
CMD MDS Recovery DLD

Mike Pershin

February 6, 2008

1 Introduction

This document describes recovery changes in CMD.

2 Requirements

The CMD environment requires the reviewed recovery due to major changes in func-
tionality. The new recovery design covers the following issues:

• recovery cases occurred due to cross-ref situations (MDS-MDS recovery);

• land all recovery fixes from CMD2 project;

• changes in recovery logic due to FID introducing;

• changes due to moving network things to the MDT level;

• changes in recovery API due to layered nature of the new MDS.

3 Functional specification

3.1 Recovery process in the new MDS

The recovery starts as usual - while setup process, the MDT reads last_rcvd file. If it’s
size is not zero then recovery starts by settingmdt->mdt_recovering = 1. After that
connecting clients will send the replay request.

The new MDS consist of several layers and almost all of them have own part in recovery
process. There are several stages in recovery process:

1. Network recovery. MDT receives the replay requests and handles them as usual

1

3.2 Transaction handling in new MDS 3 FUNCTIONAL SPECIFICATION

(a) thetransno value is taken from request. This value is used for operation
and is returned back;

(b) mdt_handle() receives the request and processes them in order oftransno.

2. Clients finish recovery and target_finish_recovery() calls mds_postrecov() on
MDS OBD. The same method is defined forlu_device, so it invoke post-
recovery process in all MDS layers;

3. MDD does LOV synchronize and orphan handling inmdd_postrecov()
3.2 Transaction handling in new MDS

The layering nature of the new MDS implies that transactionscan be done in MDD
layer only. But other layers like MDT and CMM need to write persistent data in sev-
eral cases. The transaction callbacks were designed to provide such capability. There
are three callbacks that every layer can register and use - start, stop and commit one.
During start callback it is possible to increase the number of blocks involved in trans-
action. The stop callback is need to write any additional persistent data in the current
transaction. The commit callback is used in cases where somedata should be updated
when transaction is committed.

The recovery in CMD uses all of these callbacks.

Each transaction in new MDS has a context - the set of values which are pre-allocated
by every layers if needed. This context is initialized when transaction starts and finished
when it is committed. The transaction context is used to store any values which exists
while transaction exists.

3.2.1 Transno handling

The transno variable is used to track transactions, every new transaction has owntransno number which is returned to the client. In new MDT layer thetransno han-
dling is encapsulated in transaction callbacks.

1. In the stop callback:

(a) if mdt_thread_info contain thetransno != NULL already then this is re-
play case and thattransno will be used;

(b) otherwise themdt->last_transno value is taken astransno and increased;

2. the takentransno is stored instruct mdt_thread_info for further usage and is
stored also instruct mdt_txn_info for commit callback;

3. when the request handling is finished in MDT, the reply is prepared andtransno
is taken frommdt_thread_info() back and written to the reply;

4. when transaction is committed the MDT commit callback takestransno value
frommdt_txn_info() and uses it to updatemdt->last_committed value if needed.

2

3.3 Reconstruction 3 FUNCTIONAL SPECIFICATION

3.2.2 LAST_RCVD update

The LAST_RCVD file should be updated for recovery. This should be done at the end
of any new transaction and the stop callback is natural placefor this. The MDT stop
callback reads and updates the LAST_RCVD file in the same manner as before. Also,
the start callback is used to reserve enough space in transaction handle to doLAST_RCVD
update.

The layered MDS introduces one problem with LAST_RCVD update. The result code
should be written into record but there is no last result codeat the time of calling the
stop_callback and also that result code should be passed from thread to the callback
somehow.

The result code will be passed throughtxn_key in themdd_trans_stop() method. The
stop callback will use this value while updating the LAST_RCVD. This implies that the
’rc’ code from MDD operation shouldn’t be changed after writing to the LAST_RCVD.

Note: In some cases, e.g. open() the result code after transactionis stopped could be
modified by consequent operations like mdt_mfd_open(), etc. This is ok, while
reconstruct we will repeat these steps again and result codewill be updated in
the same manner. The important thing with storing ’rc’ is that it is result of
operation which change persistent data and cannot be repeated once done, that
’rc’ is needed to know persistent state. All other operations can be just repeated.

3.2.3 Last committed transaction update

In normal operation the last_committed value is managed in the MDT commit callback.
If committed transno is higher than mdt->last_committed value then last_committed =
transno. The last committed value is returned to the client after that, so client can purge
the committed requests from replay queue.

