
CTDB node and IP managementMatt Wu2008-03-26Contents1 Introduction 32 Document Scope 32.1 What is in . 32.2 What is not in . 33 What is CTDB 34 What is pCIFS 45 CTDB analysis 45.1 how to start ctdb . 45.2 ctdb source tree . 45.3 fundament . 55.3.1 events . 55.3.2 tdb & ctdb . 65.3.3 ctdb request types . 85.4 daemon startup . 95.4.1 general overview . 95.4.2 core structures . 95.4.3 program logic . 105.5 nodes management . 125.5.1 ctdb_node structures . 125.5.2 ctdb node �ags . 135.5.3 ctdb_node initialization 135.5.4 tcp connection . 145.5.5 node �ags state . 145.6 daemon and client connection . 155.6.1 core structures . 155.6.2 connection logic . 165.7 request process engine . 165.7.1 core structures . 165.7.2 request process logic . 161

5.8 recovery monitor process . 195.9 election process . 195.9.1 overview . 195.9.2 code logic . 195.10 recovery process . 205.10.1 core structure . 205.10.2 recovery process . 205.11 ip takeover . 215.11.1 core structure . 215.11.2 ip release . 215.11.3 ip takeover . 215.11.4 tcp_list state maintaining 225.11.5 takeover �ow during recovery 226 ip reassignment design 227 nodes management design 247.1 overview and requirements . 247.2 adding a node . 257.2.1 new request types . 257.2.2 automatic transport connection 257.2.3 code logic . 267.2.4 issues . 277.3 removing a node . 287.3.1 overview and requirements 287.3.2 requests to remove a node 287.3.3 code logic . 288 future improvement 298.1 structure re-arrangement . 298.2 recovery mechanism enhancement 298.3 minor bugs . 299 References 29

2

1 IntroductionThis document describes CTDB analysis and improvement design on CTDB�exible node/ip management. As part of Lustre pCIFS project, CTDB im-provement focuses in failover support to all pCIFS clients.2 Document Scope2.1 What is in
• introducation of CTDB and pCIFS
• detailed analysis of CTDB
• design of CTDB �exible node management
• design of CTDB ip reassignment
• ideas on CTDB improvment (for future)2.2 What is not in
• Samba and CIFS protocol internals
• Lustre pCIFS project for windows
• timed out requests resending by pCIFS
• IB transport analysis3 What is CTDBCTDB is a database implementation, providing TDB-like APIs to Samba orother applications for temporary context data management. It relies the un-derlying clustered �lesystem to manage TDB database �les, since TDB usesFLOCK to protect database access.As TDB database is shared to all nodes in the cluster, CTDB providesfailover to all CTDB clients (like Samba). When a Samba/CTDB node hangs,another node will takeover the dead node's IP address and restore all TCP con-nections. The failover process is completely transparent, so the Samba clientwon't notice the failover process and will stay alive with the new cluster con�g-uration.More information is available at http://ctdb.samba.orgctdb architecture:ctdb failover:the second CTDB/Samba node tookover the ip address of the �rst node afterthe �rst node hang. all the context of CIFS client 1 and tcp connections wererestored in second CTDB/Samba node.3

4 What is pCIFSLustre pCIFS client provides parallel i/o support to Lustre servers shared bySamba. With pCIFS, data i/o is to be dispatched smartly to Lustre OST nodeswhile the metadata operations will be kept untouched and go directly to LustreMDS server.pCIFS client is actually a Samba client. While Samba acts as CTDB clientsince CTDB provides TDB service to Samba. And Samba also exports Lustreclient (mountpoint) out for all Samba clients. see the picture below:pCIFS architecture:5 CTDB analysis5.1 how to start ctdbPlease refer http://wiki.samba.org/index.php/CTDB_Setup for details.5.2 ctdb source treeclient /* routines for CTDB client to talk to CTDB daemon */common /* common routines shared by client and daemon */config /* configuration samples and event script callback */events.d /* event scripts */doc /* document, help manual */lib /* infiniband support routines */include /* common header files */lib events /* events lib */popt /* command parameters process lib */replace /* substitution of lib routines *talloc /* memory allocation management*/tdb /* local TDB implementation */util /* miscellaneous general routines */packagingserver /* core code of CTDB daemon */takeover /* routines to handle ip-takeover */tcp /* tcp/socket generic routines */tests /* bench util */tools /* ctdb control utility */web /* help manual*/
4

5.3 fundament5.3.1 eventsThe events library provides an asynchronous handling mechanism upon selector epull (preferable). Everyone can register an event object plus a callback tomonitor any event either that a �le becomes readable or writable or that a timerexpires. When the event is triggered, the callback routine, called "handler", willbe executed to deal with the event.Here's a typical scenario using events:int main (){ /* open a file or network socket */int fd = ...;/* allocate talloc context to trace all memory allocations*/TALLOC_CTX ctx = talloc_new(NULL);/* initialize event context */struct event_context ev = event_context_init(ctx);/* add an event to detect data arrival, the handler routinedata_arrival_handler will be called to read data from fd */struct fd_event *fde = event_add_fd(ev, ctx, fd, EVENT_FD_READ|EVENT_FD_AUTOCLOSE,data_arrival_handler, fd);/* add a timer to cancle previous event if time expires */struct timed_event *te = event_add(ev, ctx, timeval_from_current,cancel_data_request, fde);/* start events process engine, it will loop forever if there'sevents registerred and quit when the event list is empty. Forthis example we'll get it return after canceling read request */event_loop_wait(ev);/* clean up all memory or opened handles */talloc_free(ctx);return -1;}void cancel_data_reqest(struct event_context *ev,struct timed_event *te,struct timeval, void *p){ ASSERT(p != NULL);/* destory the fd event. talloc_free will call the corresponddestructure callback to cleanup the internal members of structfd_event. the destructor routine is registered by event_add_fd */talloc_free(p);} 5

