MD Performance Analysis

D Sun.

microsystems

MDS Performance Analysis

Author: Parinay Kondekar <parinay.kondekar@sun.com>

AUTHOR Version |DATE DESCRIPTION OF DCOUMENT CHANGE

Parinay Kondekar 0.1/8" May 09 |First draft of MDS performance benchmarking
Included review comments from

Parinay Kondekar 0.2/11™ May 09 | Atul Vidwansa <Atul.Vidwansa@sun.com>

Page 1

mailto:parinay@sun.com

cluster configuration

Cluster configuration

Sun Fire X4540 (Thor) with 2 Quad-Core AMD Opteron(tm) Processor 2356 ~64GM RAM
MDS 48 Hitachi HUA721050KLA33 SATA disks of 500.1 GB each
RAIDO array of 20 RAID1 arrays
Write Through NCQ/TCQ enabled disks
Queue depth 64
MDT Internal Journaling
Sun Fire X4540 (Thor) with 2 Quad-Core AMD Opteron(tm) Processor 2356 ~64GM RAM
0SS 4 OSS servers
7 RAIDG6 arrays with external journaling
OST Hitachi HUA721050KLA33 SATA disks
Total 70 clients. Pegasus+ blades
Clients 4 Quad-Core AMD Opteron(tm) Processor 8380 ~16GB RAM
Network [DDR Infiniband
Lustre
versions Lustre 1.6.7.1
Lustre 1.8.0
Lustre 2.0 (1.9.170)
[Kernel IRHELS5 with 2.6.18-128.1.1.¢l5 kernel on x86_64 architecture
Tools
metabench |-C(create file) -D (delete file) -S (stat file) -k(deleting all files after the tests)
mdsrate --create --stat --unlink
mdtest -N: stride # between neighbor tasks for file/dir stat (local=0)
-p: pre-iteration delay (in seconds)
-y' option to sync file after write
No of
files/dirs 304000
The no of clients in case of multi-clients run is 70 and no of files/dirs is 304000.
This is observed that after $NP >32, the MD performance for 1.6,1.8,2.0 seems to either
drop or doesn't scale. The client nodes are 16 CPU (4 Quad core AMD Opetron). It
seems are cpu get saturated at $NP=16.
1.8 and 1.6.7 performance is fairly close and the delta difference in them is small.
Lustre 2.0 scales well with increase in $NP in case of multi as well single client runs
2.0 performance in case of multi-client runs, in same dir is much better than the 1.6 or 1.8
Summary |Overall MD performance of 2.0 seems to be better compared 1.8 or 1.6.

Page 2

graphs- multi-clients

METABENCH
create in diff dirr
20000
15000 - .
-1671
§ 10000 18
g <> HEAD
° 5000
0
3 7 15 31 63
no of processes
METABENCH
Create in same dir
12000 v V
v
8000 - 1671
=18
o r3 —r 7 =gy VHEAD
% 4000
g
0
3 7 15 31 63
no of processes

File create operation, in same dir performs better in 2.0 than 1.6 or 1.8. Create in diff dir scales
linearly in all cases. The client is 4 Quad AMD(16 CPU), thus after 16 processes,
with the increase in $NP the performance drops.

STAT in diff dir
30000
25000
20000
15000 -7
o V g
% 10000 V' HEAD
2 v
° 5000
0
3 7 15 31 63
no of processes
STAT in same dir
25000
20000 v v
15000 'V
-7
$ 10000 =18
V' HEAD
@ o
& 5000
\%
0
3 7 15 31 63

no of processes

Page 3

graphs- multi-clients

File STAT in same dir in case of 2.0 is performing well compared to 1.8 and 2.0. With increase in $NF
it scales well. STAT in diff dir is not consistent at all.

delete in same dir
7000
6000 . v
5000
4000
\V4 o ® -16.7.1
3000 -8
5 — m o
3 2000
° 1000
0
3 7 15 31 63
no of processes
Delete in diff dir
12000
10000 O
Vv —
8000
6000 %] -167.1
o 18
% 4000 V'HEAD
© 2000
0
3 7 15 31 63

no of processes

Delete in diff dir, with increase of $NP the performance is linearly scaling. With $NP > 32 there is
a dip in performance.

Page 4

graphs- multi-clients

MDTEST
dir create
8000 - v v !
6000 v -16.7.1
o 4000 W‘-—w -8
o ¥ HEAD
2 2000
o
0
2 4 8 16 32 64
no of processes
MDTEST
Dir remove
7000 v v v
6000 v
5000 v -167.1
4000 —1:8. ’
s 3000 v v HEAD
2 2000 Y
8 1000 & - I I
0
2 4 8 16 32 64
no of processes
MDTEST
dir stat
35000
30000
25000 Y, ey ——— —M
20000 Y, S poads
g 15000 v ¥ HEAD
2 10000 v
5000
0
2 4 8 16 32 64

no of processes

MDTEST runs till a little longer than expected due to test parameter “-y — sync after write”. 2.0

Outperforms both 1.6 and 1.8 for all, dir create, stat, remove. 1.8 performs slightly better than 1.6.

Page 5

graphs- multi-clients

MDTEST
file create
1000 v v
800
=i
g 400 v HEAD
Y
§ 200 "
o —N W
2 4 8 16 32 64
no of processes
MDTEST
file stat
30000
25000 /5\0——'—‘
20000 Vv —] 1671
15000 v 1.8
8 10000 v HEAD
2 5000
0
2 4 8 16 32 64
no of processes
MDTEST
file remove
8000 v
Ve
6000 2z
L}
4000 v v =5
§ 2000 % v o
goe— 5 O —
0
2 4 8 16 32 64

no of processes

2.0 performance is better compared to 1.6 and 1.8. 2.0 is also scaling well.

