
FID HLDYury Umanets20th January 2006Contents1 Introduction 21.1 De�nitions . 22 Requirements 32.1 Fid structure . 32.2 FID using in clients . 42.3 Fids using in DLM . 42.4 Fids management . 42.5 Consistency & compatibility . 52.6 Fids location & migration . 52.7 Bene�ts . 53 Functional speci�cation 63.1 Fid structure . 63.2 FIDs using in client . 63.3 Fid using for DLM . 73.4 Fids management . 73.5 Consistency . 73.6 Fids location & migration . 84 Use cases 84.1 Unit tests . 84.2 Using FIDs . 105 Logic speci�cation 115.1 Seq number management . 125.1.1 Seq number synchronizing 135.1.2 Requesting seq number with special RPC 135.1.3 Meta-sequence approach 145.1.4 Combined approach . 155.2 Fid number management . 155.3 FID management . 155.4 Using FIDs for DLM purposes . 161

1 INTRODUCTION5.5 Client inode numbers . 165.6 Using FIDs with WB cache, proxies 175.6.1 Sequence allocation changes 175.6.2 Migration . 186 State management 186.1 State invariants . 186.2 Protocol changes . 186.3 API . 196.4 Disk format . 196.5 Wire format . 196.6 Scalability and Performance . 206.7 Recovery . 206.7.1 Seq number allocation . 206.7.2 MDT & OST (regular sequences allocation) 216.7.3 MDT & OST (meta-sequence based allocation) 216.7.4 Client . 217 Alternatives 228 Focus for inspections 221 Introduction1In this work we're introducing FIDs to make cleanups of object identi�cationprotocol possible for regular Lustre activities and for write back caches andproxy nodes.This is maintenance HLD for FIDs. It describes only basic things aboutFIDs, like management, recovery, etc. It does not cover gaps handling sim-pli�cations, FLD (FIDs lookup database), etc. which are matter of separatedHLDs. This HLD uses some de�nitions, check them before reading.1.1 De�nitionsHere are some de�nitions used in this HLD:�d number - part of fully speci�ed FID, contains object id within its sequence;seq number - part of fully speci�ed FID, contains sequence in which objectwas created;object version - part of fully speci�ed FID, contains object version number.It is matter of separate HLD;1This section is not mandatory. It may contain some introduction points, like scope ofHLD, etc. 2

2 REQUIREMENTSFID or �d - fully speci�ed object identi�cation structure, FID = (f-sequence,f-number, f-version);home MDT - MDT, that contains inode of some object or master inode forsplit directories, is called home MDT for that object;name MDT - MDT, that contains a given name within a given directory.In the non-CMD con�gurations content of directory are always stored ona single server. In the CMD con�guration parts of split directory aredistributed across multiple nodes according to a "split algorithm".cross-ref - in CMD con�guration, names and their inodes may be stored ondi�erent MDTs. Such a case is called cross-ref;migrator - node, which performs data and FIDs migration. This may becache/proxy node in cache �ush time or any client node driven by specialutility used by system administrator;slave - when talking about WB caches, means node which �ushes/moves datato new location;master - when talking about WB caches, means node which is new locationfor data after migration or cache �ush;meta-sequence - sequence of sequences, range of sequences or grant of se-quences given by server to client for allocation �ds in all sequences avail-able from the range.2 Requirements2FID is an universal object identi�er in Lustre, stable across cluster and duringwhole cluster life-time.2.1 Fid structureFid should contain the following components:
• object identity. This should be one of few �elds making possible touniquely identify objects in Lustre;
• object version. This component should provide support for storing andaccessing di�erent versions of objects in Lustre.Fid should not contain the following components:
• object store related information, that is, inode number and inode genera-tion;
• object location information like MDT number.2This is mandatory section. It should contain �what management wants� us to do in thiswork. 3

