CMD MDS Recovery DLD

Mike Pershin

February 6, 2008

1 Introduction

This document describes recovery changes in CMD.

2 Requirements

The CMD environment requires the reviewed recovery due tonthanges in func-
tionality. The new recovery design covers the followingiss:

e recovery cases occurred due to cross-ref situations (MIDEsMecovery);

¢ land all recovery fixes from CMD2 project;

changes in recovery logic due to FID introducing;

changes due to moving network things to the MDT level,

changes in recovery API due to layered nature of the new MDS.

3 Functional specification

3.1 Recovery process in the new MDS

The recovery starts as usual - while setup process, the M&dsrast_rcvd file. If it's
size is not zero then recovery starts by settiag->mdt_recovering = 1. After that
connecting clients will send the replay request.

The new MDS consist of several layers and almost all of thera bavn partin recovery
process. There are several stages in recovery process:

1. Network recovery. MDT receives the replay requests andllea them as usual

3.2 Transaction handling in new MDS 3 FUNCTIONAL SPECIFIG@N

(a) thetransno value is taken from request. This value is used for operation
and is returned back;

(b) mdt_handle() receives the request and processes them in ordeaafno.

2. Clients finish recovery and target_finish_recovery(lsagls_postrecov() on
MDS OBD. The same method is defined for_device, SO it invoke post-
recovery process in all MDS layers;

3. MDD does LOV synchronize and orphan handlin@gda_postrecov ()

3.2 Transaction handling in new MDS

The layering nature of the new MDS implies that transacticars be done in MDD

layer only. But other layers like MDT and CMM need to write gistent data in sev-
eral cases. The transaction callbacks were designed tidersuch capability. There
are three callbacks that every layer can register and usgt; stop and commit one.
During start callback it is possible to increase the numlb&tacks involved in trans-

action. The stop callback is need to write any additionasiségnt data in the current
transaction. The commit callback is used in cases where samaeshould be updated
when transaction is committed.

The recovery in CMD uses all of these callbacks.

Each transaction in new MDS has a context - the set of valuéshvelne pre-allocated

by every layers if needed. This contextis initialized whamsaction starts and finished
when it is committed. The transaction context is used tceshoy values which exists

while transaction exists.

3.2.1 Transno handling

The transno variable is used to track transactions, every new trarwadtas own
transno humber which is returned to the client. In new MDT layer th@nsno han-
dling is encapsulated in transaction callbacks.

1. In the stop callback:

(@) if mdt_thread_info contain thetransno !'= NULL already then this is re-
play case and thatransno will be used;

(b) otherwise th@dt->last_transno value is taken asransno and increased;

2. the takenrransno is stored instruct mdt_thread_info for further usage and is
stored also iktruct mdt_txn_info for commit callback;

3. when the request handling is finished in MDT, the reply epared an@ransno
is taken frommdt_thread_info () back and written to the reply;

4. when transaction is committed the MDT commit callbaclet¢ansno value
frommdt_txn_info() and uses itto updaifit->last_committed vValue if needed.

3.3 Reconstruction 3 FUNCTIONAL SPECIFICATION

3.2.2 LAST_RCVD update

The LAST_RCVD file should be updated for recovery. This sidaéd done at the end
of any new transaction and the stop callback is natural diacthis. The MDT stop
callback reads and updates the LAST_RCVD file in the same eraambefore. Also,
the start callback is used to reserve enough space in tittorshandle to d@.AST_RCVD
update.

The layered MDS introduces one problem with LAST_RCVD updadhe result code
should be written into record but there is no last result catdiae time of calling the
stop_callback and also that result code should be passedtinead to the callback
somehow.

The result code will be passed througita_key in themdd_trans_stop() method. The
stop callback will use this value while updating the LAST \RZ This implies that the
'rc’ code from MDD operation shouldn’t be changed after imgtto the LAST_RCVD.