5.3.2 tdb & ctdbtdb is a light-weight database system. It provides a full data semantic oper-ations, like database open / create /close / traverse, record creation / fetch/ erase / replace and transaction management. tdb depends on �ock (fcntl)as it's dirtributed lock system. There's just the reason we have to specify theclientoption "-o �ock" when mounting Lustre as CTDB host cluster �le system.tdb is used widely, for example e2fsprogs uses tdb to management inode anddentry cache which could be too big to be stored in system memory.here's an example of using tdb to store enumed all pci devices installed insystem:int main (){ TDB_DATA key, data, ret;struct pci_device {int vid; /* vendor id */int did; /* device id */int cnt; /* number of devices */char desc[255]; /* description */} dev;int i = 0;/* open or create a tdb database file */struct db_context *db = tdb_open("devices.db", 0, TDB_CLEAR_IF_FIRST,O_RDWR | O_CREAT | O_TRUNC, 0600);while (enum_pci_device(i, &dev) == 0) {/* initialize key */key.dptr = &dev; key.dsize = offset_of(struct pci_device, desc);/* check whehter there's a record for this device */ret = tdb_fetch(db, key);if (ret.dptr) {/* record exists, we just need inc device count */struct pci_device *pd = ret.dptr;pd->cnt++;tdb_store(db, key, ret);free(ret.dptr);} else {/* insert this record into tdb database */data.dptr = &dev;data.dsize = sizeof(dev);dev.cnt = 0;tdb_store(db, key, data, TDB_INSERT);}}/* show all the pci devices */tdb_traverse(db, show_device, db);/* close tdb database*/ 6

tdb_close(db);return 0;}Samba doesn't use TDB api in such a direct way, instead, it uses a wrapperset of TDB/CTDB routines. For example Samba uses locking.tdb to store �lesharing modes for all open instances. When a �le is to be opened, Samba willcall access_share_mode to query the lock information from CTDB and thencheck whether or not there are any con�icts between this open requests and allexisting opened instances.void access_share_mode (){ /* open or create session database */struct tdb_context *lock_db = tdb_open("session.tdb",lp_open_files_db_hash_size(),TDB_CLEAR_IF_FIRST|TDB_DEFAULT,O_RDWR | O_CREAT, 0644);/* now parepare to query file's locking info */struct file_id fid;/* initialize file_id, map_device_id will hash file sysem nameor fsid, for a cluster sharing the same fs name, the fileon different node will be treat as identical. actually CTDBprovides several methods to map device (hash it) and they arethe same in principle. */fid.devid = map_device_id(fs_dev); fid.inode = inode;/* query a file's locking information from database */TDB_DATA key;key.dptr = &fid;key.dsize = sizeof(fid);/* ctdb_fetcd_locked will call ctdb_fetch and remain the recordas locked if the record exists. If the record doesn't exist,it will call ctdbd_migrate to request DMASTER of this recordand get a valid but empty record as a return */struct db_record * record = lock_db->fetch_locked(lock_db, NULL,key);if (record == NULL) {/* error occur */return ERROR_SHARING_VIOLATION;}/* then we can docode the sharing mode info from this record.when the operation is done, we need save data back to therecord and unlock it, actually this operations is done ina descturector handler for Samba */record->store(record, new_data, TDB_REPLACE);/* unlock the record and free it, record destructor will call7

tdb_chainunlock to unlock before freeing record */talloc_free(record);/* close database and free db context */talloc_free(lock_db);}5.3.3 ctdb request typesCTDB uses di�erent requests to communicate between CTDB daemons andCTDB clients.1. request by CTDB user/client: CTDB_REQ_CALL/CTDB_REPLY_CALL.it requests a data record in ctdb database CTDB_REPLY_ERROR: re-ply error information if case it fails to operate the tdb record2. CTDB_REQ_DMASTER: current dmaster wants to give up the dmasterto another node, thus it sends CTDB_REQ_DMASTER t othe LMAS-TER (lock master). CTDB_REPLY_DMASTER: the lmaser will sendthe assignment command the the furture DMASTER.3. CTDB_REQ_KEEPALIVE: it represents heartbeating message betweenCTDB nodes4. CTDB_REQ_CONTROL/CTDB_REPLY_CONTROL: various controlcommands, mainly called between recovery client and CTDB daemons.5. CTDB_REQ_MESSAGE: this is a special type of request. both clientand daemon can register a service/message handler for a speci�ed messageid. Then all handlers (of both daemon and client) will be triggered whenthe event happens./* dynamic list for services handlers */struct ctdb_message_list {struct ctdb_context *ctdb; /* pointer to ctdb */struct ctdb_message_list *next, *prev; /* double link list */uint64_t srvid; /* service id ? */ctdb_message_fn_t message_handler; /* message handler */void *message_private;}The service id can be any of the following values:1, CTDB_SRVID_ALL: means any type of message id2, CTDB_SRVID_RECOVERY: to notify the recovery process started3, CTDB_SRVID_RECONFIGURE: CTDB cluster is just resotred from recovery4, CTDB_SRVID_RELEASE_IP: to release the ip address5, CTDB_SRVID_NODE_FLAGS_CHANGED: to notify a node flags are changed6, CTDB_SRVID_BAN_NODE: user just bans a node7, CTDB_SRVID_UNBAN_NODE: user unbans a node8

