HLD for Readdir

Wang Di
2006,/01/25

1 Requirement

Make readdir POSIX compliant especially for split dir nodes. According to the
requirement of readdir, the dir entries should be read out according to some
order, no matter what will happen in this process, then tell-seek interface could
be implemented based on this. But our current implementation can not assure
this, especially when the splitting happens in-between of readdir. Understanding
of ext3 htree code and splitting dir in CMD is assumed in this HLD.

2 Definitions

Here are some definitions used in this HLD:

hash value: it is computed by some kind of hash algorithm according to dir
entry itself.

hash order: it means accessing the dir object according to the hash value.

hash interval: it means an interval of hash value, which is correspondent to
each MDS for the splitted object.

hash position: it means current position of dir, which is indicated by hash
value, since the dir entry is sorted by hash value.

splitting rule: it means the splitting way which MDS will use to split the dir.
Current implementation use name hash to locate the object in a splitting
dir.

3 Functional Specification

In MDS, the htree enable flag is set default, so all the dir entries should be
stored as a hash tree.



3.1 Current readdir implementation has some dis-advantages especially for
splitted dir. 4 USE CASE

3.1 Current readdir implementation has some dis-advantages
especially for splitted dir.

e In readdir, the client will access the entry of the dir sequentially, i.e.
reading the page of the dir from MDS sequentially. But if the dir is a
hash tree dir, this sequence order will bring us some troubles, since it is
different with the one used by local ext3 filesystem, which use hash order.

e Further more, if the dir is split in-between of readdir, the position of those
splitted entries might be lost, then some entries might be gotten two times.

3.2 readdir in hash order

To keep readdir fully POSIX compliant when splitting, readdir and splitting
must follow the same order. Since the splitting is just to scatter the dir entries
to multiple MDS for load balance, so the splitting must follow some kind of hash
order. Luckily, the dir is stored as a hash tree in MDS and readdir in the bottom
filesystem (ext3) also follow the hash order. So we decide readdir and splitting
will follow this hash order. According to this splitting rule, the hash interval
will be defined for each MDS, then in splitting or lookup, the hash of the dir
entry will be calculated to locate the right MDS. Since dir entries with same
hash value will be stored in the same MDS, so the ext3 will help to resolve the
hash collision. An new RPC will be defined to handle this new kind of readdir.
Since POSIX did not specify that whether readdir and those modify ops(create/unlink)
could happen concurrently, so we do not permit that to keep things simple, al-
though ext3 permit that. Note: here the concurrent means modify ops just
happened in the same time as readdir in MDS.

4 Use case

4.1 Readdir in a no-splitted dir

e Client: issue readdir req, in which the current position(hash value) is
included, to the MDS where dir is located at.

e Server: Retrieve entries from the dir according to the current position.
e Server: Return them back to client, and client will submit them to the
upper layer caller.
4.2 lookup in a splitted dir
e Client: compute the hash value according to the name.
e Client: send the req to the right MDS according to the hash value.

e Server: use this hash value to locate the entry in the dir, and return it
back to client.



4.3 readdir in a splitted dir 5 LOGIC SPECIFICATIONS

4.3

4.4

readdir in a splitted dir
Client: send readdir req to the first MDS according to the hash interval.

Server: execute readdir in hash order and fill the request buffer with the
dir entries.

Client: get all the entries of the MDS, the client will resort to the next
MDS in the hash interval, Until it get all the entries of the dir.

Readdir and splitting happened in the same time

One process is in-between readdir, while another process splitting the dir
at the same time.

The readdir process will continue to send read dir request to the origi-
nal MDS, until it can not find the next entries according to the current
position(hash value).

Client will check whether it reach the EOF of the dir, if not, it will reval-
idate this dir and check whether the dir is split, if it is split, then decide
where the following req should go by current hash position and hash in-
terval of this inode(discussed this in Logical specification) and send the
req to the right MDS.

In the new MDS it will locate the entry by the current hash position, and
return the following entries to client.

