Grants

Jan 22, 2007

1 Introduction

This document mainly explains how space grants currentlskveased on v1_5_97
(Refer bug 2800 and bug 974 for more details) and also propeseral alternative
strategies for support grants under I/O scheduler.

2 Requirements

Handle ENOSPC in case of introduction of client-side widtglbcache especially when
the OSTs’ disk is extremely full.

3 Functional specification

When filesystem is nearly full and clients are writing hartfGirequest should
return ENOSPC.

If a clienttimes out on OST and reconnects it doesn’t havedal grant revoked.

Client should get an initial grant to avoid initial sync I/O.

Shrink grants on the inactive clients.

Intellect space grants management.

4 USE CASES

4 Use cases

4.1 Normalcase (v1_5 97)

Ma, aut grantg da sync 70

e Inll_commit_write or Il_writepagéfor mmap write), call queue_or_sync_write
to grab space grants;

¢ Ifthe cached, unwritten client data doesn’t reach the &troncl_dirty_ maxand
there are enough space grants, consume the available gf#imOSC and mark
the asynchronous page as OBD_BRW_FROM_GRANTED$m enter_cache

e Otherwise, if there are some write RPCs in flight, add the elsyonous page
to the cache waiter list of the OSC which ran out availablentg.a Wait until
waking up by I/O completion (ibrw_interpret_oap

e If grab grants, queue the asynchronous page and build a apli® RPC if
possible by callinggsc_check_rpcs

o If still out of grants, do synchronous 1/O lmpd_queue_group_fobd_trigger_group_ifnig_wait,
which would drain away all queued dirty pages and wait uf@l¢ompletion of
the page out of grants.

4.2 Startup/Recovery (v1_5 97) 4 USE CASES

e Before putting I/O RPC into wire, cathsc_announce_cache&d compute the
how many grants should be acquired from OST. The grants an®egual to
Max.(cli_dirty_max, max_rpc_in_flight* max_size percyp

e Upon I/O completion (irbrw_interpret_oap, it will first update the available
grants of OSC, and then calbc_wake cache_waitets wake up cache wait-
ers. Inosc_wake_cache_waiterswill grant space to the waiting asynchronous
pages; if the updated grants is not enough as there are latyothronous pages
waiting for grants and moreover there are no pending RPCghtflio return
grants, it will return EDQUOT and wake up the cache waiter, let it do sync 0.

4.2 Startup/Recovery (v1_5 97)

e During connection or reconnection for recovery, it will hdéine connection flags
with OBD_CONNECT_GRANT. For initial connection, it will griest grants
amount of 2 *cl_max_pages_per_rpc< PAGE_SHIFT(2M); For reconnec-
tion of recovery grants, it will request grants amountbfavail_grantbefore
disconnection.

e When OST receive connection request with grants intenitionl return certain
space grants according to the left space.

4.3 Disk extremely full (v1_5 97)

e After OST receives an I/O request, it will first figure out tledtIspace exclude
the space granted out to clients and compensate for ext2atdilock overhead
(in filter_grant_space_left

e When clients uses out space grants from OSTs they fall thrémgync writes.
The pages in the sync writes haven'tbeen acquired grantengdked as OBD_BRW_FROM_GRANTED)
and will error with ENOSPC if there isn’'t room in the filesystdor them after
grants are taken into account according to the availableesdurned in the pre-
vious step. However, the writeback pages that are usuadig@dy acquired space
grants can write right on through. (fiter_grant_check

o If the object is marked as OBD_MD_FLGRANT, it will cdilter_grantto cal-
culate how much space grant to allocate to the client baséuedeft space. The
grants amount is:

6 STATE MANAGEMENT

want: how much space grants client wants to acquire.
fs_space_left: available space.
grant = min((want >> blockbits), (fs_space_left >> blockbits) / 8);
grant << = blockbits;
if (grant) {
if ((grant > 2M) && (!obd->obd_recovering))
grant = 2M;

5 Logic specification

N/A

6 State management

6.1 Scalability & performance

In the v1_5_97, the client is usually not ran out of grant aslthe filesystem is full
or there are many small writes from various files use out ofigraut not trigger any
10. The reason is that: On the initial connection, it will bugted amount (2M) and it
will start 1/0 as soon as optimal RPC can be built as pagesidiedi And the grant
amount will be refreshed to be more than the dirty data seom tipe 1/O completion.

6.2 Locking changes

As grants are a limited resource in real installations, 'smib reasonable to give out
lots of space grants (GBs) to client. But we can use grant toakake OST more
intellect to manage the space grants:

e During initial connection or reconnect from disconnectonagry, OSC acquires
space grant lock from OST. If available space is still la@&,T will return lots
of space grants to OSC which is almost fill client’s physicehnory.

e Uponreceiving I/O requests, OST will return certain reade spaceqli_phy _mem
- cli_avail_grantg to client to avoid out of grants.

e When disk of OST is extremely full and lower than certain dimald, OST
shrinks the granted space of some clients by lock callbackhis case, OST
just gives out small space grants.

e When the left space grows up own to object deletions and elsazartain thresh-
old, OST will recovery to give out large space grants.

7 ALTERNATIVES

7 Alternatives

In the I/O scheduler, it appears a very bad performance afidrthe support for
grants/quota. The main reason is that: To get client claseegular linux file sys-
tem the new I/O path is VM driven, it doesn’t start any IOs Linse out of client’s
available grants. Thus, when out of grants/ space cache, #éne usually lots of dirty
pages in I/0 queues. At this time, if wait until the completaf draining away all dirty
pages, it would take ages.

To fix this bugs, there are two proposal strategies:

7.1 Wait until acquire grants or the page writeback

e When out of grants iti_commit_write we don't always wait until the comple-
tion of last asynchronous page which is triggered out of grainstead, we just
wait until either acquire grants again or the page writeback

e When out of grants, queue the asynchronous page with flag®hNESYRGENT,
and trigger the synchronous I/O start to push the pagesty lgit under write-
back immediately. After that, Add this asynchronous page @ache waiter list
of corresponding OSC.

o If the page has already been under writeback, wake up the veaiter and let it
waits until the page writeback by kernel functismait_on_page_writeback

e If some I/O completion updates the available grants of O®@,grant space to
the asynchronous page, clear the flags ASYNC_URGENT, wakihaipache
waiter and queue it to dirty list, let VM determine what tinoewrite out it.

Compared with original I/O scheduler with grants suppte, advantage is:
e Usually wait only one I/0O RPC completion when out of grants.
The disadvantage is:

e Even there is lots of space left on OSTs it also will use outrafhts and start
synchronous 1/O. And it doesn’t make better use of the VM awstn linux
kernel.

7.2 Integrate with extent lock BST

This strategy is based on green’s patch on Bug 10718: slokvdancellation due to
excessive page walking. In the patch, all dirty pages alsoage by the extent lock,
so when extent lock revocations it needn’t walk through tlypages. The strategy is
as following:

8 FOCUS FOR INSPECTIONS

e During OSC installation, start a kernel daemon which usegrite out data of
extent locks as reaching the limitation of dirty data per OSC

e Inll_commit_write If out of grants, wake up the daemon to start I/O. Then add
the asynchronous page out of grants to the cache waiterfltkedOSC. Wait
until acquire grants again or the page writeback.

e |f grab grants, queue this I/O and check whether the dirtst dthe OSC reach-
ing 3 * max_dirty_data /4. If so, wake up the daemon to st&tdh the OSC by
the way similar with the extent lock callback.

8 Focus for inspections

