
High Level Design for TdinalVersion 1.0 / Jan. 16, 20081 What's CTDBCTDB/Samba is a cluster implementation of Samba. It provides failover sup-port to recover from node failures among Samba servers over a cluster �le system.Normal Samba uses local TDB (i.e. trivial database) to manage opened �lesand connections, and other context. CTDB/Samba stores the TDB database inthe cluster �le system, thus all Samba servers over the cluster �le system willshare the same TDB database.TDB library provides a set of routines to add, change or remove records inTDB database. And CTDB will do extra locking via FLOCK to synchronize allaccesses to the shared TDB database to keep it consistent. The TDB databasestores all the context of any opened inode in a record. The context informationmight include the connections information (who opens this inode) and inode'sopened instances and locks, attributes information. Every record is identi�edby a magic KEY, de�ned as structure TDB_DATA. TDB key is a 1:1 mappingto record, the same case for record and inode.TDB key is de�ned as:typedef struct TDB_DATA {unsigned char *dptr;size_t dsize;} TDB_DATA;dptr points to a file_id structure and dsize defines the buffer length. file_id is defined as followings:struct file_id {uint64_t devid;uint64_t inode;};The inode member is just the inode no of the �le. devid is a hash value, tobe hashed via several methods depending on Samba con�guration speci�ed byuser: 1

mapping method Samba hash routine value to be hashed notesfsid device_mapping_fsid file system idfsname device_mapping_fsname file system namedev device_mapping_dev dev_t struct pointer of the volume device defaultLustre is con�gured to use fsname with CTDB to identify the cluster, sincefsname is identical among all clients and unique to this cluster, like MDS:/clientfor Lustre. fsid method couldn't work currently since llite always returns a zerovalue in ll_statfs. So devid could correctly represent the just cluster and inoderepresents the �le, then the combined �le_id structure identi�es the identicalinode on di�erent Lustre clients. When one node fails, CTDB could replicatethe same context of the dead node on another client with TDB records.2 Sharing Violation Issue with CTDBWhen CTDB/Samba treats a �le on di�erent Lustre clients as an identi�ca-tion, it brings an issue to pCIFS unfortunately: pCIFS will get failure of STA-TUS_SHARING_VIOLATION when trying to open inode on OST. Before redi-recting io from MDS to OST servers, pCIFS need open the inode instance onOST nodes. At that time the inode is already opened on Samba server of MDSand the opened instance will be kept until i/o complets and will �nally be re-leased by user at any undetermined time. If the original instance is openedexclusively on MDS, Samba server on OST will deny the second open request.This case always happen when writing to non-exist �les (new �les will be cre-ated), thus pCIFS often fails to open and then nothing of parallel i/o could bemade.Besides share mode con�icts, windows opportunity locks also bring issueand increase the complexity. Normally the �rst open operation on MDS willbe granted an exclusive oplock, then when the second open operation arrives atOST servers, the Samba server on OST will issue an oplock break request torevoke the granted oplock. The break request will be sent to CIFS client, pCIFSnode in this case, to perform cache �ush, then pCIFS node acks a noti�cationto Samba server and in turn Samba server gets acknowledged and perform thesecond open. Obvious it induces extra network transfer and also a delay inprocessing the second open until the original oplock is borken (break noti�cationacked) or it timeouts in around 30 seconds. When �le open is to be processedmany times, it in�uences i/o performance badly.3 File-Open Processing Flow3.1 Window Open APILike Linux api "open" has mode and �ags in parameter list to indict how toperform an open operation, Windows api CreateFile carries similar parameters2