5 Logic Specifications

5.1

splitting dir with hash order

According to 0.2.2, the splitting should also follow the hash order used by ext3
htree. In the htree of ext3, the index entries are stored in hash order. In the
splitting, for the splitted dir, we will define one hash interval for each MDS, then
the split will be executed according to these hash interval. The split process
should be

e Check the dir whether it should be split. Only when the count of the

entries reached the upper limit number, it could be split.

e Divide total hash range into equal intervals and assign each interval to

separate MDS.

e Iterate over the index entries of the dir and scatter index entries and the

blocks they point to each MDS according to the hash interval.



5.2 Readdir with hash order 6 STATE MANAGEMENT

5.2 Readdir with hash order

In ext3 readdir, the current entry hash value is stored in f pos to indicate the
current position. To assure lustre client also know it, MDS should return it
to client and client should record it in its f pos. Then client could retrieve
the entries from MDS by this hash position, not by offset as the original. The
process of readdir in client should be

e Client first check where the req should go according to the current hash
position in f pos and the hash interval.

e The dir entries are returned in reply buffer according to the current hash
position.

e The client retrieve the entries from the reply buffer, and reply them to the
caller.

e (Calculate the last entry hash value of the retrieve, then record it in the
f pos to indicate current hash position.

A new readdir rpc handler will be defined in MDS. The process of readdir in
MDS should be

e Unpack the req, and get the current position from the request.

e Got and lock the dir. Here the lock should prevent deleting and creating
the entry in this dir at the same time.

e Locate the current position of dir and read entries from the bottom filesys-
tem.

e pack and return the entries back to the client.

Note: The above discussions are all about h-tree dir, since the htree enable flag
is set default for MDS.

6 State Management

6.1 splitting dir lock

As for dir, those modified operations are not permitted when reading, so it
should be locked by LCK PW mode to prevent any modification before reading.
While when those modified operations being executed on the dir, it could not
be read as well.



6.2 Recovery for splitting dir 7 ALTERNATIVE

6.2 Recovery for splitting dir

Since several MDSes are involved into the splitting of the dir, we need some
cluster rollback mechanism to implement the recovery of splitting. When split-
ting

e correspondent records of this dir will be written into some kinds of logs in
the Master MDS.

e Then splitting the dir.

e When each MDS finish splitting, it will send cancel log cookie req to the
Master MDS to cancel these logs.

In MDS recovery, it will check these llog, if it found some, the dir will be rollback
to the original state by some cluster rollback mechanism, which is discussed in
other HLD.

7 Alternative

7.1 Not permit splitting in progress of readdir

Another alternative way to avoid conflicts between splitting and readdir is that
splitting is not permitted when the dir is opened, which means some other
processes are in progress of readdir. So if the dir is open, the splitting would be
delayed until the dir is closed.

7.2 Another splitting rule

There is another splitting rule which can be used for defining the hash interval
for each MDS.

1. Get the total count of the index entry of the dir. For 2-level hash trees
(the max level of current ext3 hash tree), we should get the count of the
second level. There may need some patches in ext3 to export the entries
count to MDS.

2. Divide the count of index entries by the number of MD servers, the result
is D.

3. For the hash interval in MDS 1, seek and get the hash value of D _th
entry in the dir, and which is the upper limit of the dir’s hash interval in
MDS 1, and the lower limit is 0.

4. For the hash interval in MDS n, its lower value is MDS (n-1)’s upper
value, and its upper value is the hash value of n*D __th entry. If this value
is same as the lower value, we should resort to next entry, until we get
different upper value for this hash interval.



9 INSPECTION SUMMARY

5. If the hash interval of the splitted dir in MDS n is (lower n, upper n).
then for all entries of the splitted dir in the MDS n, their hash value are
<= upper_n and > lower n.

6. These hash interval and corresponding number of MD servers should be
stored in splitted dir EA. Then when client do lookup, it could get the
right MDS number according to these hash interval and the hash value of
the name.

Since this hash interval definition will need store another EA for the splitted
dir. And the tea-hash method, which ext3 used, could also distribute the whole
entries evenly across whole hash value field (hash value is 31 bit for ext3, so the
hash value field should be (0, Ox7{Hffff)).

8 Focus of Inspection

1. Is splitting policy reasonable?

9 Inspection Summary