3.3 Reconstruction

The MDT contains the methods for reconstruction of the requests. During reconstruc-
tion in the all cases theLAST_RCVD is read and result code is got from it. This is enough
for most reconstruction cases, but some needs more work to bedone:

create, setattr - get attributes. If object is remote one - return-EREMOTE to the client,
so it will request the attributes from remote server.

open - most complex case for reconstruction. Intent dispositionvalue is saved also inLAST_RCVD and is used with result code while reconstruction. If file wascreated
while open, the its attributes and lov data are returned. Theopen() recovery is a
matter of separated DLD.

unlink, link, rename, close - return only result of operation fromLAST_RCVD
3

3.4 Replay changes 4 USE CASES

3.4 Replay changes

While replaying the stop callback will usetransno from the request. This is the only
difference with normal case.

3.4.1 FID and replay

Replay functionality on the MDS looks similar to the usual operations in the most
cases and reuse the usual methods greatly because of FID design. The open/create
replay becomes simpler due to the fact that client always knows FID for open/create
operation so there is no separate code-path for replay operations.

4 Use cases

All use cases are intended to 11/17 tests. The cluster is started up and clients runs
multiple applications. One of the nodes is failed and other nodes/clients shouldn’t be
affected. Due to requirements of test 17 the recovery time should be not more than 5
minutes in each case.

4.1 Client failure

Client is failed and normal operations should continue. Other clients and servers should
receive no errors. The major areas in MDS recovery in that case are closing all opened
files from that client and reading LAST_RCVD records upon reconnection.

4.2 Singe MDS failure in CMD

One MDS is failed, recovered and normal operations continue. All aspects of recovery
can happens here - resent/reconstruct, replay. This is the major use case for MDS
recovery.

4.3 OST failure

OST is failed and recovery is started, clients should get no errors.

4

5 LOGIC SPECIFICATION

5 Logic specification

5.1 Recovery process

5.1.1 Starting the recoverystatic int mdt_init_clients_data(const struct lu_context *ctxt,struct mdt_device *mdt,unsigned long last_rcvd_size){ struct mdt_server_data *msd = &mdt->mdt_msd;struct mdt_client_data *mcd;struct obd_device *obd = mdt->mdt_md_dev.md_lu_dev.ld_obd;loff_t off = 0;int cl_idx;int rc = 0;ENTRY;/* When we do a clean MDS shutdown, we save the last_transno into* the header. If we find clients with higher last_transno values* then those clients may need recovery done. */OBD_ALLOC_PTR(mcd);if (!mcd)RETURN(rc = -ENOMEM);for (cl_idx = 0, off = le32_to_cpu(msd->msd_client_start);off < last_rcvd_size; cl_idx++) {__u64 last_transno;struct obd_export *exp;struct mdt_export_data *med;off = le32_to_cpu(msd->msd_client_start) +cl_idx * le16_to_cpu(msd->msd_client_size);rc = mdt->mdt_last_rcvd->do_body_ops->dbo_read(ctxt,mdt->mdt_last_rcvd,mcd,sizeof(*mcd), &off);if (rc == sizeof(*mcd))rc = 0;else if (rc >= 0)rc = -EFAULT;if (rc) {CERROR("error reading MDS %s idx %d, off %llu: rc %d\n",LAST_RCVD, cl_idx, off, rc);break; /* read error shouldn't cause startup to fail */}if (mcd->mcd_uuid[0] == '\0') {CDEBUG(D_INFO, "skipping zeroed client at offset %d\n",
5

5.1 Recovery process 5 LOGIC SPECIFICATIONcl_idx);continue;}last_transno = le64_to_cpu(mcd->mcd_last_transno);/* These exports are cleaned up by mdt_obd_disconnect(), so* they need to be set up like real exports as* mdt_obd_connect() does.*/CDEBUG(D_HA, "RCVRNG CLIENT uuid: %s idx: %d lr: "LPU64" srv lr: "LPU64" lx: "LPU64"\n", mcd->mcd_uuid, cl_idx,last_transno, le64_to_cpu(msd->msd_last_transno),le64_to_cpu(mcd->mcd_last_xid));exp = class_new_export(obd, (struct obd_uuid *)mcd->mcd_uuid);if (IS_ERR(exp))GOTO(err_client, rc = PTR_ERR(exp));med = &exp->exp_mdt_data;med->med_mcd = mcd;rc = mdt_client_add(ctxt, mdt, med, cl_idx);LASSERTF(rc == 0, "rc = %d\n", rc); /* can't fail existing */exp->exp_replay_needed = 1;exp->exp_connecting = 0;obd->obd_recoverable_clients++;obd->obd_max_recoverable_clients++;class_export_put(exp);CDEBUG(D_OTHER, "client at idx %d has last_transno = "LPU64"\n",cl_idx, last_transno);spin_lock(&mdt->mdt_transno_lock);if (last_transno > mdt->mdt_last_transno)mdt->mdt_last_transno = last_transno;spin_unlock(&mdt->mdt_transno_lock);}err_client:OBD_FREE_PTR(mcd);RETURN(rc);}static int mdt_init_server_data(const struct lu_context *ctxt,struct mdt_device *mdt){ struct mdt_server_data *msd = &mdt->mdt_msd;struct mdt_client_data *mcd = NULL;struct obd_device *obd = mdt->mdt_md_dev.md_lu_dev.ld_obd;loff_t off = 0;unsigned long last_rcvd_size = 0;__u64 mount_count;int cl_idx;int rc;
6