2.2 FID using in clients 2 REQUIREMENTS2.2 FID using in clientsThere are few aspects of using �ds on clients. They are the following:
• client should not have inode number collisions for inodes living on di�erentMDTs in CMD con�gurations. So, it should be built on some clusterunique object identi�er. Look at section 3.2 for details;
• client inode number does not depend on version component from FID;
• client uses FIDs for object identi�cation across whole cluster.2.3 Fids using in DLM
• �ds should be used for identifying Lustre objects for DLM;
• DLM resource id should be built on FIDs;
• DLM resource id built on �ds is unique across its namespace;
• �ds can be used for sanity checks in DLM related stu�. This mostlymeans that FID<->resource id conversion should be simple to extracteach of them having only one of them;2.4 Fids managementThere are few requirements related to �ds management:
• �ds should be issued by clients;
• each MDC connect to MDT should start new �d sequence;
• each OSC connect to OST should start new �d sequence;
• each sequence exhausting (accordingly to chosen limit) starts new �d se-quence;
• each client re-connect (recovered client) continues to use the same se-quence;
• each client has sequences for all MDT and OST servers;
• all objects created within same sequence should live on same MDT;
• FIDs are unique, they may be used for sanity checks, asserts, etc.

4

2.5 Consistency & compatibility 2 REQUIREMENTS2.5 Consistency & compatibilityThere are few general requirements about �ds related to consistency. They arethe following:
• an object store may create at most one object with designated FID;
• objects can be e�ciently found by FID;
• servers should provide a mechanism to store objects with FIDs. They willbe used for reconstruction, locking, etc;
• FIDs should be backward compatible with at least one 1.6.x release whichdoes not contain �ds;2.6 Fids location & migrationThere are few migration and location requirements:
• FIDs (stored in EA or another structure in store) and designated objectsshould be able to migrate easily, that is, without any additional conversionoperations, etc;
• migration unit is whole sequence, rather than individual objects/�ds in it;
• for each operation against some inode, client, using FID components,should be able to �nd home MDT to send RPCs. See section 1.1 fordetailed de�nition of �home MDT�;
• proxies, caches, are responsible for �nding FIDs after migration.2.7 Bene�tsAchieving requirements above, we will have the following bene�ts:
• enable cache/proxy nodes;
• unconnected operations, asynchronous creates, unconnected caches/proxies;
• recovery simplicity and improvements (simplifying recovery in MDT andgaps handling);
• add support for object versions;
• get rid of iopen patch (servers provide lookup by FID);
• metadata protocol cleanups;
• object identi�cation cleanups;
• performance improvements;
• client independent on server side object store;
• get rid of exporting object store inodes to user space on clients.5

3 FUNCTIONAL SPECIFICATION3 Functional speci�cation33.1 Fid structureTo meet requirements in section 2.1and provide planned features and bene�ts,FID contains minimal set of �elds. One of important things here is the notionthat FID should not contain any address information like MDT num. This isneed to migrate easily and avoid converting FIDs in MDT EAs, in cache/proxynodes, etc. This is why it has such a minimal set of �elds, which are thefollowing:
• �d number. This is in fact object identi�er. It is unique in its sequence;
• seq number. This is number of sequence. Fid numbers are unique in onesequence;
• �d version. This is object version and needed to support objects withdi�erent versions;
• pair, �d number and seq number form unique �le id (or FID) in this look:FID = (f-sequence, f-�d). It may be used for DLM, sanity checks, etcFID may be a part of more complicated structures living in memory.3.2 FIDs using in clientClient should have the following done about �ds:
• llite inode numbers should be built on FID rather than on store cookiesfrom MDT. This helps to prevent possible inode collisions in CMD con�g-urations, in compare to former solution, when client's inode number andgeneration were taken from MDTs and thus, might happen to be the samefor di�erent inodes on the same client. See section 5.5 for details;
• at inode initialization time, each client should link corresponding FID tothe inode. This FID will be used later for communicating with serversand perform operations against object associated with FID. Client shouldnot use anything but FID to talk to servers for object related operations.Client should not send any store cookies, client has no idea about store atall;
• also, at inode initialization time, client saves object striping info whichpossibly contains FIDs for each stripe;
• client inode numbers do not depend on version component from FID;
• all client functions should be converted to use FIDs, as it is only theuniversal object identi�er in Lustre.3This is mandatory section, it should contain �what should we do (and may be why) tomeet requirements� 6