Note: In some cases, e.g. open() the result code after transastiopped could be
modified by consequent operations like mdt_mfd_open(), Bltds is ok, while
reconstruct we will repeat these steps again and result widdee updated in
the same manner. The important thing with storing 'rc’ isttihas result of
operation which change persistent data and cannot be egpeate done, that
'rc’ is needed to know persistent state. All other operatioan be just repeated.

3.2.3 Last committed transaction update

In normal operation the last_committed value is managdtaMDT commit callback.
If committed transno is higher than mdt->last_committeldedhen last_committed =
transno. The last committed value is returned to the cliftat that, so client can purge
the committed requests from replay queue.

3.3 Reconstruction

The MDT contains the methods for reconstruction of the retpueDuring reconstruc-
tion in the all cases theasT_rcVD is read and result code is got from it. This is enough
for most reconstruction cases, but some needs more workdoz

create, setattr - get attributes. If object is remote one - retuBREMOTE to the client,
so it will request the attributes from remote server.

open - most complex case for reconstruction. Intent dispositi@ine is saved also in
LAST_RCVD and is used with result code while reconstruction. If file wesated
while open, the its attributes and lov data are returned.offe®() recovery is a
matter of separated DLD.

unlink, link, rename, close - return only result of operation fromasT_RCVD

3.4 Replay changes 4 USE CASES

3.4 Replay changes

While replaying the stop callback will usgansno from the request. This is the only
difference with normal case.

3.4.1 FID and replay

Replay functionality on the MDS looks similar to the usuakggions in the most
cases and reuse the usual methods greatly because of FighdéRie open/create
replay becomes simpler due to the fact that client alwaysvenelD for open/create
operation so there is no separate code-path for replay tqesa

4 Use cases

All use cases are intended to 11/17 tests. The cluster iedtap and clients runs
multiple applications. One of the nodes is failed and othagtas/clients shouldn’t be
affected. Due to requirements of test 17 the recovery tinoalshbe not more than 5
minutes in each case.

4.1 Client failure
Client s failed and normal operations should continue eDtfients and servers should

receive no errors. The major areas in MDS recovery in tha ags closing all opened
files from that client and reading LAST_RCVD records upororetection.

4.2 Singe MDS failure in CMD

One MDS is failed, recovered and normal operations contiAll@spects of recovery
can happens here - resent/reconstruct, replay. This is #jerrase case for MDS
recovery.

4.3 OST failure

OST is failed and recovery is started, clients should getrrmre

5 LOGIC SPECIFICATION

5 Logic specification

5.1 Recovery process

5.1.1 Starting the recovery

static int mdt_init_clients_data(const struct lu_context *ctxt,
struct mdt_device *mdt,
unsigned long last_rcvd_size)

struct mdt_server_data *msd = &mdt->mdt_msd;
struct mdt_client_data *mcd;
struct obd_device *obd = mdt->mdt_md_dev.md_lu_dev.ld_obd;
loff_t off = 0;
int cl_idx;
int rc = 0;
ENTRY;
/* When we do a clean MDS shutdown, we save the last_transno into
* the header. If we find clients with higher last_transno values
* then those clients may need recovery done. */
0BD_ALLOC_PTR(mcd) ;
if (!'mcd)
RETURN(rc = -ENOMEM) ;
for (cl_idx = 0, off = le32_to_cpu(msd->msd_client_start);
off < last_rcvd_size; cl_idx++) {
__u64 last_transno;
struct obd_export *exp;
struct mdt_export_data *med;
off = le32_to_cpu(msd->msd_client_start) +
cl_idx * lel6_to_cpu(msd->msd_client_size);
rc = mdt->mdt_last_rcvd->do_body_ops->dbo_read(ctxt,
mdt->mdt_last_rcvd,
mcd,
sizeof (¥mcd), &off);
if (rc == sizeof (¥mcd))
rc = 0;
else if (rc >= 0)
rc = -EFAULT;
if (rc) {
CERROR("error reading MDS Y%s idx %d, off %1lu: rc %d\n",
LAST_RCVD, cl_idx, off, rc);
break; /* read error shouldn’t cause startup to fail */
}
if (mcd->mcd_uuid[0] == ’\0’) {
CDEBUG(D_INFO, "skipping zeroed client at offset ’%d\n",