5.4 daemon startupthis part is to describe the CTDB daemon startup process.5.4.1 general overviewdaemon startup process generally does 5 tasks:1. initialize core structure ctdb_context2. start daemon unix_socket listening clients requests3. start tcp or IB transport listen on other CTDB daemon nodes4. start recovery process to monitor whole CTDB cluster5. start monitor events to detect all nodes status5.4.2 core structuresstruct ctdb_context {struct event_context *ev; /* context for event engine */uint32_t recovery_mode; /* recovery state: CTDB_RECOVERY_NORMAL /CTDB_RECOVER_ACTIVE */uint32_t monitoring_mode; /* CTDB_MONITORING_ACTIVE or /CTDB_MONITORING_DISABLED */TALLOC_CTX *monitor_context; /*CTDB_FREEZE_NONE,CTDB_FREEZE_PENDING,CTDB_FREEZE_FROZEN */struct ctdb_tunable_tunable; /* values of all adjustable tunableparameters */enum ctdb_freeze_mode freeze_mode; /* all databases are frozen ? */struct ctdb_freeze_handle *freeze_handle;struct ctdb_address address; /* ip address of this node */const char * name; /* ip_address:port */const *db_directory; /* common directory to store sharabletdb databases in the cluser */const char* transport: /* "tcp" or "ib" */const char * logfile; /* logging file */char *node_list_file; /* nodes configuratin file name */char *recovery_lock_file; /* a common file in the cluster,used as a recovery lock */int recovery_lock_fd; /* the opened descriptor */uint32_t vnn; /* this node's vnn */uint32_t num_nodes; /* total nodes number */unit32_t num_connected; /* total nodes connected */unsigned flags; /* flags */struct idr_context *idr; /* unique 16-bit ctdb request idcreator */9

nint16_t idr_cnt;struct ctdb_node **nodes; /* nodes array - indexed by vnn */char * err_msg; /* last error message */const struct ctdb_methods *methods; /* transport methods: daemonlistening, package handlingfor transport level */const struct ctdb_upcalls *upcalls; /* transport upcalls, routinesrelated to ctdb_context */void *private_data; /* private structure to transportstaff: it's in sruct ctdb_tcp fortransport tcp connections */struct ctdb_db_context *db_list; /* list header for all tdbdatabases */struct ctdb_message_list *message_list; /* SRVID message list */struct ctdb_daemon_data daemon; /* ctdb daemon core structure */struct ctdb_statistics statistics; /* requests statistics */struct ctdb_vnn_map * vnn_map; /* the real relationship betweenvnn <--> ctdb_nodes. in casefailover happends, several VNNmight pointer to a same nodes */uint32_t num_clients; /* number of connected client */uint32_t recovery_master; /* vnn of the recovery master */struct ctdb_call_state * pending_calls; /* outgoing calls */struct ctdb_takeover takeover; /* takeover related sturcture */struct ctdb_tcp_list *tcp_list;/* TCP/IP connectons to this nodecontext of all Samba clients */};5.4.3 program logicbrief �ow chart of ctdb startup:main () {1)initialize parameters and tunables from cmdline and config files2)initialize event context:event_context_init()3)initialize ctdb_context structures with tunable values transport:tcp nodelist initializing (ctdb_node, ctdb_vnn_map, private/public ipaddresses) in ctdb_cmdline_init()4)ctdb_start_daemon()}ctdb_start_daemon() {1) create unix socket daemon and listen on it to accept client2) lock all the existing databases (i.e. freeze)3) set event callback: ctdb_accept_client on the created socket fd4) ctdb_main_loop()} 10

ctdb_main_loop() {1) ctdb_tcp_init(): initialize transport structure, allocate ctcp2) ctdb_tcp_initialise(): initialize transposrt and create a tcpdaemon to listen CTDB events from other CTDB nodes3) ctdb_release_all_ips to release all possible public ips on thepublic ethernet4) start a user script event (startup event) and set the callbackroutine: ctdb_start_transport5) event_loop_wait(): will loop forever and process pended andincoming requests}ctdb_start_transport() {1) ctdb_tcp_start: allocate ctdb_tcp_node for every node and tryto connect to all the nodes expcet itself and then set eventscallbacks(ctdb_node_connect_write). when the socket is becomingwritable, ctdb_node_connect_write will be triggered and itwill set package queue and then call ctdb_node_connected tochange the flags to connected of the connected node: removethe CTDB_NODE_DISCONNECTED flag to mark the node is active2) ctdb_start_recoverd(): start recovery monitor process3) ctdb_start_monitoring():start monitor events}ctdb_start_recoverd() {1) it will start a CTDB client and monitor all the nodes. thispart will be described in detail later in recovery process.general it will do 3 tasks:a) check whether recovery master exists. If not, then do electionto elect a recovery master out among all nodes of the clusterthe following two tasks are to be done only by recovery master:b) monitor the whole CTDB cluster and start a recovery processwhen the nodes status is not consistent.c) do ip takeover when there's a node not responding}ctdb_start_monitoring() {1) set a timed event to call ctdb_check_for_dead_nodes to checkthe status of other nodes (except itself). If the remote nodehas sent requests to this node, it just marks the remote nodeas CONNECTED (calling ctdb_node_connnected). If there's no anyinformation (like keep_alive request) from the remote node ina certain interval, CTDB assumes the remote node is dead, thencalls ctdb_node_dead will mark the node as DISCONNECTED andcancels all the pending requests related to this node. the nodestatus can be restored to connected if it's alive and sendingpackages without any intervention of recovery process.2) set another timed event to call ctdb_check_health.ctdb_check_health calls user event script to make sure the11

