Ext3 Inode Versioning

Andreas Dilger

2006-12-13

1 Introduction

This design is focussed on the on-disk implementation ofiéneersions for the ext3
filesystem used by Lustre. Some parts of the design are mamdapecifically those
in the Requirements section) while others are includeddeioto make the implemen-
tation more generally useful and acceptable to the ext3 aamitgnat large. Prototype
implementations of parts of this design have previouslynb&eculated on the ext2-
devel mailing list, though no full implementation exists.

This design document was based on the vanilla 2.6.18 keonetss and patches for
particular kernels may vary in the functions where the ineelsions are set.

2 Requirements

Theinode versionis a persistent (on-disk), monotonically increasing ietegtored

with each inode to track any changes made to an inode. It isatptired that two

changes to the same inode have sequential version numbérshat two versions of
one inode can be compared to order two or more changes totids relative to each
other.

The inode version is also be used to compare the relativefivaiibns between two
different inodes, and as such must be based on a global vadtesad of a per-inode
value.

3 Functional specification

The inode version can be implemented as a 64-bit integernuetel This version
needs to be stored atomically with each inode update on diskat it is available to
determine whether changes to an inode are on disk afterl.cras

3 FUNCTIONAL SPECIFICATION

In memory the version is stored as a full 64-bit field in the3egtivate part of the
inodei_fs_version. Thisis kept separate from the generic inadeersion, which
is modified by the kernel and would conflict with Lustre’s iroekrsion.

The on-disk representation of the inode version is as falow

struct ext3_inode {
__u32 osdl.linux1.1_i_reservedl; /* this is low 32 bits of version */

__lel6 i_extr6_isize;

__ul6é i_padl;

__le32 i_ctime_extra;

__le32 i_mtime_extra;

__le32 i_atime_extra;

__1le32 i_crtime;

__le32 i_crtime_extra;

__le32 i_version_hi; /* this is the high 30 bits of version */
}
#define i_disk_version osdl.linuxl.l_i_reservedl
#define EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE 0x0040

Thei_disk_versionfield holds the low 32 bits of the version, and is always guaran
teed to be present as it is in the “original” part of the ext3de. Thei_version_hi
field holds the high 32-bits of the version on disk and willmatly be present, but in
certain circumstances (e.g. old filesystems that didn’eHaxge enough inodes, or all
of the EA space is full) it is possible that this field cannosbzred on disk.

In ext3_do_update_inode() the version is stored to disk as follows:

#define EXT3_EPOCH_BITS 2

#define EXT3_EPOCH_MASK ((1 << EXT3_EPOCH_BITS) - 1)

#define EXT3_NSEC_MASK (“OUL << EXT3_EPOCH_BITS)
raw_inode->i_disk_version = cpu_to_le32(ei->i_fs_version & Oxffffffff);
if (ei->i_extra_isize) {

ext3_expand_extra_isize(raw_inode, offsetof(i_version_hi) - EXT3_GOOD_OLD_INODE_SIZ
if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > offsetof(i_version_hi))
raw_inode->i_version_hi = cpu_to_le32(ei->i_fsversion >> 32);

In ext3_read_inode() the version is read from disk as follows:

ei->i_fs_version = le32_to_cpu(raw_inode->i_disk_version);

3 FUNCTIONAL SPECIFICATION

if (EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {

if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > offsetof(i_version_hi))
ei->i_fs_version |= (__u64)(le32_to_cpu(raw_inode->i_version_hi) << 32);

3

The ext3 filesystem code needs the ability to increase thia extde size for existing
inodes that may have extra_isizebelow the limit needed to stotle crtime_extra
(or other extra extra inode fields), so we need a helper fond¢t shift any EAs be-
yond the curreni _extra_isize to make room for the fixed fields. This would only
be necessary for files created before this feature was ingoltad:

int ext3_expand_extra_isize(struct ext3_inode_info *ei, struct ext3_inode *raw_inode,
int new_extra_isize)

{
if (new_extra_isize > inode->i_extra_isize)
return 0O;
if (no EA data)
ei->i_extra_isize = new_extra_isize;
memset ((char *)raw_inode + EXT3_GOOD_OLD_INODE_SIZE, O, new_extra_isize);
return 0O;
shift EA data;
ei->i_extra_isize = sb->s_want_extra_isize; /* >= offsetof(i_version_hi) */
}

A new Lustre filesystem method should be created to get thaeimersion:

__ub4 fsfilt_ext3_get_version(struct inode *inode)
{
return EXT3_I(inode)->i_fs_version;

}

Another Lustre filesystem method should be created to sefettston of an inode:

void fsfilt_ext3_set_version(struct inode *inode

{

u64 new_version)

y ——

EXT3_I(inode)->i_fs_version = new_version;

3

This should only be called by the Lustre server before thelénis marked dirty so
that the on-disk fields can be updated before the inode watitéaistre will specify the
exact version number to use (possibly the transno for threntioperation) to avoid de-
pendencies in the on-disk filesystem. This also avoids sssfigon-invasive operations
like object defragmentation, etc from changing the inodsiea inadvertently.

