
High Level Design for Lustre Parallel CIFSDriverMatt Wu2006/01/111 IntroductionThe new Lustre Parallel CIFS Driver will use osr �lter kit to implement theparallel I/O dispatching instead of the original desgin with ifskit s�lter for thedemo project.The principle is the same to s�lter design. So here it's enough just giving abrief description on the basis of the �lter driver architecture. The lustre linuxservers (mds and osts) are to export the lustre client to windows via Samba.The windows system with the parallel driver running will redirect all the I/Oeswhich are to be sent to mds server to the ost servers directly to improve thedegree of paralelism and the network I/O throughput.2 Requirements
• Capture the I/O request to MDS and redirect to the OST servers wherethe �le data lies in
• Productize the Lustre Parallel CIFS Driver with osr fddk3 Osr FDDK ArchitectureFDDK contains 3 components (the functionality driver is implemented by theuser):
• Osr Recognizer
• Osr Filter
• Functionality Driver (pCIFS)The recognizer driver mainly focuses on �le system recognition progress, i.e.loading or unloading of �le system drivers, new volumes insertion or media /1

disk removal. It �lters the �le system driver's management device object tomonitor all the behaviors on volumes.In the contrary, the osr �lter driver only focuses on the �le operations on aspeci�ed volume. It provides several callback routines to recognizer. Then therecognizer will trigger the callback routine to �lter news volumes being mountedif the volume is under our interest.The functionality driver is the just pCIFS driver of our project. We needregister callback routines just to hook several requests during initialization, suchas IRP_MJ_CREATE, IRP_MJ_READ/WRITE. The osr �lter will executeour callbacks to process the original request when the conditioins meet the needs.There are about 7 types of callbacks according to the structure OSR_FILTER_CALLBACK.We'll concern the former 4 types. The latter 3 could be ignored in our pCIFSfuncitonality driver.The OSR_FILTER_CALLBACK structure in �inc\osr-�lter.h�://// DLL registration data structure.//typedef struct {OSR_FILTER_DISPATCH_PROC Dispatch[IRP_MJ_MAXIMUM_FUNCTION+1];OSR_FILTER_COMPLETION_PROC Complete[IRP_MJ_MAXIMUM_FUNCTION+1];OSR_FILTER_MOUNT_PROC Mount;OSR_FILTER_DISMOUNT_PROC Dismount;#ifdef FDDK_FILTER_FAST_IOOSR_FILTER_FAST_IO_PROC FastIo;#endif // FDDK_FILTER_FAST_IOOSR_FS_FILTER_NOTIFICATION FsFilterNotificationCallback;#ifdef USING_PNP_NOTIFICATIONOSR_FS_PNP_NOTIFICATION FsPnPNotificationCallback;#endif // USING_PNP_NOTIFICATION} OSR_FILTER_CALLBACK, *POSR_FILTER_CALLBACK;1. Dispatch: Normally IRP �lter routine, to be called before the Irp is trans-ferred to the underlying �lesystem driver.2. Complete: Normally IRP �lter routine, called when the original Irp iscompleted (processed).3. Mount: To be called when new volumes are to be mounted.4. DisMount: To be called when dismounting.5. FastIo: To hook the FastIo routines. The FastIo routines are introducedfor performance consideration. It bypasses context switching, irp con-struction.6. FilterNoti�cation: Noti�caiton callbacks for cache modi�cation or FastIooperations. 2

7. PnpNoti�cation: To be noti�ced of the Pnp events, such as Volume change,mounting, dismounting.Picutre of the osr fddk components:

4 pCIFS Callback HandlersWe need provide 3 types of callback routines when registering OSR_FILTER_CALLBACK:1. Mount and DisMount2. Create: Complete3. Read/Write:Dispatch4.1 Mount and DisMountHere we need initialize the globals for management when mounting and cleanup the structures when dismounting. The data structures manipulated are themanagement context information of the cluster, please refer section 5 for details.4.2 Create Completion RoutineHere we only care the result of the IRP_MJ_CREATE process. If the �le isopened or created successfully and it's belongs to MDS share, we need createour own context data for later usage. The context information mainly contains3

full path name, security context, stripe distribution layout information, etc. Insection 6, we'll describe them in detail.4.3 I/O Dispatch RoutineThis is the the core routine of I/O redirecting. We need completely take overthe handling of IRP_MJ_READ and IRP_MJ_WRITE. Thus we need pro-vide the dispatch callback routines for Reading & Writing and return STA-TUS_PENDING to the osr �lter driver. That status code tolds the osr �lterthat the default handler routines are to be bypassed.5 Context per Cluster (servers group)5.1 Functional Speci�cationThese context information are global for a lustre cluster. Generally it containstwo types of data:
• Lustre servers con�gurations
• Runtime management globalsPreviously in s�lter demo project, we are using global structures to maintainthese con�gurations. In the new design we'd better dynamically allocate it asprivate volume user context of osr fddk when mounting new Lustre MDS. Thusthe �lter driver could support more than 1 cluster groups at the same timewithout any con�iction. The context is to be created in Mount callback anddestroyed in DisMount callback.1), Lustre Servers Con�gurationsThe con�guration is the just Lustre servers layout and the shared names. Win-dows could access linux samba export via di�erent names:1. Samba shared names (host name, samba netbios name)2. Mapped driver letters3. Server ip addressesNormally di�erent names of a signle server will be treated as di�erent servers,i.e. there will be di�erent volume objects in the eye of the �le system driver or�lter driver. So some I/Oes may bypass our monitoring and step into anotherpath.For the method 2, we can trace the original shared path form the driverletter. Osr fddk already does this resolving for us (in GetFileLongName in�lter/�lterdispatch.cpp). The remained job and other naming menthods shouldbe done by oursolves. That needs us to maintain a table to store all the names4

of a server. In case of MDS server, all requests via possible MDS names and themds ip addresses will be treated as the same and redirected to the correspondingOST servers. These settings could be obtained via EA of ROOT directory orspecial con�guration locating in the root, such as �.SRV_MAP�, we are planingto use the latter method here.2), Runtime Management GlobalsThis part is to maintain the online various structures, such as memory lookasidelists, statistic for performance/memory usage, core structures back trace list.5.2 Use CaseWe create and initialize the cluster context during mounting. But there's onedi�erence on which the LanmanRedirector di�ers to local �le systems: all theremote servers are treated as a signal �le system with UNC names. That meansthe whole UNC volume is only mounted once and there's only one dismount incorresponding. For a local �le system, the driver will get one mount requestfor every volume during it's �rst access. At the time of LanmanRedirectormounting, no any real remote servers are connected yet. We have to trace therequest of IRP_MJ_CREATE to catch the �rst access of the speci�ed remotelustre share.Example: In the PostDoCreate callback routine, i.e. the completion routineof the IRP_MJ_CREATE request, if the full path name if �\\Device\\LanmanRedirector\MDS\lustre\�,we treat it the mouting time of the lustre cluster. Then read the content of�.SRV_MAP� and construct all the con�gurations.After the cluster context is created, every �le on the cluster will keep a tracepointer to the cluster context and increase the cluster context's refercount. Thenin later parallel I/O routines, we could get the cluster context with the �le'sstream context and construct the �le names on di�erent ost servers and issuethe sub requests to di�erent ost servers.5.3 Logic Speci�cation1), Linux:Previous we designed to store the con�guration information in an EA of theroot inode, but it won't convenient to process server con�guration change suchas new ost server being added into the cluster. To overcome the problem, weare planing to use a �le named �.SRV_MAP� in the lustre root instead.The �le is to be created when llite is mounting, with the content of the serverscon�guration, and to be updated when the con�guraiton is changed. Thus adirectory noti�cation on the root is to be sent to the windows client to notifyof the change. Then windows client should discard the current con�gurationsettings and reconstruct with the new content of �.SRV_MAP�.5