3.3 Fid using for DLM 3 FUNCTIONAL SPECIFICATION3.3 Fid using for DLMFID uniqueness makes it naturally suitable to use in locking stu�. It may beused for the following:
• FIDs are used for building resource id for DLM locks. This makes resourceid unique what completely implements requirements in this area;
• FIDs are used for sanity checks. For instance, when client requests lockfrom MDT and server sends reply, client may check if requested lock co-herent with FID of object lock should be taken on.3.4 Fids managementFids are managed the following way:
• FIDs should be issued by clients using corresponding sequence. Thismeans, that for creating new object, client does not have to talk to server.This allows to implement unconnected operations, create bunch of objectsin one shot, etc. This also enables cache/proxy nodes to create objectsindependently of master server;
• each connect from node which may issue create RPCs starts new �d se-quence. See section 5.1 for details. As each connect starts new sequence,this allows to not save last �d on MDT (former approach) for each cre-ate operation. This makes recovery stu� on MDT simpler and also givesperformance bene�ts as we do not do one more I/O in create time;
• each sequence has limited number of objects which may be created in it.That is, when sequence is exhausted, new one should be started;
• each re-connect (recovered client) continues to use the same sequence. Seerecovery stu� in section 6.7 for details;
• sequences are cluster-wide. This guarantees that FIDs are unique acrosscluster;3.5 ConsistencyMDD and OSD servers should constantly take care, that it may create at mostone object with designated FID. At inode create time, they should save objectFIDs with inode. See section 5.3 for more details.MDD and OSD use lookup mechanism based on Index API, to �nd inodesby means of using associated FID, obtained from client.

7

3.6 Fids location & migration 4 USE CASES3.6 Fids location & migrationFid does not contain location and addressing information. This is needed tomigrate easily. However, this makes also some problems about objects location.They are the following:
• both, client and server should use FIDs location database (FLD) to �ndobject home MDT to perform operation against it;
• migrator (cache, proxy, etc.) should take personal responsibility that mi-grated FIDs will be found in new location.Read FLD HLD for details of FIDs lookup, clients cache management and mi-gration details.4 Use cases4This section describes two types of use cases. First one is related to unit teststo check new functionality. And second - to using �ds in Lustre itself, regularlustre operations, some possible complicated cases which should be describedespecially.4.1 Unit testsThe following use cases may form basis for unit tests:1. Connect changes sequence number in MDT:(a) setup Lustre;(b) get last sequence number from MDT, using lproc;(c) disconnect client;(d) connect client again;(e) get new value of last sequence number from MDT, using lproc;(f) check if new sequence number larger than old one.2. Re-connect does not change sequence number:(a) setup Lustre;(b) get last sequence number from MDT, using lproc;(c) fail MDT and wait for recovery to �nish;(d) get new value of last sequence number from MDT, using lproc;(e) check if new sequence number the same as old one.4This is mandatory section, it should contain �how to use or how to check new functional-ity�. It is naturally to use it as design for unit or sanity tests.8