Page 6

graphs- multi-clients

MDSRATE
create
14000
12000
\V; V2
10000 v y
- 1.6.7.1
g 8000 v 1.8
% 6000 V' HEAD
o AV
© 4000
2000 il
0 ———— e
2 4 8 16 32 64
no of processes
MDSRATE
stat
250000
200000
L]
o 150000 1.6.7.1
2 = 1.8
‘2 100000 v HEAD
o
50000
0
2 4 8 16 32 64
no of processes
MDSRATE
unlink
6000 v
5000
4000 1671
8 v v 1.8
$ 3000 V 1
> HEAD
g 2000 W Vi ii Vv
. +
1000
0
2 4 8 16 32 64

no of processes

Overall 2.0 seems to perform better. In case file create the 1.6 better than 1.6. Unlink operation
Performance is quite sporadic .

Page 7

graphs-single client

METABENCH
create in diff dir
5000
v
v Va Y
4000 -16.7.1
3000 == 1.8
g 2000 7 HEAD
1000
0
3 7 15 31
no of processes
METABENCH
create in same dir
4000
3000 % /’5§. 5 5 -167.1
O 2000 \ 1.8
o
O v HEAD
= 1000
0
3 7 15 31
no of processes
METABENCH
stat in diff dir
15000
v v
10000 AV :1.2.7.1
[70] .
& 5000 r_.—< >-<¥ vV HEAD
0
3 7 15 31
no of processes
METABENCH
stat in same dir
20000 = ¥
15000 V - 1671
O 10000 ¥ HEAD
& .—_‘:%—A‘ e
= 5000
V
0
3 7 15 31

no pf processes

Page 8

graphs-single client

METABENCH
delete in diff dir
3000 —
2000 //i: - — - — :1.2.7.1
(D B
o vV-HEAD
9 1000 /
0
3 7 15 31
no of processes
METABENCH
delete in same dir
2000
V.
1500 & ii) 1671
0 1.8
1000
o v-HEAD
O
=~ 500
0
3 7 15 31
no of processes
MDTEST
dir create
4000
3000
v v v v v v V w1671
» 2000 .\.*¢'=. e
& v HEAD
1000
0
2 4 8 16 32
no of processes
MDTEST
dir stat
6000 7
5000 v \V2 Y, V v
4000 V w1671
@ 3000 .__-.\-‘.=*—- e
S 2000 V'HEAD
1000
0
2 4 8 16 32

no of processes

Page 9

graphs-single client

MDTEST
dir remove
2500
v v V-
2000 v % V w1671
o 19500 h—*—# 7 HEAD
& 1000 1.8
500
0
1 2 3 4 5 6
no of processes
MDTEST
file create
1000
800 V w1674
o 600 =18
& 400 v v HEAD
= Vv
200 Y
0 M
2 4 8 16 32 64
no of processes
MDTEST
file stat
25000
20000 Vv 2z v
-16.7.1
o 15000 v w18
& 10000 V v HEAD
5000
0
2 4 8 16 32 64
no of processes
MDTEST
file remove
3000
2500 ¥ v 7
2000 7 \V, v vV w1671
0 1500 1.8
o v HEAD
O 1000
500
0
2 4 8 16 32 64

no of processes

Page 10

graphs-single client

MDSRATE
create
3000 o
2500 > & S o >
2000 o 1.6.7.1
< 1000
500
o - [+ -1 O |
2 4 8 16 32 64
no of processes
MDSRATE
stat
50000
45000 &
40000 & O & &
35000
30000 & - 1.6.7.1
é’ 25000 & HEAD
20000 ¢
- =] - [(fF=———]
15000
10000
5000
0
2 4 8 16 32 64
no of processes
MDSRATE
unlink
9000
8000 >
7000
6000
o 5000 - 16.7.1
& 4000 & HEAD

3000 O &
2000 g\.; > & &

1000

no of processes

Page 11

1.6.7.1 perf number

Multi-client Numbers

Page 12

1.6.7.1 perf number

Single Client Numbers

Page 13

1.8.0 perf numbers

Multi-client Numbers

Page 14

1.8.0 perf numbers

Single client numbers

NOTE: 1.8 MDSRATE numbers haven't been collected.
Thus the graphs you see are for 1.6 and HEAD only

Page 15

2.0 perf numbers

Multi-client Number

Page 16

2.0 perf numbers

Single Client numbers

Page 17

Observations

Notes/Observations during the test runs

In case of MDTEST, due the test param “-y = option sync file after every write”, the runs took little
longer than expected

Profiling is done with lustre-iokit/stats-collect. Dstat and oprofile has also been collected for most of
the tests

There are some problems noted with 2.0 runs, especially METABENCH, a bug(19452) has been
raised for the same.

There has been a soft-lock up bug(19398) seen during umount on 2.0.

The lustre versions used doesn't include Lian Zhen scalability patches for LNET.

No issues/problems seen on 1.8 or 1.6.7.1

Page 18

	MD Performance Analysis
	cluster configuration
	graphs- multi-clients
	graphs-single client
	1.6.7.1 perf number
	1.8.0 perf numbers
	2.0 perf numbers
	Observations

