
Ext3 Inode Versioning

Andreas Dilger

2006-12-13

1 Introduction

This design is focussed on the on-disk implementation of inode versions for the ext3
filesystem used by Lustre. Some parts of the design are mandatory (specifically those
in the Requirements section) while others are included in order to make the implemen-
tation more generally useful and acceptable to the ext3 community at large. Prototype
implementations of parts of this design have previously been circulated on the ext2-
devel mailing list, though no full implementation exists.

This design document was based on the vanilla 2.6.18 kernel sources and patches for
particular kernels may vary in the functions where the inodeversions are set.

2 Requirements

The inode version is a persistent (on-disk), monotonically increasing integer stored
with each inode to track any changes made to an inode. It is notrequired that two
changes to the same inode have sequential version numbers, only that two versions of
one inode can be compared to order two or more changes to that inode relative to each
other.

The inode version is also be used to compare the relative modifications between two
different inodes, and as such must be based on a global value instead of a per-inode
value.

3 Functional specification

The inode version can be implemented as a 64-bit integer per inode. This version
needs to be stored atomically with each inode update on disk so that it is available to
determine whether changes to an inode are on disk after a crash.

1



3 FUNCTIONAL SPECIFICATION

In memory the version is stored as a full 64-bit field in the ext3-private part of the
inodei_fs_version. This is kept separate from the generic inodei_version, which
is modified by the kernel and would conflict with Lustre’s inode version.

The on-disk representation of the inode version is as follows:struct ext3_inode {__u32 osd1.linux1.l_i_reserved1; /* this is low 32 bits of version */::__le16 i_extr6_isize;__u16 i_pad1;__le32 i_ctime_extra;__le32 i_mtime_extra;__le32 i_atime_extra;__le32 i_crtime;__le32 i_crtime_extra;__le32 i_version_hi; /* this is the high 30 bits of version */}#define i_disk_version osd1.linux1.l_i_reserved1#define EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE 0x0040
Thei_disk_version field holds the low 32 bits of the version, and is always guaran-
teed to be present as it is in the “original” part of the ext3 inode. Thei_version_hi
field holds the high 32-bits of the version on disk and will normally be present, but in
certain circumstances (e.g. old filesystems that didn’t have large enough inodes, or all
of the EA space is full) it is possible that this field cannot bestored on disk.

In ext3_do_update_inode() the version is stored to disk as follows:#define EXT3_EPOCH_BITS 2#define EXT3_EPOCH_MASK ((1 < < EXT3_EPOCH_BITS) - 1)#define EXT3_NSEC_MASK (~0UL < < EXT3_EPOCH_BITS)raw_inode->i_disk_version = cpu_to_le32(ei->i_fs_version & 0xffffffff);if (ei->i_extra_isize) {:ext3_expand_extra_isize(raw_inode, offsetof(i_version_hi) - EXT3_GOOD_OLD_INODE_SIZE);if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > offsetof(i_version_hi))raw_inode->i_version_hi = cpu_to_le32(ei->i_fsversion > > 32);}
In ext3_read_inode() the version is read from disk as follows:ei->i_fs_version = le32_to_cpu(raw_inode->i_disk_version);

2



3 FUNCTIONAL SPECIFICATIONif (EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {:if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > offsetof(i_version_hi))ei->i_fs_version |= (__u64)(le32_to_cpu(raw_inode->i_version_hi) < < 32);}
The ext3 filesystem code needs the ability to increase the extra inode size for existing
inodes that may havei_extra_isizebelow the limit needed to storei_crtime_extra
(or other extra extra inode fields), so we need a helper function to shift any EAs be-
yond the currenti_extra_isize to make room for the fixed fields. This would only
be necessary for files created before this feature was implemented:int ext3_expand_extra_isize(struct ext3_inode_info *ei, struct ext3_inode *raw_inode,int new_extra_isize){ if (new_extra_isize > inode->i_extra_isize)return 0;if (no EA data)ei->i_extra_isize = new_extra_isize;memset((char *)raw_inode + EXT3_GOOD_OLD_INODE_SIZE, 0, new_extra_isize);return 0;shift EA data;ei->i_extra_isize = sb->s_want_extra_isize; /* >= offsetof(i_version_hi) */}
A new Lustre filesystem method should be created to get the inode version:__u64 fsfilt_ext3_get_version(struct inode *inode){ return EXT3_I(inode)->i_fs_version;}
Another Lustre filesystem method should be created to set theversion of an inode:void fsfilt_ext3_set_version(struct inode *inode, __u64 new_version){ EXT3_I(inode)->i_fs_version = new_version;}
This should only be called by the Lustre server before the inode is marked dirty so
that the on-disk fields can be updated before the inode writeout. Lustre will specify the
exact version number to use (possibly the transno for the current operation) to avoid de-
pendencies in the on-disk filesystem. This also avoids issues of non-invasive operations
like object defragmentation, etc from changing the inode version inadvertently.