4.1 Unit tests 4 USE CASES3. Client maintains �ds:(a) setup Lustre;(b) disable client's sequence switch;(c) get last �ds for all MDSes from client, using lproc;(d) create object;(e) �nd what MDS it lives at;(f) get new value last �d for that MDS from client, using lproc;(g) check if new �d value is larger then old one for correct MDS.4. Client does not reuse �ds:(a) setup Lustre;(b) create object;(c) get last �d from client, using lproc;(d) delete object;(e) get new value of last �d from client, using lproc;(f) check if new value did not change after object is deleted.5. Client forms its inode numbers using �ds:(a) setup Lustre;(b) create few objects;(c) get their inode numbers;(d) check if they correlate with chosen �d->inum mapping algorithm onclient.6. Client inode may be found on MDT:(a) setup Lustre;(b) create object;(c) change its ownership;(d) umount client;(e) mount client again;(f) get object attributes;(g) check if attributes after mount the same as before umount.7. Client's inode �d stored in inode info and MDT' one stored in EA thesame:(a) setup Lustre; 9

4.2 Using FIDs 4 USE CASES(b) create object;(c) get object �d from client's inode info, using lproc;(d) get object �d from MDT inode EA, using lproc;(e) check if client's and MDT' �ds the same.8. Sequences are cluster-wide:(a) setup Lustre using few clients;(b) get sequence numbers from all MDTs;(c) check that all MDTs know the same set of sequences. There may bedi�erent checks. One of them would be ask sequence controller (seebelow) node as for how many sequences allocated after all clients andservers connected cluster.4.2 Using FIDsHere are some examples of using FIDs for regular Lustre operations. Somede�nitions used in this section, see section 1.1 for details.1. Regular create(a) using split policy, client obtains MDT number where name shouldlive;(b) in this case name MDT and home MDT are the same;(c) client generates new FID from sequence obtained from object homeMDT, generates new FID from sequence obtained from OST andsends RPC with both FIDs supplied to the MDT;(d) home MDT creates object, saves its MD FID into EA and sendscreate RPC to OST (this is going to change in CROW);(e) OST creates object, saves both FIDs (MD and DT ones) into EA andreturns status to MDT. FIDs in EA are used later for reconstruction;(f) home MDT returns status to client;(g) client saves both FIDs in new created inode (inode info).2. Cross-ref create(a) using placement policy, client obtains MDT number where objectshould live (home MDT);(b) using split policy, client obtains MDT number where name shouldlive (name MDT);(c) home MDT and name MDT are di�erent, client detects cross-refcreate; 10

5 LOGIC SPECIFICATION(d) client generates new FID from sequence obtained from object homeMDT (not same as name MDT in this case) and sends RPC to nameMDT ;(e) name MDT creates name and sends create RPC to object home MDTusing the FID generated by client from home MDT sequence;(f) home MDT creates object, saves MD FID into EA, sends create RPCto OST (like in point 1) and returns status to name MDT ;(g) name MDT returns operation status to client;(h) client saves both FIDs in new created inode (inode info).3. Regular lookup case(a) using placement policy, client �nd name MDT and sends lookup RPCto it;(b) name MDT �nds name and if this is not cross-ref case, it returnsobjects attributes to client; Along with object attributes, object FIDis also returned to client;(c) client saves FID from MDT in inode (inode info).4. Cross-ref lookup case(a) using split policy, client �nds name MDT and sends lookup RPC toit;(b) name MDT �nds name and detects cross-ref case;(c) name MDT extracts FID from dentry, �nds FID's home MDT (usingFLD) and sends RPC to object home MDT;(d) home MDT returns objects attributes to name MDT ;(e) name MDT returns attributes to client;(f) client saves attributes from name MDT in inode.5 Logic speci�cation5To accomplish requirements, both, client and servers have to be changed alot. Note, this chapter only describes regular activities, for recovery details seesection 6.7.5Mandatory section, moreover, it is very important. It should contain �how to implementnew functionality to meet requirements�
11

5.1 Seq number management 5 LOGIC SPECIFICATION5.1 Seq number managementGeneral rules as for seq number management are the following:
• there is such a cluster-wide 96-bit digital value - sequence. It is compoundvalue and consists of the following entities:� 64-bit part is used for storing ranges which server allocates to clients.Thus, server may allocate 2