current node is active and then ctdb_health_callback is calledif script upcall returns. if the script returns failure, a flagNODE_FLAGS_UNHEALTHY need to be masked to current node. OtherwiseNODE_FLAGS_UNHEALTHY will be cleared. when node flags is changed,ctdb_daemon_send_message will be called too to notify an event ofCTDB_SRVID_NODE_FLAGS_CHANGED to all connected nodes. all theconnected nodes including the sender are to receive this message,then corresponding handlers are to be triggered to response:a) one is flag_change_handler on daemon side to modify the flagsof the corresponding node. if the node is the just sender andthe node is marked as disconnected, it will release all thepublic ip addresses, and in turn a recovery process is needed.This part will be described later.b) another handler is monitor_handler in recovery client process.monitor_handler will decide whether or not to do ip takeover.}5.5 nodes managementIn this part I'm trying to describe a whole lifecycle of a ctdb_node and howctdb node is managed by CTDB.Currently ctdb_node is kept in a �xed-size array in ctdb_context, and nogap is expected. every CTDB node keeps a complete copy of all other nodes'sstatus and monitors all nodes changes all the time.5.5.1 ctdb_node structuresstruct ctdb_node {struct ctdb_context *ctdb;struct ctdb_address * address; /* ip_address : port */const char * name; /* ip_address:port */void *private_data; /* private to transport, pointer to structdb_tcp_node for tcp transport */uint32_t vnn; /* virtual node number ? from 0 to (nodesnumber - 1), number/order identifier */uint32_t flags; /* states *//*used by node monitoring routine: ctdb_check_for_dead_nodes */uint32_t dead_count;/* number of internals, how much time pastsfrom the monitor receives the previousmessage from this node. when dead_countbeyonds the limit, it will be treat ad adead node */unit32_t rx_cnt; /* received packages from other nodes duringthe checking internal */uint32_t tx_cnt; /* transmitted packages to other nodes duringthe checking interval.*/12

/* a list of controls pending to this node. we can time thenout quickly when a node becomes dead. */struct daemon_control_state * pending_controls;/* public address of this node, if user specifies */const char *public_address; /* ip_address:port */uint8_t public_netmask_bits; /* subnet mask of public ip address *//* the node number that has taken over this node's public address,-1 means never */int32_t takeover_vnn;}struct ctdb_context {...uint32_t vnn; /* current node's vnn */uint32_t num_nodes; /* total nodes number */unit32_t num_connected; /* total nodes connected */...struct ctdb_node **nodes; /* node array in the whole cluster */...struct ctdb_vnn_map * vnn_map;}5.5.2 ctdb node �ags1, NODE_FLAGS_DISCONNECTED 0x00000001 /* node isn't connected */2, NODE_FLAGS_UNHEALTHY 0x00000002 /* monitoring says node isn'thealthy */3, NODE_FLAGS_PERMANENTLY_DISABLED 0x00000004 /* administrator hasdisabled node */4, NODE_FLAGS_BANNED 0x00000008 /* recovery daemon has banned the node */5, NODE_FLAGS_DISABLED (NODE_FLAGS_UNHEALTHY|NODE_FLAGS_PERMANE NTLY_DISABLED)6, NODE_FLAGS_INACTIVE (NODE_FLAGS_DISCONNECTED|NODE_FLAGS_BANN ED)5.5.3 ctdb_node initialization1)ctdb_node creationa) during startup, ctdb_set_nlist loads all nodes settings from CTDBconfig files and then call ctdb_add_node one by one. ctdb_add_node willreallocate ctdb_context->nodes array and initialize it's own node slot,such like ctdb_node->name, ctdb_node->vnn, etc. all ctdb_node will beset as CTDB_NODE_DISCONNECTED in default. for current node, it willclear the CTDB_NODE_DISCONNECTED flag and update ctdb_context->vnn toit's own vnn number.b) allocate the vnn map array. the vnn_map arrary describes whichnode is represented by which vnn. normally it's represented by itself.13

but when failover happens, there will be node who represents more thanone nodes.2) ctdb_tcp_node creationtcp node is to be allocated and initialized in ctdb_tcp_initialise.ctdb_tcp_initialise calls ctdb_tcp_add_node to construct a ctdb_tcp_nodestructure for every node.5.5.4 tcp connectionctdb_start_transport (here it only covers tcp transport) is to build alltcp connections between CTDB nodes. it calls ctdb_tcp_start to allocatectdb_tcp_node for every node and start connecting to all nodes butitself, then set events callbacks (ctdb_node_connect_write). when thesocket description becomes writable, ctdb_node_connect_write will betriggered, then it will call ctdb_node_connected to change the flags toconnected of the connected node: removing the CTDB_NODE_DISCONNECTEDflag. afet this stage, all the nodes will be have the DISCONNECTED flagcleared, i.e. all nodes are active and connected. In the remote side,ctdb_listen_event accepts the connection request issued byctdb_tcp_node_connect and keeps all the context in a local context(struct ctdb_incoming).We can conclude that between every two nodes pair there are twoconnections: one is only for traffic sending and the other is only fortraffic receiving. The former is managed by ctdb_tcp_node, the latter ismanaged by ctdb_incoming structure.5.5.5 node �ags state1) callbacks to monitor node flag changesa) ctdb_check_for_dead_nodes: check other nodes and mark it as deadwhen there's no response in a specified inernal. it also marks the nodeas active if it recently gets messages from the node.b) ctdb_check_healthy: check the health status of the node itselfc) flag_change_handler: handling flags change notification fromother nodes (normally sent by ctdb_check_healthy)2) user interfere to BAN or UNBAN a nodeuser can ban or unban any node in a CTDB cluster with ctdb control util.user's request will be handled by the recovery process instead of theCTDB daemon. both ctdb control util and ctdb recovery process are logicclients of the ctdb daemon:control util <- unix_socket -> ctdb daemon <- unix_socket -> recovery processduring startup, ctdb recovery process registers callbacks ban_handlerfor CTDB_SRVID_BAN_NODE and unban_handler for CTDB_SRVID_UNBAN_NODE.14

