
Grants

Jan 22, 2007

1 Introduction

This document mainly explains how space grants currently work based on v1_5_97
(Refer bug 2800 and bug 974 for more details) and also proposeseveral alternative
strategies for support grants under I/O scheduler.

2 Requirements

Handle ENOSPC in case of introduction of client-side writeback cache especially when
the OSTs’ disk is extremely full.

3 Functional specification

• When filesystem is nearly full and clients are writing hard, aI/O request should
return ENOSPC.

• If a client times out on OST and reconnects it doesn’t have itslocal grant revoked.

• Client should get an initial grant to avoid initial sync I/O.

• Shrink grants on the inactive clients.

• Intellect space grants management.

1



4 USE CASES

4 Use cases

4.1 Normal case (v1_5_97)

• In ll_commit_write or ll_writepage(for mmap write), call queue_or_sync_write
to grab space grants;

• If the cached, unwritten client data doesn’t reach the limitationcl_dirty_maxand
there are enough space grants, consume the available grantsof the OSC and mark
the asynchronous page as OBD_BRW_FROM_GRANTED (inosc_enter_cache);

• Otherwise, if there are some write RPCs in flight, add the asynchronous page
to the cache waiter list of the OSC which ran out available grants. Wait until
waking up by I/O completion (inbrw_interpret_oap);

• If grab grants, queue the asynchronous page and build a optimal I/O RPC if
possible by callingosc_check_rpcs.

• If still out of grants, do synchronous I/O byobd_queue_group_io/obd_trigger_group_io/oig_wait,
which would drain away all queued dirty pages and wait until I/O completion of
the page out of grants.

2



4.2 Startup/Recovery (v1_5_97) 4 USE CASES

• Before putting I/O RPC into wire, callosc_announce_cachedto compute the
how many grants should be acquired from OST. The grants amount is equal to
Max.(cli_dirty_max, max_rpc_in_flight * max_size_per_rpc).

• Upon I/O completion (inbrw_interpret_oap) , it will first update the available
grants of OSC, and then callosc_wake_cache_waitersto wake up cache wait-
ers. Inosc_wake_cache_waiters, it will grant space to the waiting asynchronous
pages; if the updated grants is not enough as there are lots ofasynchronous pages
waiting for grants and moreover there are no pending RPC in flight to return
grants, it will return -EDQUOTand wake up the cache waiter, let it do sync IO.

4.2 Startup/Recovery (v1_5_97)

• During connection or reconnection for recovery, it will mark the connection flags
with OBD_CONNECT_GRANT. For initial connection, it will request grants
amount of 2 *cl_max_pages_per_rpc< < PAGE_SHIFT(2M); For reconnec-
tion of recovery grants, it will request grants amount ofcl_avail_grantbefore
disconnection.

• When OST receive connection request with grants intention,it will return certain
space grants according to the left space.

4.3 Disk extremely full (v1_5_97)

• After OST receives an I/O request, it will first figure out the left space exclude
the space granted out to clients and compensate for ext3 indirect block overhead
(in filter_grant_space_left).

• When clients uses out space grants from OSTs they fall through to sync writes.
The pages in the sync writes haven’t been acquired grants (not marked as OBD_BRW_FROM_GRANTED)
and will error with ENOSPC if there isn’t room in the filesystem for them after
grants are taken into account according to the available space returned in the pre-
vious step. However, the writeback pages that are usually already acquired space
grants can write right on through. (infilter_grant_check)

• If the object is marked as OBD_MD_FLGRANT, it will callfilter_grant to cal-
culate how much space grant to allocate to the client based onthe left space. The
grants amount is:

3



6 STATE MANAGEMENTwant: how much space grants client wants to acquire.fs_space_left: available space.grant = min((want > > blockbits), (fs_space_left > > blockbits) / 8);grant < < = blockbits;if (grant) {if ((grant > 2M) && (!obd->obd_recovering))grant = 2M;...}
5 Logic specification

N/A

6 State management

6.1 Scalability & performance

In the v1_5_97, the client is usually not ran out of grant unless the filesystem is full
or there are many small writes from various files use out of grants but not trigger any
IO. The reason is that: On the initial connection, it will be granted amount (2M) and it
will start I/O as soon as optimal RPC can be built as pages are dirtied; And the grant
amount will be refreshed to be more than the dirty data sent upon the I/O completion.

6.2 Locking changes

As grants are a limited resource in real installations, so it’s no reasonable to give out
lots of space grants (GBs) to client. But we can use grant lockto make OST more
intellect to manage the space grants:

• During initial connection or reconnect from disconnect recovery, OSC acquires
space grant lock from OST. If available space is still large,OST will return lots
of space grants to OSC which is almost fill client’s physical memory.

• Upon receiving I/O requests, OST will return certain reasonable space (cli_phy_mem
- cli_avail_grants) to client to avoid out of grants.

• When disk of OST is extremely full and lower than certain threshold, OST
shrinks the granted space of some clients by lock callback. In this case, OST
just gives out small space grants.

• When the left space grows up own to object deletions and exceeds certain thresh-
old, OST will recovery to give out large space grants.

4



7 ALTERNATIVES

7 Alternatives

In the I/O scheduler, it appears a very bad performance afteradd the support for
grants/quota. The main reason is that: To get client closer to regular linux file sys-
tem the new I/O path is VM driven, it doesn’t start any IOs until use out of client’s
available grants. Thus, when out of grants/ space cache, there are usually lots of dirty
pages in I/O queues. At this time, if wait until the completion of draining away all dirty
pages, it would take ages.

To fix this bugs, there are two proposal strategies:

7.1 Wait until acquire grants or the page writeback

• When out of grants inll_commit_write, we don’t always wait until the comple-
tion of last asynchronous page which is triggered out of grants. Instead, we just
wait until either acquire grants again or the page writeback.

• When out of grants, queue the asynchronous page with flags ASYNC_URGENT,
and trigger the synchronous I/O start to push the pages in dirty list under write-
back immediately. After that, Add this asynchronous page into cache waiter list
of corresponding OSC.

• If the page has already been under writeback, wake up the cache waiter and let it
waits until the page writeback by kernel functionwait_on_page_writeback.

• If some I/O completion updates the available grants of OSC, and grant space to
the asynchronous page, clear the flags ASYNC_URGENT, wake upthe cache
waiter and queue it to dirty list, let VM determine what time to write out it.

Compared with original I/O scheduler with grants support, the advantage is:

• Usually wait only one I/O RPC completion when out of grants.

The disadvantage is:

• Even there is lots of space left on OSTs it also will use out of grants and start
synchronous I/O. And it doesn’t make better use of the VM system in linux
kernel.

7.2 Integrate with extent lock BST

This strategy is based on green’s patch on Bug 10718: slow lock cancellation due to
excessive page walking. In the patch, all dirty pages also manage by the extent lock,
so when extent lock revocations it needn’t walk through all dirty pages. The strategy is
as following:

5



8 FOCUS FOR INSPECTIONS

• During OSC installation, start a kernel daemon which uses towrite out data of
extent locks as reaching the limitation of dirty data per OSC.

• In ll_commit_write, If out of grants, wake up the daemon to start I/O. Then add
the asynchronous page out of grants to the cache waiter list of the OSC. Wait
until acquire grants again or the page writeback.

• If grab grants, queue this I/O and check whether the dirty data of the OSC reach-
ing 3 * max_dirty_data /4. If so, wake up the daemon to start I/O on the OSC by
the way similar with the extent lock callback.

8 Focus for inspections

6


