Patch free lustre client in tiger

Liang Zhen
2006,/02/07

1 Introduction

This HLD describes how to construct patch-free lustre client in OS X Tiger
(Darwin 8.x).
Reasons we have to re-design Lustre client:

e Darwin8.x is changed a lot from Darwin7.x because Apple wants to stan-
dardize kernel-developing interfaces, and makes kernel package binary-
compatible with different OS releasese.

e vfs of Darwin8.x is changed, lock/unlock of fsnode are handled lessly in
vfs, namecache is handled in vfs.

e Users of OS X don’t like to install a new kernel(patched) when they use
Lustre.

2 Distribution

People insterested in:

e Design of Lustre client
e Lustre developing in OS X

e Filesystem development in OS X

Should read this document. Understanding of xnu(kernel of Darwin) and Lustre
are assumed.

3 Background Of Darwin8.x

Structure of xnu is not supposed to be introduced here, but following features
about xnu and OS X should be noticed:

3 BACKGROUND OF DARWINS.X

e locking. Tiger doesn’t always lock vnode in vfs while performing opera-
tions on it, it’s optional for FS. Filesystem can set VFS TBLTHREADSAFE
or VFS_ TBLFSNODELOCK to indicate if accessing of the filesystem is
thread safe or not. lock fsnode/unlock fsnode will be called in VNOP_*
by vfs before entering to filesystem backend, if the FS isn’t thread safe.
No lock will be taken if the filesystem is created with thread-safe setting,
by this way, filesystem should decide where to lock/unlock the file-node
in vnops.

e name resolution. XNU has standard UNIX namei() interface to resolve
path-names. namei() descents through file system tree, calling VNOP_LOOKUP()
to resolve single path component. Symlinks are handled through VNOP _READLINK()
method. It is possible to determine when last path component is being
resolved.

e name cache. XNU VFS is vnode based. All VNOP_* operations take vn-
ode as argument. There is simple name-cache, In Darwin7.x, it is not used
by the VFS layer. File system backend is supposed to use it by its own.
This provides some advantage for Lustre: all file system operations go
through VOP_LOOKUP() stage (even if name/vnode is in name cache).
But things are changed in Darwin8.x, vfs uses namecache somehow. VFS:
lookup()->cache lookup path(), cache lookup path() will try to find
vnode and revalidate it, the revalidation for local filesystem is fine, but
for remote authorisation it’s really rough. The revalidation will never call
any operation of backend filesystem, it just think the vnode from name-
cache is valide if the last VNOP_LOOKUP() is happened in 2 seconds
and nobody change it locally. This is really pain for us.

VNOP_LOOKUP() records a timestamp in vnode, cache lookup path()
will check 1t later.

e No robust way to pass per-thread information from VNOP LOOKUP()
to other end-point VNOPs (i.e, VNOP _OPEN, VNOP _CREATE), that
means, it will be hard for us to use lookup-intent in xnu, although we
can know lookup-intent somehow in VNOP LOOKUP(): nameidata-
>componentname->cn_nameiop can be (LOOKUP, CREATE, DELETE,
RENAME).

e 10 way to access file descriptor in filesystem layer(file struct can only be
accessed in vfs layer), as we mentioned before, all VNOP _* operations
take vnode as argument, we can’t access per-file data in vnops.

e Apple will use intel to replace ppc, nobody knows if xnu will still be
opensource after intel version released(To prevent people from running
OS X in their own machine).

5 FUNCTIONAL SPECIFICATION

4

Requirements

According to the description of the this project, the requirement include

Construct a Lustre client for Tiger without patch of xnu or with a small
patch.

The Lustre client has basic filesystem features.
The Lustre client may have no lookup-intent operations in lookup.
The Lustre client uses 0-conf.

Try our best to provide binary-compatiblity with OS X (reduce hacking),
just as expecting of Apple.

5 Functional Specification

Tiger client will be built as several sub-modules, some of them have been de-
scribed in xll _design.lyx by Nikita, here just talking about modules have been
changed in Tiger:

5.1

filesystem vfs/vnops framework, interact with BSD vfs system

abandon or handle lookup-intent.

name cache

file IO operations: The key issure for patchless client is about read-ahead.

page cache: To re-use generic Lustre code in osc and Inet, each plat-
form has to provide implementation of c¢fs page_t API. This API closely
matches Linux page cache interface. To implement it on xnu, interme-
diate layer (zll page cache) is introduced which sits on top of mach vm
and provides data-structures and interfaces similar to ones found in Linux.
cfs _page t API is trivially implemented in terms of xll page cache.