5.1 Recovery process 5 LOGIC SPECIFICATIONstruct mdt_thread_info *info;struct dt_object *last = mdt->mdt_last_rcvd;struct lu_attr *la;ENTRY;...last_rcvd_size = la->la_size;if (last_rcvd_size == 0) {LCONSOLE_WARN("%s: new disk, initializing\n", obd->obd_name);memcpy(msd->msd_uuid, obd->obd_uuid.uuid,sizeof(msd->msd_uuid));msd->msd_last_transno = 0;mount_count = msd->msd_mount_count = 0;msd->msd_server_size = cpu_to_le32(LR_SERVER_SIZE);msd->msd_client_start = cpu_to_le32(LR_CLIENT_START);msd->msd_client_size = cpu_to_le16(LR_CLIENT_SIZE);msd->msd_feature_rocompat = cpu_to_le32(OBD_ROCOMPAT_LOVOBJID);msd->msd_feature_incompat = cpu_to_le32(OBD_INCOMPAT_MDT |OBD_INCOMPAT_COMMON_LR);} else {rc = last->do_body_ops->dbo_read(ctxt, last, msd,sizeof(*msd), &off);if (rc == sizeof(*msd))rc = 0;else if (rc >= 0)rc = -EFAULT;if (rc) {CERROR("error reading MDS %s: rc %d\n", LAST_RCVD, rc);GOTO(out, rc);}if (strcmp(msd->msd_uuid, obd->obd_uuid.uuid) != 0) {LCONSOLE_ERROR("Trying to start OBD %s using the wrong"" disk %s. Were the /dev/ assignments ""rearranged?\n",obd->obd_uuid.uuid, msd->msd_uuid);GOTO(out, rc = -EINVAL);}mount_count = le64_to_cpu(msd->msd_mount_count);}...mdt_init_clients_data(ctxt, mdt, last_rcvd_size);obd->obd_last_committed = mdt->mdt_last_transno;if (obd->obd_recoverable_clients) {CWARN("RECOVERY: service %s, %d recoverable clients, ""last_transno "LPU64"\n", obd->obd_name,
7

5.1 Recovery process 5 LOGIC SPECIFICATIONobd->obd_recoverable_clients, mdt->mdt_last_transno);obd->obd_next_recovery_transno = obd->obd_last_committed + 1;obd->obd_recovering = 1;obd->obd_recovery_start = CURRENT_SECONDS;/* Only used for lprocfs_status */obd->obd_recovery_end = obd->obd_recovery_start +OBD_RECOVERY_TIMEOUT;}
Recovery starts if theobd->obd_recoverable_clients > 0. Theobd->obd_recovering
is set in 1 until recovery will finish andobd_postrecov() will be invoked.

5.1.2 Post-recovery

New method forlu_device is defined -lu_post_recovery().struct lu_device_operations {struct lu_object *(*ldo_object_alloc)(const struct lu_context *ctx,const struct lu_object_header *h,struct lu_device *d);int (*ldo_process_config)(const struct lu_context *ctx,struct lu_device *, struct lustre_cfg *);int (*ldo_recovery_complete)(const struct lu_context *ctx,struct lu_device *)};
The MDD will use this to finish recovery process by doing lov synchronize and de-
stroying the unlinked objects on OST.int mdd_recovery_complete(const struct lu_context *ctx, struct lu_device *ld){ struct mdd_device *mdd = lu2mdd_dev(ld);struct obd_device *obd = mdd2_obd(mdd);rc = mdd_lov_set_nextid(ctx, mdd);if (rc) {CERROR("%s: mdd_lov_set_nextid failed %d\n",obd->obd_name, rc);GOTO(out, rc);}rc = mdd_cleanup_unlink_llog(ctx, mdd);obd_notify(obd->u.mds.mds_osc_obd, NULL,obd->obd_async_recov ? OBD_NOTIFY_SYNC_NONBLOCK :