64of sequence ranges to clients;� 32-bit part stores number of sequence number in range. Thus, eachrange that may be given to client may be 2
32. So that, client mayperform 2

32 connections to server before it needs to ask for new range.
• such a compound meta-sequence is stored on MDT on store and used inrecovery and in allocation time;
• each node, which may request creating, should have separate sequence forthat. Currently only clients may have sequences. Though MDTs requestobject creating on OST (CROW will change that), they have no sequencesfor OSTs. See section 1 for details of creating objects on OST and whyMDT has no sequences;
• in connect time, client should have range of allowed for allocation se-quences; Read section 5.1.1 for details;
• seq number for using (generate new FIDs in it) is incremented by one eachtime as new sequence is needed (new connection to server or sequenceswitch);
• seq number may be incremented in the case of exhausting (sequence switch).That is, when �d number in current sequence is close to reach chosen limit;
• in the case of sequence switch client uses new sequence from given rangeand does not need to ask server for that;
• sequences are not re-useable. Also having separate sequences for eachMDT and OST, guarantees, that objects that belong to the same sequencelive on the same server rather than scattered across all server nodes;
• each client should have two arrays with active sequences (currently usedones), which contain sequences from one cluster-wide set. They are thefollowing:� array with sequences for all MDTs to generate FIDs for metadataobjects;� array with sequences for all OSTs to generate FIDs for data objects.
• client performs operations against some server (MDT or OST) using cor-responding sequence; 12

5.1 Seq number management 5 LOGIC SPECIFICATION
• that is possible for client to perform operations on di�erent sequences inmulti-threaded fashion, if operations do not need to synchronize;
• each sequence should not contain more than de�ned number of objects.This number will be chosen in init time and de�nitely will depend oncluster size and other parameters;
• each recovered connection continues to use same sequence number. Thisis needed because all replies should run on the same sequence as originalRPCs. See recovery details in section 6.7.5.1.1 Seq number synchronizingSticking with approach, that each connection has separate seq number (de-scribed in section 5.1), raises the question of synchronizing sequences across allinvolved nodes (sequences management).In few words, issue looks like the following. If some connection in cluster isperformed between two nodes, only these nodes know this fact and may bumplocal presentations of cluster-wide sequence. Whereas, all other involved nodesalso should know it, because they may have connection in next moment or inparallel.There are few possible solutions of this issue:1. request sequences with special RPC from some sequence controller node.See section 5.1.2 for details;2. use meta-sequence (sequence of sequences) approach, that is, each clienthas grant from server of allowed for use sequences. See section 5.1 fordetails of sequence management. Also see section 5.1.3 for details of meta-sequence approach;3. combine 1 and 2 approaches using good bits of both of them.5.1.2 Requesting seq number with special RPCThis solution implies the following being done:
• �rst MDT is called sequence controller, because it is connected from allclients and all OST servers. Its purpose is to always know correct sequenceand tell it to another nodes in cluster;
• only sequence controller node (�rst MDT) may bump sequences and allother nodes just save it locally for own purposes;
• each time as a node wants to switch sequence (connect, limit is reached),it gets correct seq number from sequence controller node;
• in principle, each MDT node may become sequence controller in processof work if needed, because all they have up-to-date sequence counter andquestion is only in that, which one should bump it.13