to indict the intent operation (read, write or delete) and share mode attributes:Prototype:HANDLECreateFile(LPCTSTR lpFileName,DWORD dwDesiredAccess,DWORD dwShareMode,LPSECURITY_ATTRIBUTES lpSecurityAttributes,DWORD dwCreationDisposition,DWORD dwFlagsAndAttributes,HANDLE hTemplateFile);Parameters explaination:dwDesiredAccess defines the indent access that we want to do with the file, normally it GENERIC_READ or GENERIC_WRITE or the combination. The followings are the desired access flags:#define FILE_READ_DATA (0x0001) // read data (i/o)#define FILE_WRITE_DATA (0x0002) // write data (i/o)#define FILE_APPEND_DATA (0x0004) // write file in the tail (i/o)#define FILE_READ_EA (0x0008) // EA read#define FILE_WRITE_EA (0x0010) // EA write#define FILE_EXECUTE (0x0020) // read and execute#define FILE_TRAVERSE (0x0020) // directory traverse#define FILE_ADD_FILE (0x0002) // add an entry into directory#define FILE_ADD_SUBDIRECTORY (0x0004) // add subdir entry#define FILE_DELETE_CHILD (0x0040) // directory#define FILE_LIST_DIRECTORY (0x0001) // list directory#define FILE_READ_ATTRIBUTES (0x0080) // attribute get#define FILE_WRITE_ATTRIBUTES (0x0100) // attribute set#define FILE_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | 0x1FF)#define FILE_GENERIC_READ (STANDARD_RIGHTS_READ |\FILE_READ_DATA |\FILE_READ_ATTRIBUTES |\FILE_READ_EA |\SYNCHRONIZE)#define FILE_GENERIC_WRITE (STANDARD_RIGHTS_WRITE |\FILE_WRITE_DATA |\FILE_WRITE_ATTRIBUTES |\FILE_WRITE_EA |\FILE_APPEND_DATA |\SYNCHRONIZE)#define FILE_GENERIC_EXECUTE (STANDARD_RIGHTS_EXECUTE |\FILE_READ_ATTRIBUTES |\FILE_EXECUTE |\SYNCHRONIZE)dwShareMode defines whether this operation could be shared with other accesses or not. It can be FILE_SHARE_READ, FILE_SHARE_WRITE, or both, or none. When share mode conflicts, system will return an error code ERROR_SHARING_VIOLATION to the caller. In pCIFS environment, once the file on MDS is opened with ShareMode is zero (DENY_ALL),the second open request to the OST is to be denied.The share mode value could be any one or any combination of the following values:3

FILE_SHARE_DELETE: make all possible delete operations sharableFILE_SHARE_READ: share all reading operationsFILE_SHARE_WRITE: enables subsequent open operations to request writing.lpSecurityAttributes: contain a SECURITY_ATTRIBUTES structure that determines whether or not the returned handle can be inherited by child processes. This pointer specifies a security descriptor for an object.dwCreationDisposition defines the intent action to be taken on this file. It could be any of the following values:CREATE_ALWAYS Creates a new file, always. If a file exists, the function overwrites the file, clears the existing attributes, combines the specified file attributes, and flags with FILE_ATTRIBUTE_ARCHIVE, but does not set the security descriptor that the SECURITY_ATTRIBUTES structure specifies.CREATE_NEW Creates a new file. The function fails if a specified file exists.OPEN_ALWAYS Opens a file, always. If a file does not exist, the function creates a file as if dwCreationDisposition is CREATE_NEW.OPEN_EXISTING Opens a file. The function fails if the file does not exist.TRUNCATE_EXISTING Opens a file and truncates it so that its size is 0 (zero) bytes. The function fails if the file does not exist.The calling process must open the file with the GENERIC_WRITE access right.dwFlagsAndAttributes : file attributes and flags.FILE_ATTRIBUTE_HIDDEN: hidden attributeFILE_ATTRIBUTE_NORMAL: normal, no special attributes setFILE_ATTRIBUTE_READONLY: readonlyFILE_ATTRIBUTE_SYSTEM: systemFILE_FLAG_DELETE_ON_CLOSE: system will deletes the file immediately after all of its handles are closedFILE_FLAG_NO_BUFFERING: similar to Linux direct i/oFILE_FLAG_OVERLAPPED: asynchronous i/oFILE_FLAG_POSIX_SEMANTICS: to be accessed according to POSIX rules.FILE_FLAG_WRITE_THROUGH: The system writes through any intermediate cache and goes directly to disk. If FILE_FLAG_NO_BUFFERING is not also specified, so that system caching is in effect, then the data is written to the system cache, but is flushed to disk without delay. If FILE_FLAG_NO_BUFFERING is also specified, so that system caching is not in effect, then the data is immediately flushed to disk without going through the system cache. The operating system also requests a write-through the hard disk cache to persistent media.3.2 Samba Open FileCIFS de�nes 4 di�erent methods to create/open a �le or directory, thus Sambaimplements 4 di�erent callback routines to response these 4 requests:CIFS / SMB request value of the SMB comm Samba callback routineSMB_COM_OPEN 0x02 reply_openSMB_COM_CREATE 0x03 reply_mknewSMB_COM_OPEN_ANDX 0x2d reply_open_and_XSMB_COM_NT_CREATE_ANDX 0xa2 reply_ntcreate_and_XThe function logics to process these 4 requests are similar and �nally it willcall open_�le_ntcreate to perform the real �le creation or opening. The 4threquest is mostly used. Here we use replay_open_and_X as an example toexplain the creation/opening process logic:reply_ntcreate_and_X(){ 1, map_open_params_to_ntcreate()2, open_file_ntcreate()3, construct replay package (oplock information)just grant oplock if option "fake oplocks" is set.}open_file_ntcreate(){ 4