When a node is to be banned, the recovery process will send a flagchange request to the node to be banned and then setup the banned_nodesarray in ctdb_recoverd structure. ctdb_unban_node just does the reverseof ctdb_ban_node.the daemon of the node to be banned will receive the request from ctdbrecovery process and call ctdb_control_modflags to notify all CTDB nodesof the coming change. a cluster recovery is required when an active nodeis banned.3) nodes refresh during recovery processctdb recovery master will try to update all other nodes's vnn map andnodes flags to it's own copy to keep a consistent state during recoveryprocess.at that time all database are frozen, and all Samba requests will justbe pended.5.6 daemon and client connectionThis part is to describe how CTDB daemon manage the connection issued byCTDB client (Samba).5.6.1 core structuresstruct ctdb_conext {...struct ctdb_daemon_data daemon;...uint32_t num_clients;...}struct ctdb_daemon_data {int sd; /* unix socket listening for client's requests */char *name; /* unix socket name: /tmp/ctdb.socket */struct ctdb_queue *queue; /* requests queue, network i/o */}struct ctdb_client {struct ctdb_context *ctdb;int fd; /* file descriptor to unix socket connected to daemon */struct ctdb_queue * queue; /* request queue */uint32_t client_id; /* client id*/struct ctdb_tcp_list * tcp_list; /* tcp connections between thisnode and it's Samba clients */}
15

5.6.2 connection logicseq node behavior1 daemon ctdb_start_daemon is being called to open a unix socket(/tmp/.ctdb_sockets) and register a callback(ctdb_accept_client) to monitor the incoming requests2 client a client should ctdb_socket_connect first to talk to ctdbdaemon. ctdb_socket_connect first connects to daemon unixsocket. (/tmp/.ctdb_sockets)3 daemon ctdb_accept_client is triggered: allocate ctdb_clientstructure, increment ctdb_context->num_clients, and allocatea client id, then allocat the ctdb_queue for data processengine4 client set up the client side ctdb_queue for i/o5.7 request process engine5.7.1 core structuresstruct ctdb_partial {uint8_t * data; /* data buffer */uint32_t length; /* length of valid data */};struct ctdb_queue_pkt {struct ctdb_queue_pkt *next, *prev;uint8_t *data; /* data buffer not sending */uint32_t length; /* remained valid data */uint32_t full_length; /* full length of original packageincluding buffer alignment */};struct ctdb_queue {struct ctdb_context *ctdb;struct ctdb_partial partial; /* buffer for incoming packages */struct ctdb_queue_pkt *out; /* queue of all ongoing packages */struct fd_event *fde; /* tcp/unix socket events object */int fd; /* tcp/unix socket handle description */size_t alignment; /* package alignment */ctdb_queue_cb_fn_t callback; /* incoming package handler */};5.7.2 request process logichere we use an example to explain the request process logic. we imaginethere are two nodes: node 0 and node 1. on every node there's a client,like Samba. 16

a client can only talk to it's daemon via the unix socket. when itwants to broadcast to other nodes, it sends the request to it'sdaemon,then the daemon will connect the just node who owns the datarecord. the connection is basing tcp or ib between daemon nodes.roles description:node 0 (requestor) node 1 (dmaster)client 0 <- unix socket -> daemon 0 <- tcp network -> daemon 1 <- unix socket -> client 1request handling �ow:1 client 0 (node 0) 1. client issues a request CTDB_REQ_CALL and queues therequest to out_queue list in ctdb client queue (the queue isownered by ctdb_context.daemon).2. queue_io_handler is triggered and calls queue_io_write towrite the data in queue to unix socket2 daemon 0 (node 0) 1. queue_io_handler is triggered when data comes.then queue_io_read will read data from unix socketto the bu�er of queue->partial.data and then callsctdb_daemon_read_cb.2. ctdb_daemon_read_cb validates the request package andpass it to daemon_incoming_packate.3. daemon_incoming_package will dispatch the package to thecorresponding request engine. for CTDB_REQ_CALL, it'sdaemon_request_call_from_client.4. daemon_request_call_from_client will �rst initiate a newrequest to be sent to the real dmaseter of the target record.then calls ctdb_daemon_call_send_remote to allocate actdb_call_state to represent the original request and placectdb_call_state into ctdb_context's pending_calls list andidr tree, and pass the request to ctdb_queue_packet. then �-nally, ctdb_tcp_queue_pkt is called to handel the real pack-age queuing.5. ctdb_tcp_queue_pkt queries the ctdb_tcp_node structureand calls ctdb_queue_send to queue the request on it.6. then again queue_io_handler calls queue_io_write to do theactual network sending to remote CTDB daemon.17

3 daemon 1 (node 1) 1. if the tcp connection isn't built yet, ctdb_listen_eventwill construct the connection and maintain it with actdb_incoming structure.2. queue_io_handler_io calls queue_io_read to read pack-age from tcp socket. and then it will �nally ar-rive to ctdb_tcp_reade_cb this time instead of dae-mon_request_call_from_client.3. ctdb_tcp_read_cb calls the ctdb level upcall:ctdb_recv_pkt. ctdb_recv_pkt calls ctdb_input_pkt.then ctdb_input_pkt will transfer the handling to thecorresponding engine. it's ctdb_request_call for this case.4. ctdb_request_call will handle the real data process (tdbdatabase record fetch) and call ctdb_queue_package toqueue the reply packge into the out_queue.4 client 1 (possible)(node 1) 1. if it's a SRVID message request, the daemon might need callthe client's message handler if this client registers it's handlerfor this type message.5 daemon 0 (node 0) 1. then again queue_io_handler is called to transport the datato the remote peer upon TCP.2. now this daemon gets the reply packge form the dmaster.queue_io_handler calls queue_io_read to read package fromnetwork, and then ctdb_tcp_read_cb is called. and �nallyctdb_reply_call is called to handle the orignal request fromclient.3. ctdb_reply_call �rst looks up the original request's staterecord (ctdb_call_state) from idr_tree, then copies thereturned data to the original package and calls dae-mon_call_from_client_callback to put the reply packageto daemon's queue. in the end, unlink the call state fromctdb_context's pending_calls list.4. queue_io_handler will handle the package and send it toclient
18