* a), Content of the �.SRV_MAP� under lustre root directory/* samba server map information (mds and ost) */#define SF_MAX_ALIAS_NUM (8)#define SF_MAX_ALIAS_LEN (32)#define OST_INFO_MAGIC 'OI'/* information per ost*/struct ost_info {/* magic and flags */__u16 magic;__u16 flags;/* ost index number */__u32 ost_index;/* ost uuid string, trailing with NUL */const char uuid[40];/* ost alias name, max 32 chars in length, 8 in number */const char alias[SF_MAX_ALIAS_NUM][SF_MAX_ALIAS_LEN];/* ip address of the ost server */__u32 ipaddress;};#define SRV_MAP_MAGIC 'SM'/* the content format of file .SRV_MAP */struct srv_map {/* magic and flags */__u16 magic;__u16 flags;/* number of ost devices */__u32 osts_count;/* mds alias name, max 32 chars in length, 8 in number */const char alias[SF_MAX_ALIAS_NUM][SF_MAX_ALIAS_LEN];/* array of ost information */struct ost_info osts_info[0];};* b), creation and updatingIn linux side we'll use the con�guration tool to create and update the con�gu-ration �le on root directory.2), WindowsThe MDS con�guration should be told as a parameter to the Windows �lterdriver. Then all the other necessary con�guration information could be gainedvia the EA of SRV_MAP.In windows we need maintain a list of MDS servers (share point) in boththe registry and the driver. The list in registry is only to keep the setting in6

system, which won't be lost after rebooting. The list in driver is created duringruntime containing all the active clusters. The window con�guration utility isin charge the list. When new cluster is inserted or one cluster is to be removed,the utility will talk with the �lter driver of that change.The item of the MDS list in driver should contain the full path name,ex: \Device\LanmanRedirector\mds\lustre. The server management routineshould keep the SRV_MAP information for every MDS entry. The MDS listshould be a driver-global structure, but the SRV_MAP info should be a volume-global structure. The former is always alive while the driver is loaded; the latteris valid when the volume is being mounted. Our �lter driver will be kept res-ident all the time, so no lifecycle management for the MDS list. But for theserver con�guration (SRV_MAP) could be created when mounting and cleanedup when dismounting.For the runtime management contextes, most of them could be treated asglobals, such as memory allocation lookaside lists. The other volume-speci�edcould be treated the same way to SRV_MAP.5.4 State Machine* a), Creation of the cluster contextThe context is to be created when* b), Destruction of the cluster contextWe'll draw an extra reference on the cluster context when creating the streamcontext for every �le. The �le's stream context is to be released automaticallyby system. During destruction of the stream context, it will drop the referenceof the cluster context. If there's no reference on the cluster context, we needrelease the cluster context.* c), Handling server con�guration changesWhen constructing the cluster context in PostDoCreate, we'll start a systemthread to monitor the notify changes of the root directory of the MDS share.Windows kernel provies a routine ZwNotifyChangeDirectory to query the changenotify information.After querying, we need parse the information block to trace whether �.SRV_MAP�is modi�ed or not. The con�guration �le could be modi�ed only when the con-�guration is changed.Once we get the con�guraiton �le is changed we'll purge all the con�gurationcontext in memory and update them with the new con�guration information.
7