1, clear all oplock flags if oplocks support is disabled.2, check if the file name is valid or not (containing invalid chars)3, convert Windows open mode/flags to Linux4, allocate necessary Sambe internal file data structure5, if the file to be opened exists (stat reports to us), it will dothe followings:5.1, call get_share_mode tograb TDB record FLOCK and query the accesslist from TDB database5.2 call delay_for_oplcoks to check whether there is oplockconflict or not. If there is, then issue a break request anddefer the open operation to wait oplock util break completes5.3 call open_mode_check to check whether all the opened accesslists are compatible with this open operation. It it conflicts,return STATUS_SHARING_VIOLATION6, call open_file to do the real creation or open operations by VFS7, if this file is just created in previous step, then do:7.1, call get_share_mode() to allocate record in TDB database andgrab the FLOCK in TDB database file.7.2, call open_mode_check to avoid possible race condition betweenother smbd processes. It will defer this open request to nextround if race condtions happen.8, call set_share_mode to add this instance into access list. The newshare mode will be synced to TDB database.9, then fill structures and release necessary resources (TDB FLOCK,memory, structures), then return}3.3 Sharing Mode Checking RulesIn subsection 3.1 we get that among all the share mode access �ags, onlyFILE_WRITE_DATA, FILE_APPEND_DATA, FILE_READ_DATA, FILE_EXECUTE,DELETE_ACCESS could bring con�icts. So we only concern these 5 �ags. Andthen there form 8 general rules to detect share mode con�ictions. Samba realizesthese rules in function share_con�ict:staticBOOLshare_conflict(struct share_mode_entry *entry,uint32 desired_access,uint32 desired_share);
5

No Share Mode Check (conditions of no conflicts) Notes1 entry doesn't contain any above flags2 desired_access doesn't contains any above3 if entry contains writing flags, FILE_SHARE_WRITE must be be set for both4 if desired_access contains writing flags, both should be shared in writing5 if entry contains reading flags, FILE_SHARE_READ must be be set for both6 if desired_access contains reading flags, both should be shared in reading7 if entry contains deleting flags, FILE_SHARE_DELETE must be be set for both8 if desired_access contains deleting flags, both should be shared in deleting3.4 Samba Con�guration OptionSamba already implements an option named �Share Modes� to de�ne the behav-ior of share_con�icts. If it's de�ned as �yes� in smb.conf, share_con�cts justreturn OK for all with all the above 8 rules skipped. So we needn't any patchto let Samba always grant any opening operations.4 Opportunity LocksWindows uses opportunity locks to keep the cache consistency between theLanman redirector (CIFS client) and the �le server (server side). The client cankeep �le data in cache only when it's granted the oplocks.4.1 Oplocks TypesThere are three main types of oplock:1. Level I oplock is granted when a client has exclusive access to a �le. Aclient holding this type of oplock for a �le can cache both reads and writeson the client system.2. Level II oplock represents a shared �le lock. Clients that hold a LevelII oplock can cache reads, but writing to the �le invalidates the Level IIoplock.3. Batch oplock is the most permissive kind of oplock. A client with thisoplock can cache both reads and writes to the �le as well as open andclose the �le without requesting additional oplocks. Batch oplocks aretypically used only to support the execution of batch �les, which can openand close a �le repeatedly as they execute.There's also another type: Filter oplock, which only interferes with �le at-tributes. It seems that CIFS protocol does nothing with it and so Samba needn'tdo anything about it. At the moment it's safe for us to ignore it. Some researchwill be done later on it. 6

