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cluster configuration

Cluster configuration

Sun Fire X4540 (Thor) with 2 Quad-Core AMD Opteron(tm) Processor 2356 ~64GM RAM
MDS 48 Hitachi HUA721050KLA33 SATA disks of 500.1 GB each
RAIDO array of 20 RAID1 arrays
Write Through NCQ/TCQ enabled disks
Queue depth 64
MDT Internal Journaling
Sun Fire X4540 (Thor) with 2 Quad-Core AMD Opteron(tm) Processor 2356 ~64GM RAM
0SS 4 OSS servers
7 RAIDG6 arrays with external journaling
OST Hitachi HUA721050KLA33 SATA disks
Total 70 clients. Pegasus+ blades
Clients 4 Quad-Core AMD Opteron(tm) Processor 8380 ~16GB RAM
Network  [DDR Infiniband
Lustre
versions Lustre 1.6.7.1
Lustre 1.8.0
Lustre 2.0 (1.9.170)
[Kernel IRHELS5 with 2.6.18-128.1.1.¢l5 kernel on x86_64 architecture
Tools
metabench |-C(create file ) -D (delete file) -S (stat file) -k(deleting all files after the tests)
mdsrate --create --stat --unlink
mdtest -N: stride # between neighbor tasks for file/dir stat (local=0)
-p: pre-iteration delay (in seconds)
-y' option to sync file after write
No of
files/dirs 304000
The no of clients in case of multi-clients run is 70 and no of files/dirs is 304000.
This is observed that after $NP >32, the MD performance for 1.6,1.8,2.0 seems to either
drop or doesn't scale. The client nodes are 16 CPU ( 4 Quad core AMD Opetron). It
seems are cpu get saturated at $NP=16.
1.8 and 1.6.7 performance is fairly close and the delta difference in them is small.
Lustre 2.0 scales well with increase in $NP in case of multi as well single client runs
2.0 performance in case of multi-client runs, in same dir is much better than the 1.6 or 1.8
Summary |Overall MD performance of 2.0 seems to be better compared 1.8 or 1.6.
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graphs- multi-clients
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File create operation, in same dir performs better in 2.0 than 1.6 or 1.8. Create in diff dir scales
linearly in all cases. The client is 4 Quad AMD(16 CPU), thus after 16 processes,
with the increase in $NP the performance drops.
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graphs- multi-clients

File STAT in same dir in case of 2.0 is performing well compared to 1.8 and 2.0. With increase in $NF
it scales well. STAT in diff dir is not consistent at all.
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Delete in diff dir, with increase of $NP the performance is linearly scaling. With $NP > 32 there is
a dip in performance.
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graphs- multi-clients
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MDTEST runs till a little longer than expected due to test parameter “-y — sync after write”. 2.0

Outperforms both 1.6 and 1.8 for all, dir create, stat, remove. 1.8 performs slightly better than 1.6.
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graphs- multi-clients
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2.0 performance is better compared to 1.6 and 1.8. 2.0 is also scaling well.
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graphs- multi-clients
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Overall 2.0 seems to perform better. In case file create the 1.6 better than 1.6. Unlink operation
Performance is quite sporadic .
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graphs-single client
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graphs-single client
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graphs-single client
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graphs-single client
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1.6.7.1 perf number

Multi-client Numbers
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1.6.7.1 perf number

Single Client Numbers
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1.8.0 perf numbers

Multi-client Numbers
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1.8.0 perf numbers

Single client numbers

NOTE: 1.8 MDSRATE numbers haven't been collected.
Thus the graphs you see are for 1.6 and HEAD only
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2.0 perf numbers

Multi-client Number
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2.0 perf numbers

Single Client numbers
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Observations

Notes/Observations during the test runs

In case of MDTEST, due the test param “-y = option sync file after every write”, the runs took little
longer than expected

Profiling is done with lustre-iokit/stats-collect. Dstat and oprofile has also been collected for most of
the tests

There are some problems noted with 2.0 runs, especially METABENCH, a bug(19452) has been
raised for the same.

There has been a soft-lock up bug(19398) seen during umount on 2.0.

The lustre versions used doesn't include Lian Zhen scalability patches for LNET.

No issues/problems seen on 1.8 or 1.6.7.1
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