6 STATE MANAGEMENT

4 Use cases

1. Theinode version needs to be saved and restored for eacdtiom to the filesys-
tem.

2. The inode version must be persistent, so an umount, renodtime filesystem
will produce the same inode version.

3. Verify that the inode expansion is handled correctly.

5 Logic specification

There are 3 distinct phases in implementation that can beleted in order to speed
initial delivery/testing:

1. addi_version_hi and preceding to extra fields #&ruct ext3_inode, and
for all new inodes irext3_new_inode () we should always create inodes with
these fixed fields already in place, assuming filesystemsdtied with large in-
odes. The inode’s new version fields need to be written toidiekt3_mark_inode_dirty().

2. add support to fsfilt_ext3 based on changes made by Zhahggri0609 to
get/set the 64-bit inode version in Lustre. The inode versictually needs to be
updated before the transaction is committed in mds_finiahsho() otherwise
the version update may not be atomic and could be lost evemgthilhe change
was actually completed.

3. add support for growing the_extra_isize on-the-fly if it is not large enough
to holdi_version_hi, including pushing one or more existing EAs from the
inode to an external EA block (preferrably not the lov_sripnd).

6 State management

6.1 State invariants

It is up to the caller to ensure that the version is monotdlyidacreasing. It is up to
the caller to store the maximum fs-wide version number arsddsed in a persistent

manner.

6.2 Scalability & performance

The actual setting of thé_version_hi andi_disk_version field is not expected
to noticably impact performance in any way. These fields kemdy being written to
disk and the inode is in-core so no extra 10 is needed.

6.3 Recovery changes 6 STATE MANAGEMENT

One potential performance impact would be if the larger enéatces extended at-
tributes out of the large inode and into a disk block. With ¢herently proposed extra

6 fields (i_version_hi in the core inode) there is not enough space in a 256-byte
inode with a LOV EA for 2 stripes. Lustre has been formattirithvé12-byte inodes

on the MDS for some time now, so hopefully the real world intpadow.

Another potential performance impact is if the additionalyihg of the inodes in order
to set the version fields. If this becomes a factor it would d&sble to mitigate this by
changing theext3_mark_inode_dirty() codepath to avoid copying the inode into
the disk buffer and instead only mark the inode dirty in meyreond have a journal
pre-commit callback copy the dirty inode(s) into the buffefore the buffer is written
to the journal at commit time. Such a pre-commit callback ma@ism would also
be useful for other planned features like nanosecond tangs$, and checksums for
inode, bitmap, and group descriptors.

6.3 Recovery changes

Any on-disk version recovery should be handled as part ahabext3 journal recov-
ery.

6.4 Locking changes

There may need to be locking of the version in the core inotteeiserver code drops
the inode lock before the version is updated and the neworersimber is not yet
available.

6.5 Disk format changes

The on-disk format of ext3 will be changed in order to storeektra inode fields.

The on-diskinode would get neiw ctime_extra,i_mtime_extra,i_atime_extra,
i_crtime, i_crtime_extra andi_version_hi fields. These fields already have
upstream approval, though no patch that uses them is yeptacte The proposal
to savei_disk_version into ostl.linuxl.1_i_reservedl is also approved up-
stream (there is a need for a similar 64-bit version numbaiH&v4).

The superblock has addedwant_extra_isizeands_need_extra_isize(allnew

inodes must have at leastneed_extra_isizebytes ofi_extra_isize.ands_want_extra_isize
if possible). This was added for the nanosecond timstanghpand should be honored

for this request.

6.6 Wire format changes

This design is only concerned with the on disk format changbe full version-based
recovery design should be consulted for any wire protocahges needed by the inode

6.7 Protocol changes 8 FOCUS FOR INSPECTIONS

version field. With the addition of on-disk nanosecond titaegs, there may be a
desire to also export these timestamps via llite to the agtins. It appears we would
need to have a CONNECT flag in order to handle this properhgrtise the clients

would have the high 32 bits of the seconds set with the naoosksc

6.7 Protocol changes

This design is only concerned with the on disk format changbe full version-based
recovery design should be consulted for the use of the eeldactame/inode version
during normal operations and recovery.

6.8 API changes

Addition of fsfilt_ext3_setversion() and fsfilt_ext3 getsion() methods. This does
not affect the kernel API, just the lustre->{ext3,Idiski&PI.

7 Alternatives

Using a numeric 32-bit integer (the nanosecond ctime) tadisguate inodes with the
same ctime seconds value was proposed by Bull for NFSv4 usis. dbesn'’t allow
meaningful comparisons between two inodes that have the stime seconds, while
the nsec field allows comparisons to within a few nsec of edbbrqassuming the
kernel clock has nanosecond accuracy). The drawback istihad is not guaranteed
to be monotonic (e.g. if the system clock is changed to some i the future and/or
then set backward) so this breaks one of the invariants éinifdde version.

8 Focus for inspections