5.1 Recovery process

5 LOGIC SPECIFICATION

}

err_client:

cl_idx);
continue;
}
last_transno = le64_to_cpu(mcd->mcd_last_transno) ;
/* These exports are cleaned up by mdt_obd_disconnect(), so
* they need to be set up like real exports as
* mdt_obd_connect() does.
*/
CDEBUG(D_HA, "RCVRNG CLIENT uuid: %s idx: %d lr: "LPU64
" srv lr: "LPU64" 1x: "LPU64"\n", mcd->mcd_uuid, cl_idx,
last_transno, le64_to_cpu(msd->msd_last_transno),
le64_to_cpu(mcd->mcd_last_xid));
exp = class_new_export(obd, (struct obd_uuid *)mcd->mcd_uuid);
if (IS_ERR(exp))
GOTO(err_client, rc = PTR_ERR(exp));
med = &exp->exp_mdt_data;
med->med_mcd = mcd;
rc = mdt_client_add(ctxt, mdt, med, cl_idx);
LASSERTF (rc == 0, "rc = %d\n", rc); /* can’t fail existing */
exp->exp_replay_needed = 1;
exp->exp_connecting = 0;
obd->obd_recoverable_clients++;
obd->obd_max_recoverable_clients++;
class_export_put (exp) ;
CDEBUG(D_OTHER, "client at idx %d has last_transno = "LPU64"\n",
cl_idx, last_transno);
spin_lock(&mdt->mdt_transno_lock);
if (last_transno > mdt->mdt_last_transno)
mdt->mdt_last_transno = last_transno;
spin_unlock (&mdt->mdt_transno_lock);

OBD_FREE_PTR (mcd) ;
RETURN (rc) ;

3

static int mdt_init_server_data(const struct lu_context *ctxt,

struct mdt_device *mdt)

{
struct mdt_server_data *msd = &mdt->mdt_msd;
struct mdt_client_data *mcd = NULL;
struct obd_device *¥obd = mdt->mdt_md_dev.md_lu_dev.1ld_obd;
loff_t off = 0;
unsigned long last_rcvd_size = 0;
__u6b4 mount_count;
int cl_idx;
int rc;

5.1 Recovery process 5 LOGIC SPECIFICATION

struct mdt_thread_info *info;

struct dt_object *last = mdt->mdt_last_rcvd;
struct lu_attr *la;
ENTRY;

last_rcvd_size = la->la_size;
if (last_rcvd_size == 0) {
LCONSOLE_WARN("%s: new disk, initializing\n", obd->obd_name) ;
memcpy (msd->msd_uuid, obd->obd_uuid.uuid,sizeof (msd->msd_uuid));
msd->msd_last_transno = 0;
mount_count = msd->msd_mount_count = O;
msd->msd_server_size = cpu_to_le32(LR_SERVER_SIZE);
msd->msd_client_start = cpu_to_le32(LR_CLIENT_START);
msd->msd_client_size = cpu_to_lel6(LR_CLIENT_SIZE);
msd->msd_feature_rocompat = cpu_to_le32(0BD_ROCOMPAT_LOVOBJID);
msd->msd_feature_incompat = cpu_to_le32(0BD_INCOMPAT_MDT |
OBD_INCOMPAT_COMMON_LR) ;
} else {
rc = last->do_body_ops->dbo_read(ctxt, last, msd,
sizeof (¥msd), &off);
if (rc == sizeof (*msd))
rc = 0;
else if (rc >= 0)
rc = -EFAULT;
if (rc) {
CERROR("error reading MDS ¥%s: rc %d\n", LAST_RCVD, rc);
GOTO(out, rc);
}
if (strcmp(msd->msd_uuid, obd->obd_uuid.uuid) != 0) {
LCONSOLE_ERROR("Trying to start OBD %s using the wrong"
" disk %s. Were the /dev/ assignments "
"rearranged?\n",
obd->obd_uuid.uuid, msd->msd_uuid);
GOTO(out, rc = -EINVAL);
}

mount_count = le64_to_cpu(msd->msd_mount_count) ;

mdt_init_clients_data(ctxt, mdt, last_rcvd_size);
obd->obd_last_committed = mdt->mdt_last_transno;
if (obd->obd_recoverable_clients) {
CWARN("RECOVERY: service %s, %d recoverable clients, "
"last_transno "LPU64"\n", obd->obd_name,