Filesystem VFS/VINOPS framework

This part is similar to what has been done in Panther client, with a few excep-

tion:

VNOP_LOCK/VNOP_ UNLOCK is not existed anymore. There is no
KPI to call filesystem backend fsnode lock/unlock, vfs provides generic
functions lock _fsnode() /unlock fsnode to protect vnode to be accessed by
other threads if the filesystem is not thread-safe. If the filesystem is thread-
safe, fsnode should be lock/unlock totally at filesystem backend. Lustre
client should be thread-safe in Tiger to get better grained operations,
although we can start from thread-unsafe mode. In thread-safe mode, as

5.2 lookup-Intent 5 FUNCTIONAL SPECIFICATION

fsnode lock/unlock will only be called by filesystem, it’s possible to map
them to ldlm locks. To get this step we need another desigh document,
for now ldlm locks and vnode locks will still be aquired separately (Just
like in Panther).

e VNOP ACCESS should be designed carefully. VNOP _ACCESS is now
used by vfs lookup() (In Panther, it’s called by filesystem backend in
VNOP_LOOKUP), it’s always called before each VNOP _LOOKUP(), by
vnode _authorize(), to check KAUTH VNODE EXECUTE of current
vnode, we should handle this carefully to avoid redundant RPCs.

e vfs mount(): Filesystem should set MNTK AUTH OPAQUE and MNTK AUTH OPAQUE ACCES
flags during initializing. MNTK AUTH OPAQUE is used to indicate au-
thorisation decisions are not made locally, MNTK AUTH OPAQUE ACCESS
is set to tell vfs that VNOP ACCESS is reliable for remote auth, other-
wise vfs will attempt to formulate a result based on VNOP GETATTR
data (before all VNOP _LOOKUP).

5.2 lookup-Intent

e No lookup-intent in patchless version, because there is no reliable way to
get lookup-intent in current VNOP _LOOKUP() without patch. Nameidata-
>componentname->cn_nameiop describes operation-intent roughly as (LOOKUP,
CREATE, DELETE, RENAME), and it’s possible to determine when last
component is being resolved, but it’s still impossible for VNOP _LOOKUP()
to know real lookup intent like: IT GETATTR,IT OPEN,IT CREATE(mknod,
create, mkfifo all use CREATE in nameidata), so we will not use lookup-
intent for patch-free version, working rpc can only be set by end-point
vnops like VNOP _CREATE, VNOP _OPEN, VNOP LOOKUP() will do
nothing more then trying of matching local lock or sending IT LOOKUP
request to lookup.

e If we want lookup-intent, we need to add precise intent-operation to namei-
data in xnu-patch. Although there is still no way to pass per-thread data
from VNOP _LOOKUP to other end-point vnop in xnu, but xll _session
(refer to x1l _design.lyx by Nikita) can be abandoned. There are two ways
to save/pass intent-lock information:

— intent-lock status can be passed from VNOP LOOKUP() to end-
point vnop (like VNOP _OPEN) by a hash table maintained by our
client module (indexed by thread address or vfs context address),
this can be reused to client for other platforms (like patchless linux
client).

— Patch vfs_context of xnu, add a pointer in the structure and save
intent-lock information in it while lookup. It’s very easy way, because
vis context is always be passed to filesystem backend in all vnops,

5.3 Name cache 5 FUNCTIONAL SPECIFICATION

and it’s exactly per-thread data because most time it’s just staying
in stack of current thread.

5.3 Name cache

We can do nothing to namecache because there is no callback entry for filesystem
backend in xnu. We can’t jump over the rough revalidation of namecache in vfs
unless we create/use our own namecache. Things we can do are:

e complain in Darwin-kernel-list, it will take some time to get feedback, we
will have to wait and see.

e Patch xnu, it’s easy to create a patch for this, we’ll not add callback entry
for revalidate, but we can break cache lookup path() with set a flag and
let VNOP_LOOKUP() take over namecache searching, revalidating, and
real-lookup, just like pather.

e Hack without patch xnu. Purpose of hack is same with patching: break
cache lookup path() called in lookup(), let VNOP _LOOKUP() to take
over everthing. We will take this way for now, but still hope Apple can
provide a better interface for us to get over the problem in the recent
future.

5.4 read-ahead

Llite in Linux uses file->private data to save read-ahead context of each file
descriptor, as we know, xnu(BSD) vfs is vnode based, there is no way to access
per-file data like file descriptor in vnops, so it’s not easy for xnu to use read-
ahead algorithm from llite.

However, read-ahead is only for improving of read performance, it’s fine for
us to design another way to implement read-ahead.

There can be some choices for us to deal with read-ahead:

5.4.1 One read-ahead context for one vnode

Like the way used by cluster 10 of xnu, create one read-ahead context for each
vnode, only one thread can own the read-ahead context(by holding the lock
associated with it), other threads can’t own the context will run without read-
ahead, this allows multiple readers to run in parallel and since there’s only one
read ahead context, there’s no real loss in only allowing one reader to have
read-ahead enabled.

e Each time reading from different offset(by different reading from threads
or by Iseek), read-ahead context will be reset

e It’s fine for single thread reading, but not very helpful when a lot of
threads are trying to read the same file, because only one of them can
issure read-ahead and read-ahead context is always reset.