5.1 Seq number management 5 LOGIC SPECIFICATIONThis approach has the folowing advantages:
• simplicity of implementation, no need to maintain complicated protocolof synchronizing sequences;However there are also following downsides:
• sequence controller may be quite busy with sequences allocation requestsin connect time in big clusters. Also it is becoming the bottleneck;
• in the case sequence controller fails, nodes which need new sequence getblocked until sequence controller up and runs again;
• no possibility to have parallel connections, all nodes synchronized via se-quence controller.5.1.3 Meta-sequence approachThere is alternative way to manage sequences. It is the following:
• in connect time, each client, obtains from each server, special grant to usesome range of sequences, called meta-sequence;
• sequence ranges do not cross, so that, each client has own pool;
• client starts use �rst sequence from range right after connection;
• in the case of switching the sequence, client takes new one from the grantand does not have to ask server.This approach has the following additional advantages:
• clients do not ask server each time new sequence is needed;
• better scalability;
• no need in special RPC;Downsides of approach:
• sequence range may be exhausted, it should be chosen with special careand may depend on cluster size or con�guration;
• servers need special algorithm of range allocations. However it may besimple one and based on MDT number or something like that, so thatservers do not need to synchronize ranges;
• basing range allocation on MDT number may not be appropriate due topossibility to add new MDTs into alive cluster.14

5.2 Fid number management 5 LOGIC SPECIFICATION5.1.4 Combined approachApparently if we want to have meta-sequence approach, it should have alsosome server which controls allocation of meta-sequences. In this is essence ofcombined approach:
• we have one MDT which is sequence controller ;
• sequence controller allocates meta-sequences to all clients. This is neededto avoid ranges crossing, etc., as each client should have range which willnot cross with ranges given to others;
• in MDT-MDT connect time, they exchange meta-sequence with controllernode and store it locally.Using such approach we avoid many downsides of both. For instance, we do notuse special RPC for requesting new sequence.5.2 Fid number management
• each client maintains 16-bit value - �d number, for each sequence it has.Fid number for new sequence starts from prede�ned value - for instance1, so that 0 is used for sanity checks;
• client increments �d number by one (in its sequence) each time as newobject is created.
• �d number is not reusable, that is, when some object is deleted, corre-sponding �d number in its sequence does not change;
• each sequence has limit as for how many objects may be created in it.Sequence is supposed to switch to new one if limit is reached;
• �d number is not saved to persistent storage, it starts from 1 each timenew sequence is started.5.3 FID management
• each client uses own array of sequences to allocate new FIDs for objectson di�erent MDTs and OSTs;
• in client, for new created object, fully speci�ed FID (f-sequence, f-number,f-version) for MDT object presentation, is stored in client inode info;
• in client, for new created object, array of fully speci�ed FIDs (one FIDper stripe) for OST object presentation, is stored in client inode info;
• both, MD FID and array of OST FIDs in client inode used for the follow-ing: 15

5.4 Using FIDs for DLM purposes 5 LOGIC SPECIFICATION� communicating with MDT or OST, requesting getattr, etc;� issuing DLM locks;� sanity checks.
• on MDT, fully speci�ed FID (f-sequence, f-number, f-version) for newcreated inode is stored in inode EA and used later for the following:� reconstruction;� getting FID by MDT inode for DLM purposes (issue DLM lock);� sanity checks.
• on OST server, in object create time, both, OST and MDT FIDs shouldbe stored into inode EA to be used later for the following purposes:� reconstruction;� getting FID from inode for DLM purposes;� sanity checks.
• each node should be able to �nd correct server handling particular FID,to send operation RPCs to it;
• each MDT and OST provide a way to resolve FIDs into local inodes. Thisshould use Index API with �d->store cookie mapping;
• there should be a way to iterate over all �ds or over �ds from some se-quence. See Index API HLD for details.5.4 Using FIDs for DLM purposesAll nodes in cluster should use FIDs to make resource id to use it for DLMpurposes (issuing locks, matching, etc.). This may be done by using such arule: resource_id = (f-sequence, f-number). This rule de�nes locks namespaceas space of objects which are visible for DLM as resources.Using above rule guarantees that resource id is unique across whole cluster.5.5 Client inode numbersTo meet requirements in section 2.2, client inode numbers should be built onFID components linked to inode. This is matter of mapping algorithm used onclient. It should has the following properties:
• inode numbers built using some mapping algorithm. It should map �dnumber and �d sequence into client inode number. It should have thefollowing properties: 16