8

5.2 Handling thetransno value 5 LOGIC SPECIFICATIONOBD_NOTIFY_SYNC, NULL);RETURN(rc);}
OSD will use that method to invoke orphans cleanup on bottom filesystem.int osd_recovery_complete(const struct lu_context *ctx, struct lu_device *ld){ struct osd_device *osd = lu2osd_dev(ld);int rc;/* recovery is done, so all re-opens are done,opened orphans are pinnedand only non-opened orphans will be deleted */rc = ldiskfs_orphans_cleanup(...);return rc;}
5.2 Handling thetransno valuestatic int mdt_txn_stop_cb(const struct lu_context *ctx,struct dt_device *dev,struct thandle *txn, void *cookie){ struct mdt_device *mdt = cookie;struct mdt_txn_info *txni;struct mdt_thread_info *mti;int rc;/* transno is in two contexts - for commit_cb and for thread */txni = lu_context_key_get(&txn->th_ctx, &mdt_txn_key);mti = lu_context_key_get(ctx, &mdt_thread_key);spin_lock(&mdt->mdt_transno_lock);if (mti->mti_transno == 0) {mti->mti_transno = ++ mdt->mdt_last_transno;} else {/* replay case */if (mti->mti_transno > mdt->mdt_last_transno)mdt->mdt_last_transno = mti->mti_transno;}spin_unlock(&mdt->mdt_transno_lock);/* save transno for the commit callback */txni->txi_transno = mti->mti_transno;/* Update last_rcvd records with latest transaction data */rc = mdt_update_last_rcvd(mti, dev, thandle);

9

5.3 Updating theLAST_RCVD 5 LOGIC SPECIFICATIONreturn rc;}/* commit callback is used to update last_commited value */static int mdt_txn_commit_cb(const struct lu_context *ctx,struct dt_device *dev,struct thandle *txn, void *cookie){ struct mdt_device *mdt = cookie;struct obd_device *obd = md2lu_dev(&mdt->mdt_md_dev)->ld_obd;struct mdt_txn_info *txi;txi = lu_context_key_get(&txn->th_ctx, &mdt_txn_key);spin_lock(&mdt->mdt_last_committed_lock);if (txi->txi_transno > mdt->mdt_last_committed) {mdt->mdt_last_committed = txi->txi_transno;spin_unlock(&mdt->mdt_last_committed_lock);ptlrpc_commit_replies(obd);} else spin_unlock(&mdt->mdt_last_committed_lock);CDEBUG(D_HA, "%s: transno "LPD64" committed\n",obd->obd_name, txi->txi_transno);return 0;}
5.3 Updating theLAST_RCVDenum { MDT_TXN_LAST_RCVD_CREDITS = 3};/* add credits for last_rcvd update */static int mdt_txn_start_cb(const struct lu_context *ctx,struct dt_device *dev,struct txn_param *param, void *cookie){ param->tp_credits += MDT_TXN_LAST_RCVD_CREDITS;return 0;}static int mdt_read_last_rcvd(struct mdt_thread_info *info,struct mdt_client_data *mcd, loff_t *off){ struct mdt_device *mdt = info->mti_mdt;int rc;rc = mdt->mdt_last_rcvd->do_body_ops->dbo_read(info->mti_ctxt,mdt->mdt_last_rcvd,mcd, sizeof(*mcd),

10

5.3 Updating theLAST_RCVD 5 LOGIC SPECIFICATIONoff);if (rc == sizeof(*mcd))rc = 0;else if (rc >= 0)rc = -EFAULT;return rc;}static int mdt_write_last_rcvd(struct mdt_thread_info *info,struct mdt_client_data *mcd,loff_t *off, struct thandle *th){ struct mdt_device *mdt = info->mti_mdt;int rc;rc = mdt->mdt_last_rcvd->do_body_ops->dbo_write(info->mti_ctxt,mdt->mdt_last_rcvd,mcd, sizeof(*mcd),off, th);if (rc == sizeof(*mcd))rc = 0;else if (rc >= 0)rc = -EFAULT;return rc;}int mdt_update_last_rcvd(struct mdt_thread_info *info, struct dt_device *dt,struct thandle *th){ struct mdt_device *mdt = info->mti_mdt;struct ptlrpc_request *req = mdt_info_req(info);struct mdt_export_data *med = &req->rq_export->exp_mdt_data;struct mdt_client_data *mcd = med->med_mcd;loff_t off;int err;__s32 rc = th->th_result;ENTRY;/* if the export has already been failed, we have no last_rcvd slot */if (req->rq_export->exp_failed) {CWARN("commit transaction for disconnected client %s: rc %d\n",req->rq_export->exp_client_uuid.uuid, rc);if (rc == 0)rc = -ENOTCONN;RETURN(rc);}off = med->med_lr_off;down(&mdt->mdt_mcd_lock);mcd->mcd_last_transno = cpu_to_le64(info->mti_transno);
11

