commit message to the object with werg{@, T, R)
(where the A is short for client A, T is short for timestamp g8hort for range),
all new version block of the object, generated by the clieatd with timestamp
smaller that T, can be committed and the old blocks can bestedhc

8. Client can also peggy a flag in the commit message to iralightther it want
to renew the lock or cancel it to the lock server master obgsitles on.

9. If client want to renew the lock, the lock server will givéew term lease to the
client, and extentd expire time of the lock on OST’s lock napaze and so does
client after receive the repay from OST.

10. If lock server don't receive any renewal message whetetse expires, it will
regard the client as failure, revoke the extent lock andlireva recovery process
according to the lock extent.

4.3.4 Leaseterm

Long lease terms are significantly more efficient both fordlent and server on files
that are accessed repeatedly and have relatively littleesgtiaring. But it also adds
the amount of suspect extent after failure on recovery; @hiort lease terms can
minimize the delay resulting from client and server faikibeit it could affect the per-

formance. So the DLM should return with each lock an idea @f hmuch data should

be cached, how long the cache time in the lease should be. Tkkdan also scale

the amount of time for the lease based on count of clientstgdathe lock and object
count of the redundant set.

4.3.5 Handling for fsync operation

After .fsync operaion, all cache should be committed to cisjen OSTs. Successful
fsync operation should commit all new version blocks geteerhy this client. So after
sync the caches, we should also send a commit message tgealisoio cancel the old
blocks and commit new version from this client.

4.4 Handle write across the boundaries for LAIDO

For LAIDO, we still face the problem that locking acorss mtiian one OST when
write across the stripe boundaries. Here just give out thpgeed design.

For a big write across the stripe boundaries, we subdivideawrite extent E into
small extents in the various objects: {e(1), e(2), e(3)and store this information in
theloi.

10

4.4 Handle write across the boundaries for LAIDO 4 LOGIC SHHCATION

4.4.1 DirectlO

For direct 10, we can acquire and cancel the extent in fundtie_brw_asyngthat is
to say process as the following sequence: lock the extente(te data to object o(i),
unlock the extent e(i). And this lock could even be serveebdack.

4.4.2 Writeback cache

For writeback cache, we acquire the extent lock e(i) whetevhie first page belonged
to the object o(i); Unlock the extent lock when write the Ipage in the extent of the
object. (Is there any problem that acquire the extent lockndithe page locked??).

Another way to avoid locking across more than one OST is thE& change
thell_file_write/read,in which we don’t usegeneric_file_write/read |nstead we di-
vide the user data buf into stripe_count pieces accordintiyganetadata information:
stripe_count, stripe_pattern, stripe_size. And thendlk hcquirement, writing data
to cache and lock release just places and acts on their ownaites] object just like
the scheme of Direct_IO above. The pseudo code is shownlag/fol

static ssize_t 11_file_write(struct *file, const char *buf,
size_t count, loff_t *ppos)

{

struct lov_stripe_md *1lsm;
struct 1ldlm_extent sub_extent;
char *sub_buf;

for (i = 0; i < lsm->lsm_stripe_count; i++) {
sub_buf = NULL;
sub_buf = get_stripe_buf(buf, count, ppos, lsm, &sub_extent);
if (sub_buf == NULL)
continue;

11_tree_lock(...sub_buf, sub_extent...);

11_file_stripe_write(...);
11_tree_unlock(...);

}

For mmap wirte, it usually doesn’t exist this problem.

11

5 STATE MANAGEMENT

5 State management

5.1 Scalability & performance
5.1.1 Redundant set

To simplify the recovery for LAID, all OSTs in the cluster widube better to divide
into many sets such as mirror sets, LAID5 sets with 3 objeatsL2AID5 sets with 4
objects, etc. So that we can reduce the count of OSTs invbésesicovery for LAID,
make the distributed log for LAID recovery collected morsiga

5.1.2 Performance impact

e “Divide write” for LAIDO: It has little impact on the performnce because in
this scheme the extra work is divide the use buf to sub settatwesn’t add the
workload and latency of lock and write operations.

e \ersion write: Version write will impact the performancee@use the extent
lock are best nerver refreshed with leases, but just sietf@rthe little envi-
ronment with little write sharing and frequently repeatedtay Another is that
every new version number must store in the EA of the objectninst write to
the object in this version and delete when the new versioansaitted.

5.1.3 Lazy parity flushing under master locking

Under master locking, we can delay flush parity even untilrdrewal or callback of
the extent lock. By this way, it can greatly reduce the layenfcupdating parity and
improve the performance.

