
Patch free lustre client in tigerLiang Zhen2006/02/071 IntroductionThis HLD describes how to construct patch-free lustre client in OS X Tiger(Darwin 8.x).Reasons we have to re-design Lustre client:
• Darwin8.x is changed a lot from Darwin7.x because Apple wants to stan-dardize kernel-developing interfaces, and makes kernel package binary-compatible with di�erent OS releasese.
• vfs of Darwin8.x is changed, lock/unlock of fsnode are handled lessly invfs, namecache is handled in vfs.
• Users of OS X don't like to install a new kernel(patched) when they useLustre.2 DistributionPeople insterested in:
• Design of Lustre client
• Lustre developing in OS X
• Filesystem development in OS XShould read this document. Understanding of xnu(kernel of Darwin) and Lustreare assumed.3 Background Of Darwin8.xStructure of xnu is not supposed to be introduced here, but following featuresabout xnu and OS X should be noticed:1

3 BACKGROUND OF DARWIN8.X
• locking. Tiger doesn't always lock vnode in vfs while performing opera-tions on it, it's optional for FS. Filesystem can set VFS_TBLTHREADSAFEor VFS_TBLFSNODELOCK to indicate if accessing of the �lesystem isthread safe or not. lock_fsnode/unlock_fsnode will be called in VNOP_*by vfs before entering to �lesystem backend, if the FS isn't thread safe.No lock will be taken if the �lesystem is created with thread-safe setting,by this way, �lesystem should decide where to lock/unlock the �le-nodein vnops.
• name resolution. XNU has standard UNIX namei() interface to resolvepath-names. namei() descents through �le system tree, calling VNOP_LOOKUP()to resolve single path component. Symlinks are handled through VNOP_READLINK()method. It is possible to determine when last path component is beingresolved.
• name cache. XNU VFS is vnode based. All VNOP_* operations take vn-ode as argument. There is simple name-cache, In Darwin7.x, it is not usedby the VFS layer. File system backend is supposed to use it by its own.This provides some advantage for Lustre: all �le system operations gothrough VOP_LOOKUP() stage (even if name/vnode is in name cache).But things are changed in Darwin8.x, vfs uses namecache somehow. VFS:lookup()->cache_lookup_path(), cache_lookup_path() will try to �ndvnode and revalidate it, the revalidation for local �lesystem is �ne, butfor remote authorisation it's really rough. The revalidation will never callany operation of backend �lesystem, it just think the vnode from name-cache is valide if the last VNOP_LOOKUP() is happened in 2 secondsand nobody change it locally. This is really pain for us.VNOP_LOOKUP() records a timestamp in vnode, cache_lookup_path()will check it later.
• No robust way to pass per-thread information from VNOP_LOOKUP()to other end-point VNOPs (i.e, VNOP_OPEN, VNOP_CREATE), thatmeans, it will be hard for us to use lookup-intent in xnu, although wecan know lookup-intent somehow in VNOP_LOOKUP(): nameidata->componentname->cn_nameiop can be (LOOKUP, CREATE, DELETE,RENAME).
• no way to access �le descriptor in �lesystem layer(�le struct can only beaccessed in vfs layer), as we mentioned before, all VNOP_* operationstake vnode as argument, we can't access per-�le data in vnops.
• Apple will use intel to replace ppc, nobody knows if xnu will still beopensource after intel version released(To prevent people from runningOS X in their own machine).

2

5 FUNCTIONAL SPECIFICATION4 RequirementsAccording to the description of the this project, the requirement include
• Construct a Lustre client for Tiger without patch of xnu or with a smallpatch.
• The Lustre client has basic �lesystem features.
• The Lustre client may have no lookup-intent operations in lookup.
• The Lustre client uses 0-conf.
• Try our best to provide binary-compatiblity with OS X (reduce hacking),just as expecting of Apple.5 Functional Speci�cationTiger client will be built as several sub-modules, some of them have been de-scribed in xll_design.lyx by Nikita, here just talking about modules have beenchanged in Tiger:
• �lesystem vfs/vnops framework, interact with BSD vfs system
• abandon or handle lookup-intent.
• name cache
• �le IO operations: The key issure for patchless client is about read-ahead.
• page cache: To re-use generic Lustre code in osc and lnet, each plat-form has to provide implementation of cfs_page_t API. This API closelymatches Linux page cache interface. To implement it on xnu, interme-diate layer (xll page cache) is introduced which sits on top of mach vmand provides data-structures and interfaces similar to ones found in Linux.cfs_page_t API is trivially implemented in terms of xll page cache.5.1 Filesystem VFS/VNOPS frameworkThis part is similar to what has been done in Panther client, with a few excep-tion:
• VNOP_LOCK/VNOP_UNLOCK is not existed anymore. There is noKPI to call �lesystem backend fsnode lock/unlock, vfs provides genericfunctions lock_fsnode()/unlock_fsnode to protect vnode to be accessed byother threads if the �lesystem is not thread-safe. If the �lesystem is thread-safe, fsnode should be lock/unlock totally at �lesystem backend. Lustreclient should be thread-safe in Tiger to get better grained operations,although we can start from thread-unsafe mode. In thread-safe mode, as3