6 client 0 (node 0) 1. now on client side, queue_io_handler and queue_io_readare started and read data from the unix socket. and �-nally ctdb_client_read_cb will call ctdb_client_reply_callto copy results to original request's bu�er and mark the orig-inal request's status as CTDB_CALL_DONE.5.8 recovery monitor processevery ctdb daemon will start a recovery process during startup. but only therecovery master it can trigger a cluster recovery. �rstly the recovery process onevery node is to check the status of recovery master.generally, the recovery process has 4 major tasks:1. elect recovery master: it's a common task of every node2. only recovery master will continue and do the followings3. assure all active nodes agrees on the recovery master4. assure all nodes are not in recovery mode5. assure all the nodes' vnn map/node �ags are consistent among ctdb cluster6. if there's any inconsistency, start a cluster recovery7. perform ip takeover when there's node banned or dead5.9 election process5.9.1 overviewthe election is to elect a recovery master among all ctdb active nodes. the recov-ery master's role is important to monitor the ctdb cluster and play a recoverywhen the state is not consistent.the election process will be triggered when ctdb cluster starts up or therecovery master node dies. and every ctdb node call issue an election requestwhen it detects errors exist in cluster.5.9.2 code logicthe recovery process is started by ctdb_start_recoverd(). It calls mointor_cluster()to check the recoverymaster status and issues election request via calling force_electionif there's no an active recovery master.recovery process is truely a client of ctdb daemon. so the communicationmodel is the similar to client request process frame.node 0 (request recovery master) node 1 (normal node)recovery 0 <- unix socket -> daemon 0 <- tcp -> daemon 1 <- unix socket -> recovery 119

election logic:1 recovery 0 1. recovery process of this node that detects errors (no recovery masterexists), will call force_election to issue a cluster election2. it issues a SRVID message (CTDB_SRVID_RECOVERY) to allnodes electing itself as the new recovery master3. the request will be passed to daemon 02 daemon 0 daemon receives the request from tcp network, and then will send thismessage to its recovery client since the recovery client already registersit's ownership on these messages3 daemon 1 search the message handler and request it's recovery client to processthe message4 recovery 1 election_handler is to be called check the election package and checkwhether or not it agrees node 0's opinion. the earlier who starts therecovery process and the bigger vnn nuber how has will win the election.if this node doesn't agree the election request, it will issue anotherelection request with itself assumed as the new recovery master5 daemon 0 daemon 0 also receives the request sent in step 2 and it will call recovery0 to handle this request6 recovery 0 the original request doesn't request any reply. it just waits for anassumed timeout internal and checks again whether all ctdb nodes arriveto a �nal agreement on recovery master election. if there's no such anagreement, then issue a new election request: goto step 15.10 recovery process5.10.1 core structurestruct ctdb_recoverd {struct ctdb_context *ctdb;uint32_t last_culprit; /* the node causes recovery */uint32_t culprit_counter; /* recovery times caused bythis unstable node */struct timeval first_recover_time; /* last recovery time */struct ban_state **banned_nodes; /* all banned nodes */struct timeval priority_time; /* startup time, used forrecovery master election */};5.10.2 recovery process1. set recovery mode to active on all ctdb nodes2. update vnn map and generation number20

3. collect the database information from all nodes4. copy the database information to all other nodes5. copy the vnnmap and node �ags to all other nodes6. clear non completed records in all databases7. do ip takeover8. set recovery mode to normal mode9. broadcast CTDB_SRVID_RECONFIGURE to notify all clients ctdb clus-ter is restored5.11 ip takeovercurrently all ip address release and takeover are done by recovery master . thereare two interfaces to handle IP release and takeover.5.11.1 core structurestruct ctdb_takeover {bool enabled;const char *interface; /* ethernet interface for public address */const char *event_script; /* user script */TALLOC_CTX *last_ctx;};5.11.2 ip release
• control id: CTDB_CONTROL_RELEASE_IP
• handler: ctdb_control_release_ip
• description: the node who receives this request will �rst release the ipaddress from public interface via an upcall user script, then it will notifyan event of CTDB_SRVID_RELEASE_IP to Samba daemon to forceit exit. �nally broadcast all Samba clients' ip addresses to all connectednodes.5.11.3 ip takeover
• control id: CTDB_CONTROL_TAKEOVER_IP
• handler: ctdb_control_takeover_ip
• description: �rst upcalls event script to assign the new ip address andthen try to restore all the broken connections to this node21

5.11.4 tcp_list state maintaining1. Samba: main() calls open_sockets_smbd to accept connections from CIFSclients2. after child connection is built, message_ctdb_init is called to initializectdb client and register CTDB_SRVID_RELEASE_IP handler (to forceclient exit in case ip is to be released), send CTDB_CONTROL_TCP_CLIENTto ctdb daemon3. ctdb daemon will handle the request of CTDB_CONTROL_TCP_CLIENT.it will add a tcp_list into ctdb_client's tcp_list, then broadcast CTDB_CONTROL_TCP_ADDto all connected nodes.4. all ctdb nodes will get the request of CTDB_CONTROL_TCP_ADDand call ctdb_control_tcp_add to add a tcp_list into ctdb_context'stcp_list. so Samba client's ip address are stored on every CTDB nodenow.5. when a client exits, ctdb_client_destructor will issue CTDB_CONTROL_TCP_REMOVEto notify the client's removal to all CTDB nodes.5.11.5 takeover �ow during recoverywhen recoverymaster determines that ip takeover is needed, it will call ctdb_takeover_runto do ip takeover:1. notify all other nodes except the selected node to release the ip address(calling ctdb_control_release_ip)2. if the �dead� node isn't dead yet, Samba client will be forced to exit (call-back routine msg_release_ip handles it)3. then look up a suit node in nodes array within the same subnet as a can-didate to takeover the dead node's ip address and command the selectednode to take over the ip (calling ctdb_control_takeover_ip)4. the selected node receives the message and upcalls the event script toassign new ip. after ip assignment succeeds, takeover_ip_callback is trig-gered to handle all Samba clients' connections rebuilding: send ACK toSamba clients to keep all the connections alive, though the Samba serveris already changed to a new node.6 ip reassignment designpCIFS needs a more �exible ip release and reassign mechanism to address theip reassign from one CTDB node to another when the secondary Lustre nodereplaces the dead node after Lustre failover. the new feature of ip reassign can22