5.2 Recovery changes
5.2.1 failure handle for remastering

e When client wants to initiate the remastering but find MDSrisaspondable, it
should discard all cache and report error immediately. § Thient may be also
evicted by MDS)

e When MDS coordinates the remastering process but one ofligr@ opened
the file occurs failure, the MDS should evict the client antifg@®STs the file
stripping over to evict the client.

5.2.2 Inconsistent recovery

When the client crashes, a recovery process will triggethieyetxpiring of the lease.
The OST master object resides on will notify all objects ia thdundant set to roll-
back to a consistent state by discarding the new versiorkflimcthe lock extent; Or
reconstruct suspect rangs in the uncommitted new versionsdsin EA.

12

5.3 Disk format changes 6 ALTERNATIVES

In the case of single OST'’s failure which will result in incistent write, we can
notify the master object write a log record contains the saspxtent of inconsistent
write when send commit message to all objects in the redursgdanor log the state
of all lock extents after failure into stable storage; Aratlvay is that allocate spare
object as a log object when create the redundant file and tsédg the inconsitent
write extent or write all data of the failed object to the spabject.

5.3 Disk format changes

We use a disk-oriented copy-on-write scheme to support luvdirsioning, which is
very similar with ext3COW. The copies of data blocks for thevnversion exist only
on disk not in memory. Any write to the file with a new versiommuer from client

creates a new physical version. The first step is to dupliteténode which initially

share all data block in common with the old one. The first titm & logical block

in the new version is updated, allocates a new physical datkkio hold the data and
subsequent updates to the same data with same version naretadso written to the
new block, preserving old block for the old version. When caitrthe write, we just

need to commit the index blocks (direct blocks and indirémtks) of new version and
discard the old one.

Version number should save both in the EA and in inode of theabbEvery write
rpc to the object should be checked whether the write exseintérsect with the new
version but from yet another client. As write extent fronfeiént clients should be
disjoint, so when occured this case, it should involve tleavery or optimistic lazy
commit.

6 Alternatives

6.1 Server based lock for parity
6.1.1 Definition

Server based lock is a kind of lock that the lock just sets enriamespace of lock
server, doesn’t cache in local namesapace of client (we caexecute lock match on
client for this kind locks) and it is difficult from the callbk lock which usually also
enqueue the lock in the local namespace. Lustre uses dalsent lock to cache the
data on client. But we can not do that for server-based eldekt

As there is only one lock and one unlock message per high-tgearation (up-
date parity), the protocol is trivially two-phase and tHere serializable. And the lock
server on OST will queues a client’s lock request if therenicanflicting outstand-
ing lock on the requested range. Once all the conflictingddtkve been released, a
response is returned to the client.

6.1.2 Server-based extent lock for parity control

The alternative strategy for laid locking is that use sebased lock for parity which is
a separated lock strategy from callback extent lock usediby. Gerver based lock for

13

6.1 Server based lock for parity 6 ALTERNATIVES

parity control is for short durations when caches are flusHedthese locks the focus
is on rapid acquiring and releasing when multiple writeolag the same file stripe
group.

All the process under this lock strategy for LAID5 could bengaas master lock-
ing except the process of updating and syncing the paritghvis described as the
following:

1. Acquire the server-based extent lock covered the synnity.
2. Preread the old parity data.
3. Compute the new parity and write to object.

4. Release the server-based extent lock.

6.1.3 Shortcomings of server-based lock for parity

Server based lock for parity has several shortcomings:

1. Old parity can not cache on client .

2. The parity could be only updated via method read-modifigemvhich would
badly hurt the perfromance according to current LAID5 desig

3. Make the design of LAID5 complex.

4. Make the IO in degraded case more complex.

As we use server-based lock for parity, which means thatypeain not be cached on
client. Every time update the parity via method read-moghifite we must preread the
parity blocks from OST, it would result in bad performance $mall reprated write
with high locality and random write.

The following is the reason why this lock strategy can nofpsurpreconstruct-write
for writeback cache:

e Supposed that a stripe row on client A contains three strits b1, D2, P3}
where P3 is the parity stripe unit. D1, D2 are marked as SUTY]Rvhich
indicates it is a full write.

e At some time, client B wants to do a partial write to D1. At tHedking ast of
lock callback, client A would just flush the cache D1 and alsodld data cache
of D1 should be discarded. Here we can not update the pagtyedonstruct-
write as the D2 may be diritied again in the future but we havavay to know
that for mmap write, so we delay the parity update until thetfing of last pages
in this stripe row (Details see the LAID5_HLD.lyx).

o After that, client A may begin to flush D2. But as the old cachBbis invalid,
client A can only update the parity via method read-modifytev—It leads that
the before write of D1 have not updated the parity becauserevéngented to
update parity via method reconstruct-write.