5.6 Using FIDs with WB cache, proxies 5 LOGIC SPECIFICATION� for any two di�erent pairs (�d number and seq number) there shouldbe di�erent inode numbers. That is possibility of inode number col-lisions should be very low;� algorithm should take into account quite big range of possible seqnumbers (many clients, many connects);� algorithm should take into account, that seq number is changedquickly. It should produce unique numbers;� using zero �d number, algorithm should yield zero inode number, touse it in sanity checks;� clients inode numbers should be unique on all client nodes.
• inode number does not depend on version component from inode FID;
• inode generation is chosen by client's VFS in inode init time and may beleft as is.5.6 Using FIDs with WB cache, proxiesThere are few aspects of using FIDs for WB caching and proxy nodes. Theyare the following:
• sequence allocation changes to regular schema;
• migration.5.6.1 Sequence allocation changesThere are the following changes:
• WB cache obtains its sequence from master node in connect time. Thisconnection to master may be performed:� in WB cache setup time;� or in cache �ush time.
• thus, WB cache function as a client (allocates FIDs, etc.) for master andas regular MDT or OST for client node (maintain sequences, etc);
• migrator is part of cluster, this means the following:� it has sequences from one cluster wide set;� after migration, when data is moved into new location, they shouldbe found by original client in new location. That is, cache nodemay remove the data from cache. This is especially important fornon persistent caches, which hold their data in memory (for instanceusing tmpfs). 17

6 STATE MANAGEMENT5.6.2 MigrationIn migration time, migrator should perform the following actions:
• move data to new location (master node). All creates should be performedusing cache node sequence (obtained frommaster) rather than client's one,so that:� it is always known that data on some master are created as result ofcache �ush from some WB node;� client could �nd data in new location later.
• re-setup FLD so that data could be found in new location. Thus, whenclient requests data which already removed from cache, request should beforwarded to the node data live after migration;
• make sure that client's FLD caches are �ushed for moved sequences. SeeFLD HLD for more details.6 State management66.1 State invariantsThe following state invariants should be kept true:
• object, created on server and known to client (inode with assigned FID),can be found by client's FID;
• last seq number or meta-sequence saved to "SEQUENCE" �le on server,should be coherent with existing objects and their �ds. That is, thereshould not be objects on server with seq number larger that what is savedin "SEQUENCE".6.2 Protocol changesThe following protocol changes will take place:
• as client always creates inode on its home MDT (in accordance with homeMDS de�nition) and knows full FID before sending RPC, server does nothave to return FID to client on create operation. However, operationslike getattr still need FID returned to client, as they may be requested byclients from di�erent sequences including those, which do not have FID intheir local inode yet;6Mandatory and very important section, it should contain recovery changes, scalability,formats, protocols, state invariants, state sharing, etc.18

6.3 API 6 STATE MANAGEMENT
• server does not have to return store cookie to client anymore;
• client may do not wait for MDT create inode completion, as client alreadyknows full FID of the object;
• each node that joins cluster sends seq number request RPC to sequencecontroller node (�rst MDT);
• using sequence grants (meta-sequence approach) implies changes to con-nect protocol;
• FLD implies need to issue some RPCs. Read FLD HLD for details.6.3 APIAPI is changed in the following aspects:
• all methods using former objects presentation need changes to use �dsinstead;
• some functions need their names changed to be coherent with functionality.6.4 Disk formatDisk format is changed in the following aspects:
• each MDT object creates additional EA which stores object's �d compo-nent. Back store FS should be formatted appropriately (EA in inode forext3);
• each MDT saves object stripe info which contains FIDs instaed of of formerobjids;
• each OST saves own FID and FID from MDT into inode EA on objectcreate;
• there will be changes related to FLD. See FLD for details;
• both MDT and OST has new �le "SEQUENCE" which holds last knownsequence.6.5 Wire formatWire format is changed in the following aspects:
• all RPCs should have �d instead of former structures;
• many MD related structures changed their size.19