5.4 Resent and reconstruction 5 LOGIC SPECIFICATIONmcd->mcd_last_xid = cpu_to_le64(req->rq_xid);mcd->mcd_last_result = cpu_to_le32(rc);mcd->mcd_last_data = cpu_to_le32(op_data);if (off <= 0) {CERROR("client idx %d has offset %lld\n", med->med_lr_idx, off);err = -EINVAL;} else {err = mdt_write_last_rcvd(info, mcd, &med->med_lr_off, th);}up(&mdt->mdt_mcd_lock);RETURN(err);}
5.4 Resent and reconstruction

Reconstruction methods are the same as in old MDS but they areusing new API.

5.4.1 Generic reconstruct

Most of the operations, e.g. link(), unlink(), rename() need only generic reconstruct:void mdt_reconstruct_generic(struct lu_context *ctxt, struct ptlrpc_request *req){ struct mdt_export_data *med = &req->rq_export->exp_mdt_data;mdt_req_from_mcd(req, med->med_mcd);}void mds_req_from_mcd(struct ptlrpc_request *req, struct mdt_client_data *mcd){ DEBUG_REQ(D_HA, req, "restoring transno "LPD64"/status %d",mcd->mcd_last_transno, mcd->mcd_last_result);req->rq_repmsg->transno = req->rq_transno = mcd->mcd_last_transno;req->rq_repmsg->status = req->rq_status = mcd->mcd_last_result;mds_steal_ack_locks(req);}
5.4.2 reconstruct_create(), reconstruct_setattr()static void reconstruct_reint_create(struct mdt_thread_info *info){ struct ptlrpc_request *req = mdt_info_req(info);struct mdt_export_data *med = &req->rq_export->exp_mdt_data;

12

5.4 Resent and reconstruction 5 LOGIC SPECIFICATIONstruct mdt_device *mdt = info->mti_mdt;struct mdt_object *child;struct mdt_body *body;mdt_req_from_mcd(req, med->med_mcd);if (req->rq_status)return;/* if no error, so child was created with requested fid */child = mdt_object_find(info->mti_ctxt, mdt, info->mti_rr.rr_fid2);LASSERT(!IS_ERR(child));body = req_capsule_server_get(&info->mti_pill, &RMF_MDT_BODY);rc = mo_attr_get(ctxt, mdt_object_child(child), &info->mti_attr);if (rc == -EREMOTE) {/* object was created on remote server */body->valid |= OBD_MD_MDS;}mdt_pack_attr2body(body, &info->mti_attr.ma_attr,info->mti_rr.rr_fid2);mdt_object_put(info->mti_ctxt, child);}static void reconstruct_reint_setattr(struct mdt_thread_info *info){ struct ptlrpc_request *req = mdt_info_req(info);struct mdt_export_data *med = &req->rq_export->exp_mdt_data;struct mdt_device *mdt = info->mti_mdt;struct mdt_object *obj;struct mdt_body *body;mds_req_from_mcd(req, med->med_mcd);if (req->rq_status)return;body = req_capsule_server_get(&info->mti_pill, &RMF_MDT_BODY);obj = mdt_object_find(info->mti_ctxt, mdt, info->mti_rr.rr_fid1);LASSERT(!IS_ERR(obj));mo_attr_get(ctxt, mdt_object_child(obj), &info->mti_attr);mdt_pack_attr2body(body, &info->mti_attr.ma_attr,info->mti_rr.rr_fid1);/* Don't return OST-specific attributes if we didn't just set them */if (rec->ur_iattr.ia_valid & ATTR_SIZE)body->valid |= OBD_MD_FLSIZE | OBD_MD_FLBLOCKS;if (rec->ur_iattr.ia_valid & (ATTR_MTIME | ATTR_MTIME_SET))body->valid |= OBD_MD_FLMTIME;if (rec->ur_iattr.ia_valid & (ATTR_ATIME | ATTR_ATIME_SET))body->valid |= OBD_MD_FLATIME;mdt_object_put(info->mti_ctxt, obj);}
13

6 STATE MANAGEMENT

6 State management

6.1 State invariants

FID is invariant so recovery become simpler because uses thesame FID as ordinary
operations did.

14