3



6 STATE MANAGEMENT

4 Use cases

1. The inode version needs to be saved and restored for each operation to the filesys-
tem.

2. The inode version must be persistent, so an umount, remount of the filesystem
will produce the same inode version.

3. Verify that the inode expansion is handled correctly.

5 Logic specification

There are 3 distinct phases in implementation that can be completed in order to speed
initial delivery/testing:

1. addi_version_hi and preceding to extra fields tostruct ext3_inode, and
for all new inodes inext3_new_inode() we should always create inodes with
these fixed fields already in place, assuming filesystem is formatted with large in-
odes. The inode’s new version fields need to be written to diskin ext3_mark_inode_dirty().

2. add support to fsfilt_ext3 based on changes made by Zhang inbug 10609 to
get/set the 64-bit inode version in Lustre. The inode version actually needs to be
updated before the transaction is committed in mds_finish_transno() otherwise
the version update may not be atomic and could be lost even though the change
was actually completed.

3. add support for growing thei_extra_isize on-the-fly if it is not large enough
to holdi_version_hi, including pushing one or more existing EAs from the
inode to an external EA block (preferrably not the lov_stripe_md).

6 State management

6.1 State invariants

It is up to the caller to ensure that the version is monotonically increasing. It is up to
the caller to store the maximum fs-wide version number and isstored in a persistent
manner.

6.2 Scalability & performance

The actual setting of thei_version_hi andi_disk_version field is not expected
to noticably impact performance in any way. These fields are already being written to
disk and the inode is in-core so no extra IO is needed.

4



6.3 Recovery changes 6 STATE MANAGEMENT

One potential performance impact would be if the larger inode forces extended at-
tributes out of the large inode and into a disk block. With thecurrently proposed extra
6 fields (i_version_hi in the core inode) there is not enough space in a 256-byte
inode with a LOV EA for 2 stripes. Lustre has been formatting with 512-byte inodes
on the MDS for some time now, so hopefully the real world impact is low.

Another potential performance impact is if the additional dirtying of the inodes in order
to set the version fields. If this becomes a factor it would be possible to mitigate this by
changing theext3_mark_inode_dirty() codepath to avoid copying the inode into
the disk buffer and instead only mark the inode dirty in memory and have a journal
pre-commit callback copy the dirty inode(s) into the bufferbefore the buffer is written
to the journal at commit time. Such a pre-commit callback mechanism would also
be useful for other planned features like nanosecond timestamps, and checksums for
inode, bitmap, and group descriptors.

6.3 Recovery changes

Any on-disk version recovery should be handled as part of normal ext3 journal recov-
ery.

6.4 Locking changes

There may need to be locking of the version in the core inode ifthe server code drops
the inode lock before the version is updated and the new version number is not yet
available.

6.5 Disk format changes

The on-disk format of ext3 will be changed in order to store the extra inode fields.

The on-disk inode would get newi_ctime_extra,i_mtime_extra,i_atime_extra,i_crtime, i_crtime_extra andi_version_hi fields. These fields already have
upstream approval, though no patch that uses them is yet accepted. The proposal
to savei_disk_version into ost1.linux1.l_i_reserved1 is also approved up-
stream (there is a need for a similar 64-bit version number inNFSv4).

The superblock has addeds_want_extra_isizeands_need_extra_isize (all new
inodes must have at leasts_need_extra_isizebytes ofi_extra_isize. ands_want_extra_isize
if possible). This was added for the nanosecond timstamp patch, and should be honored
for this request.

6.6 Wire format changes

This design is only concerned with the on disk format changes. The full version-based
recovery design should be consulted for any wire protocol changes needed by the inode

5



6.7 Protocol changes 8 FOCUS FOR INSPECTIONS

version field. With the addition of on-disk nanosecond timestamps, there may be a
desire to also export these timestamps via llite to the applications. It appears we would
need to have a CONNECT flag in order to handle this properly, otherwise the clients
would have the high 32 bits of the seconds set with the nanoseconds.

6.7 Protocol changes

This design is only concerned with the on disk format changes. The full version-based
recovery design should be consulted for the use of the enhanced ctime/inode version
during normal operations and recovery.

6.8 API changes

Addition of fsfilt_ext3_setversion() and fsfilt_ext3_getversion() methods. This does
not affect the kernel API, just the lustre->{ext3,ldiskfs}API.

7 Alternatives

Using a numeric 32-bit integer (the nanosecond ctime) to disambiguate inodes with the
same ctime seconds value was proposed by Bull for NFSv4 use. This doesn’t allow
meaningful comparisons between two inodes that have the same ctime seconds, while
the nsec field allows comparisons to within a few nsec of each other (assuming the
kernel clock has nanosecond accuracy). The drawback is thatctime is not guaranteed
to be monotonic (e.g. if the system clock is changed to some time in the future and/or
then set backward) so this breaks one of the invariants for the inode version.

8 Focus for inspections

6