6 Context per File Stream6.1 Functional Speci�cationOsr maintains the unique context for any opened �le, i.e. stream. The contextis to be released when the �le is closed internally. In the pCIFS driver, we neednot care the lifecycle of the per stream context, osr fddk does it for us. Theroutines to access the per stream context is OsrGetPerStreamContext.Several context information should be maintained in the per stream contextfor our purpose:1. �le full path name2. security impersonation context3. the LOV stripe distribution layout4. other runtime management information* a), Context/Names ManagementThe �le full path name includes the �\\Device\\LanmanRedirector� pre�x.With that long name we could decide whether the request is sent to MDS ornot, then construct the corresponding OST target full names to be redirectedto. The osr fddk implements the name cache internally. It handles renameoperation as well. With the compiler switch: FDDK_FILENAME_CACHINGturned on, the �le full path information will be stored in the OSR_PER_FILEOBJECT_CONTEXT,which could be obtained via OsrGetPerFileObjectContext.As we mentioned above, the deivce name in �le full path might be notidentical for a server may have di�erent names. We need do the extra processin the post-create callback routine to make the share names identical. If therequest is sent to MDS, we need create our own speci�ed context and keep itin our own list for later usage when processing I/Oes. We also need createthe security impersonation context and query the necessary EA informaitonfor the requests of our concern, these things are to be detailized in their ownsubsections.* b), Security Impersonation ContextAfter IRP_MJ_CREATE is successfully completed by the underlying �le sys-tem driver, we can store the operator's security context and impersonate thespeci�ed user in other context such as when trying to open the handles of theOST target names in IRP_MJ_READ or IRP_MJ_WRITE.
8

* c), LOV Stripe Distribution LayoutIn previous design we implemented a new EA for every lustre inode: �lov_dist�.We also could let llite export the original EA value �trusted.lov� to users, andit surely does in b1_4.The routines of querying or setting an EA are already implemented. TheEA operation is to be done in IRP_MJ_CREATE, though the value is bereferred in IRP_MJ_READ and IRP_MJ_WRITE requests handler routines,because it will cause a deadlock hang if we issue EA requests in the reading orwriting handler routines which could be executed at APC_LEVEL. The stripeinformation will be stored in the per stream context and could be easily gottenat any time.6.2 Use CaseThe stream context of every �le is constructed in the PostDoCreate routine andto be referred in the parallel I/O routines. The I/O routines will divide theuser's request into sub requests due to the �le stripe distribution.The fddk is to destroy the stream context with the destruction routine weregistered when creating the stream context.Osr fddk provies routines to register and query the context pointer for everystream.6.3 Logic Speci�cationThe context creation is done in the osr completion callback of IRP_MJ_CREATE.The user context structure could be de�ned as the followings:/* file management context for every opened stream *//* magic & flags definitions */#define PCIFS_STREAM_CONTEXT_MAGIC 'PSCM'typedef struct _STREAM_CONTEXT {ULONG Magic; /* Magic */ULONG Flags; /* Flags */ULONG RefCount; /* Refer count */PFSRTL_ADVANCED_FCB_HEADER Fcb; /* FsContext */FOSR_PER_STREAM_CONTEXT Context; /* osr per stream context */PSECURITY_CLIENT_CONTEXT SCC; /* Security Context */UNICODE_STRING Name; /* Full path name */struct lov_mds_md * lmm; /* lov_mds_md ... */LIST_ENTRY Link; /* linked into global */......} STREAM_CONTEXT, *PSTREAM_CONTEXT;* a), Security Impersonation ContextThis part is the same to the previous pCIFS design.9

1. the �rst request to open/create �le (IRP_MJ_CREATE) is in the user'scontext. It carries the user's security token. At this time we could createthe SECURITY_CLIENT_CONTEXT with routine SeCreateClientSe-curity to store the user's credentials.2. when we want to access the restricted resources in other thread context, weneed impersonate the user's context. The routine SeImpersonateClientExdoes this for us.3. after the restricted operations are done, then restore the context to theoriginal one by calling PsRevertToSelf.* b), LOV Stripe Distribution Layout1. Open the �le with proper user's context (see next seciton: Security Sup-port) with ZwCreateFile2. Construct our own IRP_MJ_QUERY_EA Irp to query the content of�trusted.lov� from MDS share* c), Context/Names Management1. Query the fullpath name and check if it belongs to the MDS share2. Create the user context if the �le is not �lterred yet3. Store the full path name to our user context newly created4. Store the current user's �Security Context� to the user context5. Query the content of �trusted.lov� from MDS and store it for later usage6.4 State Machine1. these structures are created when �rst �ltering the �le in IRP_MJ_CREATEcompletion callback2. to be destroyed in osr �lter callback of freeing the user context3. the access of these structures should grab the reference count and releaseit after referring7 I/O Dispatch7.1 Functional Speci�cationThe new design is most simliar to the demo project: we take over the completecontrol of I/O requests and split the original Irp according to the stripe distri-bution layout and send the sub requests separately to the corresponding OSTservers. 10