assure pCIFS i/o to be banlanced among di�erent nodes rather than a singlenode with several ip addresses.ip reassignment is actually an ip takeover operation. we are planning to thistask done by recovery master to ease the unnecessary recovery handling. let'stake a Lustre failover case for example:1. a Lustre node dies2. CTDB and Lustre failover will be triggered.3. CTDB failover is a quick process, should be completed in no time. so theip will be taken over by another CTDB node.4. Lustre secondary node will be started by then heartbeating or other mon-itor program.5. Lustre cluster restores from recovery, the new node will join CTDB clustertoo (to be described in next chapter)6. the new node is ready to service as a CTDB node, then requests theoriginal ip (CTDB_SRVID_REQUEST_IP) from recovery master7. recovery master receives the ip request and then call all nodes to releasethe speci�ed ip address and then let the new node to takeover the ip.if one node dies unexpectedly, the recovery process can deal all the cases:1. if the new node dies, recovery master can reassign the ip addresses toanother2. if any other node ides, current takeover process won't be bothered andwill continue to a �nal success3. if recovery master dies, then there will be a new election and recoveryprocess. during the recovery process, the new node will be treated as theowner of public ip address, so there won't be any con�icts.CTDB_SRVID_REQUEST_IP is a new request type to current CTDB, tobe handled (only) by recovery master. the request package should contain thepublic ip address and vnn number of the requestor node. no reply package isneeded to the request.the recovery process need register a callback to handle this request:static void monitor_cluster(struct ctdb_context *ctdb) {.../* register a message port for ip requestor */ctdb_set_message_handler(ctdb,CTDB_SRVID_REQUEST_IP,request_ip_handler,rec);23

...}static void request_ip_handler(struct ctdb_context *ctdb,uint64_t srvid,TDB_DATA data,void *private_data) {struct ctdb_recoverd *rec = talloc_get_type(private_data,struct ctdb_recoverd);struct ctdb_context *ctdb = rec->ctdb;struct ctdb_request_ip *r = (struct ctdb_request_ip *)data.dptr;int rc, vnn;/* query nodes map */rc = ctdb_ctrl_getnodemap(ctdb,...)/* release the specified public ip address */for (i=0;i<nodemap->num;i++) {...rc = ctdb_ctrl_release_ip(ctdb, ..., &ip);...}/* let's the requstor takeover the ip */rc = ctdb_ctrl_takeover_ip(ctdb, ..., r->vnn, &ip);/* find a suit node to takeover the ip in case the requstorfails to take over it */for (vnn = (r->vnn + 1) % (total_vnn_num); rc != 0; ...) {rc = ctdb_ctrl_takeover_ip(ctdb, ..., vnn, &ip);}return rc;}7 nodes management design7.1 overview and requirementscurrently all nodes are loaded from CTDB con�g �les and stay �xed in ctdb_context.removing a node is easy, since the recovery process can recon�gure the wholectdb cluster. but there's no way to add a new node into a working CTDB clus-ter. then the CTDB cluster will become smaller and never get a chance to grow,so Lustre parallel i/o service will be �nally centralized to several nodes. thusbottlenecks will emerge among the remained nodes. that's why pCIFS needsthis feature to dynamically add a new node into a working ctdb cluster:generally, there are at least two cases to import a new CTDB node:1) when adding a new node (Lustre OST server) into current cluster24

2) the standby node restores after a Lustre failover.when adding a new node into current CTDB cluster, we might need reassignthe public ip address from one CTDB node to another. in this chapter we onlydiscuss how to add/remove a node, the ip reassign issue is already discussed inprevious chapter.the design also need address the following two major issues:1) possible races between concurrent processes (like CTDB daemon and re-covery process)2) how to deal with the remaining half in case a recovery starts during nodeaddition/removal7.2 adding a node7.2.1 new request types
• CTDB_SRVID_NODE_ADD: send to recovery master to request newnode addition
• CTDB_SRVID_NODE_ADDED: to be broadcasted to all connected nodesto notify of the successful node additinn
• CTDB_CONTROL_NODE_ADD: send to daemon from recovery pro-cess to add/set a new node to (ctdb_context)7.2.2 automatic transport connectiontransport connection and request dispatching are highly tied to one of core struc-tures: ctdb_tcp_node. this structure is allocated during startup in ctdb_tcp_initialise(transport initialization). transport connections to any other CTDB nodes arebuilt in ctdb_tcp_start (called by ctdb_start_transport) during startup.when a node is added, we need replay the startup process to allocate a newctdb_tcp_node and initialize it's i/o queue, then build a connection to thenewly added node. the whole procedure can be done manually when we detectsnew node addition or let it done in ctdb_queue_packet. the other modi�cationis to let ctdb_tcp_start only initialize one node's connection instead of all.static int ctdb_tcp_start(struct ctdb_context *ctdb,struct ctdb_node *node){ /* startup connection to this node - will happen on next loop */struct ctdb_tcp_node *tnode = talloc_get_type(node->private_data, struct ctdb_tcp_node);if (!ctdb_same_address(&ctdb->address, &node->address)) {event_add_timed(ctdb->ev, tnode, timeval_zero(),ctdb_tcp_node_connect, node);}return 0; 25

