High level design of truncate without extent
lock on the client.

February 11, 2008

1 Requirements
Lustre client (both llite and liblustre) should be able to perform file truncate

without obtaining an extent lock on [new-size, EOF]. This is deemed to be an
important optimization, especially due to implicit truncates done by open(file,

O_TRUNC).
2 Functionality specification

Do not take extent DLM lock on client during truncate. Instead, lock is taken
by the OST.

3 Use cases

e open(path, O TRUNC): calls

Il setattr raw()->vmtruncate()->1l_truncate()->obd punch()-> net-
work -> ost_punch() [take DLM lock here | -> filter _truncate() ->

e truncate(path, newsize) the same as open(path, O _TRUNC)

e ftruncate(path, newsize) the same as open(path, O TRUNC)

4 Logic specification

Remove grabbing of DLM lock from truncate path on the client, add it to the
server.

9 ALTERNATIVES

5 State management

DLM lock protects file data and i _size. We do not care about data integrity
because

e during shrinking truncate data are thrown away anyway;
e during expanding truncate no data are covered by [new-size, EOF] lock;

e as DLM lock is per-node rather than per-thread, no new races against
concurrent threads on the same client appear;

e races with other nodes are “legal”.
Protection of i _size. Not clear. 11 _truncate() compares inode->i_size (which

equals newsize at that point) with KMS. Without exent lock, KMS can be
completely out of date.

6 Protocol, API’s, Disk format

Compatibility bit should be used to detect when clients can use OST-side locking
for truncate. OBD CONNECT SRVLOCK can be reused for this.

7 Scalability and performance

Scalability should improve due to fewer locks. Performance should improve due
to reduced traffic.

8 Recovery.

No visible changes.

9 Alternatives

Aren’t known.