5.2 lookup-Intent 5 FUNCTIONAL SPECIFICATIONfsnode lock/unlock will only be called by �lesystem, it's possible to mapthem to ldlm locks. To get this step we need another desigh document,for now ldlm locks and vnode locks will still be aquired separately (Justlike in Panther).
• VNOP_ACCESS should be designed carefully. VNOP_ACCESS is nowused by vfs lookup() (In Panther, it's called by �lesystem backend inVNOP_LOOKUP), it's always called before each VNOP_LOOKUP(), byvnode_authorize(), to check KAUTH_VNODE_EXECUTE of currentvnode, we should handle this carefully to avoid redundant RPCs.
• vfs_mount(): Filesystem should set MNTK_AUTH_OPAQUE and MNTK_AUTH_OPAQUE_ACCESS�ags during initializing. MNTK_AUTH_OPAQUE is used to indicate au-thorisation decisions are not made locally, MNTK_AUTH_OPAQUE_ACCESSis set to tell vfs that VNOP_ACCESS is reliable for remote auth, other-wise vfs will attempt to formulate a result based on VNOP_GETATTRdata (before all VNOP_LOOKUP).5.2 lookup-Intent
• No lookup-intent in patchless version, because there is no reliable way toget lookup-intent in current VNOP_LOOKUP() without patch. Nameidata->componentname->cn_nameiop describes operation-intent roughly as (LOOKUP,CREATE, DELETE, RENAME), and it's possible to determine when lastcomponent is being resolved, but it's still impossible for VNOP_LOOKUP()to know real lookup intent like: IT_GETATTR, IT_OPEN, IT_CREATE(mknod,create, mk�fo all use CREATE in nameidata), so we will not use lookup-intent for patch-free version, working rpc can only be set by end-pointvnops like VNOP_CREATE, VNOP_OPEN, VNOP_LOOKUP() will donothing more then trying of matching local lock or sending IT_LOOKUPrequest to lookup.
• If we want lookup-intent, we need to add precise intent-operation to namei-data in xnu-patch. Although there is still no way to pass per-thread datafrom VNOP_LOOKUP to other end-point vnop in xnu, but xll_session(refer to xll_design.lyx by Nikita) can be abandoned. There are two waysto save/pass intent-lock information:� intent-lock status can be passed from VNOP_LOOKUP() to end-point vnop (like VNOP_OPEN) by a hash table maintained by ourclient module (indexed by thread address or vfs_context address),this can be reused to client for other platforms (like patchless linuxclient).� Patch vfs_context of xnu, add a pointer in the structure and saveintent-lock information in it while lookup. It's very easy way, becausevfs_context is always be passed to �lesystem backend in all vnops,4

5.3 Name cache 5 FUNCTIONAL SPECIFICATIONand it's exactly per-thread data because most time it's just stayingin stack of current thread.5.3 Name cacheWe can do nothing to namecache because there is no callback entry for �lesystembackend in xnu. We can't jump over the rough revalidation of namecache in vfsunless we create/use our own namecache. Things we can do are:
• complain in Darwin-kernel-list, it will take some time to get feedback, wewill have to wait and see.
• Patch xnu, it's easy to create a patch for this, we'll not add callback entryfor revalidate, but we can break cache_lookup_path() with set a �ag andlet VNOP_LOOKUP() take over namecache searching, revalidating, andreal-lookup, just like pather.
• Hack without patch xnu. Purpose of hack is same with patching: breakcache_lookup_path() called in lookup(), let VNOP_LOOKUP() to takeover everthing. We will take this way for now, but still hope Apple canprovide a better interface for us to get over the problem in the recentfuture.5.4 read-aheadLlite in Linux uses �le->private_data to save read-ahead context of each �ledescriptor, as we know, xnu(BSD) vfs is vnode based, there is no way to accessper-�le data like �le descriptor in vnops, so it's not easy for xnu to use read-ahead algorithm from llite.However, read-ahead is only for improving of read performance, it's �ne forus to design another way to implement read-ahead.There can be some choices for us to deal with read-ahead:5.4.1 One read-ahead context for one vnodeLike the way used by cluster IO of xnu, create one read-ahead context for eachvnode, only one thread can own the read-ahead context(by holding the lockassociated with it), other threads can't own the context will run without read-ahead, this allows multiple readers to run in parallel and since there's only oneread ahead context, there's no real loss in only allowing one reader to haveread-ahead enabled.
• Each time reading from di�erent o�set(by di�erent reading from threadsor by lseek), read-ahead context will be reset
• It's �ne for single thread reading, but not very helpful when a lot ofthreads are trying to read the same �le, because only one of them canissure read-ahead and read-ahead context is always reset.5