}void ctdb_queue_packet(struct ctdb_context *ctdb,struct ctdb_req_header *hdr){ ...node = ctdb->nodes[hdr->destnode];/* initialize node's transport engin if it's not initialized */if (NULL == node->private_data) {if (ctdb->methods->add_node(node)) {ctdb_fatal(ctdb, "Unable initialize transport node\n");}if (ctdb->metods->start(ctdb, node)) {ctdb_fatal(ctdb, "Unable build transport connection\n");}}if (hdr->destnode == ctdb->vnn) {ctdb_defer_packet(ctdb, hdr);} else {node->tx_cnt++;if (ctdb->methods->queue_pkt(node,(uint8_t *)hdr,hdr->length)!= 0) {ctdb_fatal(ctdb, "Unable to queue packet\n");}}}7.2.3 code logic1. when starting a new ctdb node, we need specify a delegate parameter withthe ip addresses of any nodes in current CTDB cluster which we want thenew node to join in. for example:ctdbd �delegate=192.168.0.1,192.168.0.2 ...the �rst delegate node is 192.168.0.1, the second candidate is 192.168.0.22. the new node will do normal startup and load it's own ip addresses andother settings from con�g �les.3. in monitor_cluster of it's recovery process, it will try to connect to thedelegate node instead of doing normal monitoring.4. then send a request of CTDB_SRVID_NODE_ADD to the delegate, withit's own settings packed into the request package.5. the new node will wait for response upon a timeout event26

6. the delegate will transfer the request to the recovery master. then thedelegate's task is done.7. the recovery master gets the node insertion request from the delegate nodeand get the service handler (handler_node_add) called to process thisrequest. the handler callback will �rst check current nodes map whetheror not the new node already exists. if the node already exists it just return8. add the new node structure into the daemon's ctdb_context (CTDB_CONTROL_NODE_ADD).the daemon will allocate a new ctdb_node structure and reallocate ctdb_context->nodes pointer array9. recovery copies all nodes map and vnn map to the new ctdb nodes (SET_NODESMAP/SET_VNNMAP)10. the new node will update the latest nodes/vnn map from recovery master,then build transport connections to these nodes11. recovery master copies all databases to the new target node12. the new node update it's tdb databases13. now the new node addition is completed. recovery master then broadcastsCTDB_SRVID_NODE_ADDED to all active nodes14. recovery master can go to the normal recovery monitor process15. all nodes include the new, recovery master and other nodes will receivethe CTDB_SRVID_NODE_ADDED message. then handler routine han-dler_node_added will add the new node into ctdb_context's array andthen initialize a tcp connnection to the new node. for recovery master,the node is already added, so this task will be skipped. for the new node,the handler callback is only to cancel the timeout event (step 5).16. if the new node gets timeout, it will try next delegate node in parameterlist17. after the node successfully joins into the CTDB cluster, it need issue anew request of CTDB_SRVID_REQUEST_IP to takeover it's own ipaddress from another CTDB node.7.2.4 issues1. possible access con�ict between concurrent processes (daemon, recovery,client)we use CTDB_SRVID_XXX request instead of CTDB_CONTROL_XXX,etc. the handling of CTDB_SRIV_XXX request is done in recovery pro-cess, then the normal recovery monitor process is to be blocked. and anyrequest from recovery process to daemon will block daemon's thread too.this mechanism can serialize most of the critical operations synchronously.the communication between CTDB daemon and CTDB client (ex: Samba)won't induce races to what we concern during node addition.27

2. if recovery master dies before step 13, then new CTDB node will time out.it will try to connect again or try next delegate node. it might time outagain while election is done during CTDB cluster, but it won't bother.3. if one normal CTDB node dies, a cluster recovery will be performed afterthe new node is added.4. if the new node dies, cluster recovery will be triggerred too. but wecan avoid such a costing recovery before step 13 by removing the newnode smartly. we could also let CTDB recovery to handle the dead nodescleanup.7.3 removing a node7.3.1 overview and requirementsthis part can be optional since we can remove a node easily via BAN or just un-plug it from network etc. implementation of node removal is to make interfacesset complete. we can refer this part as a forcibly removing method, comparingto BAN or unplug. actually after all public ips and client connections migratedto other nodes, this node only acts as an observer rather than a member of thewhole CTDB cluster.7.3.2 requests to remove a node
• CTDB_SRVID_NODE_REMOVE: be broadcasted to all (from any node)to forcely remove a node
• CTDB_CONTROL_NODE_REMOVE: send to daemon by it's recoveryprocess to remove a node from ctdb_context7.3.3 code logic1. user issues CTDB_SRVID_NODE_REMOVE with ctdb utility on anynode2. all CTDB nodes will call handler_node_remove to process this request inthe recovery process3. recovery process will block normal monitor process and call CTDB_CONTROL_NODE_REMOVEto daemon4. daemon will cleanup all the contexts of the node (ctdb_node, ctdb_tcp_node,queue, pending requests), then return to recovery process5. the recover process is to be waken and then do normal monitor process

28

8 future improvement8.1 structure re-arrangementctdb_context is commonly used by both client and daemon. it's better tokeep only all the common structures in ctdb_context and pick out the speci�cmembers for ctdb_daemon, ctdb_client or ctdb_recoverd8.2 recovery mechanism enhancement1. store context/state in tdb database instead of tcp/broadcasting, sincetdb database should be more reliable than transport messages (with-out replies).for example, client tcp connection session can be stored ina database instead of the ctdb_context structure.2. dead node cleanup during recovery process: clean all dead nodes ratherthan mark it as disconnected8.3 minor bugs1. ctdb->ev re-initialization in ctdb_cmdline_init and ctdb_start_daemon.the former is overridden.2. timed events won't work if there's no fde objects.static int std_event_loop_wait(struct event_context *ev) {....../* should check both ev->te and std_ev->fd_events */while (std_ev->fd_events && std_ev->exit_code == 0) {if (std_event_loop_once(ev) != 0) {break;}}......}9 References1. http://ctdb.samba.org2. http://arch.lustre.org/index.php?title=CTDB_with_Lustre
29