5.1 Recovery process 5 LOGIC SPECIFICATION

obd->obd_recoverable_clients, mdt->mdt_last_transno);
obd->obd_next_recovery_transno = obd->obd_last_committed + 1;
obd->obd_recovering = 1;
obd->obd_recovery_start = CURRENT_SECONDS;
/* Only used for lprocfs_status */
obd->obd_recovery_end = obd->obd_recovery_start +
OBD_RECOVERY_TIMEOUT;

Recovery starts if thebd->obd_recoverable_clients > 0. Theobd—>obd_recovering
is set in 1 until recovery will finish anebd_postrecov() will be invoked.

5.1.2 Post-recovery

New method fonu_device is defined -lu_post_recovery().

struct lu_device_operations {
struct lu_object *(x1ldo_object_alloc) (const struct lu_context *ctx,
const struct lu_object_header *h,
struct lu_device *d);
int (x1ldo_process_config) (const struct lu_context *ctx,
struct lu_device *, struct lustre_cfg *);
int (xldo_recovery_complete) (const struct lu_context *ctx,
struct lu_device *)

};

The MDD will use this to finish recovery process by doing lowsronize and de-
stroying the unlinked objects on OST.

int mdd_recovery_complete(const struct lu_context *ctx, struct lu_device *1d)

{

struct mdd_device *mdd = lu2mdd_dev(1ld);
struct obd_device *obd = mdd2_obd(mdd) ;
rc = mdd_lov_set_nextid(ctx, mdd);
if (rc) {
CERROR("%s: mdd_lov_set_nextid failed %d\n",
obd->obd_name, rc);
GOTO(out, rc);

}
rc = mdd_cleanup_unlink llog(ctx, mdd);

obd_notify(obd->u.mds.mds_osc_obd, NULL,
obd->obd_async_recov 7 OBD_NOTIFY_SYNC_NONBLOCK :

5.2 Handling the:ransno value 5 LOGIC SPECIFICATION

OBD_NOTIFY_SYNC, NULL);
RETURN (rc) ;

OSD will use that method to invoke orphans cleanup on bottasytem.

int osd_recovery_complete(const struct lu_context *ctx, struct lu_device *1d)

{
struct osd_device *osd = lu2osd_dev(1ld);
int rc;
/* recovery is done, so all re-opens are done,
opened orphans are pinned
and only non-opened orphans will be deleted */
rc = ldiskfs_orphans_cleanup(...);
return rc;
}

5.2 Handling the transno value

static int mdt_txn_stop_cb(const struct lu_context *ctx,
struct dt_device *dev,
struct thandle *txn, void *cookie)

struct mdt_device *mdt = cookie;

struct mdt_txn_info *txni;

struct mdt_thread_info *mti;

int rc;

/* transno is in two contexts - for commit_cb and for thread */
txni = lu_context_key_get(&txn->th_ctx, &mdt_txn_key);

mti = lu_context_key_get(ctx, &mdt_thread_key);

spin_lock(&mdt->mdt_transno_lock) ;
if (mti->mti_transno == 0) {

mti->mti_transno = ++ mdt->mdt_last_transno;
} else {

/* replay case */

if (mti->mti_transno > mdt->mdt_last_transno)

mdt->mdt_last_transno = mti->mti_transno;

}
spin_unlock (&mdt->mdt_transno_lock) ;
/* save transno for the commit callback */
txni->txi_transno = mti->mti_transno;
/* Update last_rcvd records with latest transaction data */
rc = mdt_update_last_rcvd(mti, dev, thandle);