5.5 Page cache 6 USE CASES5.4.2 No read-ahead contextIt's the simplest way to use read-ahead, read-ahead window always starts fromnext page of current read, length is min(permited_length, end), no context isloaded/saved in read-ahead.5.4.3 Per-process readahead context in LRU listA LRU list for saving read-ahead context is added to fsnode (xnode), readerscan get a matched read-ahead context or create a new read-ahead context fromthe LRU list. Read-ahead context will be freed only if it's at the end of the LRUlist, and it hasn't been accessed for long time or there are too many read-aheadcontexts in the �lesystem. It's possible that a read-ahead context is freed evenif there is still task wants to use it, but it's not hurting as a new context will beallcated when it's required. We have no way to allocate/free read-ahead contextprecisely in xnu, because threads in kernel can read/write �le by vn_rdwr() justafter getting vnode by namei(), without open.By this way, we can take read-ahead algorithm used by llite.5.5 Page cachePage cache of xll is well designed and re-usable for Tiger, we are not going to de-sign & implement another one. For more information, please read xll_design.lyxby Nikita.6 Use casesThe lustre client will be used with 0-conf in Tiger, that means user can mount/umountand use it just like the way they use nfs.6.1 Intent handleNo intent handle in no-patched version.6.2 read-aheadread-ahead context is updated before read_page(), and issured asynchronizinglyafter reading of page.6.3 page cachePlease refer to xll_design.lyx by Nikita.
6

6.4 Shared functions for both Linux and XNU7 LOGIC SPECIFICATIONS6.4 Shared functions for both Linux and XNUThere are only few functions like lustre_process_log can be shared betweenLinux and xnu, because vfs frameworks of two OS are too di�erent(VFS of xnuis based on vnode), and xnu will use our own page cache.6.5 Xnu should be adapted to new KPIsApple provided a limted set of KPIs and structures, we can't access kernelservices as free as before.7 Logic Speci�cations7.1 Intent handle
• VNOP_LOOKUP() always use IT_LOOKUP as locking request, even inthe last step of nameing resolve, because we don't know what exactly userwants to do while name resolving.
• The lock is always released before exiting VNOP_LOOKUP, nothing canbe carried to end-point vnops.
• The working request can only be sent in end-point vnops.
• VNOP_ACCESS is called by vfs all the time while name resolving, becareful with it, otherwise a lot of un-expected rpcs will be sent.7.2 Name cacheWe need to explain how xnu is implemented on this before discussing our hack:lookup(){cache_lookup_path(...);......if (nd->ni_vp != NULL)goto found;...VNOP_LOOKUP(...);...found:....}cache_lookup_path(...){ 7

7.3 Read/Write 7 LOGIC SPECIFICATIONSwhile (1) {...if (remote_auth && (now_second - vp->auth_timestamp) > 2)break;...}}VNOP_LOOKUP(...){ vp->auth_timestamp = now_second;...vp->vnop_lookup(...)...}VNOP_LOOKUP() updates timestamp in vnode each time before calling ofvnop_lookup provided by �lesystem backend , cache_lookup_path() checksthe timestamp in the next calling of lookup() if the vnode is still in namecache,it thinks it's valide while last VNOP_LOOKUP() is called in 2 seconds. So,the thing we can do is using an old time to replace vp->auth_timestamp setby VNOP_LOOKUP() in vp->vnop_lookup().xll_lookup(...){ ...vp->auth_timestamp -= 2;...cache_lookup(...)if revalidate(...)return...real_lookup(...)}By this way, loop in cache_lookup_cache() will be broken by condition ((now_second- vp->auth_timestamp) > 2), and this change wouldn't a�ect anything else be-cause vp->auth_timestamp is never used by other functions. The only thingmakes us unhappy is we have to hack out de�ne of vnode, because xnu hasn'texported it to kext users.7.3 Read/Write
• Get extent lock of required range
• if reading, glimpse size of fsnode
• issure write/read/read-ahead request8

7.4 Read-ahead 11 INSPECTION SUMMARY
• Put extent lock of required rangeLogic of readdir is very similar to read of regular �le, but with di�erent lock.7.4 Read-ahead
• Aquire read-ahead context from fsnode
• update read-ahead context
• issure read-ahread
• Release read-ahead context.8 State ManagementN/A9 AlternativesN/A10 Focus of InspectionNo lookup-intent while rename resolving.11 Inspection Summary

9