4.2 Oplock Request and GrantOplocks are requested in combination with the open/create operation and CIFSserver will set the grant �ag if oplock is granted or just leave it as 0 no oplockis granted. Here's a typical package tra�c of a �le open process:Request from Client to Server:Create AndX Request, FID: 0x2bc3, Path: \2Ma.datNT Create AndX Request (0xa2)FID: 0x2bc1 (\2Ma.dat)Create Flags: 0x00000016....1 = Extended Response: Extended responses required.... 0... = Create Directory: Target of open can be a file....1.. = Batch Oplock: Requesting BATCH OPLOCK....1. = Exclusive Oplock: Requesting OPLOCKResponse from Server to Client:Response: SMB NT Create AndX Response, FID: 0x2bc3NT Create AndX Response (0xa2)Oplock level: Batch oplock granted (2)FID: 0x2bc1 (\2Ma.dat)Create action: The file did not exist but was created (2)... ...4.3 Oplock BreakSamba calls delay_for_oplock to issue an oplock break request, as described insection 3.2. Here's a general oplock break process:4.4 Samba options on oplocksSamba has bunch of oplock options and some of them are vague and hard tounderstand. That was also the reason why I had to make a patch to let smbdignore oplocks to make pCIFS work with CTDB.Here are the oplock con�guration options of Samba:1. oplocks: support oplocks, or don;t grant any oplocks when it's FALSE2. fake oplocks: always let any oplocks granted3. kernel oplocks: enable oplocks with linux kernel support, client access needoplock granted4. level2 oplocks: always try to break oplocks to level II if non target oplock(or NONE) is not speci�ed5. oplock break wait time: timeout value to assume that oplock is broken7

6. oplock contention limit: this parameter limits the response of the Sambaserver to grant an oplock if the con�gured number of contending clientsreaches the limit speci�ed by the parameter. Samba recommends �DONOT CHANGE THIS PARAMETER UNLESS YOU HAVE READ ANDUNDERSTOOD THE SAMBA OPLOCK CODE.� Oplock Break Con-tention Limit can be enable on a per-share basis, or globally for the entireserver, in the smb.conf �le.7. veto oplock �les: Veto oplocks is a smb.conf parameter that identi�esspeci�c �les for which Oplocks are disabled. When a Windows clientopens a �le that has been con�gured for veto oplocks, the client will notbe granted the oplock, and all operations will be executed on the original�le on disk instead of a client-cached �le copy. By explicitly identifying �lesthat are shared with UNIX processes, and disabling Oplocks for those �les,the server-wide Oplock con�guration can be enabled to allow Windowsclients to utilize the performance bene�t of 8 �le caching without the riskof data corruption.Among all these 7 options, we only need take count of �oplcoks�. With �oplcoks�de�ned as �no�, no any oplocks are granted and all CIFS clients won't cache the�le data, that just what we want on OST nodes. If user will try to modify datavia Lustre Linux native client, we'd better turn �oplocks� o� on all nodes.5 ConclusionFrom the above analysis, we can conclude that we needn't any further work orpatch any more. Samba options �Share Modes� and �oplocks� are enough for usto solve the SHARING_VIOLATION issue.For the MDS nodes, we can turn �oplocks� on, thus �les shared by Sambaon MDS node can bene�t from cache. Actually it's data is read from / writtento OST nodes. The �Share Modes� option is better to turn o�, or open requeststo MDS node might be denied since the share modes of opened instances onOST nodes are incompatible. For OST nodes, we'd better turn both optionso�. Lustre could do the rest of jobs to keep cache consistence.A comparison test is better to scheduled to check the performance di�erenceson MDS server between with �oplocks� option on and with it o�.6 References1. Windows WINDDK 60002. Windows Internals 4e3. Samba and CTDB sources 8