5.3 Updating the.AST_RCVD 5 LOGIC SPECIFICATION

return rc;
}
/* commit callback is used to update last_commited value */
static int mdt_txn_commit_cb(const struct lu_context *ctx,
struct dt_device *dev,
struct thandle *txn, void *cookie)

struct mdt_device *mdt = cookie;
struct obd_device *obd = md21lu_dev(&mdt->mdt_md_dev)->1d_obd;
struct mdt_txn_info *txi;
txi = lu_context_key_get (&txn->th_ctx, &mdt_tzn_key);
spin_lock(&mdt->mdt_last_committed_lock) ;
if (txi->txi_transno > mdt->mdt_last_committed) {
mdt->mdt_last_committed = txi->txi_transno;
spin_unlock (&mdt->mdt_last_committed_lock);
ptlrpc_commit_replies(obd) ;
} else
spin_unlock (&mdt->mdt_last_committed_lock);
CDEBUG(D_HA, "%s: transno "LPD64" committed\n",
obd->obd_name, txi->txi_transno);
return 0O;

5.3 Updating theLasrt_rcvp

enum {
MDT_TXN_LAST_RCVD_CREDITS = 3
1
/* add credits for last_rcvd update */
static int mdt_txn_start_cb(const struct lu_context *ctx,
struct dt_device *dev,
struct txn_param *param, void *cookie)

param->tp_credits += MDT_TXN_LAST_RCVD_CREDITS;
return 0O;

static int mdt_read_last_rcvd(struct mdt_thread_info *info,
struct mdt_client_data *mcd, loff_t *off)

struct mdt_device *mdt = info->mti_mdt;

int rc;

rc = mdt->mdt_last_rcvd->do_body_ops->dbo_read(info->mti_ctxt,
mdt->mdt_last_rcvd,
mcd, sizeof (*mcd),

10

5.3 Updating the.AST_RCVD 5 LOGIC SPECIFICATION

off);
if (rc == sizeof (*mcd))
rc = 0;
else if (rc >= 0)
rc = -EFAULT;
return rc;
}
static int mdt_write_last_rcvd(struct mdt_thread_info *info,
struct mdt_client_data *mcd,
loff_t *off, struct thandle *th)

{
struct mdt_device *mdt = info->mti_mdt;
int rc;
rc = mdt->mdt_last_rcvd->do_body_ops->dbo_write(info->mti_ctxt,
mdt->mdt_last_rcvd,
mcd, sizeof (*mcd),
off, th);
if (rc == sizeof (*mcd))
rc = 0;
else if (rc >= 0)
rc = -EFAULT;
return rc;
}

int mdt_update_last_rcvd(struct mdt_thread_info *info, struct dt_device *dt,
struct thandle *th)
{
struct mdt_device *mdt = info->mti_mdt;
struct ptlrpc_request *req = mdt_info_req(info);
struct mdt_export_data *med = &req->rq_export->exp_mdt_data;
struct mdt_client_data *mcd = med->med_mcd;
loff_t off;
int err;
__s832 rc = th->th_result;

ENTRY;
/* if the export has already been failed, we have no last_rcvd slot */
if (req->rq_export->exp_failed) {

CWARN("commit transaction for disconnected client %s: rc %d\n",

req->rq_export->exp_client_uuid.uuid, rc);
if (rc == 0)
rc = -ENOTCONN;

RETURN (rc) ;
}
off = med->med_lr_off;
down (&mdt->mdt_mcd_lock) ;
mcd->mcd_last_transno = cpu_to_le64(info->mti_transno);

11

5.4 Resent and reconstruction 5 LOGIC SPECIFICATION

mcd->mcd_last_xid = cpu_to_le64(req->rq_xid);
mcd->mcd_last_result = cpu_to_le32(rc);
mcd->mcd_last_data = cpu_to_le32(op_data);

if (off <= 0) {
CERROR("client idx %d has offset %11d\n", med->med_lr_idx, off);
err = -EINVAL;

} else {
err = mdt_write_last_rcvd(info, mcd, &med->med_lr_off, th);

}
up (&mdt->mdt_mcd_lock) ;
RETURN (err) ;

5.4 Resent and reconstruction

Reconstruction methods are the same as in old MDS but thaysarg new API.