14

6.2 Update the parity on OST 6 ALTERNATIVES

6.1.4 Banded extent lock

To solve the problem above for full write, we propose a new ktcategy banded extent
lock: When flush the caches in the extent of the callbackirigrexock, we also flush
the caches in the same extent from other objects in the reshisdt; At the same time
update and sync the parity, which is very similar with thegessing of extent lock
with stripe-group-size granulairty (master locking); Atién discard the old cache of
data units. After that the blocking ast is counted as finished

6.2 Update the parity on OST
6.2.1 Algorithm of updating the pairty on OST

Inthe LAID5_HLD.lyx, we also propose yet another designdate the parity on OST.
It is based on the following formula: A + B + C = A + C + B, where the is short
for XOR operation. That is to say executing XOR operationafutrder can get the
same result. In this strategy, we needn’t take any lock fatypeontrol. The algorithm
is described as follow:

1. Client just acquires callback extent lock for the datd,atmuiring any lock for
the parity.

2. Client also uses banded extent lock to handle the lockaatl and flush the
cache when occured lock conflict.

3. When client updates the parity, If all data units in thépstrow are in cache
we can update via method reconstruct-write, and mark thigygaage as PAR-
ITY_OVERWRITE; If it is a partial write, we calculate the R{date) = D(new)
+ D(old) and mark the parity page as PARITY_UPDATE.

4. On OST if the received parity page is marked as PARITY_OWHERTE, just
write to the disk; If it is marked as PARITY_UPDATE, we shotiit read the
old pairty block P(old), and calculate the new parity P(new)old) + P(update),
and then write to disk.

5. For read in the degraded mode, the client still needs taiseqr extend extent
locks from other objects with stripe-group-size alignnerpireread the old data
and reconstruct the unacessable blocks.

6.2.2 Advantage of updating parity on OST

e It doesn’t need complex remastering process.

e Have no effect on the size management and maybe recovery.

15

7 FOCUS FOR INSPECTIONS

6.2.3 Shortcoming of updating parity on OST
e Parity updating for partial write must finish on OST. It adids ©OSTs’ workload.

e To avoid confliction, OST must update and write the parityrfrearious clients
in a serializeable way.

e Processing of 10 in degrade is very complex. E.x. we must RBReock to
cover the stipe row to read the old data and reconstruct tleeifalocks in the
read context when occur OST failure suddenly.

e When occured inconsistent write (casued by network propléns necessary
to notify other clients opened the file by lock callback on MDS

6.3 Comparison

We will give out a comparison of various lock strategies bymple in the following.
Assume that the stripping information of a file is that: strgount 3, stripe_size 1MNE
stands for the extent of a write request; Master object i$.dbi. CK is short for extent
lock; MLCK is short for master locking; SLCK is short for serbased lock; NLCK
is short for non-lock for parity.

LAIDO | LAID5 | stripe pattern

S1 S2 S3 | S1 S2 P1 | stripe size 1M
sS4 S5 S6 | S3 P2 S4 | stripe size 1M
S7 S8 S9 | P3 S5 S6 | stripe size 1M
objl obj2 obj3| objl obj2 obj3 | stripe count 3
0ST1 0ST2 0ST3| 0ST1 0ST2 O0ST3 |

| Pattern] Lock stragegy | Write extent | ELCK on obj1| ELCK on obj2 | ELCK on obj3 |

LAIDO Original ELCK [1M, 4M-1] [1M, 2M-1] [0, 1M-1] [1, 1M -1]

LAID1 Master Locking | [1M,4M-1] | [1M, 4M - 1] NULL NULL Just take
LAID5 Mater Locking [1IM, 4M -1] [0, 2M-1] NULL NULL Just take
LAID5 Master Locking | [1M, 3.5M-1] [0, 2M-1] NULL NULL Exte
LAIDS | Service-based lock [1M, 4M-1] [1M, 2M-1] [0, 1M-1] [1M, 2M-1] Need SLCK fo
LAID5 | Update on OSTs| [1M, 4M-1] [1M, 2M-1] [0, 1M-1] [1M, 2M-1] Non lot

7 Focus for inspections

e Does it have any serious bad effect on the current recovéignse that taking
extent lock with stripe-group-size granularity just fronaster object?

e Is there any opptimistic strategy for laid locking, such iasetordering? And
any suggestions?

16