5.5 Page cache 6 USE CASES

5.4.2 No read-ahead context

It’s the simplest way to use read-ahead, read-ahead window always starts from
next page of current read, length is min(permited length, end), no context is
loaded /saved in read-ahead.

5.4.3 Per-process readahead context in LRU list

A LRU list for saving read-ahead context is added to fsnode (xnode), readers
can get a matched read-ahead context or create a new read-ahead context from
the LRU list. Read-ahead context will be freed only if it’s at the end of the LRU
list, and it hasn’t been accessed for long time or there are too many read-ahead
contexts in the filesystem. It’s possible that a read-ahead context is freed even
if there is still task wants to use it, but it’s not hurting as a new context will be
allcated when it’s required. We have no way to allocate/free read-ahead context
precisely in xnu, because threads in kernel can read/write file by v rdwr() just
after getting vnode by namei(), without open.
By this way, we can take read-ahead algorithm used by llite.

5.5 Page cache

Page cache of xll is well designed and re-usable for Tiger, we are not going to de-
sign & implement another one. For more information, please read xIl _design.lyx
by Nikita.

6 Use cases

The lustre client will be used with 0-conf in Tiger, that means user can mount/umount
and use it just like the way they use nfs.

6.1 Intent handle

No intent handle in no-patched version.

6.2 read-ahead

read-ahead context is updated before read page(), and issured asynchronizingly
after reading of page.

6.3 page cache
Please refer to x11 _design.lyx by Nikita.

6.4 Shared functions for both Linux and XNUZ LOGIC SPECIFICATIONS

6.4

Shared functions for both Linux and XNU

There are only few functions like lustre process log can be shared between
Linux and xnu, because vfs frameworks of two OS are too different(VFS of xnu
is based on vnode), and xnu will use our own page cache.

6.5

Xnu should be adapted to new KPIs

Apple provided a limted set of KPIs and structures, we can’t access kernel
services as free as before.

7 Logic Specifications

7.1

7.2

Intent handle

VNOP_LOOKUP() always use IT LOOKUP as locking request, even in
the last step of nameing resolve, because we don’t know what exactly user
wants to do while name resolving.

The lock is always released before exiting VNOP LOOKUP, nothing can
be carried to end-point vnops.

The working request can only be sent in end-point vnops.
VNOP _ACCESS is called by vfs all the time while name resolving, be

careful with it, otherwise a lot of un-expected rpcs will be sent.

Name cache

We need to explain how xnu is implemented on this before discussing our hack:

lookup ()

cache_lookup_path(...);

if (nd->ni_vp != NULL)
goto found;
VNOP_LOOKUP(...);

found:

}
cache_lookup_path(...)

7.3 Read/Write 7 LOGIC SPECIFICATIONS

while (1) {

if (remote_auth &% (now_second - vp->auth_timestamp) > 2)

break;
X
X
VNOP_LOOKUP(. . .)
{
vp->auth_timestamp = now_second;
vp->vnop_lookup(...)
3

VNOP_LOOKUP() updates timestamp in vnode each time before calling of
vnop_lookup provided by filesystem backend , cache lookup path() checks
the timestamp in the next calling of lookup() if the vnode is still in namecache,
it thinks it’s valide while last VNOP _LOOKUP() is called in 2 seconds. So,
the thing we can do is using an old time to replace vp->auth timestamp set
by VNOP_LOOKUP() in vp->vnop_lookup().

x11_lookup(...)
{

vp->auth_timestamp -= 2;

cache_lookup(...)
if revalidate(...)
return

real_lookup(...)
}

By this way, loop in cache lookup cache() will be broken by condition ((now_second
- vp->auth _timestamp) > 2), and this change wouldn’t affect anything else be-
cause vp->auth timestamp is never used by other functions. The only thing
makes us unhappy is we have to hack out define of vnode, because xnu hasn’t
exported it to kext users.

7.3 Read/Write

o Get extent lock of required range
o if reading, glimpse size of fsnode

e issure write/read/read-ahead request

7.4 Read-ahead 11 INSPECTION SUMMARY

e Put extent lock of required range

Logic of readdir is very similar to read of regular file, but with different lock.

7.4 Read-ahead

e Aquire read-ahead context from fsnode
e update read-ahead context
e issure read-ahread

e Release read-ahead context.

8 State Management

N/A

9 Alternatives

N/A

10 Focus of Inspection

No lookup-intent while rename resolving.

11 Inspection Summary