5.4.1 Generic reconstruct

Most of the operations, e.g. link(), unlink(), rename() healy generic reconstruct:

void mdt_reconstruct_generic(struct lu_context *ctxt, struct ptlrpc_request *req)

{
struct mdt_export_data *med = &req->rq_export->exp_mdt_data;
mdt_req_from_mcd(req, med->med_mcd);

X

void mds_req_from_mcd(struct ptlrpc_request *req, struct mdt_client_data *mcd)

{
DEBUG_REQ(D_HA, req, "restoring transno "LPD64"/status %d",

mcd->mcd_last_transno, mcd->mcd_last_result);

req->rq_repmsg->transno = req->rq_transno = mcd->mcd_last_transno;
req->rq_repmsg->status = req->rq_status = mcd->mcd_last_result;
mds_steal_ack_locks(req);

3

5.4.2 reconstruct_create(), reconstruct_setattr()

static void reconstruct_reint_create(struct mdt_thread_info *info)
{
struct ptlrpc_request *req = mdt_info_req(info);
struct mdt_export_data *med = &req->rq_export->exp_mdt_data;

12

5.4 Resent and reconstruction 5 LOGIC SPECIFICATION

struct mdt_device *mdt = info->mti_mdt;
struct mdt_object *child;
struct mdt_body *body;
mdt_req_from_mcd(req, med->med_mcd);
if (req->rq_status)
return;
/* if no error, so child was created with requested fid */
child = mdt_object_find(info->mti_ctxt, mdt, info->mti_rr.rr_fid2);
LASSERT(!IS_ERR(child));
body = req_capsule_server_get(&info->mti_pill, &RMF_MDT_BODY);
rc = mo_attr_get (ctxt, mdt_object_child(child), &info->mti_attr);
if (rc == -EREMOTE) {
/* object was created on remote server */
body->valid |= OBD_MD_MDS;
}
mdt_pack_attr2body(body, &info->mti_attr.ma_attr,
info->mti_rr.rr_£fid2);
mdt_object_put (info->mti_ctxt, child);

3
static void reconstruct_reint_setattr(struct mdt_thread_info *info)
{
struct ptlrpc_request #*req = mdt_info_req(info);
struct mdt_export_data *med = &req->rq_export->exp_mdt_data;
struct mdt_device *mdt = info->mti_mdt;
struct mdt_object *obj;
struct mdt_body *body;
mds_req_from_mcd(req, med->med_mcd);
if (req->rq_status)
return;
body = req_capsule_server_get(&info->mti_pill, &RMF_MDT_BODY) ;
obj = mdt_object_find(info->mti_ctxt, mdt, info->mti_rr.rr_fidl);
LASSERT (!IS_ERR(obj));
mo_attr_get(ctxt, mdt_object_child(obj), &info->mti_attr);
mdt_pack_attr2body(body, &info->mti_attr.ma_attr,
info->mti_rr.rr_£fidl);
/* Don’t return 0ST-specific attributes if we didn’t just set them */
if (rec->ur_iattr.ia_valid & ATTR_SIZE)
body->valid |= OBD_MD_FLSIZE | OBD_MD_FLBLOCKS;
if (rec->ur_iattr.ia_valid & (ATTR_MTIME | ATTR_MTIME_SET))
body->valid |= OBD_MD_FLMTIME;
if (rec->ur_iattr.ia_valid & (ATTR_ATIME | ATTR_ATIME_SET))
body->valid |= OBD_MD_FLATIME;
mdt_object_put (info->mti_ctxt, obj);
3

13

6 STATE MANAGEMENT

6 State management

6.1 State invariants

FID is invariant so recovery become simpler because usesatme FID as ordinary
operations did.

14

