
High level design of truncate without extentlock on the client.February 11, 20081 RequirementsLustre client (both llite and liblustre) should be able to perform �le truncatewithout obtaining an extent lock on [new-size, EOF]. This is deemed to be animportant optimization, especially due to implicit truncates done by open(�le,O_TRUNC).2 Functionality speci�cationDo not take extent DLM lock on client during truncate. Instead, lock is takenby the OST.3 Use cases
• open(path, O_TRUNC): callsll_setattr_raw()->vmtruncate()->ll_truncate()->obd_punch() -> net-work -> ost_punch() [take DLM lock here] -> �lter_truncate() ->...
• truncate(path, newsize) the same as open(path, O_TRUNC)
• ftruncate(path, newsize) the same as open(path, O_TRUNC)4 Logic speci�cationRemove grabbing of DLM lock from truncate path on the client, add it to theserver. 1

9 ALTERNATIVES5 State managementDLM lock protects �le data and i_size. We do not care about data integritybecause
• during shrinking truncate data are thrown away anyway;
• during expanding truncate no data are covered by [new-size, EOF] lock;
• as DLM lock is per-node rather than per-thread, no new races againstconcurrent threads on the same client appear;
• races with other nodes are �legal�.Protection of i_size. Not clear. ll_truncate() compares inode->i_size (whichequals newsize at that point) with KMS. Without exent lock, KMS can becompletely out of date.6 Protocol, API's, Disk formatCompatibility bit should be used to detect when clients can use OST-side lockingfor truncate. OBD_CONNECT_SRVLOCK can be reused for this.7 Scalability and performanceScalability should improve due to fewer locks. Performance should improve dueto reduced tra�c.8 Recovery.No visible changes.9 AlternativesAren't known.

2