7.2 Use CaseN/A7.3 Logic Speci�cation1. Call OsrGetPerStreamContext to query the private user context.2. The user context (STREAM_CONTEXT) should contain the full pathname,security context... if it belongs to the MDS share.3. Then queue a workitem to lower the IRQL to PASSIVE_LEVEL un-der which level ZwXXX routines could be executed. And returns STA-TUS_PENDING to osr �lter. Then osr �lter will stop any extra process-ing and return to system.4. The workitem callback routine will call RealReidrectIO to redirect therequest to OST shares.5. ReadRedirectIO will parse the lov distribution layout and split the bigrequest into several smaller ones and issue them to the correspondingOST servers.6. When all the split small Irps are completed, the completion routine willcollect the results and complete the original big I/O request.7.4 State MachineN/A8 Cache IssuesWith parallel I/O �lter dirver, there is big possibility of causing cache coher-ent problem, since system maintains di�erent cache copies for the OST shareinstances and the MDS share instance. For lustre they are the same �le at all,but for windows aspect, they are completely di�erent.When completely redirecting Reading and Writing requests, there's no I/Obetween windows client and MDS share at all. Then on MDS there's no stalecache problems, but on OST shares, there's still the possibility if the user trys todirectly access the OST share point. The stale cache problem could occur uponwith the special stripe patterns. We may need to purge the stale cache rangeif necessary. The purging could be done with windows kernel support routines:CcPurgeCacheSection and CcFlushCache. But the cache purging operation is atime-costing job and should be done with care otherwises it could easily makedeadlocks.In case of only redirecting Paging I/O and NonCached I/O, the cache purgingis a must to keep coherent. Since the cached I/O are issued to MDS share11

instance, but the real data is written to OST share instances. The cache ofOST share instances won't have chance to update their cache.9 Performance ImprovementThe results of the demo pCIFS project shows that the reading performance isnot good, the writing performance is reasonable. More analysis on lustre readingis to be made to �nd out the bottleneck.A test was ever made on a computer with two network cards. Both of thenetwork could get to the peak if using parallel �lter to redirect reading to twoidentical in content but self-existent �les on di�erent servers.Another way was ever tried: only redirect paging I/O or noncached I/O. Butthis way will cause stale cache problems. Besides the cache issues, there needsworkaround to identify the cached I/Oes which won't trigger paging I/Oes asdisk media �le system driver does.Possible optimizations on I/O process:1. Using our own threads instead of system workitems to lower the IRQL.More e�cient, less possibility of deadlocks.2. Caching the opened handles of the corresponding OST �le instances toremove un-necessary ZwCreateFile operations3. Intergrating the small (ex: one stripe size long) requests into a single one.We need to cure the incontinuous o�set / bu�er problems since there areholes between the sub requests.10 Utilities and Tools10.1 Con�guration Tools
• Linux: to con�gure Samba servers, Lustre, some internal settings such ascreate/modify EA
• Windows: to con�gure the registry settings for server names, user securitymanagement (Samba users authentication)10.2 Test Tools
• Sanity test: Osr fddk batch test tool, �lter test kit speci�ed for �lterdrivers provided by ifskit.
• Performance test: the original performance test tool: parallel is to beenhanced. 12

11 Focus of Inspection1. The design is reasonable ? Could be better ?2. Performance issues and I/O throughput3. Possiblity of stale cache in client side, especially when there are mulitywindows clients attaching to the single cluster4. Cluster con�guration changes: such as ost migration, insertion or deletion12 References1. Ifskit 20032. OSR fddk3. Lustre book, documents

13