6.6 Scalability and Performance 6 STATE MANAGEMENT6.6 Scalability and PerformanceThe following changes to performance may take place:
• performance may be increased due to allocating �ds on clients, thus clientsmay perform asynchronous creates, create bunch objects into one shot, etc;
• OSD on both MDT and OST servers should update �d->inode map oneach create. This is additional work and may cause some slowdown;
• FLD will have some overhead. See FLD HLD for details;
• MDT and OST does not do additional I/O on each create, that is, it doesnot save last �d into LAST_FID �le what should also have additionalperformance boost.The following scalability changes may take place:
• clients do not depend on server object store (inode number, generationand their allocation policies). This means that server object store may bechanged (another FS, etc.) with smaller impact to client.6.7 RecoveryRecovery has many changes, both on clients and servers.6.7.1 Seq number allocationThough we said that seq number is not changed in recovery, here is some clari-�cation on this matter. The following rules used in recovery time for maintainseq numbers:
• seq number does not change in case of server failure, because of thefollowing:� alive clients should reply their requests (especially create ones) in thesame sequence. This is important, because there possibly anotherclients which have inodes in memory with sequence number usedbefore failure. And say re-creating inodes with new sequence willcause a lot of problems to those clients;� alive clients have correct �d number for their sequences and maycontinue using them.
• seq number does change in case of client failure and in reconnect timeclient should obtain new sequences from all servers. That is because ofthe following:� failed client loses �d number counter (which is managed in client'smemory) for all sequences and cannot continue using them;� failed client does not have anything to replay, and does not need tokeep its old sequences. 20

6.7 Recovery 6 STATE MANAGEMENT6.7.2 MDT & OST (regular sequences allocation)The following changes to MDT and OST recovery should take place:
• each time as new client connects to MDT or OST (server), they allocatenew sequence, return it to the client and save it to "SEQUENCE" �lewith consequent commit. Server is supposed to create "SEQUENCE" �leif it does not exist yet;
• in recovery time, server reads "SEQUENCE" �le. It uses it for reportingsequence to clients restored connection to MDT in recovery time;
• server re-creates objects in recovery time and takes care that they havecorrect FID stored in EA;
• server does not care of �d number reconstruction and thus, does not haveto store it. Client is replaying requests in recovery time, sends them withalready initialized FID and all server has to do is to recreate object andsave FID into EA. After recovery is �nished, client has its FIDs synchro-nized with server.6.7.3 MDT & OST (meta-sequence based allocation)
• in connect time, each server gives a sequence grant (meta-sequence) toeach client. Sequences from that grant may be used without servers con-�rmation. In this time, server should save allocated meta-sequence onlocal store ("SEQUENCE" �le);
• in recovery time, server uses grant from store to return it to client afterreconnect, so that client continue to use it;
• server re-creates objects and takes care that correct FIDs are saved toobject's EA.6.7.4 ClientThe following changes to clients should take place:
• on each create completion, client does not need to save FID from serverto create request, as it is already known before sending RPC to server;
• in client recovery time, current seq numbers do not change and all requestreplies are performed in their former sequences;
• in case of eviction, current seq numbers do not change as well.

21

8 FOCUS FOR INSPECTIONS7 Alternatives7There are the following alternatives possible:
• client inode numbers allocation algorithm in section ?? may state thatinode numbers should start from same value on all clients, say 1 or theymay be di�erent, based on sequence for instance;
• seq number synchronization algorithm in section 5.1.1.8 Focus for inspections8The following should be inspected carefully:
• seq number synchronization algorithm and its connection to FLD;
• WB caches and proxies.

7Not mandatory section. May contain alternative points of view on some aspects of HLD.8Not mandatory section. It may contain references to some important parts of HLD. Somecomplicated algorithms, disputable or opaque solutions, etc.22

